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Abstract

We present an end-to-end deep learning framework for the integration of
depth and spectral information for the task of building footprint extraction.
Technical developements made it possible to supply large-scale satellite im-
age coverage. This poses the challenge of efficient discovery of imagery. One
very important task in applications like urban planning and reconstruction is
to automatically extract building footprints. Recently, deep neural networks
where extended from image classificators to image segmentators, allowing to
densely predict semantic labels. We show that a UNet enhances the boundary
quality in building footprint extraction compared to a FCN4s. Usually, satel-
lites provide a high-resolution panchromatic image, but only a low-resolution
multispectral image. We tackle this issue by using a residual neural network
block to fuse both and then feed them to a UNet. In a parallel stream, a
stereo Digital Surface Model (DSM) is also processed by a UNet. Our ap-
proach achieves 81.7 % Intersection over Union and has only one eighth of

the number of free parameters of the state of the art approach [2].
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1 Introduction

Nowadays, large amounts of high resolution satelite imagery is available, of-
fering a huge potential to extract semantic meaning from them. One of
the most challenging and important tasks in the analysis of remote sensing
imagery is the acurate identification of building rooftops. Several remote
sensing applications make use of this information, among them are urban
planning and reconstruction, disaster monitoring, 3D city modeling, etc. Al-
though it is possible to manually delineate the buildings footprints, this is
very time consuming and becomes infeasible when trying to cover larger ar-
eas, which also change over time. Therefore, the developement of algorithms

for automatic building detection is an active research area.

The most common ways to extract buildings identify edges and other prim-
itives in spectral images [8]. Also, the improvement of building polygons
was investigated by [6]. Even with very accurate polygons, flat objects can
have similar shapes and can therefore not be distinguished from buildings.
Therefore, the upcoming of depth images led to new approaches in building
extraction by offering to use height patterns [3]. Since depth images, like
DSMs do not include all characteristics of buildings, such as their spectral
appearance, later work was done to fuse the information from either LIDAR
or stereo DSMs and spectral images [4], [18], [20]. This approach relies on
giving accurate parameters to the algorithms, such as the minimum building
height and the maximum NDVT of a building.
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Since the latest ascent of deep learning methods, methods which are relying
on prior models are not state of the art for wide fields anymore. Rather,
there is a trend in many remote sensing applications to solve larger parts of
the tasks at hand with learning based approaches, deep learning in particular.
Deep learning was only used for a narrow range of applications such as docu-
ment recognition in LeCun et al. 1998 until Krizhevsky et al. 2012 made
a groundbreaking attempt on using deep convolutional neural networks for
image classification. [10] show that CNNs can be trained on huge databases
using efficient GPU implementation of the convolution operation by paral-
lelising it. Since then, many new architectures have emerged while pushing

the state of the art in image classification even further, such as [19] and [7].

Two reasons why CNNs beat comparing methods by a huge margin are (1)
that they do not rely on manual feature extraction and (2) that they are trans-
lationally equivariant, meaning that features are extracted independently

from their location in an image.

Advances in re-purposing CNNs for semantic segmentation make it possible
to densely classify images [12]. In this work, we investigate the suitedness of
different deep learning-based approaches to the fusion of DSM and spectral
images. We use the fused data to classify every input pixel as building or

non-building.

The remainder of this work first gives an overview of different approaches for
buildings footprint extraction in chapter 2. In chapter 3, the proposed deep
learning method is explained. To show the effectiveness and efficiency of our
approach, we give insight in the carried out experiments in chapter 4 and

present the results and a brief discussion of them in chapter 5.




2 Related Work

A lot of research effort has gone into developing algorithms for building foot-
print extraction. There are two main classes of approaches, in which these
algorithtms can be divided. We first give a brief introduction to approaches
which are not based on deep learning and then we discuss some methodolo-
gies developed for semantic segmentation tasks in the field of remote sensing

that are based on deep learning.

2.1 Feature Engineering based Approaches

Classical methods derive geometrical models from the analysis of building
properties by human experts. In Huertas and Nevatia 1988 , the authors
assume that buildings are characterized by rectangular shapes and combina-
tions of them, as well as the existence of shadows, which can be used to dis-
tinguish non-building from building outlines. This approach yields building
polygons, which often consist of jagged lines. To obtain more realistic foot-
print boundaries, Guercke and Sester 2011 use the Hough-Transformation
to detect lines in a predetermined building footprint, then use lines corre-

sponding to peaks in Hough space to construct a refined polygon.

Furthermore, to extract buildings more accurate and robust against varia-
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tions in building appearance, datasets with both depth images and spectral
images where used. Rottensteiner et al. (year?) use Dempster-Shafer the-
ory to fuse multiple features obtained from LiDAR DSM and multispectral
aerial imagery for building detection. These features include the normalised
difference of the near-infrared and the red band (NDVI), the rise of objects
from the ground (nDSM) and measures for the roughness of objects. From
the rise, objects which are assumed to be lower than buildings are detected.

The roughness measure and the NDVI mainly seperate trees from buildings.

Ekhtari et al. 2009 also use a LiDAR nDSM and refine the boundaries
of the resulting building mask, using a WorldView image. First, an initial
building mask is generated from the nDSM and is than reduced to its rough
edges. Next, edges are detected in the spectral image, which are not limited to
building outlines and are often discontinous. To filter out non-building edges,
the edges from the spectral image are masked by the edges from the depth
based building edges. Finally, to eliminate the discontinouities, polygons are
fitted to the masked edges.

Turlapaty et al. 2012 compute the depth information by fusing spaceborne
multi-angular imagery. They also use a multispectral image and a PAN im-
age, which are fused by pansharpening. Afterwards, the NDVI is calculated
from the pansharpened image. Statistical properties of these data sources
are fed to a support vector machine, which classifies each pixel as building

or non-building.

Although they work for certain areas and building appearances, a big draw-
back of hand-crafted methods is that the models are not applicable for many
complex building structures. Furthermore, they rely on identifying relevant

features by human interactors.
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2.2 Deep Learning based Approaches

In contrast, deep learning methods pass the task of extracting features
through a neural network model going through a data-based optimization
process. Based on FCNs, Marmanis et al. 2016 apply an ensemble of
networks, where each network is pretrained on different large databases of
media images, and finetuned on remote sensing images of ground sampling
distance 0.1 m. The class probabilities of their multi-class semantic seg-
mentation task are then averaged to obtain the final output probabilities.
They empirically show, that for remote sensing imagery, the models trained
for computer vision tasks generalize well. Fixing the weights of the lower
layers during early training and later making them learnable brought
main improvements of computational costs as the loss doesn’t need to be
backpropagated through the lower layers. The authors not only use as input
the spectral images but also a DEM which contains height information of
vegetation and construction. The choice for DEM over nDSM (i.e. nDSM =
DSM - DTM) reduced pre-processing.

Maggiori et al. 2017 , improve their results by multi-scale processing and
finetuning, by applying FCNs to remote sensing imagery. Multi-scale pro-
cessing captures the contextual information, due to a large receptive field, as
well as the localization of the extracted features. To obtain this, they both
downsample the input image to i of the input resolution in one convolutional
branch, while keeping the input resolution intact in the other convolutional
branch. Then, after upsampling the downsampled branch to input resolution,
both branches are added and an activation function is applied elementwise.
The trade-off here is to use less convolutional layers in the full-resolution
branch to reduce the number of parameters. Further, Maggiori et al. 2017
divide the training process into two stages. First, the model is trained on in-

exact OSM ground truth. Second, a refining stage is applied on the training
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dataset with hand labeled ground truth. This improves their result by 50%
[oU compared to the experiment before the refining stage. In this work, no
hand labeled data is used for training, since the ground truth is already of

high quality.

Bittner et al. 2017 extract building footprints using nDSM as data source.
Their results show, that using height information is valuable for that task.
FCRFs are used as a post-processing step to enhance local context of the
prediction maps, which improves fine details in the building mask. Compared
to Bittner et al. 2017 , we do not use FCRF, because it would make tuning

of extra hyperparameters necessary and only yields small improvements.

The FCNB8s architecture works well in computer vision, where image features
are usually large and well seperated. But building footprints in remote sens-
ing imagery can be of complex structure and dramatically vary in geometrical
and spectral appearence. To tackle this issue, Bittner et al. 2018 adapt
the FCN8s architecture by inserting an extra skip connection and makingthe
final upsampling factor equal to 4. This architecture is then evaluated on
VHR remote sensing imagery with ground sampling distance 0.5 m for the
task of building footprint mask generation. Furthermore, in this work, the
effect of using multiple data sources was studied based on the observations of
Marmanis et al. 2016 . The best result is showen when pansharpened RGB,
PAN and nDSM images are trained as three FCN4s networks. The three net-
works are concancatenated and three convolutional layers are applied at the
end. This makes the network learn a joint information from each datasource.
Despite the high quality results, using nDSMs and pansharpened RGB is not
optimal because it requires preprocessing. Also, the FCN architecture has a
comparatively huge amount of learnable parameters. This leads to a small
batch size and hampers training speed and inference speed. As the spectral
data shares many common features, using two seperate network branches for

them is redundant.
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Iglovikov and Shvets 2018 have successfully adapted the UNet architecture
to remote sensing imagery. The difference of this approach to FCN4s and
FCNSs is that it uses more skip connections. Image resolution is recovered
at the last skip connection. Although Iglovikov and Shvets 2018 achieved
high quality results, they do not utilize enough of the available data sources,

which leaves potential for improvement.




3 Methodology

For image classification, CNNs are the state of the art. If a neural network
has layers with learned convolutional filters, it is called a CNN. In contrast
to fully-connected layers, in convolutional layers the neurons of layer [ are
only connected to the neurons of a spatial window W of layer [ — 1. Their
output is a vector of weighted sums, where for each component of the vector,

the weights are different. For each component,

d=>Y wc "+, (3.1)

ieW

where the weights w, and bias b; of each component are equal across a layer.
This reduces the number of parameters and introduces translational equiv-
ariance Goodfellow et al. 2016 . Since convolution is a linear operator,
nonlinearities cannot be modeled by them. To introduce nonlinearity, an
activation function is applied. In CNNs, ReLU is the standard choice for the
activation function, which follows convolutional layers. ReLU works like a
gate, which lets only positive values unchanged but sets all negative values to
zero [15]. During training of the FCN architectures, dropout layers set units
in the first two convolutionalized fully-connected layers to zero with proba-
bility of 0.5 for each unit. Dropout forces the parameters to a region in the

parameterspace, where units can function independently. This decorrelates
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the units and thus, decreases overfitting. To increase their receptive field,
CNNs often use maximum pooling layers. This way, a larger spatial context
can be encoded. The last layers of a CNN are usually fully connected to
convert the feature maps into scores, which are fed to the softmax function

to obtain class probabilities.

The key idea in deep learning is to stack multiple layers on top of each other,
which enables the model to learn more abstract features. In lower layers
it is easy to interpret the trained convolution kernels, because they usually
correspond to simple geometrical abstractions like edges and corners. As
information flows deeper inside the network, it becomes harder to interpret
the meaning of the features. Because the abstraction increases in each layer,
it is important to choose a model depth which suits the complexity of a
specific problem. If the network is to shallow, the necessary abstraction
cannot be achieved. In contrast, if the network is to deep, the network would
need to learn the identity function to avoid exaggerated abstraction, which

is hard for many networks [7].

Using back-propagation, the gradient V., L of a loss L with respect to the
weights w and the bias b, to which we will refer to as gradient, is computed.
The gradient is usually evaluated for mini-batches instead of the whole train-
ing dataset (a) to get more frequent weight updates and (b) for efficiency.
The magnitude of the gradient is not definitely connected to the localization
of a minimum, which is why an empirically determined learning rate « is
used to rescale the parameter update. Weight decay prevents the param-
eters from becoming excessively large. This leads to solutions with more
balanced parameters which increase the effective capacity of the model. It is
a good praxis to perform weight decay as a regularization technique, where
a norm ||w|| of the parameters is added to the loss function L for a binary

classification task
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L(p) = —(ylog(p) + (1 — y)log(1 — p)), (32)

where ¢y and p refer to the true label of an input z and the conditional
probability P(y = 1|z). The conditional probability p is approximated by

the softmax function o(x), which is computed by

e*i

TYF o (3.3)

o(z);
for j =1,..,.K, where o(x); and x; refer to the j-th element of the softmax and
the input vector respectively. Other common loss functions are the sigmoid
function and the Euclidian distance. When using the sigmoid function, the

gradient may saturate and thus, slow down optimization.

To rescale the weight decay, it is multiplied by a hyperparameter 7, such that

L(p) = —(ylog(p) + (1 — y:)log(1 — p)) + n||w]|. (3.4)

Additionally, to avoid the training algorithm to oscilate around local optimal
solutions, momentum can be introduced. Let ¢ be the gradient of the
loss function with respect to the parameters at iteration ¢ and p be the
momentum hyperparameter, then the parameter update Aw® at iteration ¢

is computed by

Aw” = (1 — p)ag® + pAw" . (3.5)
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3.1 FCNs

Fully connected layers drop the localization of the features, which is of high
importance for semantic segmentation. Long et al. 2015 have pointed
out, that fully connected layers are equivalent to convolutions with kernel
size equal to the image size. Applying this kernel over image borders is the
same as to stride the kernel. They use this fact to convolutionalize existing
image classification networks, which makes them suitable for arbitrary sized
input images and allows extending these architectures for effective pixelwise
classification. For semantic segmentation, the extracted feature maps can be
upsampled to the input dimension. The authors experimentally show, that
utilizing a decoder module which gradually increases image dimensions and
concatenates feature maps of corresponding scale improves over upsampling
the last feature map of the encoder. They propose an architecture called
FCNS8s, which, as final step, upsamples the feature maps by a factor of eight
to get to original image size. In particular, gradually upsampling the feature
map improves the localization of features. The VGG16 architecture proved
to be a reasonable choice as the encoder of the FCN architecture for various

remote sensing data sources Bittner et al. 2018 .

One important aspect of FCNs is their output stride s, i.e. s = r:ZZiZZ—:ZZiZ;
Decreasing s, the number of parameters rises and extra skip connections
from lower layers with higher resolution could be introduced, which is why
potentially more high frequency information is fed to the predicted masks.

This refines the boundaries in the class probability maps.
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3.2 Transposed Convolution

The resulting feature maps from a convolutionalized CNN have been down-
sampled by strided convolutions and/or pooling. To increase the resolution,
transposed convolution is used. Transposed convolution works with kernels,
which are applied to each pixel in the input by multiplying each kernel ele-
ment by the value of the pixel. The stride s determines by how far the outputs
of two neighboring inputs are shifted relative to each other. When it is lower
than the kernel size, outputs at neighboring pixels overlap. The stride also
determines the output resolution. The kernel weights are learnable, which
distinguishes transposed convolution from upsampling by interpolation with

fixed weights.

3.3 Pansharpening with CNNs

To find new ways to utilize the high spectral resolution of the multi-spectral
and the high spatial resolution of the PAN image, we take a look at recent
successfull approaches to the pansharpening problem. Rao et al. 2017
apply three convolutional layers to the PAN image. The number of output
channels of the third convolution is three. It is added to the downsampled
multi-spectral image and then fed to the euclidean loss. Yang et al. 2017
upsample the low-resolution multi-spectral image by the four and concatenate

it with the pan image before feeding the concatenated channels to ResNet.

To reduce the amount of preprocessing, we (a) use DSM instead of normalized
DSM and (b) combine the PAN and the multispectral image automatically
in an end-to-end fashion similar to Rao et al. 2017 . We also use eight
multispectral bands instead of only rgh, because we want our model to learn

from a broader range of the electromagnetic spectrum with higher spectral
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resolution. Furthermore, we will adapt UNet architecture because the extra
skip connections provide more detailed local information to the final building
footprint mask. For the encoder part of the UNet we will use (a) the first
five layers of VGG16 to be able to use the ImageNet-pretrained weights and

(b) one additional layer to learn the task specific features.

3.4 Fusing DSM, PAN and Multispectral Im-

ages

In pansharpening, the aim is to generate a multispectral image with high
spatial resolution. The deep learning approach to this problem is learn-
ing a transformation from a low-resolution multispectral image and a high-
resolution PAN image to a high-resolution multispectral image. This requires
processing them in a common stream. We fuse the PAN and multispectral
branches of our network at an early stage, by applying transposed convolu-
tion to the multispectral image to upsample it by four. The PAN image is
fed to a shallow three-layer CNN to get eight feature maps of the PAN image.
The output of the transposed convolution and the CNN are added. This ap-
proach is very similar to Rao et al. 2017 . They use the of the interpolated
multispectral and the PAN, because only the residuals, which are sparse, are
left to learn for the network. This potentially makes learning the fusion of
the spectral data easier. We will compare this strategy to upsampling the
multispectral image by four and concatenating it with the PAN image as
proposed by Yang et al. 2017 , the late fusion approach of Bittner et al.
2018 , but with a low-resolution RGB, which is upsampled by a transposed
convolution and the strategy of Bittner et al. 2018 . Similar to Bittner
et al. 2018 , we have one stream each for DSM and spectral data and fuse
them using a three layer network which automatically learns the recognize

the individual contributions of spectral and depth information for extracting
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the buildings. Each of the two streams is a UNet.

Figure 3.1 visualizes the four compared ways of fusing the spectral images.
FCN_PAN and FCN__MS respectively represent a fully convolutional net-

work for PAN and multispectral images.

3.5 UNet

Ronneberger et al. 2015 proposed the UNet archtitecture, which shows
state of the art results on biomedical semantic segmentation. As the FCN4s
and FCNB8s, it consists of an encoder and a decoder module. The encoder
uses max pooling to utilize multi-scale context, whereas the decoder uses
transposed convolutions and skip connections. which consist of cropping the
feature map of the desired resolution and concatenating it with the output
of the transposed convolution, followed by convolutional layers. In contrast
to FCNs with less skip connections, UNet recovers image resolution at the

last skip connection.

This concept is generic because the encoder can be any FCN. As VGG16 has
shown good results in Bittner et al. 2017 ;, Marmanis et al. 2016 and
Bittner et al. 2018, we use it’s first five layers and then put a sixth layer with
512 3x3-kernels on top of it to learn the features specific for building footprint
extraction. Compared to VGG16, this approach dramatically decreases the

number of parameters in the network.

3.6 Transfer Learning

For many architectures, there exist models, which have been trained on huge

databases for many iterations. To reduce computational cost and excessive
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Figure 3.1: Four different fusion strategies.
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Figure 3.2: The proposed adapted UNet architecture.

hyperparameter tuning, one can use these models and fine tune them for the
task at hand with comparably few iterations. ImageNet pretrained models
have successfully been finetuned for semantic segmentation of remote sensing
imagery by Marmanis et al. 2016 . Building on these results, we will use
the weights of the first five layers of the VGG16 network pretrained on the
ImageNet database only for our multispectral and PAN data, as the features
learned by the pretrained model are specific for spectral data and are not

exhaustively describing the 3D information in DSM data.

3.7 Network Architecture

Our final architecture consists of three stages. We (1) fuse the PAN and

multispectral images using transposed convolution and a three layer network,
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(2) feed the fused spectral features and the DSM image to parallel branches
of our proposed UNet and (3) concatenate both branches by appyling a three

layer network to find which features suit the ground truth more.




4 Study Area and Experi-

ments

To validate our approach, we use WorldView-2 imagery of Munich, Germany.
The training data consists ofDSM, PAN (both 0.5m GSD) and MS images
(8 channels, 2m GSD) reorganized into a collection of 32500 patches with
a size of 320x320 px and overlap 160x160 px, where 20% are kept back for
validation. A 1280x2560 px area, which doesn’t overlap with the training
data, is used for testing. The satellite images are orthorectified, because we
want to obtain building footprints that appear as if they are view from nadir.
In order to show the generalization capability of our model, we include small
parts from WorldView-2 imagery of urban areas of Tunis, Tunisia. To com-
pensate for the missing ground truth in this area, we use building footprints
from OSM. However, there are only few areas, which are densely covered by
OSM building footprint data. The test areas are aquired by selecting rectan-
gles where as well high quality DSM data and OSM building footprints are
available.
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(c) RGB (d) pansharpened RGB

Figure 4.1: Test area in Munich, Germany. DSM image is color-shaded for better visualization.
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(c) PAN

Figure 4.2: Patch of the test area in Tunis, Tunisia used for visual inspection. DSM image is
color-shaded for better visualization.
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4.1 Image Preprocessing

For artificial neural networks, it is important to have inputs of equal mean
and scale. Therefore, we subtract the mean of the whole training data from
each patch during training and while testing, we subtract the mean of the test
area. Then we rescale our data to the range [—1, 1], because it prevents the
neural network model to learn different ranges and increases the resolution
of the numbers, that are broadcast to the network, compared to the interval
[0, 1], assuming the same type of machine numbers. The raw DSM data has
many outliers, which are caused by the generation process. These outliers
badly influence the minimum and maximum of our data, which are important.
Also, since outliers affect the mean, they push the true values to a tight region
of the range, which decreases their distuingishability. Therefore, we roughly
extract the lowest true value from the histogram and set all values below to
this value. The high outliers are far less then the low ones, so we did not

change them.

4.2 Implementation and Training Details

Building on the code developed by Bittner et al. 2018 , we implemented our
UNet network on top of the Caffe deep learning framework. For training, we
use SGD with momentum and weight decay. An epoch consists of iteratively
feeding mini-batches to the network, computing the gradients and updating
the weights, until each patch in the training data has been processed once
by the network. Depending on the batch size, the number of iterations in
one epoch varies. Due to the memory limit of 12 GB on the used NVDIDIA
TITAN X (Pascal) GPU, batch size is limited and was chosen as big as
possible for each network. The learning rate is multiplied by 0.1 every 4

epochs. All training hyperparameters are empirically chosen. We use early
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FCN4s | UNET
FUSED | LATE | EARLY CONCAT | PSFUSION
10 10 8 9] 8

Table 4.1: Number of epochs used to train different architectures.

stopping and give the number of epochs for every trained architecture in 4.1.

Training with patches of side length 320 px, boundary effects can arise. There-
fore, our patches overlap by 160 px in each dimension. During inference, the
network output is averaged in the overlapping regions. As pointed out in
3.6, we use pretrained weights for the spectral branches and train the DSM
branch from scratch. To balance the training progress, we increase the learn-
ing rate in the layers 1-5 in the DSM branch by factor 10. We initialize all
weights of convolutional layers, which are not filled with pretrained weigths
by uniformly sampled random numbers from the range [—ﬁ, ﬂ, where N is
the number of neurons for that layer. The transposed convolution layers are
initialized by bilinear weights, that is, in the beginning of the training, these

layers perform bilinear upsampling to their input.

4.3 Comparison with Alternative Methods

To compare the network developed in Section 3.7 to other architectures by
means of how well it makes use of the available data and for efficiency, we
first train and test the FCN4s fused as in Bittner et al. 2018 with pansharp-
ened RGB, PAN and DSM data. Because of the computational burden of
generating nDSMs for large areas, we train it with DSM instead of nDSM. In
order to demonstrate that FCNs can integrate spectral and geometric infor-
mation independently, we directly deploy the FCN4s fused on low-resolution
RGB, PAN and DSM data. Since multispectral information is not limited

to the RGB channels, we use five more of the available spectral bands, cov-
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ering the range from 400nm (Coastal) to 1040nm (Near-IR2), and show
that this increases the building prediction performance of the FCN4s com-
pared to using only RGB. Furthermore, we compare different approaches on
fusing spectral and depth information, as described in Section 3.4, to show
that pansharpening fusion can be used alternatively to late fusion and give
better results than early concatenation. Finally, we demonstrate that using
UNet instead of FCN4s results in straighter building outlines, higher scores
on several metrics and reduces the number of parameters in our network

significantly.




59 Results and Discussion

To evaluate our approach, we test different architectures in three stages.
First, we compare the building footprints generated by different models by
their appearance. Then, for every model we use several metrics to evaluate
them. Last, we test our approach on an entirely new area, to examine its

generalization capacity.

5.1 Qualitative Evaluation

5.1.1 FCN4s with Low Resolution RGB

The preprocessing used to obtain a high-resolution RGB image is com-
putationally intensive and we, therefore, decided to directly pass the
low-resolution RGB image to a deconvolution layer, before feeding its output
to the FCN4s. In Figure 5.1, both generated building footprints and the
ground truth are compared. The low resolution approach results in too
small building footprints and the outlines are smoother (see Figure 5.2).

But it still provides a high quality mask and includes less preprocessing.
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(a) Low-resolution RGB  (b) High- resolutlon RGB (c¢) Ground truth

Figure 5.1: Generated masks of high vs. low resolution RGB based FCN4s.
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(a) Low-res. RGB. (b) High-res. RGB. (¢) Ground truth.

Figure 5.2: Detailed comparison of high vs. low resolution RGB based FCN4s. In (a), some
small buildings are missing here or are smaller than in the ground truth.
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5.1.2 FCN4s with Multispectral Image
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(b) Multispectral (¢) Ground truth

Figure 5.3: Generated masks of RGB vs. multispectral based FCN4s.

To make the network more powerfull, we replace the RGB image with an
eight-channel multispectral image. In the middle of the upper part of Figures
5.3 a) and b), the multispectral based FCN4s detects larger parts of the small
building footprints. Comparing both footprints as a whole with the ground
truth, using multispectral information only slightly increases the number of
parameters (see Table 5.2) of the overall network but yields more complete

building footprints.

5.1.3 FCN4s with Pan-sharpening Fusion

We now focus on fusing our available data. See Figure 5.5 for reference on the

resulting masks. Early concatenation leads to a less complete mask, which
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(a) RGB.

(c¢) Ground truth.

Figure 5.4: Detailed comparison of multispectral vs. RGB based FCN4s. In (a), some small
buildings are missing here or are smaller than in the ground truth. Result (b) is also incomplete,
but includes much more information than (a).
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(c) Pan-sharpening fusion (d) Ground truth

Figure 5.5: Generated masks of three different fusion strategies.
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can be seen in the area of small buildings in the top part (compare Figure 5.6.
Here, both the late fusion and the pan-sharpening fusion give more complete
results. In the masks generated by the FCN4s we see additional structures
in the top left area, which are not present in the ground truth. This building
has a glass roof built on a hash-like structure. As we can see in Figure 5.6,
the information is present in our data. It is noteworthy, that with a far
smaller number of parameters the FCN4s pan-sharpening fusion architecture
performs very similar to the one with late fusion and also with the reference
architecture from Bittner et al. 2018 which uses a high resolution RGB

image.

5.1.4 UNet

Since it is very important for building footprint masks to have as straight
as possible outlines, we aim to utilize more of the high resolution content
of our input images, by applying the UNet architecture to our data. As
visualized in figure 5.7, most of the building outlines produced by the UNet
are straighter then those produced by the FCN4s. Furthermore, the UNet’s
resulting building outlines are less bumpy (see Figure 5.8). In the middle part
of the right side, there is a footprint in the ground truth, which is covered
only very little by the FCN4s and with many gaps by the UNet. During
gathering of the image signals, this building was under construction. There

are small structures visible in the data, which are very similar to those in a
finished building.

5.1.5 UNet vs. FCN4s fused

To show the improvements over the recent state of the art technique, we

visualize the differences in the generated building masks of UNet with pan-
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a) Early concat..

(d) G.t..

Figure 5.6: Detailed comparison of different fusion strategies. DSM image is color-shaded for
better visualization.
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(b) UNet

(c¢) Ground truth

Figure 5.7: Generated masks of FCN4s vs. UNet.
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(e) FCN4s (f) UNet (g) G. t. | (h) PAN

Figure 5.8: Detailed comparison of FCN4s and UNet. In (a), (b), (c) and (d) we can see, that
the boundaries of the UNet are slightly sharper than those of the FCN4s. In (e), (f), (g) and
(h) the results in the area of a building under construction are illustrated. The UNet captured
more details of an incomplete building.
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(a) UNet p.-s. fusion (b) FCN4s fused (c) PAN (d) Ground truth

Figure 5.9: Detailed comparison of FCN4s fused and UNet with pan-sharpening fusion.

(a) UNet p.-s. fusion (b) FCN4s fused
_
_

) Ground truth

Figure 5.10: Detailed comparison of FCN4s fused and UNet with pan-sharpening fusion.
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RGB Multispectral Metrics
FCN | high | low low
late | concat | ps
res, | res, res, | . s | fus Acc. | ToU | F;

type | fused | fused | fused
FCNd4s X 97.2 | 80.3 | 89.1
FCN4s X 96.8 | 77.2 | 87.1
FCN4s X X 96.9 | 78.5 | 88.0
FCN4s X X 96.8 | 77.5 | 87.3
FCN4s X x | 97.2 | 80.1 | 88.9
UNet X x | 974 | 81.7 | 89.1

Table 5.1: Quantitative results of the examined architectures, given in percent.

sharpening fusion and FCN4s fused, respectively. In Figure 5.9 we zoomed
very closely on building footprints generated by the FCN4s fused and the
UNet with pan-sharpening fusion and compare them to the groundtruth. The
boundaries are much sharper in the results of the UNet with pan-sharpening
fusion. In the PAN, we can see that there is a tree that covers some part
of the building. The UNet reconstructs the boundary. Despite it does not
have the information where the true outlines are from the data, it produces
a rather rectangular shape. The reason might be, that the UNet has learned
better than the FCN4s, that buildings often are rectangular. In Figure 5.10,
we make the observation, that the UNet produces less bumpy outlines than

the FCN4s, which are more similar to the ground truth.

5.2 Quantitative Evaluation

We use the Accuracy, which is common in semantic segmentation, as well
as the ToU and the F)-measure, which are suitable for binary classification
tasks, to quantitatively evaluate the experiments. In the case of binary clas-

sification,




5.2. QUANTITATIVE EVALUATION 36 von 52

architecture number parameters | time forward-pass

FCN4s fused 403.205.772 0.100553875923 s

FCN4s fused low-res. RGB 403.205.964 0.100716901302 s

FCNd4s late low-res. MS 403.209.164 0.100480812907 s
FCN4s early concat. 268.807.592 0.0667015542984 s
FCN4s pan-sh. fusion 268.812.040 0.0677197296619 s
UNet pan-sh. fusion 56.185.288 0.0735983946323 s

Table 5.2: Evaluation results regarding the efficiency. Inference on a NVIDIA GeForce Titan
X with Maxwell architecture.

) - TP+ TN o)
Y = TPy FP+ TN+ FN’ ‘
TP
ToU = 2
V= Py FP+ N’ (5:2)
2T P
F = .
' TP+ FP+FN’ (5:3)

where TP is the number of pixels that belong to building and are classified
such, FP the number of pixels which do not belong to buildings but are clas-
sified as such, TN the number of pixels classified as non-building, that belong
to non-buildings and FN the number of pixels classified as non-buildings but
belong to building. The F)j-measure is the special case of the Fj-measure,
where f = 1. It can be derived as the harmonic mean of the precision
and recall metrics, where the precision is low if FP is high and vice-versa
and recall is low if FN is high and vice-versa. Thus, the Fj-measure ex-
presses, how correct and at the same time complete the predicted building
footprints are. In our data, the number of building pixels is much smaller
than non-building pixels. The IoU is the hardest of these three to obtain a
high score from, because the number of building pixels is much smaller than

non-building pixels and the IoU can only be high if TP is high.
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We list the results of evaluated metrics of the FCN4s fused as in Bittner
et al. 2018 , the FCN4s fused with low-resolution RGB and extra decon-
volutional layer in the beginning, the FCN4s fused with multispectral data,
the FCN4s with three different fusing strategies and the UNet in Table 5.1
and additionally the number of parameters as well as the inference speed
in Table 5.2. From the statistics in Table 5.1, we recognize that the archi-
tectures which use a pan-sharpened RGB, or implicitly produce a pseudo
pan-sharpened multispectral image, are significantly worse on IoU, but still
let to comparable performance on the other two metrics. Since the used pre-
trained models are trained on sharp RGB images, it might be advantegous
that these architectures feed the fused information from both spectral images
to the model. Furthermore, we note that the UNet performs slightly better
than the FCN4s. For the UNet, the lower number of layers and kernels in the
14th layer did not influence the performance but the extra skip connections
resulted in small perfomance improvements. The obtained results are very
accurate, which points out that (a) no post-processing is necessary and (b)
DSM is a suitable substitute for nDSM.

5.3 Model Generalization Capability

To study the model’s capacity to extract the key features distinguishing build-
ings from non-buildings, we employ it on data from Tunis, Tunisia. Different
than in Munich data, the Tunis images contain more complex rooftop tex-
tures. Further challenges on this dataset are the very high grade of detail of
the building outlines and the high variations in building density. The Tunis
test data was directly passed to the system that was only trained on Mu-
nich data. In Figure 4.2 we can see, that the resulting building footprints are
much more detailed than the ground truth obtained from OSM. Many details

and even some complete buildings, that we can determine in Figure 4.2, are
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missing in the OSM data, but are present in the predicted mask. By visual
inspection, the model generalizes well on the Tunis images. It captures fine
details and highly complex building structures and operates independently
from building density. The statistical evaluation yielded an Accuracy of
79.0 % an IoU of 46.4 % and an F) measure of 61.8 %. The huge dip in
performance, about 35 % lower IoU, is due to the incomplete and partially

incorrect ground truth obtained from OSM.

5.4 Discussion

First, the experiments carried out on the fusion strategy showed that early
concatenation does not perform as good as the other two approaches. The
approach implies concatenating one PAN channel with eight multispectral
channels. Therefore, the amount of information proceeded to the next layer is
strongly imbalanced, having only a small proportion of the PAN’s high spatial
resolution. Despite late fusion performs better than early concatentating, it
does not take into account that PAN and multispectral images share many
common features. E.g., a shape typical for a building might be recognized
by the network by its geometrical appearance in both image signals. The
pansharpening fusion avoids this redundancy and balances the proportions

of information proceeded to the next layer by both images.

Furthermore, the applied preprocessing involved normalisation of the images
had a huge influence on the results. During developement, tests with not
equally scaled images as those in the training set showed poor results. Arti-
facts were introduced by the network, which are hard to interpret from the
given images. This shows that the network learned scale specific. Also, it
is very important to apply the same rescaling method to all data sources.
Even though the network could learn to balance differently scaled data, this

takes an extra effort, hampering the training process. Statistical issues also




5.4. DISCUSSION 39 von 52

showed in the data itself. The generation process of stereo DSM images can
produce outliers, which influence the histogram. Ignoring the outliers leads
to misbehavior during training and testing, because it affects the mean value.
Subtracting a mean which is excessively high due to outliers, pushes the true
values to a small range of numbers, whereas we want the true values to share

the whole range of possible values.

Also, the performance of a model should not only be evaluated based on
metrics, e.g. IoU, but also based on the number of free parameters, which
are adapted by SGD steps. The larger this number, the longer the training
of the network takes. This is due to the fact that a smaller model can use
larger mini-batches, which makes the gradient estimations more accurate and
increases the exploitation of the potential for parallelisation on a GPU. Also,
a lower number of parameters corresponds to faster forward passes in training

and testing.

When comparing our results to those in other papers, it is important to be
aware of the respective training dataset. In general, larger training datasets
can cover a greater amount of buildings and variety of building appearances,
allowing the network to produce scores with higher certainty and generalize
better. Even if the amount of training data is high, bad quality of the ground
truth can influence the results and causes uncertainty on incorrectly labeled

features, or can make testing difficult, as seen in Section 5.3

During training, validation gives a hint on how the training process serves to
improve the models performance on unseen data, which is important because
overfitting can occur when training for to many iterations. On the other hand,
if one does not train sufficiently long, the model might not adapt well enough

to the training data and for this reason performs bad on the test data.




6 Conclusion

We adapted UNet to VHR remote sensing imagery for the task of building
footprint extraction and showed that it can provide building masks of high
quality. Furthermore, we presented a method to fuse depth and spectral
information based on CNNs. The used architecture provides an end-to-end
framework for semantic segmentation, which performs well on the task of
building footprint extraction from WorldView2 images. The trained system
was tested on unseen urban areas in Munich, Germany and Tunis, Tunisia.
It produces masks with sharper edges and has less parameters than the ref-
erence architecture. Furthermore, it works with DSM and low-resolution
multispectral images. The performance of the proposed architecture does
not depend on simple or reoccuring shapes, but segments complex and very
small building structures accurately. Some of the remaining noise and incac-
curacies in the generated building masks is often due to trees covering whole
buildings, ongoing construction work or building structures of complexity,
which are challenging even for humans to distinguish from non-buildings. Al-
though the improvement in quality of our method is small, it still excels the
performance of the reference architecture, while having far less parameters
and higher inference speed. Therefore we believe, that the presented method
has a great potential to efficiently exploit mixed datasets of remote sensing

imagery for building footprint extraction.
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(d) OSM building footprints

Figure 6.1: Patch 2 of Testarea in Tunis.




43 von 52

(a) low-resolution RGB

(c) PAN (d) OSM building footprints

Figure 6.2: Patch 3 of Testarea in Tunis.
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(c) PAN (d) OSM building footprints

Figure 6.3: Patch 4 of Testarea in Tunis.
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(c) PAN (d) OSM building footprints

Figure 6.4: Patch 5 of Testarea in Tunis.
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(c) PAN (d) OSM building footprints

Figure 6.5: Patch 6 of Testarea in Tunis.
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(c) PAN (d) OSM building footprints

Figure 6.6: Patch 7 of Testarea in Tunis.
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(c) PAN (d) OSM building footprints

Figure 6.7: Patch 8 of Testarea in Tunis.
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(c) PAN (d) OSM building footprints

Figure 6.8: Patch 9 of Testarea in Tunis.
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