

ADVANCES IN ARTIFICIAL INTELLIGENCE FOR AEROSPACE ENGINEERING, MAY 30TH 2023

FPGA BASED IN-MEMORY AI COMPUTING

Domenik Helms(1), Quentin Dariol(1), Kim Grüttner(1), Behnam R Perjikolaei(2), Lukas Einhaus(3), Gregor Schiele(3)

(1) German Aerospace Center (DLR), Oldenburg, Germany, Email: first.last@dlr.de, (2) OFFIS, Oldenburg, Germany, Email:

behnam.razi.perjikolaei@offis.de, (3)University of Duisburg-Essen, Duisburg, Germany, Email: first.last@uni-due.de

Extended Abstract

The advent of AI in vehicles of all kinds is

simultaneously creating the need for more and most often

also very large computing capacities. Depending on the

type of vehicle, this gives rise to various problems: while

overall hardware and engineering costs dominate for

airplanes, in fully electrical cars the costs for computing

hardware are more of a matter. Common in both domains

are tight requirements on the size, weight and space of

the hardware, especially for drones and satellites, where

this is most challenging. For airplanes and especially for

satellites, an additional challenge is the radiation

resistance of the usually very memory-intensive AI

systems.

We therefore propose an FPGA-based in-memory AI

computation methodology, which is so far only

applicable for small AI systems, but works exclusively

with the local memory elements of FPGAs: lookup tables

(LUTs) and registers. By not using external and thus

slow, inefficient and radiation-sensitive DRAM, but only

local SRAM, we can make AI systems faster, lighter and

more efficient than is possible with conventional GPUs

or AI accelerators. All known radiation hardening

techniques for FPGAs also work for our systems.

The small size and low energy profile of our solution fits

well with a near-sensor implementation, also reducing

cost, weight, and energy of the internal communication

busses. Our AI systems are capable of processing any

one-dimensional sensor output (a small amount c of

values 𝑥𝑐(𝑡) per time), either at extremely high sampling

rates of several MHz with mere µs of latency, or can work

in bursts on data with lower sampling rates, realizing very

low power consumption.

In embedded neural networks, timing and performance

are dominated by access time and energy cost per

memory access. Strictly speaking, an FPGA consists of

hundreds of thousands of small, fast and energy-efficient

memory blocks (LUTs). If block memory does not need

to be accessed, the resulting neural network will compute

much faster and with much lower energy cost.

Our method for FPGA based in-memory computing uses

precomputed convolutions and stores them in the LUTs.

This allows one-dimensional convolutional neural

networks (CNNs) to execute without global memory

accesses: activations are stored in local registers, and

weights and biases of all neurons are encoded in LUTs.

Each neuron is assigned its exclusive share of logic

circuits. This avoids reconfiguration overhead, but limits

the applicability of the overall method to comparatively

small CNN, since we need several LUTs per neuron and

even the largest FPGAs only provide hundreds of

thousands of LUTs.

To enable this "in-LUT processing," we had to limit the

set of available neural network layers. We identified and

implemented a set which is sufficient for the neural

network to function, but which can be efficiently

implemented as FPGA without memory access. Our

philosophy is that it is better to adapt the neural network

during training to make the best use of the limited

resources available than to try to optimize the functions

in hardware, resulting in an unconstrained neural

network.

When being limited to 1 dimensional CNNs, which are

sufficient for streaming processing, e.g .for sensor

preprocessing, a Conv1D layer can be represented as:

𝑦𝑓(𝑡) = 𝑚𝑎𝑥(0, ∑ ∑ 𝑤𝑖,𝑐,𝑓 ⋅ 𝑥𝑐(𝑡 − 𝑖 ⋅ Δ𝑡) + 𝑏𝑓
𝑁−1
𝑖=0

𝐶−1
𝑐=0) (1)

where 𝑦𝑓(𝑡) is the layer’s output vector (one value per

filter) and 𝑥𝑐(𝑡) is the layer’s input vector, which is only

relevant at discrete and equidistant time steps 𝑥𝑐,𝑖 =

𝑥𝑐(𝑡 − 𝑖 ⋅ Δ𝑡). Also 𝑦𝑓(𝑡) is only defined at certain

discrete timesteps 𝑦𝑓,𝑗 = 𝑦𝑓(𝑗 ⋅ Δ𝑡).

Assuming, that the 𝑥𝑐,𝑖 can be quantized to a very low

bitwidth (e.g. 2bit), a push register is a hardware friendly

and convenient complexity reduction, making a hardware

implementing Equation 1 only depending on the recent-

most values 𝑥𝑐(𝑡).

Figure 1: A shift register at the input side simplifies the

Conv1D layer to a series of fully connected neurons.

As presented in Figure 1, the shift register not only takes

over the storage of the older input values, but it also

implements the entire shift and recompute aspect of the

convolutional layer. The remainder to be implemented is

a pure dense layer. Stride values larger than 1 can also be

x0,0

x1,0

x0,1

x1,1

…

n·C push registers of
length N

Σ

b1

ReLU

Σ
·w0,0,0

b0

ReLU
·w0,0,1

·w1,0,1

·w0,1,1

·w1,1,1

·w0,2,1

F neurons with C·N+1
inputs

n-bit sampled
version of C

channels xc(t)

F output signals
yf(t)

…

easily realized by reducing the activation frequency of

the dense part of the system, and thus also reducing the

sampling frequency of the output signals.

In order to implement the dense neurons efficiently and

in a hardware friendly way, we need to apply two steps:

The first step is to strictly reduce the number of inputs to

each neuron. Network topologies with huge input counts

have to be replaced with a tree like structure of neurons,

each with only a fraction of the number of inputs of the

original neuron. Several different methods are available

for such a reduction, but we focus in our work on

depthwise separable convolutions, as shown in Figure 2,

which allows to process the per channel convolution first

(full kernel size, but per one channel) and the per channel

convolution afterwards (kernel size already reduced to 1,

but all channels).

The implementation of the filters is straight forward: For

each filter, a version of the separated neurons is

instantiated, reading from the same push register, but

resulting in a separate output structure (rf. Figure 2

indicated in green for filter 0 and orange for filter 1).

Figure 2: Depthwise separable convolution reduces the

number of inputs per neuron

In the second step, which is the core idea of the entire

methodology, we exploit the low bitwidth of the input

and output signals and the low number of inputs and thus

the finite amount of possible input combinations: Instead

of actually implementing a series of low bitwidth

multiplications, we precompute the per neuron output for

all possible input states, downsample them to the output

bitwidth ny and store them in a number of look-up tables.

For a neuron with N inputs of nx bit input width and ny

bit output width, we can precompute the function

𝑦 = 𝑚𝑎𝑥(0, ∑ 𝑤𝑖 ⋅ 𝑥𝑖 + 𝑏𝑁−1
𝑖=0) (2)

as an 𝑛𝑦 bit value for all 2𝑁⋅𝑛𝑥 possible input states,

requiring 𝑛𝑦 ⋅ 2𝑁⋅𝑛𝑥 bit of memory, or 𝑛𝑦 ⋅ 2𝑁⋅𝑛𝑥−6 recent

FPGA look up tables. Such a structure is referred to as an

n-to-m cell with 𝑛 = 𝑁 ⋅ 𝑛𝑥 the number of overall input

bits and m the number of output bits (rf. Figure 3 left).

The major advantage of this approach in comparison to

all other approaches is, that it allows the weights and

biases to remain real values. Only the input- and output

values have to be quantized, which allows for quick and

easy training, avoiding techniques such as straight

through estimators.

An optional max or average pooling layer can be

implemented by yet another push register in combination

with either a low bitwidth summation operation for

average pooling or a max function for maximum pooling

(rf. Figure 3 right).

Both, a stride larger than 1 as well as a pooling effectively

result in a frequency reduction of the signal to be

analysed, which then leads to a lower power consumption

of the respective hardware blocks, as they operate and

thus switch and thus dissipate energy less frequently.

A much more relevant aspect of this frequency reduction

is, that each value of the later, lower frequency layers

represents a larger interval of time. Due to the restrictions

in the input number for synapses, it is not feasible, to do

a very long convolution in order to observe features,

occurring on a much larger timescale than the sampling

frequency. Even with depthwise separation, the kernel

size is limited to 𝑁 ≈ 10 for binary (𝑛𝑥 = 1) and 𝑁 ≈ 5

for 2bit values (𝑛𝑥 = 2), as otherwise, the LUT count for

the (𝑁 ⋅ 𝑛𝑥)-to-𝑛𝑦 block would rise exponentially.

Thus, for an input signal entering with a sampling

frequency of 𝑓𝑠, the initial convolution layer can only

observe a timeframe 𝑁/𝑓𝑠 . Each stride or pooling size

multiplies this time so that single values in the later layers

can represent arbitrarily large time intervals.

Figure 3 left: The separated sub-neurons can be

represented as n-to-m lookup tables. Right: A push

register and a sum (or max) function implement an

average (or maximum) pooling.

Early Evaluation

To demonstrate and evaluate the performance of our

method, we implemented CNN-based ECG recognition.

Our implementation used only 40% of the available

LUTs on the Spartan S15 chip and none of the block

RAM or DSP circuitry. The system processed 500 pre-

recorded ECGs with 5575 samples in 281ms, consuming

a total of only 73mJ, resulting in 10 million samples per

second and an energy cost of 26.2nJ per sample.

x0,0

x1,0

x0,1

x1,1

Σ

bf

ReLU

x0,2

x1,2

x0,0

x1,0

x0,1

x1,1 Σ

b1,f

ReLU

x0,2

x1,2

Σ

b0,f

ReLU

Σ

bf

ReLU

x0,0

x1,0

x0,1

x1,1

x0,2

x1,2

6-to-3

2

yf,j

yf,j-1

yf,j-2

yf,j-3

6-to-3

6-to-2

2

2 2

2

2

2

3

3

Σ

1 depthwise separable neuron per filter ny-bit push register avg. pooling

