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Global Stability Analysis of the Interaction Between a Longitudinal
Vortex and an Oblique Shock Wave

Michael Werner1,∗ and Stefan Hein1

1 German Aerospace Center - Institute for Aerodynamics and Flow Technology

In this study, the interaction of a longitudinal vortex with an oblique shock was studied numerically. A global stability
approach was used to investigate the onset of unsteadiness due to vortex breakdown. For this purpose, steady and unsteady
laminar flow simulations were performed. A longitudinal vortex with an exponentially decaying tangential velocity profile,
a so-called Erlebacher vortex, was introduced into the flow field by a modification of the inflow boundary, while the oblique
shock was created by a ramp in supersonic flow. Parametric studies concerning the influence of the axial velocity deficit and
the tangential velocity component on the stability of the vortex were performed. Several amplified global eigenmodes could
be identified and it could be shown that the frequencies predicted by the global stability analysis were in reasonable agreement
with dominant frequencies observed in the unsteady simulations.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Vortices and swirling flows in general play an important role in a broad range of natural and technical flows. In aerodynamics,
leading edge vortices on delta wing aircraft have been a primary area of study for decades. Under certain flow conditions,
an abrupt change in the flow topology can be observed, the so-called vortex breakdown. This phenomenon can greatly affect
the aerodynamic performance of the aircraft, reducing the lift and, if it occurs asymmetrically, inducing strong moments that
can compromise the stability and control of the aircraft. Vortex breakdown is typically connected to the development of a
stagnation point in the vortex core, followed by an area of reversed flow [11]. For incompressible vortices, vortex breakdown
typically occurs once a critical swirl ratio S is exceeded [13]. However, for vortices in supersonic flow vortex breakdown
can also be caused by the interaction with a shock wave [10]. Most numerical studies of shock-induced vortex breakdown
are based on conventional simulations solving the Euler or the Reynolds-averaged Navier-Stokes (RANS) equations. One
example is the work of Thomer et al., who performed extensive studies concerning the interaction between a longitudinal
vortex and normal or oblique shocks [21, 22]. The interaction between a longitudinal vortex and an oblique shock caused
by a ramp was studied by Magri et al. [14]. They found breakdown characteristics similar to those found in subsonic flows.
Another approach is to view vortex breakdown as a stability problem. For incompressible flows, linear stability theory has
long been used to study the stability of vortices [12, 19]. However, local linear stability analysis assumes negligible gradients
in the direction of flow. In the area around a shock this assumption is invalid. An alternative approach is the use of global
linear stability analysis (GSA). In contrast to local linear stability analysis, no assumptions about the spatial structure of
the instability are made. It was first applied by Pierrehumbert and Widnall to shear layer instabilities [17]. Most of the early
studies focused on fundamentally two-dimensional flows, such as cavity flows or the wake behind a cylinder [20]. By studying
the two-dimensional turbulent flow around a NACA0012 profile, Crouch et al. could show that the onset of shock buffet is
also caused by a global instability [3]. In recent years, due to the increase in available computational resources, it also became
possible to study fully three-dimensional flows. With regard to vortex breakdown, most studies focused on incompressible
vortices. Meliga and Gallaire [16] analyzed spiral vortex breakdown based on direct numerical simulation (DNS) results.
They performed a global stability analysis in the region of the breakdown bubble and found that spiral vortex breakdown is
caused by an unstable eigenmode. Qadri et al. [18] also studied spiral vortex breakdown and could confirm the findings of
Meliga and Gallaire. Additionally, they extended the approach to calculate the structural sensitivity in order to identify the
wavemaker region responsible for the spiral vortex breakdown.

In this paper, the applicability of the global stability analysis to compressible flows with shock is investigated. For this
reason, a matrix-forming three-dimensional global stability analysis approach will be used to detect and study the onset of
unsteadiness due to vortex breakdown of a longitudinal vortex caused by the interaction with an oblique shock. Additionally,
comparisons with unsteady laminar flow simulations are used to validate the applicability of this approach for the study of
vortex-shock interactions.
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2 Global Stability Analysis

2.1 Theoretical Formulation

The theoretical formulation of the global stability analysis is based on the approach outlined e.g. by Iorio et al. [8]. The
general form of the finite volume formulation of the Navier-Stokes equations can be given in compact form as

B
∂q(x, y, z, t)

∂t
= R(q(x, y, z, t)), (1)

where B is a diagonal matrix containing the cell volumes, q are the base flow variables and R is the residual. To linearize the
equation, a decomposition of the base flow variables q into the steady base flow Q and a small perturbation q′ is introduced:

q(x, y, z, t) = Q(x, y, z) + ϵq′(x, y, z, t), (2)

where ϵ ≪ 1. By combining the equations 1 and 2 and subsequent linearization, we arrive at

B
∂Q(x, y, z)

∂t
+ ϵB

∂q′(x, y, z, t)
∂t

= R(Q(x, y, z)) + ϵR(q′(x, y, z, t)), (3)

which can be simplified to

ϵB
∂q′(x, y, z, t)

∂t
= ϵR(q′(x, y, z, t)), (4)

as we assume a fully converged steady base flow, ∂Q(x, y, z)/∂t = 0 and R(Q(x, y, z)) = 0.
In the next step, a harmonic ansatz in time is chosen for the perturbation:

q′(x, y, z, t) = q̂(x, y, z) · e−ωt, (5)

where q̂ is the complex-valued eigenvector and ω is a complex-valued eigenvalue. By inserting equation 5 into equation 4 we
obtain:

−ωBq̂ · e−ωt =

[
∂R

∂q

]

Q

q̂ · e−ωt. (6)

With A =
[
∂R
∂q

]
Q

as the Jacobian of the steady base flow we get:

Aq̂ = −ωBq̂ (7)

This generalized eigenvalue problem is then solved by using a Krylov subspace approach to find the eigenvalues ω = ωr+ iωi

and eigenvectors q̂. The resulting eigenvectors correspond to the spatial structure of the global instabilities, whereas the real
and the imaginary part of the eigenvalues can be interpreted as its damping rate and dimensionless frequency, respectively.
The damping rate, ωr, determines whether the corresponding instability is damped, ωr ≥ 0, or amplified, ωr < 0.

2.2 Solution of the Generalized Eigenvalue Problem

The method outlined in section 2.1 was implemented in the scope of the DLR FlowSimulator framework [15]. This framework
serves as an interface between the DLR TAU code [6] and a collection of Python libraries used to control the simulations
and access the generated data. The Jacobian was computed on the same computational grid as the base flow. The discrete
formulation of the Jacobian was previously derived by Dwight [4]. For the solution of the generalized eigenvalue problem a
combination of the numerical libraries PETSc [1] and SLEPc [7] was used. A Krylov-Schur eigensolver was chosen because its
efficient restarting technique, together with a shift-and-invert approach, allowed for an efficient identification and extraction
of the relevant eigenvalues. For the solution of the inner iterations of the linear system, an efficient BGCRO-DR solver
was used [9]. Since the resulting system was generally ill-conditioned, an ILU(0) approach was used as a preconditioner.
The convergence behaviour of the inner iterations was further improved by using a specifically built preconditioning matrix
P = αA2nd + (1 − α)A1st. Here, α is a blending factor and A1st and A2nd are Jacobians with different levels of fill. For
A1st a first-order stencil was used, that only included the contribution of the nearest neighbors of each point, whereas A2nd

was built using a second-order stencil. For the current study, a blending factor of α = 0.5 was used.

3 Case Setup

In the following section, the geometry of the computational domain and the relevant flow conditions will be presented. Addi-
tionally, information about the numerical schemes used for the base flow simulations will be given.
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3.1 Geometry and Flow Conditions

In order to allow for direct control of the shock-vortex interaction and to avoid unnecessary disturbances introduced by a
vortex generator geometry, a simplified setup was chosen for this study: the longitudinal vortex was introduced into the flow
by a modification of the inflow boundary condition, and the oblique shock is generated by a ramp in supersonic flow. A sketch
of the setup is given in Fig. 1. The resulting shock-vortex interaction is defined by several interaction parameters. On the one
hand, the shock itself is influenced mainly by the free stream Mach number M and the ramp angle θ. On the other hand, the
most important parameters of the longitudinal vortex are its circulation Γ0, the axial velocity deficit δ and the vortex radius
r0. During this study, both the ramp angle θ = 11.5◦ and the free stream Mach number M = 1.48 were kept constant, leading
to a shock of constant strength for all simulations. The Reynolds number based on the vortex diameter, d0 = 2r0, was set to
Red0

= 5 · 105 for all simulations.

(a) Frontal view of the geometry.
(b) Side view of the geometry, including a sketch of the shock, with the ramp angle θ and the shock

angle σ.

Fig. 1: Sketch of the computational domain.

In order to avoid an interaction between the vortex and domain boundaries, especially the solid walls of the ramp, an
exponentially decaying vortex model originally proposed by Erlebacher et al. [5] was chosen. The axial and tangential velocity
components at the inflow boundary, u and vφ, respectively, are given as

u = U∞
(
1− δe−r∗2

)
, vφ =

Γ0r
∗

2π
e

1−r∗2
2 , (8)

with Γ0 = 2πr∗vφ,max, r∗ = r/r0, and δ = 1− ucenter/U∞ as the velocity deficit in the vortex core. The vortex core radius
r0 is defined by the position of the maximum azimuthal velocity vφ,max. Pressure and density at the inlet boundary were
calculated by assuming isenthalpic flow. By varying Γ0 and δ it is possible to affect the stability of the vortex interaction.
Increasing Γ0 or δ has a destabilizing effect, whereas decreasing these parameters stabilizes the vortex [21]. For this study,
only vortices with a wake-type core, δ > 0, were considered.

3.2 Numerical Solution Scheme

All computations of the base flow were carried out with the DLR TAU code [6], a three-dimensional finite volume code for the
solution of the Navier-Stokes equations on hybrid-unstructured meshes. Previous numerical studies found a strong influence
of the turbulence model on shock-induced breakdown [10]. To avoid additional uncertainties, a fully laminar approach was
chosen for the present study. The spatial discretization of the laminar Navier-Stokes equations was achieved with a second-
order central-differencing scheme, coupled with artificial matrix dissipation. A backward-Euler scheme was used for the
temporal discretization, together with either a local time-stepping approach for the steady simulations, or a dual time-stepping
approach for the unsteady simulations.

The mesh used in this study was created with the CENTAUR mesh generation software [2]. It was a fully hexahedral mesh
with approximately 31 · 106 nodes. A simple mesh convergence study was carried out to determine cell sizes necessary to
correctly resolve the occurring flow features. In the final mesh, isotropic cells with ∆x = ∆y = ∆z = 0.05r0 were used in
an area of ±6r0 around the vortex axis. To better capture the shock, the streamwise dimension of the cells was reduced to a
minimum of ∆x = 0.015r0 in the area above the ramp. While the base flow computations were mesh-converged, the global
stability analysis proved to be more sensitive to the mesh resolution. However, with the available computational resources, no
further refinement of the mesh was possible. Therefore, the results of the global stability analysis are not completely mesh-
converged. As mentioned previously, the vortex was introduced by a modification of the inflow boundary. This was achieved
by using a Dirichlet-type boundary condition, where the values of the flow variables could be explicitly specified at each point
of the mesh. Both the ramp and the side walls in y-direction were modeled as inviscid walls. Finally, a non-reflective farfield
condition was used for the upper boundary and the downstream boundary.

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

 16177061, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202200237 by D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein., W

iley O
nline L

ibrary on [06/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 6 Section 12: Waves and acoustics

4 Numerical Results

4.1 Base Flow Simulations

In order to identify suitable flow conditions for the global stability analysis, a parametric study concerning the effect of the
vortex parameters Γ0 and δ was performed. As a result of this study, three different flow conditions with axial velocity deficits
between 0.2 ≤ δ ≤ 0.4 were defined. The onset of vortex breakdown is strongly influenced by both Γ0 and δ. As only flow
conditions close to the onset of unsteadiness were of interest, both parameters had to be varied at the same time. The flow
topology of the respective base flows was qualitatively similar for all investigated cases. In Fig. 2, the x-velocity component
of the steady base flow, u, is shown for one case, Γ0 = 2.7, δ = 0.3. It can be seen that the shock/vortex interaction leads
to a strong deformation of the shock front and the formation of a recirculation bubble in the vortex core downstream of the
shock. Further downstream, the vortex interacts with the expansion fan at the end of the ramp, which leads to restabilization
of the vortex. With increasing circulation or axial velocity deficit, the size of the area of reversed flow increases and the
minimum velocity further decreases. It is worth noting that the existence of reversed flow in the vortex core is not sufficient to
cause unsteadiness. Only after passing a certain threshold that depends on the vortex parameters Γ0 and δ, the flow becomes
unsteady. For two of the considered test cases, Γ0 = 2.7.δ = 0.3 and Γ0 = 3.68, δ = 0.2, unsteady flow simulations were
carried out. In order to identify the onset of unsteadiness, time-series of the pressure in the vortex core downstream of the ramp
were recorded. For the case Γ0 = 2.7.δ = 0.3, the dominant frequency of the resulting pressure fluctuations was f = 112Hz,
whereas the dominant frequency of the case Γ0 = 3.68, δ = 0.2 was f = 163Hz.

Fig. 2: Distribution of the normalized x-velocity component u/U∞ of the steady base flow, M = 1.48,Γ0 = 2.7, δ = 0.3.

4.2 Global Stability Analysis

Based on the steady base flow computations presented in the previous section, the global stability analysis was performed for
three different parameter combinations, Γ0 = 1.65, δ = 0.4, Γ0 = 2.7, δ = 0.3 and Γ0 = 3.68, δ = 0.2. The corresponding
eigenvalue spectra are shown in Fig. 3. For each of the investigated cases, at least one amplified eigenvalue could be identified.
It can be seen that by increasing the axial velocity deficit from δ = 0.2 to δ = 0.4, the dimensionless frequency of the most
amplified eigenmode is decreased from ωi = 0.16 to ωi = 0.039. This observation is in good agreement with results of
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Fig. 3: Influence of the circulation Γ0 and the axial velocity deficit δ on the computed eigenvalue spectrum.
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unsteady flow simulations. For the case Γ0 = 2.7, δ = 0.3, the most amplified eigenvalue is ω = −0.019 + 0.106i. Together
with the internal reference velocity of the TAU code, vref = 244.7m s−1 and the reference length lref = 2 ∗ r0 = 0.04m,
the resulting frequency of the eigenmode is fGSA = (ωivref )/(2πlref ) = 103Hz, as compared to the frequency of pressure
oscillations of the URANS simulation, fURANS = 112Hz. Similarly, for the case Γ0 = 3.68, δ = 0.2 the stability analysis
predicts a frequency of fGSA = 153Hz, compared to a frequency of fURANS = 163Hz based on unsteady simulations. For
both cases, the frequency predicted by the global stability analysis is approximately 5 − 10% too low. Discrepancies of a
similar magnitude were also reported for different applications of the global stability analysis [3], where they were attributed
to non-linear effects in the flow field. Also, the results of the global stability analysis are not completely mesh-converged, as
was mentioned in section 3.2, which might explain at least a part of the observed differences in frequency.

Fig. 4: Shape of the most amplified eigenmode, visualized by two iso-surfaces of the real part of the x-velocity mode v̂x, Γ0 = 2.7, δ = 0.3.

(a) Distribution of the normalized x-velocity component v̂x/v̂x,max of the eigenvector.

(b) Distribution of the normalized pressure component p̂/p̂max of the eigenvector.

Fig. 5: Visualization of the eigenvectors of the most amplified eigenmode, Γ0 = 2.7, δ = 0.3.

The eigenvectors of the computed eigenmodes feature a complex three-dimensional shape. This can be seen in Fig. 4,
where two iso-surfaces of the x-velocity component of the most amplified eigenmode for the case Γ0 = 2.7, δ = 0.3 are

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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6 of 6 Section 12: Waves and acoustics

plotted. The iso-surfaces originate from the area of reversed flow above the ramp and spiral around each other with the same
rotational direction as the base flow vortex. In order to compare the eigenfunctions of different flow variables, Fig. 5 shows
y-normal cut sections along the vortex axis for the case Γ0 = 2.7, δ = 0.3. In Fig. 5a, the x-velocity component of the most
amplified eigenmode is plotted. Here, the highest amplitudes are found in the area of the recirculation bubble above the ramp
and in the vortex core downstream of the ramp. Generally, the amplitudes are limited to the area of the vortex core in the base
flow simulations. In contrast, Fig. 5b shows the eigenvector corresponding to the pressure. Here, the highest amplitudes are
found in the vortex core downstream of the ramp and along the shock front, which suggests the occurence of shock oscillations
due to vortex breakdown.

5 Conclusions

This paper presents a numerical study of the interaction between a longitudinal vortex and an oblique shock at M = 1.48. The
focus of the current work was the application of a global stability analysis to study the shock-vortex interaction. To this end,
conventional steady and unsteady laminar flow simulations were performed to identify suitable conditions close to the onset
of unsteadiness due to vortex breakdown. Based on these simulations, a fully three-dimensional global stability analysis was
performed for several vortices with varying levels of circulation and axial velocity deficit. For each of the investigated flow
conditions at least one amplified global eigenmode could be identified. The corresponding eigenvectors featured a complex
three-dimensional shape. The highest amplitudes for the velocity components were found in the area of reversed flow above
the ramp, whereas the highest amplitudes of pressure and density occurred in the vortex core downstream of the ramp and
along the shock front.

A simple mesh convergence study with three different meshes showed that the results of the global stability analysis were
not completely mesh-converged. While the eigenvalues of the most amplified eigenmode still varied between the medium and
fine mesh, the corresponding eigenvectors were qualitatively similar. However, due to the large memory requirements of the
applied approach, no further mesh refinement was possible with the available computational resources.

A comparison of the results of the global stability analysis with results of unsteady simulations showed a good agreement
with regard to the onset of unsteadiness between both approaches. However, it was also shown that the frequencies predicted
by the stability analysis were between 5− 10% too low compared to the results of the unsteady simulations.
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