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Extended Abstract 

The advent of AI in vehicles of all kinds is 

simultaneously creating the need for more and most often 

also very large computing capacities. Depending on the 

type of vehicle, this gives rise to various problems: while 

overall hardware and engineering costs dominate for 

airplanes, in fully electrical cars the costs for computing 

hardware are more of a matter.  Common in both domains 

are tight requirements on the size, weight and space of 

the hardware, especially for drones and satellites, where 

this is most challenging. For airplanes and especially for 

satellites, an additional challenge is the radiation 

resistance of the usually very memory-intensive AI 

systems. 

We therefore propose an FPGA-based in-memory AI 

computation methodology, which is so far only 

applicable for small AI systems, but works exclusively 

with the local memory elements of FPGAs: lookup tables 

(LUTs) and registers. By not using external and thus 

slow, inefficient and radiation-sensitive DRAM, but only 

local SRAM, we can make AI systems faster, lighter and 

more efficient than is possible with conventional GPUs 

or AI accelerators. All known radiation hardening 

techniques for FPGAs also work for our systems. 

The small size and low energy profile of our solution fits 

well with a near-sensor implementation, also reducing 

cost, weight, and energy of the internal communication 

busses. Our AI systems are capable of processing any 

one-dimensional sensor output (a small amount c of 

values 𝑥𝑐(𝑡) per time), either at extremely high sampling 

rates of several MHz with mere µs of latency, or can work 

in bursts on data with lower sampling rates, realizing very 

low power consumption. 

In embedded neural networks, timing and performance 

are dominated by access time and energy cost per 

memory access. Strictly speaking, an FPGA consists of 

hundreds of thousands of small, fast and energy-efficient 

memory blocks (LUTs). If block memory does not need 

to be accessed, the resulting neural network will compute 

much faster and with much lower energy cost. 

Our method for FPGA based in-memory computing uses 

precomputed convolutions and stores them in the LUTs. 

This allows one-dimensional convolutional neural 

networks (CNNs) to execute without global memory 

accesses: activations are stored in local registers, and 

weights and biases of all neurons are encoded in LUTs. 

Each neuron is assigned its exclusive share of logic 

circuits. This avoids reconfiguration overhead, but limits 

the applicability of the overall method to comparatively 

small CNN, since we need several LUTs per neuron and 

even the largest FPGAs only provide hundreds of 

thousands of LUTs. 

To enable this "in-LUT processing," we had to limit the 

set of available neural network layers. We identified and 

implemented a set which is sufficient for the neural 

network to function, but which can be efficiently 

implemented as FPGA without memory access. Our 

philosophy is that it is better to adapt the neural network 

during training to make the best use of the limited 

resources available than to try to optimize the functions 

in hardware, resulting in an unconstrained neural 

network. 

When being limited to 1 dimensional CNNs, which are 

sufficient for streaming processing, e.g .for sensor 

preprocessing, a Conv1D layer can be represented as: 

𝑦𝑓(𝑡) = 𝑚𝑎𝑥(0, ∑ ∑ 𝑤𝑖,𝑐,𝑓 ⋅ 𝑥𝑐(𝑡 − 𝑖 ⋅ Δ𝑡) + 𝑏𝑓
𝑁−1
𝑖=0

𝐶−1
𝑐=0 ) (1) 

where 𝑦𝑓(𝑡) is the layer’s output vector (one value per 

filter) and 𝑥𝑐(𝑡) is the layer’s input vector, which is only 

relevant at discrete and equidistant time steps 𝑥𝑐,𝑖 =

𝑥𝑐(𝑡 − 𝑖 ⋅ Δ𝑡). Also 𝑦𝑓(𝑡) is only defined at certain 

discrete timesteps 𝑦𝑓,𝑗 = 𝑦𝑓(𝑗 ⋅ Δ𝑡). 

Assuming, that the 𝑥𝑐,𝑖 can be quantized to a very low 

bitwidth (e.g. 2bit), a push register is a hardware friendly 

and convenient complexity reduction, making a hardware 

implementing Equation 1 only depending on the recent-

most values 𝑥𝑐(𝑡). 

 

Figure 1: A shift register at the input side simplifies the 

Conv1D layer to a series of fully connected neurons. 

As presented in Figure 1, the shift register not only takes 

over the storage of the older input values, but it also 

implements the entire shift and recompute aspect of the 

convolutional layer. The remainder to be implemented is 

a pure dense layer. Stride values larger than 1 can also be 
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easily realized by reducing the activation frequency of 

the dense part of the system, and thus also reducing the 

sampling frequency of the output signals. 

In order to implement the dense neurons efficiently and 

in a hardware friendly way, we need to apply two steps: 

The first step is to strictly reduce the number of inputs to 

each neuron. Network topologies with huge input counts 

have to be replaced with a tree like structure of neurons, 

each with only a fraction of the number of inputs of the 

original neuron. Several different methods are available 

for such a reduction, but we focus in our work on 

depthwise separable convolutions, as shown in Figure 2, 

which allows to process the per channel convolution first 

(full kernel size, but per one channel) and the per channel 

convolution afterwards (kernel size already reduced to 1, 

but all channels).  

The implementation of the filters is straight forward: For 

each filter, a version of the separated neurons is 

instantiated, reading from the same push register, but 

resulting in a separate output structure (rf. Figure 2 

indicated in green for filter 0 and orange for filter 1). 

 

Figure 2: Depthwise separable convolution reduces the 

number of inputs per neuron 

In the second step, which is the core idea of the entire 

methodology, we exploit the low bitwidth of the input 

and output signals and the low number of inputs and thus 

the finite amount of possible input combinations: Instead 

of actually implementing a series of low bitwidth 

multiplications, we precompute the per neuron output for 

all possible input states, downsample them to the output 

bitwidth ny and store them in a number of look-up tables. 

For a neuron with N inputs of nx bit input width and ny 

bit output width, we can precompute the function 

𝑦 = 𝑚𝑎𝑥(0, ∑ 𝑤𝑖 ⋅ 𝑥𝑖 + 𝑏𝑁−1
𝑖=0 ) (2) 

as an 𝑛𝑦 bit value for all 2𝑁⋅𝑛𝑥  possible input states, 

requiring 𝑛𝑦 ⋅ 2𝑁⋅𝑛𝑥 bit of memory, or 𝑛𝑦 ⋅ 2𝑁⋅𝑛𝑥−6 recent 

FPGA look up tables. Such a structure is referred to as an 

n-to-m cell with 𝑛 = 𝑁 ⋅ 𝑛𝑥 the number of overall input 

bits and m the number of output bits (rf. Figure 3 left). 

The major advantage of this approach in comparison to 

all other approaches is, that it allows the weights and 

biases to remain real values. Only the input- and output 

values have to be quantized, which allows for quick and 

easy training, avoiding techniques such as straight 

through estimators. 

An optional max or average pooling layer can be 

implemented by yet another push register in combination 

with either a low bitwidth summation operation for 

average pooling or a max function for maximum pooling 

(rf. Figure 3 right). 

Both, a stride larger than 1 as well as a pooling effectively 

result in a frequency reduction of the signal to be 

analysed, which then leads to a lower power consumption 

of the respective hardware blocks, as they operate and 

thus switch and thus dissipate energy less frequently. 

A much more relevant aspect of this frequency reduction 

is, that each value of the later, lower frequency layers 

represents a larger interval of time. Due to the restrictions 

in the input number for synapses, it is not feasible, to do 

a very long convolution in order to observe features, 

occurring on a much larger timescale than the sampling 

frequency. Even with depthwise separation, the kernel 

size is limited to 𝑁 ≈ 10  for binary (𝑛𝑥 = 1) and 𝑁 ≈ 5 

for 2bit values (𝑛𝑥 = 2), as otherwise, the LUT count for 

the (𝑁 ⋅ 𝑛𝑥)-to-𝑛𝑦 block would rise exponentially.  

Thus, for an input signal entering with a sampling 

frequency of 𝑓𝑠, the initial convolution layer can only 

observe a timeframe 𝑁/𝑓𝑠 . Each stride or pooling size 

multiplies this time so that single values in the later layers 

can represent arbitrarily large time intervals. 

 

 

Figure 3 left: The separated sub-neurons can be 

represented as n-to-m lookup tables. Right: A push 

register and a sum (or max) function implement an 

average (or maximum) pooling. 

Early Evaluation 

To demonstrate and evaluate the performance of our 

method, we implemented CNN-based ECG recognition. 

Our implementation used only 40% of the available 

LUTs on the Spartan S15 chip and none of the block 

RAM or DSP circuitry. The system processed 500 pre-

recorded ECGs with 5575 samples in 281ms, consuming 

a total of only 73mJ, resulting in 10 million samples per 

second and an energy cost of 26.2nJ per sample. 
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