
ROSMC: A High-Level Mission Operation Framework for

Heterogeneous Robotic Teams

Ryo Sakagami1, Sebastian G. Brunner1,2, Andreas Dömel1, Armin Wedler1, and Freek Stulp1

Abstract— Heterogeneous teams of multiple mobile robots
will be important for future scientific explorations of extrater-
restrial surfaces or hazardous areas. Mission operation in such
harsh, unknown environments poses diverse challenges. Robots
need to cooperate autonomously due to the large network
latency to the ground station while operators need to adapt
the ongoing mission flexibly based on new discoveries obtained
during execution. Furthermore, shared situational awareness
between operators and roboticists is highly required to deal
with execution failures promptly. To overcome these challenges,
this paper proposes the high-level mission operation framework
ROSMC. The concept of mission synchronization to robots
enables continuous mission adaptations and future planning
by operators while robots execute the mission autonomously.
The ROS-based GUIs enable operators to intuitively create and
monitor the mission for robots as well as to communicate with
roboticists smoothly. The proposed framework was evaluated
by a pilot study with a simulator and demonstrated at a Moon-
analogue field on Mt. Etna in Sicily, Italy, involving 3 robots
and around 70 researchers for 4 weeks.

I. INTRODUCTION

In the field of scientific exploration in harsh environments

or extraterrestrial surfaces, the use of heterogeneous teams of

robots systems has several advantages over a single robotic

system, including efficiency, robustness, and versatility. Be-

cause a team of robots can execute skills in parallel, the

total amount of time consumption for a mission is reduced

(efficiency). Even if one of the robots in a team suffers

from an accident, other robots with different but overlap-

ping capabilities could substitute the one with malfunction

(robustness). Finally, a combination of heterogeneous robots

such as ground and aerial vehicles enables a mission that is

not achievable by a single robot (versatility). Due to these

advantages, we expect a heterogeneous team of robots to

improve the quality and the speed of scientific explorations.

To orchestrate a heterogeneous robotic team, this pa-

per proposes the open-sourced tool ROS Mission Control

(ROSMC)1, a high-level mission operation framework based

on ROS [1]. Several technical challenges are overcome by

ROSMC. A first one is that mission execution by robots

should be autonomous due to the large network latency. In

Mars exploration scenarios, for example, the communication

delay can be up to 20 minutes. Under such situations,

step-by-step human interventions are time-consuming and

hinder efficient mission execution. Therefore, robots should

1 DLR (German Aerospace Center), Institute of Robotics
and Mechatronics, Münchner Str. 20, 82234 Wessling, Germany,
{firstname.lastname@dlr.de}. 2 At DLR at the time
of development of ROSMC.

1https://github.com/DLR-RM/rosmc

(1) (2a) (2b)

(3) (4a) (4b)

Fig. 1: Snapshots of the real sample-return mission at a Moon-
analogue site on Mt. Etna. (1) LRU1 [2], [3] and LRU2 [2], [4]
started next to the lander; (2a) LRU2 picks the sample box from
the lander while (2b) LRU1 identifies a POI for sample return;
(3) LRU2 navigates to the POI while LRU1 explores an unknown
area; (4a) LRU2 collects a stone while (4b) LRU1 drives back to
the lander and improves map quality by loop closures.

demonstrate self-reliance and be able to execute mission

specifications without human support. Most importantly, the

mission specification should exploit collaboration to take

advantage of the versatility of heterogeneity.

A second challenge, which poses a contradictory require-

ment to the first challenge, is that the ongoing mission should

be flexibly adaptable to maximize scientific achievements.

New, unforeseeable scientific opportunities often emerge

from the in-situ discoveries and they need to be flexibly

incorporated into the original mission.

These two contradicting challenges are tackled by a mis-

sion synchronization concept. This specifies the entire mis-

sion by two sections: the non-synchronized one the operators

prepare as a blueprint and the synchronized one the robotic

team autonomously executes. This concept enables seamless

adaptations on the synchronized section while planning fu-

ture tasks on the non-synchronized section.

The prioritization of scientific activities and mission speci-

fication should be done by experts in the exploration domain,

e. g. geologists. A third challenge is that interfaces should

thus be intuitive to use also for operators without a robotics

background. Furthermore, in case of a critical robotic failure,

the operators should be able to communicate with roboticists

effectively which part of the mission caused the problem.

This challenge is addressed by graphical user interfaces

(GUIs) that enable intuitive mission creation and monitoring.

The noticeable advantage of our framework is that the GUIs

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICRA48891.2023.10161133

https://github.com/DLR-RM/rosmc


are based on the ROS architecture, decreasing the commu-

nication burden between the operators and the roboticists.

We demonstrated ROSMC with a pilot study using a

simulator and deployed it with the actual system during the

ARCHES demo mission [5]: the exploration scenario on a

Moon-analogue terrain with two different rovers, an aerial

drone, a lander, and multiple payload boxes (see Figure 1).

II. RELATED WORK

ROSMC falls into the research field of mission specifi-

cation, how a mission can be defined for multiple robots

including their coordination, and a graphical tool for mis-

sion creation and monitoring, the interface for operators to

monitor a robotic team and transfer their intentions to it.

A. Mission Specification

MissionLab [6], [7] specifies a mission as a set of possible

states, while M2PEM [8], [9] does as a flow of activities. In

both approaches, each mission block (a state or an activity) is

assigned to one or several robots. While it renders the whole

mission easy to grasp, the execution sequence of each robot

is obscured and flexible mission adaptation for a specific

robot becomes less tractable.

In SeMo [10], a mission for the team has different modes,

each of which has listen, report, and action plans to enable

multitasking. Each plan hierarchically consists of services

that robots offer. Unlike ROSMC, actual code needs to be

compiled after each modification.

A recent formal language approach to specify skills and

missions for a single robot can also be found in [11],

although scalability for multiple robots is not discussed.

PROMISE [12] specifies a mission in a domain-specific

language translatable into a temporal logic. The mission hier-

archically consists of basic robotic tasks provided by PsALM

tool [13]. A global mission consists of the local mission per

robot. Cooperations are specified by event triggers.

Our ROSMC specifies an entire mission as a composition

of local missions per robot, similar to PROMISE. Contrary

to it, the specification of concurrency, fallbacks, and event

handlers is handled by robotics experts with a task program-

ming tool interfacing with ROSMC.

B. Graphical Tools for Mission Creation and Monitoring

The GUI of MissionLab [6] represents states and their

transitions by boxes and arrows, respectively. Choosing suit-

able triggers and transitions yet requires robotics knowledge,

restricting the GUI mainly for roboticists.

M2PEM [8] also provides a graph-based mission editor

employing special graphical operators to construct logics.

MOCU [14] is integrated with it to increase situational

awareness with its 2D map, a telemetry table, and a pop-

up window triggered by events that robots encounter.

We can find outstanding interfaces in CHMI2 [15], [16]

and IMPACT [17], [18]. Both provide a 2D tactical map

displaying robots as icons on a satellite image. CHMI2

shows the mission progress in a timeline. In IMPACT, active

high-level tasks are highlighted by corresponding waypoints.

Furthermore, IMPACT employs easy-to-understand icons to

show the current robot status on the map.

To the best of our knowledge, however, none of the

above provides visualization of local 3D environments and

possibility to interact with objects around robots. This feature

is essential for specifying and monitoring manipulation tasks.

III. FRAMEWORK CONCEPTS

The requirements derived from the challenges described in

Section I are summarized as follows; 1) the operators should

be able to flexibly adapt the uploaded mission while making

future plans, 2) the mission should be uploaded to the robots

for autonomous execution, 3) the mission specification can

exploit inter-robot collaboration, and 4) even non-roboticists

should be capable of all the mission operation activities. In

this section, we describe the concepts employed in ROSMC

to satisfy these requirements.

A. Mission Specification

In robotic space operation, the primary interest of the

operators is to determine scientific activity plans. From this

fundamental aspect, we specify a mission as a combination of

skills rather than as a collection of robotic states whose tran-

sitions are triggered by external events. The state-orientated

specification also has practical limitations of the intractably

large space of states and events in unknown environments.

The mission data structure is shown in Figure 2. The

entire mission of the robotic team consists of single-robot

missions (tasks), each of which consists of a sequence of

parameterized high-level skills. The skill provides a func-

tional interface to the actual execution routines/controllers

programmed by the robotics experts. The mission operators

instantiate these skills with parameters (bool, integer, float,

string, list, dictionary, and euler 6D pose) and use them to

compose the task. A library associates a robot with the skills

that it can execute.

Fig. 2: Simplified class diagram of the mission data structure.

For skill specification, we refer to RAFCON [19] for its

rich model. Skills are modeled as hierarchical, concurrent

state machines to achieve complicated autonomous decision-

making behaviors for robots. Due to its hierarchical structure,

skills can be modularized in an arbitral granularity, ranging

from the lowest level to trigger capabilities to the highest one

to interface with ROSMC. The concept of Resource-Aware

Task Nodes [20], which models resources, pre-conditions,

and effects, enables optimization of skill execution. Provided

with these concepts, the skills could implement local auton-

omy to tackle task-level challenges on multi-robot systems.

This exempts operators from mission-irrelevant management



workload such as avoiding collisions with other robots or

sharing manipulated object information among robots.

ROSMC allows only a sequential order of skills, meaning

that the operators cannot create branching nor loops in the

mission specification. This contributes to simplifying the

mission specification to satisfy the fourth requirement while

keeping the disadvantage minimal. In the scientific explo-

ration domain, decision-makings are often based on various,

non-programmable domain knowledge and thus branching

does not benefits the mission specification. In case looping

is necessary (e. g. collect 3 stones), exposing the iteration

number as an input parameter of the skill should suffice.

B. Mission Synchronization

ROSMC employs the mission synchronization concept,

illustrated in Figure 3, to address the first and second

(contradictory) requirements. This concept is to upload/delete

the mission to/from the robots part by part. With this

concept, the entire mission is specified by two sections: the

synchronized one the team of robots autonomously executes

being followed by the non-synchronized one for operators to

prepare a blueprint.

A

B

C

D

E

Fig. 3: Graphical example of the mission synchronization concept.

A mission is initially created all as the non-synchronized

section at the ground station A . The operators then choose

the first set of skills and synchronize this section to the

robot B . Since the synchronized section is autonomously

executed by the robots C under the network latency, this

part is protected against modifications by the operators. The

non-synchronized section, however, remains on the ground

station and still editable while execution D .

This scheme of uploading a mission and planning next

activities is common practice in space-robot operations [21].

What is unique to ROSMC is that modifications on the

synchronized section can be performed seamlessly with

future planning. As long as the synchronized skills are not

yet executed, the operators can make a request (named un-

synchronization) to delete them from the robot and prepend

them at the beginning of the non-synchronized section E . In

this way, the operators can easily check the consistency of

the mission while adapting the unsynchronized skills and

creating the future ones simultaneously. Furthermore, the

operators do not suffer from the network latency except for

the moment of the unsynchronization request, increasing the

efficiency of mission adaptations.

This concept is achieved by the status of skills in the

mission specification. The skills with the idle status are

considered as the non-synchronized section and the rest as

the synchronized one. The skills with success and failure are

completely immutable since they are execution logs. The op-

erators can stop the execution if the skill is running, paused,

or synchwaiting. The stopped skill and those synchronized

but not yet executed have the status idle synchronized, which

can be unsynchronized by request.

One of the planetary exploration scenarios where this

concept is effective is that the sample acquisition destination

is revealed to be not traversable by a rover after arriving

nearby. Since orbital images are not satisfactory to predict

the exact terrain conditions [22], the initial plan could not

guarantee scientific activities at the planned location. The

mission could be adapted in various ways: by updating the

targeted location, by inserting other scientific activities than

sample acquisition, or by skipping the location and letting

the rover proceed with the rest of the mission. In either case,

the mission synchronization concept provides flexibility for

operators to reflect their intentions swiftly.

C. Skill Barrier

A skill barrier specifies which skills should be executed

synchronously, satisfying the third requirement. As shown

in Figure 2, a mission contains barriers in addition to the

tasks. Each barrier consists of more than one IDs uniquely

given to instances of the skills. The skills whose IDs are

specified in the barrier are meant to be triggered at the same

time. Although each robot executes the synchronized skills

in the task self-reliantly, it always checks if the ID of the skill

is included in any barrier. If yes, the robot awaits the other

required robots until they are ready to execute the skill. Only

after all the robots specified by the skill barrier are ready,

they trigger the skill execution. The synchronization during

the skill execution should be dealt with by the functional

layer [23] or the world model, i. e., should be programmed

by the robotics experts.

IV. IMPLEMENTATION

The implementation overview is shown in Figure 4. The

mission server maintains data and communicates with the

3D GUI, the command GUI, and the robots. RAFCON [19]

is employed for skill implementation and execution on the

robots. A world model [4] allows the robots to exchange

world knowledge and to collaborate during skill execution.

The system boundary is designed so that the operators and

the roboticists could work on different architectural layer.

This could potentially allow for a different paradigm of

robotic space operation, e. g., letting astronauts on the Mars

orbit be operators being supported by roboticists on Earth.

A. Mission Server

The mission server communicates mission data via ROS

services so that the clients are informed in case of com-

munication failures and able to rollback to consistent states

safely2. The mission server could also be a static agent in

our multi-robot SLAM framework to compute the map and

2Although ROS1 is used for prototypical development, migration to ROS2
with more reliable communication backend is planned.



Operators

...

Robot 1 Robot 2

Roboticist

Command
GUI (Rqt)

3D GUI
(Rviz)

Mission Executor
(RAFCON)

Mission Executor
(RAFCON)

Functional Layer Functional Layer

World Model World Model

Sensors/Actuators Sensors/Actuators

Update
mission data

Visualize
mission data
and map

Send submap Send submap(Un)sync mission
& report progress

(Un)sync mission
& report progress

Sync skills

Converse

Specify skill
sequences &
parameters

Implement skills
& debug system

Specify POIs
& ROIs / monitor
mission progress

Monitor robots'
status

Mission
Server

(ROS
node)

Fig. 4: Overview of the ROSMC implementation. The orange boxes
represent the ROSMC components.

the poses of the robots [24], [25]3. Each agent exchanges so-

called submaps with lower bandwidth and lower frequency,

keeping communication resource requirements low.

B. 3D GUI

The 3D GUI, as shown in Figure 5, enables intuitive

skill parametrization by interactive markers and enhances

situational awareness. The GUI is implemented on Rviz [26]

so that the roboticists can also visualize on their own Rviz

instances the decisions made by the operators and vice versa.

Task Markers Tree Menu

Agent Markers

Status Icons

Network Signal
Strength Map

Fig. 5: Screenshot of the 3D GUI.

Three types of ROS interactive markers [27] are imple-

mented; the dynamic agent markers, the static agent markers,

and the task markers. The dynamic agent markers visualize

robots that can be commanded by operators. Static agent

markers visualize stationary robots such as payload boxes

or a lander. The task markers can be created freely and

represent points/regions of interests (POIs/ROIs) for a skill

parametrization. The tree menu appears when clicked and

enables operators to add skills to the mission.

Status icons are implemented using pictograms pro-

vided by jsk rviz plugins4. They visualize the Wi-Fi signal

strength, the remaining battery energy, and the skill execution

status above the robots. Necessary telemetry topics are

subscribed through fkie multimaster package5.

Although Rviz is originally designed for visualizing data

from a single robot, our SLAM framework and the ROS

multi-master setup make it feasible for multiple robots.

3Alternatively, ROSMC could directly visualize the map from one of the
robots since our SLAM framework does not require a central server.

4https://jsk-visualization.readthedocs.io/
5http://fkie.github.io/multimaster_fkie/

C. Command GUI

The Command GUI, as shown in Figure 6, functions as

the main interface to build and monitor a mission. This is

implemented as a plugin of Rqt6 so that other arbitrary plu-

gins can be combined into a single window. The Command

GUI consists of three panels; a schedule panel, a parameter

panel, and a control panel.

Parameter
Panel

Schedule Panel

Control Panel

Synchronized Section

Non-synchronized Section

Fig. 6: Screenshot of the command GUI showing a mission for a
team of two robots.

The schedule panel is an array of lists of skills. A panel

in a column corresponds to a dynamic robotic agent. Each

column has two panels in a row. The upper one and the

lower one shows the synchronized and the non-synchronized

section of the mission (see Section III-B), respectively. Each

panel visualizes a sequence of skills and skill barriers in

the mission. The color of the rows (e. g. red) represents

the execution status (e. g. failure). The visualization enables

operators to grasp concurrent activities of the robots at once,

which is particularly beneficial to optimize execution.

The parameter panel shows the parameter details of a

skill selected in the schedule panel. Operators can edit the

parameter values by typing directly, moving its task marker

in the 3D GUI, or selecting a different marker. Modifications

are synchronized between the GUIs via the mission server.

In the control panel, operators can add/delete skills

to/from the non-synchronized section. The (part of) non-

synchronized section can be selected and synchronized to the

robots. Since we employ a parallel robotic architecture, each

robot can be controlled independently and thus the buttons

to start/pause/stop execution are available for each robot.

V. CASE STUDIES

The presented framework was deployed onto both a simu-

lated and a real heterogeneous team of multiple robots. With

the simulator, we conducted a pilot study to evaluate the

usability and intuitiveness. The scalability to the real system

was demonstrated during the ARCHES demo mission [5].

A. Heterogeneous Robotic Team

Table I shows our heterogeneous robotic team. The flying

robot Ardea [28], [29] serves as a fast scout of areas

that are difficult to access by rovers. LRU1 [2], [3] can

investigate terrain with science cameras whereas LRU2 [2],

6http://wiki.ros.org/rqt

https://jsk-visualization.readthedocs.io/
http://fkie.github.io/multimaster_fkie/
http://wiki.ros.org/rqt


TABLE I: Heterogeneous robots and their characteristics.

System Capabilities

D
y

n
am

ic Ardea [28], [29] • Explore and map terrain quickly from
above

• Up to 10 minutes of outdoor flight time
(104 Wh battery)

LRU1 [2], [3] • Explore and map terrain from ground
• Analyze the terrain with science cam-

eras in different spectral filters

LRU2 [2], [4] • Explore and map terrain from ground
• Manipulate and carry payload boxes
• Collect stone and sand samples

S
ta

ti
c Lander [3] • Recharge batteries of the other robots

• Provide computational resource
• Act as a navigation landmark

Payload Boxes

[3], [30]
• Expand network range (Wi-Fi boxes)
• Store samples (sample boxes)
• Take measurements (low-frequency ra-

dio array boxes)
• Supply electrical power to other boxes

when stacked vertically (power boxes)

[4] can manipulate and transport the payload boxes and

collect samples with the robotic arm. Inside the standardized

casing, the payload boxes contain scientific instruments or

infrastructure equipment. A global landmark for all robots is

established by the lander, which serves as a base station and

defines an on-site coordinate frame.

B. Pilot Study with the Simulator

Simulation Setup: We designed a Mars surface sample

collection scenario. The task given to the participants is to

explore an unknown area, discover regions ideal for sampling

stones (RSSs), identify, pick, and bring stones to the lander

(see Figure 7). The goal is to obtain scores which are given

for each stone when brought to the lander. Stones can be

identified only inside the RSSs, whose location and size are

predefined but unknown to the participants. Each RSS has

its maximum score of stones that can be identified there.

A noticeable aspect of heterogeneity of the team is that the

score of stones increases if LRU1 uses the science cameras.

If LRU1 and LRU2 collaboratively identify a stone, one with

the maximum score can be identified. Without collaboration,

however, only a stone with the minimum score (globally set

to 0.1) can be identified.

Each robot has simulated constraints on the battery capac-

ity and the Wi-Fi connection. The robots consume the battery

energy during the mission and can recharge themselves at the

lander. Mission adaptation is only possible when the robots

are inside the network coverage, which can be expanded by

deploying the Wi-Fi boxes using LRU2. Since the purpose

of the simulation is not for simulating precise controlling of

wheels, arms, nor propellers, we used Gazebo [31] with a

limited physics accuracy and ignored collisions.

Procedure: The pilot study had nine participants, three

of which had no robotics background. First, they were given

15 minutes to read through the instruction document to

acquire knowledge on this simulated exploration scenario.

Second, they were instructed on how to use the GUIs in

10 minutes. Third, the investigator demonstrated how each

robotic skill works in the simulator, which took 15 minutes.

Fourth, the participants performed the mission, which took

around half an hour. No strict time limitation was set so

that the participants did not feel time pressure. Finally, the

participants were asked to fill in two questionnaires; the

questionnaire for the subjective consequences of intuitive use

(QUESI) [32] and the NASA Task Load Index (TLX) [33].

Results and Discussion: The average duration of the

mission was 26.8 minutes. All participants were able to

make the robots bring at least one stone sample back to the

lander. In particular, two non-roboticists and three roboticists

gathered 1.8 or more scores of stones in the 26.8 minutes,

discovering the two highly valuable RSSs on the right bottom

corner of the map. They operated the robotic team ideally;

they deployed all the three robots for exploration, disclosed

all the RSSs, identified their maximum score by LRU1, and

focused on taking the two most valuable stones by LRU1 and

LRU2 collaboratively. The intuitive GUIs of ROSMC helped

the participants to compose, monitor, and adapt a mission

smoothly and effectively.

The results of the QUESI shown in Figure 8 also support

these qualitative analyses. In all the sub-scales of QUESI

(ranging from 0 to 5; the higher the better), the lower bound

of the 95% confidence intervals of the non-roboticists’ results

lie above the lower bound of the roboticist with the score

of 0.5 as a margin. This implies that ROSMC has good

intuitiveness and enabled non-robotics experts to achieve

good performance.

On the other hand, the results of the NASA-TLX ques-

tionnaire show the tendency that non-roboticists experienced

more difficulty than the roboticists. Even though the results

are distributed due to the small number of samples, the sub-

scale “frustration” clearly showed that the non-roboticists

had more stress than the roboticists.

C. Analogue Mission with Real Robots on Mt. Etna

The main aim of the ARCHES moon-analogue demon-

stration mission on Mt. Etna in Sicily was to demonstrate

the advantages of using semi-autonomous heterogeneous

teams of robots for exploration and sample return, and their

successful control from a base station [34].

The first experiment focused on returning stone and sand

samples (see Figure 1) while the second one aimed to deploy

the network of the low-frequency radio array (LOFAR) boxes

in rough terrain [35], [36]. In both scenarios, LRU1 and

LRU2 started next to the lander (1)7. While LRU2 picked

the suitable payload box from the lander shelf (2a), LRU1

explored the uncovered areas and defined POIs for the

scientific activities (2b). LRU2 then drove to the POIs (3) and

7Due to strong winds, Ardea could not be deployed during the mission.



(1) (2) (3) (4) (5) (6)

Fig. 7: Overview of how the mission progresses in the pilot study; (1) initial state with the pre-defined locations of the RSSs and their
maximum score of stones; (2) an RSS is discovered; (3) LRU2 identifies a stone; (4) LRU1 reveals the maximum stone score of an RSS;
(5) LRU2 collects the stone; (6) LRU2 brings the stone back to the lander.

Cumulated
QUESI
score

subjective
mental
workload

perceived
achievement
of goals

perceived
effort

of learning

familiarity perceived
error
rate

0

1

2

3

4

5

S
co
re

mental
demand

physical
demand

temporal
demand

performance effort frustration
0

5

10

15

20

S
co
re

roboticist

non-roboticist

Fig. 8: Results of the scale scores from the questionnaires of QUESI
(upper), whose score ranges from 0 (worst) to 5 (best), and NASA-
TLX (lower), whose score ranges from 0 (best) to 20 (worst).

collect sand and stone samples or deploy the LOFAR boxes

(4a). In the meantime, LRU1 further explored unknown areas

(3) while visiting the lander periodically to improve the

map precision (4b). The steps above were repeated until

satisfactory scientific results are obtained.

The prominent challenge of these missions is that such

complicated activities must be scheduled flexibly since the

mission specification is highly affected by the actual robot

status as well as by the in-situ scientific achievements.

One roboticist per robot stayed in the base camp located

around 400m away from the robotic team. They monitored

the status of the robots and performed recovery remotely in

case of unexpected software issues.

Only a single operator controlled the entire mission. The

LOFAR mission operation took place at the base camp but

in a physically isolated container from the roboticists. The

sample-return mission was operated from the real ground

station, which is 23 km away from the mission site.

Results and Lessons Learned: Overall, the robotic team

achieved the mission goals with only a single operator and

a few roboticists despite the complexity of the systems and

tasks. In the sample-return mission, the robots successfully

collected three stones and three sand samples from three

different locations. During the LOFAR mission, a power

box and a LOFAR box were transferred and deployed

successfully to the designated place. In total, the robots

explored and mapped around 1500m
2 of an unknown area

and manipulated 10 objects in seven hours. Even though

the robots executed over 20,000 state machines, the number

of the skills executed by the mission control was only 58,

reducing the operation workload decently.

Major mission adaptations took place to strike the right

balance between navigation uncertainty and scientific activi-

ties. Since the localization becomes uncertain after the long

distance of travel, the robots have to visit the lander as a

global landmark. Nevertheless, if POIs that are scientifically

interesting lie near the rovers or on the way to the lander, the

opportunities for scientific activities should not be missed.

The operator was able to swiftly re-schedule the navigation,

exploration, and scientific activities of the both rovers by

arranging the prioritization of them. This was due to the

strong support of the mission synchronization concept.

Although the robots experienced navigation and manip-

ulation failures, the shared situational awareness over the

ROS-based architecture enabled the recovery activity by the

roboticists and the mission continuation by the operators at

the same time. One missing feature of ROSMC we found

would be useful is to let robots retry the skill that failed.

All mission aims were achieved, and it was considered

an overall success. From the project perspective, the mission

was a large integration test of all hardware and software

components, involving about 30 developers. As ROSMC

plays a central role for the mission specification and task

communication to robots, the overall success implies that

ROSMC was successful in this role. The aim of the mission

was not to test ROSMC independently, or conduct user

studies focussing on ROSMC only. This was therefore done

in the simulation experiments conducted before the mission,

as described in Section V-B.

VI. CONCLUSION

This paper presented ROSMC, a high-level mission control

tool for a heterogeneous team of multiple robots. The main

feature of this tool is the mission synchronization concept to

make the autonomous execution and the flexible adaptation

of a mission compatible. The ROS-based interfaces not only

enables intuitive mission specification but also enhances

shared situational awareness with the roboticists. The tool is

available on https://github.com/DLR-RM/rosmc.

ACKNOWLEDGMENT

We thank the Mobile Robots Group at DLR-RMC and

the ARCHES & ROBEX teams for support with the systems

and experiments, and the anonymous reviewers for insightful

suggestions. This work was supported by the Helmholtz

Association, project alliance ROBEX (contract number HA-

304) and project ARCHES (contract number ZT-0033).

https://github.com/DLR-RM/rosmc


REFERENCES

[1] M. Quigley, et al., “ROS: an open-source Robot Operating System,”
in ICRA workshop on open source software, vol. 3, 2009.

[2] M. Schuster, et al., “Towards autonomous planetary exploration:
The lightweight rover unit (LRU), its success in the SpaceBotCamp
challenge, and beyond,” Journal of Intelligent & Robotic Systems,
2017.

[3] A. Wedler, et al., “First results of the ROBEX analogue mission
campaign: robotic deployment of seismic networks for future lunar
missions,” in 68th International Astronautical Congress (IAC), 2017.

[4] P. Lehner, et al., “Mobile manipulation for planetary exploration,” in
IEEE Aerospace Conference, 2018.

[5] M. J. Schuster, et al., “The ARCHES space-analogue demonstration
mission: Towards heterogeneous teams of autonomous robots for col-
laborative scientific sampling in planetary exploration,” IEEE Robotics

and Automation Letters (RA-L), vol. 5, 2020.
[6] D. C. MacKenzie, R. C. Arkin, and J. M. Cameron, “Multiagent

mission specification and execution,” in Robot colonies, 1997.
[7] F. J. S. Rodrı́guez, et al., “The complete integration of MissionLab

and CARMEN,” International Journal of Advanced Robotic Systems,
vol. 14, 2017.

[8] J.-P. de la Croix, et al., “Mission modeling, planning, and execution
module for teams of unmanned vehicles,” in Unmanned Systems

Technology XIX, vol. 10195, 2017.
[9] K. Otsu, et al., “Supervised autonomy for communication-degraded

subterranean exploration by a robot team,” in IEEE Aerospace Con-

ference, 2020.
[10] H. Hong, et al., “SeMo: Service-oriented and model-based software

framework for cooperating robots,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 37, 2018.
[11] C. Lesire, D. Doose, and C. Grand, “Formalization of robot skills

with descriptive and operational models,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2020.
[12] S. Garcı́a, et al., “High-level mission specification for multiple robots,”

in Proceedings of the 12th ACM SIGPLAN International Conference

on Software Language Engineering, 2019.
[13] C. Menghi, et al., “PsALM: Specification of dependable robotic mis-

sions,” in 2019 IEEE/ACM 41st International Conference on Software

Engineering: Companion Proceedings (ICSE-Companion), 2019.
[14] P. Candela, A. Xydes, and A. Nans, “Designing an operator control

unit for cooperative autonomous unmanned systems,” in Unmanned

Systems Technology XIX, vol. 10195, 2017.
[15] Y. Lim, et al., “Human-machine interfaces and interactions for multi

UAS operations,” in Proceedings of the 31th Congress of the Interna-

tional Council of the Aeronautical Sciences (ICAS), 2018.
[16] ——, “Cognitive human-machine interfaces and interactions for multi-

UAV operations,” in 18th Australian International Aerospace Congress

(AIAC): Defence Science and Technology (DST) International Confer-

ence on Health and Usage Monitoring (HUMS): 27th International

Symposium on Space Flight Dynamics (ISSFD), 2019.
[17] M. Draper, et al., “Intelligent multi-unmanned vehicle planner with

adaptive collaborative/control technologies (IMPACT),” in 19th Inter-

national Symposium on Aviation Psychology, 2017.
[18] G. L. Calhoun, et al., “Human-autonomy teaming interface design

considerations for multi-unmanned vehicle control,” Theoretical issues

in ergonomics science, vol. 19, 2018.
[19] S. G. Brunner, et al., “RAFCON: A graphical tool for engineering

complex, robotic tasks,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2016.
[20] ——, “Autonomous parallelization of resource-aware robotic task

nodes,” IEEE Robotics and Automation Letters (RA-L), 2019.
[21] L. Cheng, et al., Opposite Ends of the Spectrum: Cassini and Mars

Exploration Rover Science Operations.
[22] D. Gaines, et al., “Productivity challenges for mars rover operations,”

in Planning and Robotics Workshop of ICAPS, 2016.
[23] R. Volpe, et al., “The CLARAty architecture for robotic autonomy,”

in IEEE Aerospace Conference, 2001.
[24] M. J. Schuster, “Collaborative localization and mapping for au-

tonomous planetary exploration: Distributed stereo vision-based 6D
SLAM in GNSS-denied environments,” Ph.D. dissertation, University
of Bremen, 2019.

[25] M. J. Schuster, et al., “Distributed stereo vision-based 6D localization
and mapping for multi-robot teams,” Journal of Field Robotics, 2018.

[26] H. R. Kam, et al., “RViz: a toolkit for real domain data visualization,”
Telecommunication Systems, vol. 60, 2015.

[27] D. Gossow, et al., “Interactive markers: 3-d user interfaces for ros
applications [ros topics],” IEEE Robotics & Automation Magazine,
vol. 18, 2011.

[28] M. G. Müller, et al., “Robust visual-inertial state estimation with
multiple odometries and efficient mapping on an MAV with ultra-
wide FOV stereo vision,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2018.
[29] P. Lutz, et al., “ARDEA—an MAV with skills for future planetary

missions,” Journal of Field Robotics, vol. 37, 2020.
[30] G. Tsakyridis, et al., “Power system analysis and optimization of a

modular experiment carrier during an analog lunar demo mission on
a volcanic environment,” Acta Astronautica, vol. 155, 2019.

[31] N. P. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), vol. 3, 2004.
[32] A. Naumann and J. Hurtienne, “Benchmarks for intuitive interaction

with mobile devices,” in Proc. 12th Int. Conf. Human-Computer

Interaction with Mobile Devices and Services, 2010.
[33] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task

Load Index): Results of empirical and theoretical research,” in Human

Mental Workload, 1988, vol. 52.
[34] A. Wedler, et al., “Preliminary results for the multi-robot, multi-

partner, multi-mission, planetary exploration analogue campaign on
mount etna,” in 72nd International Astronautical Congress (IAC),
2021.

[35] ——, “Finally! Insights into the ARCHES lunar planetary exploration
analogue campaign on Etna in summer 2022,” in 73rd International

Astronautical Congress (IAC), 2022.
[36] E. Staudinger, et al., “Enabling distributed low radio frequency arrays

– results of an analog campaign on Mt. Etna,” in IEEE Aerospace

Conference, 2023.


	Introduction 
	Related Work
	Mission Specification
	Graphical Tools for Mission Creation and Monitoring

	Framework Concepts
	Mission Specification
	Mission Synchronization
	Skill Barrier

	Implementation
	Mission Server
	3D GUI
	Command GUI

	Case Studies
	Heterogeneous Robotic Team
	Pilot Study with the Simulator
	Analogue Mission with Real Robots on Mt. Etna

	Conclusion
	References

