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IndoorMCD: A Benchmark for Low-Cost
Multi-Camera SLAM in Indoor Environments

Marco Sewtz1, Yunis Fanger1, Xiaozhou Luo1, Tim Bodenmüller1 and Rudolph Triebel1,2

Abstract—Navigating mobile robots within home environments
is essential for future applications, e.g. in household or within
the field of elderly care. Therefore, these systems, equipped with
multiple sensors, have to deal with changing environments.

This work presents the IndoorMCD dataset that allows for
benchmarking SLAM algorithms within static and changing
indoor environments of various difficulties. The dataset provides
synchronized and calibrated RGB-D images from a low-cost
multi-camera setup, as well as additional IMU data. Further,
highly accurate ground truth movement data is provided. It is the
first dataset that provides static and changing environments for
a multi-camera setup. Evaluations with state-of-the-art SLAM
algorithms show the dataset’s applicability and also present
limitations of current approaches. The dataset is made available
in a structured format and a utility library with example scripts
is provided.

Index Terms—Data Sets for SLAM, Visual-Inertial SLAM,
Localization, Mapping, RGB-D, Multi-Camera

I. INTRODUCTION

ROBOTIC assistance in home environments is an emerg-
ing field of research, opening up new opportunities and

applications for autonomous systems. Symbiotic human-robot
collaboration and interaction are essential for the success of
those ambitions. Thus, robotic systems need to operate, espe-
cially navigate, in changing environments reliably. A central
element for global navigation is Simultaneous Localization
and Mapping (SLAM), as it continuously updates the envi-
ronmental knowledge of the robot. Although the robustness
of state-of-the-art applications is progressively enhanced with
each subsequent generation, most of them still rely on a single
sensor. A failure of the system likely results in the total
loss of localization. However, modern commercial off-the-
shelf (COTS) sensors, like RGB-D cameras, are cheap, small
and only require little energy. Thus, adding multiple sensors
becomes feasible and increases robustness by redundancy.

By using COTS hardware, redundancy can be added while
limiting the increase in cost. However, this often results in
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Fig. 1: Multi-camera view of a living room environment
captured by commercial off-the-shelf RGB-D sensors.

degraded sensor measurements that integrated software has to
consider. For the future development of frameworks to solve
the problems mentioned above, a common dataset that includes
representative scenarios is crucial. While several datasets have
been released as benchmarks for SLAM or other navigation
systems, most of them concentrate on the single-sensor case,
the use of expensive sensors like LIDAR, or are meant for
evaluation in autonomous outdoor-vehicle development.

In this work, we present a dataset that aims to enable
research on SLAM systems that address both robustness and
redundancy using COTS sensors. It contains five different
scenarios, each consisting of several runs of increasing com-
plexity. The recordings include highly accurate ground truth
estimation measured by a high-speed motion capture system
(MCS). Furthermore, we show the applicability of our data by
evaluating the trajectories with state-of-the-art Visual-Inertial
Navigation System (VINS) and SLAM systems, as well as an
in-house development for multi-camera SLAM [1]. Finally, we
also provide a utility library for easy access to the data.

https://rmc.dlr.de/rm/en/staff/marco.sewtz/benchmark

We summarize our contribution as following:

• The IndoorMCD dataset containing 105 individual se-
quences recorded in indoor environments using multiple
COTS sensors, consisting of RGB-D and Inertial Mea-
surement Unit (IMU) modules.

• An additional high accuracy ground truth reference.
• Various scenarios with increasing complexity in their

trajectories including loops, motion blur and changes in
the environment.

• An extensive evaluation of renowned approaches includ-
ing performance benchmarks to demonstrate our data’s
applicability.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
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The proposed dataset is, to our knowledge, the first dataset
combining multiple sensors and high accurate ground truth
for static and changing indoor environments.

II. RELATED WORK

Along with the rising potential of vision-based algorithms,
datasets containing realistic environmental conditions have
been proposed to provide a reference for new approaches and
a baseline for performance benchmarks of existing develop-
ments. While the number of available datasets is growing
continuously, we provide an overview of the most relevant
datasets including visual and inertial data in Table I.

The TUM RGB-D dataset [2] provides a collection of syn-
chronized color and depth data in an indoor scenario recorded
in an office environment and an industrial hall. Supplemented
by a ground truth reference recorded by a highly accurate
MCS, it is one of the most extensively used and established
benchmarks for RGB-D Visual Odometry (VO) and SLAM
algorithms. Furthermore, the 7-Scenes dataset [3] focuses on
realistic indoor-scenes captured by a RGB-D camera and
generated ground-truth pose information. Around the same
period, the KITTI benchmark suite [4] was proposed for
research on vision-based navigation in autonomous driving.
In addition to gray-scale mono and RGB stereo sequences, it
also includes IMU information. However, the low-frequency
inertial data is not synchronized with the visual information,
which is mandatory for a well-designed visual-inertial (VI)
benchmark. Nevertheless, KITTI has established itself well
in the research community and serves as a foundation for
further modifications and developments, e.g., object scene flow
research [5].

Over time, the focus in the research community has shifted
towards the fusion of information provided by different kinds
of sensors. Most prominently, many recent datasets are de-
signed to evaluate VO and SLAM applications by includ-
ing time-synchronized high-frequency IMU measurements.
The EuRoC MAV [6] and the more challenging UZH-FPV
dataset [7] were recorded with a Micro Aerial Vehicle (MAV).
In contrast, one can rely on benchmarks such as TUM VI [8]
and OpenLORIS [9] in the case of ground-based carriers.
These last four datasets are also equipped with sophisticated
ground truth references, which are provided, at least partially,
by MCS with an accuracy of approximately 1mm.

While the previously presented datasets only include one
main viewing direction, the Field-of-View (FoV) size can be
significantly expanded by deploying multiple sensing devices
with differing orientations. However, most representatives of
datasets that employ this approach, such as the NCLT [10] and
PennCOSYVIO dataset [11], do neither include high-precision
ground truth information nor a hardwired time-synchronization
between IMU and the relevant sensors. Therefore, they cannot
be considered as an evaluation reference for performance
benchmarks between individual VO and SLAM approaches.
Currently, the only dataset in the VI domain containing
multiple viewing directions that fulfills the requirements for a
benchmark is, besides our proposal, the M2DGR dataset [12].

Although the latter benchmark contains a sizable collection
of information from different sensor types, data containing

multiple viewing orientations are only available in RGB
format. This is due to the original design purpose of those
sensors, which has the target of achieving an omnidirectional
coverage of the related sceneries. Lastly, we also want to
mention RIO10 [13], an indoor visual dataset dedicated to
changes in the environment – in specific different lightning
conditions, object pose changes and appearance. To the best
of our knowledge, there is no dataset available that contains
multiple visual sensing modalities exceeding the information
provided by RGB cameras and operating in dynamic indoor
scenes. By supplementing multiple RGB sources with the re-
spectively associated depth information on top of acceleration
and angular data, our target is to foster research of multi-
camera VO and SLAM approaches in the VI domain.

During the research process, we discovered a significant
deficit of datasets for benchmarking the behavior of localiza-
tion and mapping algorithms in the case of world-model al-
ternation between static and dynamic changing objects within
comparable environmental settings. While many conventional
VINS and SLAM applications are based on the assumption of
a static world, robust approaches must be able to deal with
dynamic elements within this world. With the exception of
OpenLORIS, all other datasets in Table I are recorded either
in a static environment or a dynamic setting with moving
objects. Although the benchmark includes static sequences
and ones with dynamic moving objects by design, the world-
model assumption does not change within individual scenes.
Therefore, the performance differences between static and
dynamic world assumptions cannot be evaluated in particular
since no performance baseline can be provided for the world
model within a specific scene.

Hence, we intended to establish our dataset as a benchmark
for applications in home environments by providing realistic
environmental conditions considering an urban housing sce-
nario based on COTS hardware. In contrast to other established
datasets, which are primarily recorded on industrial-grade and
customer furnished hardware, the utilization of state-of-the-
art COTS sensors allows for a rare peek into the ordinary
application-related domain instead of the predominant, more
or less idealized, scientific domain. Hence, algorithms have to
demonstrate their practicability in real-world situations with
imperfect data (e.g. motion blur) and changing environments
(e.g. moved chair). However, we neglected temporary dynamic
elements in our datasets, e.g. a human walking through the
room, as they are more focused on permanent changes and
not temporal disturbances.

In terms of emulating the kinematic behavior of typical
applications, our dataset is recorded by two different car-
rier platforms representing either a ground-based robot or a
handheld device. The latter assembly provides a total of six
unlimited degrees of freedom (DoF) in contrast to the ground-
based platforms utilized in benchmarks of similar quality, from
which at least 3 DoF are fairly restricted in their magnitude
of variability.

III. HARDWARE SETUP

Our hardware setup for recording the dataset consists of
three RGB-D Intel RealSense D435i (denoted as left, front,
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TABLE I: Overview of most common datasets for visual and inertial SLAM in changing indoor environments.

Dataset Environ. Platform Cameras IMU Scene mode Ground truth Accuracy
NCLT [10] In-

/outdoors
Segway 6 RGB

1600×1200 @ 5Hz
1 3DM-GX3-45
3-axis acc./gyro
@ 100Hz

Dynamic Fused GNSS/
IMU/Laser pose
@ 150Hz

≤ 10cm

EuRoC
MAV [6]

Indoors MAV 1 stereo gray-scale
2 × 752×480 @ 20Hz

1 ADIS16488
3-axis acc./gyro
@ 200Hz

Static Laser tracker
pose @ 20Hz,
MCS @ 100Hz

≤ 1mm
(MCS)

PennCOSYVIO
[11]

In-
/outdoors

Handheld 4 RGB (rolling shutter)
1920×1080 @ 30Hz,

1 stereo gray-scale
2 × 752×480 @ 20Hz,

1 fisheye gray-scale
640×480 @ 30Hz

1 ADIS16488
3-axis acc./gyro
@ 200Hz,

2 Tango
3-axis acc. @ 128Hz
3-axis gyro @ 100Hz

Dynamic Fiducial markers
pose @ 30Hz

≤ 15cm

TUM VI [8] In-
/outdoors

Handheld 1 stereo gray-scale
2 × 1024×1024 @ 20Hz

1 BMI160
3-axis acc./gyro
@ 200Hz

Static Partial MCS
pose @ 120Hz

≤ 1mm

UZH-FPV [7] In/-
outdoors

MAV 1 stereo gray-scale
2 × 640×480 @ 30Hz

1 event camera
346×260 @ 50Hz
+ events

1 MPU-9250
3-axis acc./gyro/
magn. @ 500Hz,

1 3-axis acc./gyro
@ 1000Hz

Static Laser tracker
pose @ 20Hz

≤ 1mm

OpenLORIS [9] Indoors Ground
robot

1 RGB-D (rolling shutter)
848×480 @ 30Hz,

1 stereo fisheye RGB
2 × 848×480 @ 30Hz

2 BMI055
3-axis acc. @ 250Hz
3-axis gyro @ 400Hz

Static or
Dynamic

Laser tracker
pose @ 40Hz,
MCS pose
@ 240Hz

≤ 3cm
(Laser),
≤ 1mm
(MCS)

M2DGR [12] In-
/outdoors

Ground
robot

6 fish-eye RGB
1280×1024 @ 15Hz,

1 infrared camera
640×512 @ 25Hz,

1 event camera
640×480 @ 15Hz
+ events,

1 RGB-D (rolling shutter)
640×480 @ 15Hz

1 Handsfree A9
3-axis acc./gyro/
magn. @ 150Hz,

1 BMI055
3-axis acc./gyro
@ 200Hz

Dynamic GNSS pose
@ 100Hz,
Laser tracker
pose @ 100Hz,
MCS pose
@ 50Hz

≤ 2cm
(GNSS),
≤ 1mm
(Laser,
MCS)

7-Scenes [3] Indoors Handheld 1 RGB-D
640×480 @ 30Hz

None Static Visual Pose
Tracking2

≤ 2cm

RIO10 [13] Indoors Handheld,
synthetic

1 RGB
540×9601,

1 synthetic depth
540×9601

None Dynamic Visual Pose
Tracking2

≤ 10cm

IndoorMCD
(Ours)

Indoors Handheld,
ground
robot

3 RGB-D (rolling shutter)
640×480 @ 15Hz

3 BMI055
3-axis acc. @ 250Hz
3-axis gyro @ 400Hz

Static and
Dynamic

MCS pose
@ 100Hz

≤ 1mm

1Frame-rate unknown for this dataset. 2Ground-truth accuracy is unknown and information is based on error metric.

right) in two different configurations.
The first one is a handheld camera device (HCD) which

offers 6 DoF and can be easily moved around in the scene.
The second one is a robotic platform mock-up called Marvin,
which simulates the movement of wheel-based systems. Both
are displayed in Figure 2.

A. Sensor Carriers

1) HCD: This device, as depicted in Figure 2a, integrates
all sensors in a compact configuration. The small form-factor
allows simple and uncomplicated use by the operator and
enables mobile manipulation. While the center camera has
an overlapping FoV with both outward-facing cameras, the
sensors left and right do not share a common view. Hence
the configuration can be used in algorithms that require visual
overlap as well as systems that merely need a known rigid
transform. Further, this platform offers a hardware synchro-
nization of all camera modules.

(a) The handheld camera device
used for capturing motion with six
degrees of freedom.

(b) The robotic mock-up platform
Marvin used for simulating mo-
tion of wheel-based systems.

Fig. 2: The used hardware devices for this dataset.

2) Marvin: The used mock-up, as seen in Figure 2b,
simulates the movement of a wheel-based robotic system. This
reduces the motion to only 3 DoF, in particular x, y and θ. The
design is intended to mimic the view of sensors equipped on
real assistant systems like Rollin’ Justin [14] or the motorized
wheelchair EDAN [15]. Due to this fact, the sensors may be
blocked by obstacles when closely approaching objects. Fur-
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thermore, the configuration of the outer cameras is comparable
to the integration in the HCD. However, the center camera is
tilted down and raised to offer an improved view of desktops
or tables.

B. Sensors

The Intel RealSense D435i consists of a RGB camera,
two infrared cameras for depth estimation and an Inertial
Measurement Unit.

The image processing of the two infrared cameras is per-
formed internally, and the resulting depth image is pixel-
aligned to the color image. Furthermore, a pattern projector
operating in the infrared range is integrated to enhance the
depth estimation even in textureless environments. The cam-
eras are operated 15Hz with a resolution of 640×480 pixels.

The Inertial Measurement Unit has a triaxial 12-bit linear
acceleration and a triaxial 16-bit angular velocity module.
The accelerometer is operated at 250Hz and the gyroscope
at 400Hz. In our dataset, we provide the single data streams
and a fused stream that interpolates the acceleration readings
between the gyroscope measurements.

The carriers are equipped with a trigger synchronization
circuit. The front camera is used as trigger commander and the
left and right cameras are configured as receivers. Although
this introduces a slight delay on the trigger for the receiving
devices, our results with existing algorithms showed that this
offset is negligible in practice.

C. Ground Truth

For all except the real indoor scenario we obtained a
highly accurate ground truth estimation using a Vicon MX
T40 motion capture tracking system. The recording devices
are equipped with several reflective markers, which can be
monitored by six infrared cameras hanging from the ceiling.
The alignment configuration of the tracking system is individ-
ually adapted for each scene to obtain the best and at-all-time
continuous estimation of the current pose. The system operates
at 100Hz.

The Vicon cameras emit infrared light at the same wave-
length as the RealSense pattern projector. However, as the
pattern is projected statically and only small dots are visible,
we did not measure any interference of the pattern with the
tracking system.

IV. CALIBRATION

A. Cameras

The pinhole camera model is used to calibrate the intrin-
sic parameters of the sensors, which can be obtained using
different views of a checkerboard target for each sensor [16].
These parameters consist of the focal-lengths fx and fy , the
principal point (cx, cy) and the skew kskew. The depth image
is aligned to the color image on the hardware side of the
RealSense devices result in a pixel-to-pixel correspondence in
the images. In addition, the Brown-Conrady [17] model can
be applied to remove distortion from the color image.

We provide the parameters of the pinhole as well as the
Brown-Conrady model in our dataset.

left front right

origin

marker vicon

calib_marker

calib_grid

Mobil System

Calibration
Targetdevice_origin

colorIMU depth

Device

Fig. 3: Illustration of different frames in the dataset including
markers and calibration utilities. All individual device origins
are calibrated to the overall system’s origin.

B. IMUs

The calibration procedure for IMU model estimation is de-
fined by Intel for the RealSense devices [18]. Therefore, each
device is orientated in six directions. Several thousand samples
are acquired for each, and the parameters are finally optimized
over the available set of data. The accelerometer parameters
consist of the scale factor s⃗ = [sx, sy, sz]

T , the bias b⃗ =
[bx, by, bz]

T and the axis alignment cxy, cyx, cxz, czx, cyz, czy .
The intrinsics for the gyroscope include the bias values
ω⃗ = [ωx, ωy, ωz]

T .

C. Extrinsics

The handling of extrinsic calibrations is organized on two
levels. At first, all sensors of one RealSense device are handled
on the device level, where the color sensor is set as the origin
of each device. Therefore, the IMU is calibrated with respect
to this sensor. As the depth stream provides a pixel-to-pixel
alignment, the resulting displacement is zero.

On the system level, each device is also calibrated using the
color sensor. Here, we make use of the fact that the front cam-
era overlaps with both the left and the right camera. Multiple
images of a checkerboard calibration target with distinctive
origin are captured for estimating the relative pose transform
from the front camera to the respective target camera. For each
image, the correspondences between the checkerboard corners
on the calibration target and the projected pixel coordinates are
mapped and the transform is estimated by minimizing the re-
projection error using Levenberg-Marquardt optimization [19].

For calibrating the Vicon system to the origin of the overall
system, the same calibration target as before is used. In addi-
tion, several reflective markers are placed on the checkerboard
and registered manually to its origin. Afterward, the transform
of the front camera to the checkerboard and the transform of
the markers in the tracking system is estimated and used for
aligning the tracking markers to the system origin.

All frames and transforms are illustrated in Figure 3.

D. Time Domains

Within the dataset, different time domains are present as
depicted in Figure 4. Each device has its own clock source,
which is used for timestamps on the sensor measurements of
each device. The timestamping of IMU readings is ±50µs,
which leads to tolerance of roughly 2% when operating the
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Vicon Motion Capture

- ground truth

SW sync
HW sync

Intel Realsense D435i
- color 
- depth 
- accelerometer 
- gyroscope

Intel Realsense D435i
- color 
- depth 
- accelerometer 
- gyroscope

Intel Realsense D435i
- color 
- depth 
- accelerometer 
- gyroscope

Fig. 4: Overview of the time domains in this dataset. Each
RealSense has its own clock and the sensors are triggered
device-central. In case the hardware synchronization is present,
the trigger signals of the images are synced. The Vicon system
is software synchronized.

gyroscope at 400Hz. Therefore, the temporal offset of IMU
readings and image capturing on a specific RealSense device
can be neglected. Image acquisition is hardware triggered, and
the color and depth streams are temporal synced.

In scenarios where the hardware synchronization between
the devices is available, the trigger of the image sensors is
derived from the commanding camera. In all cases, this is the
front camera. However, the clocks will not be synced, leading
to different timestamps on the images. Exploiting the fact that
the images are triggered simultaneously and that the offset
between the trigger points is negligible, the clock offset can
be estimated by the offset of the color images.

In the non-synced scenarios, the synchronization of the time
domains between the devices is not possible without evaluating
the trajectory.

The remaining time domain is the Vicon tracking system
for ground truth estimation. Thereby, a calibration target is
positioned in the view of the front camera and tracked by
the Vicon system. The target is then slowly moved in the
view of the camera. Afterward, the motion is estimated, and
the temporal offset is determined by minimizing the absolute
pose error (APE). This approach is based on the proposed
calibration of Sturm et al. and we refer to their publication [2]
for in-depth explanation.

E. Ground Truth

Accurate and continuous information of the actual pose
is crucial for investigating the performance of navigation
algorithms. Therefore close attention is paid to calibrating the
Vicon system before every scenario recording.

The procedure is provided by the manufacturer. It involves
operating a calibration stick which is moved in the area of
operation and extensively observed by the cameras to create
correspondences between individual views. Once enough sam-
ples are received, the system calibrates itself by performing
optimization for low reprojection error.

V. DATASET

A. Calibration Sequences

These sequences contain the calibration runs used in Sec-
tion IV. They contain the raw data without any further
processing.

TABLE II: Overview of each scenario’s (S) specific properties
and number of runs (R), as well as if hardware sync has been
enabled and if ground truth is available. Scenarios 0-4 have
been captured in created environments in our lab, the last one
is recorded in an actual apartment.

S #R Environment Device Sync GT
0 19 kitchen, office, living-room HCD
1 28 kitchen, office, living-room HCD
2 20 2 rooms: kitchen, living-room HCD
3 15 2 office desktops HCD
4 15 kitchen, office, living-room Marvin
5 10 actual apartment HCD

B. Recorded Scenarios

Several scenarios have been recorded in varying setups.
Three different environments are created in our labs, including
a kitchen, an office area and a living room, which provide a
broad set of visual inputs for algorithms. Temporary walls and
a door are used to create different room layouts between the
scenarios with a total available area of 6.50m × 4.50m. An
exemplary subset of views is shown in Figure 5.

The kitchen consists of a counter including an oven, a
fridge, several electronic appliances and commonplace items
like apples, cucumbers, or a scale. Most of the structures
are static and do not offer a lot of textures. The office area
contains depending on the scenario either one or two desktops,
including computer monitors, keyboards and a office chair.
Further commodities like pens, scissors, or markers are added,
which frequently change their position. The living room offers
a sofa, including a coffee table, multiple plants and a television
shelf. Furniture, as well as the appearance of objects, change
over time to simulate human presence. Finally, we also provide
a scenario captured in an actual apartment’s living room. This
room offers a sofa, a television, a fish tank, multiple book-
shelves, plants and other common furniture objects. While
this scenario does not offer a ground truth, we included it
as a proof-of-concept whether proposed systems perform in
real environments. An overview is provided in Table II. For
measuring the impact of synchronization, scenario 0 and 1 are
recorded with and without hardware synchronization in the
same environment.

We took care that each run within a specific scenario
increments the complexity of the trajectory. At first, they only
contain a small number of rotations and single translations.
The static-world assumption, meaning no dynamics in the per-
ceived data, is held true. With progressing runs, the trajectories
increase in length and amount of movement and ultimately
include loops and revisits of previously explored areas. Final
runs add changes in the environment that can be observed
when places are viewed multiple times. The changes can be
seen in Figure 6.

C. Utilities

Additionally to the datasets, we also provide a library for
reading the data. It is able to parse the dataset and load the
sensor measurements on-demand into the computer memory
with a low footprint. Meta-information like extrinsic and
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Fig. 5: Stitched panoramic images of views in the dataset. The image on the left-hand side shows the living room as seen in
scenarios 0, 1 and 4, in the middle scenario 3 in the office, and on the right-hand side the actual apartment.

Fig. 6: The dataset captured several changes in the environ-
ment during each run. Objects like chairs, the table or the
coffee machine are moved around in the scene, smaller objects
like books are moved or completely removed, plants have a
different appearance over the course of time.

TABLE III: Properties of SLAM systems used for evaluation.

SLAM-system Type RGB IMU Depth
VINS-Mono feature-based
ORBSLAM2 feature-based
ORBSLAM3 feature-based
MROSLAM feature-based

DSO direct

intrinsic calibration and online interpolation of data points are
also available. This shall ease access to our data. Furthermore,
we provide sample scripts to generate bag files to be used
within the Robot Operating System (ROS).

VI. EVALUATION

To assess the suitability of this dataset for benchmarking,
we evaluate it with state-of-the-art SLAM systems. As exam-
ples for feature-based methods, we deploy VINS-Mono [20],
ORBSLAM2 [21], ORBSLAM3 [22] and our in-house de-
veloped multi-camera approach MROSLAM [1]. Hereby,
VINS-Mono processes both IMU and camera data while
ORBSLAM2 and MROSLAM purely rely on RGB-D infor-
mation. ORBSLAM3 incorporates color, depth and inertial
data. As a representative of direct visual SLAM methods, we
also deploy DSO [23] on the dataset. In this case, it requires
only monocular RGB camera images as input. The general
properties of the deployed SLAM algorithms are summarized
in Table III.

All SLAM applications are configured using the calibration
information provided within the dataset (see Section IV) but
use the respective systems default parameters otherwise. For
each run, three separate instances of these applications are
deployed simultaneously to process the data provided by each
of the devices. In order to evaluate the dataset’s applicability,

we assessed our selection of renowned algorithms both in
a quantitative and qualitative scope. For the first one, we
recorded how many of the devices reach the end of a run
without losing tracking at any point or outright failing. The
results are presented in Table IV, where scenarios 1-3 were
recorded using the HCD and scenario 4 using Marvin. Since
scenario 5 does not include ground truth trajectories, we do
not consider it here. Therein, only devices where the respective
SLAM instance ran for at least 90% of the ground truth
trajectory’s duration without losing tracking are declared as
successful.

At a closer look, it is noteworthy that the multi-camera
approach achieved the best results among the purely vision-
based approaches. By utilizing information from all devices
with different orientations at the same time, a robust construct
with multiple redundancies is established, which results in the
reduction of potential loss-of-tracking. Especially in compari-
son to ORBSLAM2, on which MROSLAM is primarily based,
the rate of total failure is reduced by a factor of 2.5 in scenario
0 or 2.0 in total. Nevertheless, VINS-Mono already provides a
very robust approach which only failed in situations where the
sensor’s view was blocked and the LoT was not resolvable.
Lastly mentioning ORBSLAM3, the performance on tracking
seems to be less stable compared to ORBSLAM2. We assume
that the extensions focus primarily on the accuracy of the
trajectory estimation (as shown later) accepting small deficits
in the robustness.

Furthermore, a qualitative assessment is performed using
the evo evaluation package [24]. It allows to align the pose
estimates of the SLAM systems with ground truth information
and the computation of performance measuring metrics from
them.

To illustrate the usefulness of having multiple cameras on
a single system, we determine the worst-performing device
from each scenario. To compare the performance of each
instance, we choose the relative pose error (RPE) as our metric.
We assume that the utilization of multiple sensors has an
measurable impact on local tracking as more data is available.
In contrast, global estimation accuracy, in case of continuous
tracking, is depending on the selected backend optimization
strategy. Therefore we expect the improvements by the used
sensor configuration to be observable in short-term domain and
neglect APE evaluation. The respective mean and maximum
RPE scores for each scenario are presented in Table V.

It is noteworthy that even though the SLAM algorithms
occasionally have a high peak error, the mean errors are
often reasonably small. This suggests that there were only
temporary losses in tracking, which could be recognized and
avoided by taking the output of other SLAM instances into
account. The utilization of multiple devices has a beneficial
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TABLE IV: Quantitative tracking evaluation for each algorithm. The table illustrates how many instances per run did not loose
tracking. A value of 18% for 2 devices reads In 18% of all runs in this scenario, two instances did not loose tracking.

SLAM-system scenario 0 scenario 1 scenario 2
successful devices 0 1 2 3 0 1 2 3 0 1 2 3

VINS-Mono 0% 0% 18% 82% 0% 0% 7% 93% 0% 6% 6% 88%
ORBSLAM2 81% 5% 14% 0% 28% 14% 34% 24% 25% 60% 15% 0%
ORBSLAM3 77% 9% 9% 5% 90% 7% 3% 0% 95% 0% 0% 5%

MROSLAM(*) 32% 68% 21% 79% 8% 92%
DSO 58% 18% 18% 6% 79% 18% 0% 3% 75% 5% 10% 10%

SLAM-system scenario 3 scenario 4 Total
successful devices 0 1 2 3 0 1 2 3 0 1 2 3

VINS-Mono 0% 0% 8% 92% 0% 0% 7% 93% 0% 1% 12 87%
ORBSLAM2 0% 6% 31% 63% 0% 0% 27% 73% 30% 18% 25% 27%
ORBSLAM3 0% 0% 25% 75% 0% 0% 47% 53% 61% 4% 14% 21%

MROSLAM(*) 0% 100% 0% 100% 14% 86%
DSO 86% 7% 0% 7% 72% 14% 14% 0% 75% 12% 9% 4%

(*) MROSLAM is a multi-camera approach. There is not differentiation between single instances.

Fig. 7: ORBSLAM2 detected keypoints for two views in a
low-texture environment at the same time. The left image
shows significant less landmarks (n=397) which could lead to
degraded estimation performance or loss of tracking compared
to an adjacent camera view (n=1007). Utilizing both views at
the same time would further increase the number of available
landmarks for tracking and improve accuracy and robustness.

effect on the mean error since the results for MROSLAM
rank as one of the lowest in our evaluation. Figure 7 shows
the detected keypoints of ORBSLAM2 of two adjacent views.
While relying only on a single input, the left image may not
provide enough suitable landmarks and tracking will be lost.
MROSLAM can use both and is more robust in low-texture
cases. However, its maximum error measures are relatively
high, indicating even more significant outliers produced in the
fusion process which adds constant drift to the estimation
as later seen in Figure 8. The more recent ORBSLAM3
occasionally outperforms the multi-camera approach, showing
the progress since the introduction of ORBSLAM2 and the
derived MROSLAM.

In addition, we also provide representative examples of the
pose estimates for the employed SLAM systems compared to
the ground truth trajectories in Figure 8. These results show
that the visual-inertial system performs better than the purely
visual systems in general. Especially during fast rotational
movements, the additional information from the IMU leads to
significantly better tracking result. Moreover, feature detecting
systems perform better than the DSO algorithm, which uses
a direct approach. However, the multi-camera MROSLAM
suffers a constant drift as it does not implement loop-closure
functionality on multiple sensors.

Finally, we evaluate the occurred loss of tracking. We

manually examined the frame series in which tracking failure
occurred. A significant amount of frames show motion blur
or offer only few visual features which can be used for
the estimation process. Figure 9 illustrates four individual
selected events. They include motion blur and low-textured
views offering only limited visual clues for the algorithms.
Noteworthy, these defects are frequently observable at the
same time. Regardless of the either using a direct approach or
relying on features, all algorithms have reduced performance
in these situations. However, due to it’s multi-sensor nature,
MROSLAM is able to recover tracking most of the times.

In summary, this evaluation demonstrates the validity of
our dataset as a benchmark for evaluating SLAM systems
but also shows the problems of state-of-the-art approaches
with motion blur and low-texture environments. Particularly
the feature-based visual-inertial system performed well. It
also highlights the advantages which multi-camera SLAM
approaches could provide. Even though a single device may
have poor performance or lose tracking temporarily, others
may be more accurate and therefore able to keep the entire
system from losing localization.

VII. CONCLUSION

This paper presents a novel dataset for the benchmark of
SLAM systems in home environments. It mainly focuses on
COTS hardware to decrease the costs for sensor setups while
providing multiple similar devices to promote robustness.
The environments shown represent common areas for service
robotics as office, kitchen and living room settings, where
static scenarios as well as ones with changes of objects can
be observed. High accurate ground truth information obtained
through a motion capture system accompanies the recorded
data for evaluation of novel systems.

Finally, we analyzed the proposed data using diverse selec-
tions of state-of-the-art SLAM systems to prove its applica-
bility. Furthermore, the outcome showed that these algorithms
have difficulty tracking under the influence of motion blur,
obstructed view, or in an environment of textureless sur-
roundings. Multi-sensor approaches like MROSLAM however
promise less loss of tracking and a better performance regard-
ing local pose estimation. Nevertheless, it still has high outliers
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TABLE V: Mean and maximum RPE of the worst performing SLAM instance in a scenario.

SLAM-system scenario 0 scenario 1 scenario 2 scenario 3 scenario 4
RPE mean max mean max mean max mean max mean max

VINS-Mono 0.112672 1.586197 0.126820 1.451341 0.0492078 0.470913 0.074746 0.619127 0.029876 0.617029
ORBSLAM2 0.245182 5.421701 0.153198 4.642067 0.181427 5.828487 0.159613 2.434654 0.120661 1.731525
ORBSLAM3 0.087262 5.432609 0.087736 3.990802 0.035891 4.908698 0.023212 3.492762 0.010758 4.931409
MROSLAM 0.031168 3.673559 0.017651 6.055320 0.042194 6.195327 0.058612 6.435569 0.010456 1.028161

DSO 0.118443 0.573500 0.072375 0.359914 0.064864 0.704010 0.069510 0.354366 0.081397 0.277259

(a) Scenario 0 run 5. (b) Scenario 1 run 22. (c) Scenario 3 run 11. (d) Scenario 4 run 10.

Fig. 8: Ground truth reference and estimated trajectories. The four runs have been manually selected out of the total 105 as
they show the rare case of all methods not loosing tracking. The trajectories show the front instance for single-camera after
final optimization or the fused pose for MROSLAM which does not have a final processing step or a loop-closure detection.

Fig. 9: Examples for views when a loss of tracking occurred.
The majority of images is affected by motion blur (upper) or
include few visual features (lower) for landmark detection.

which show the necessity of more research on adequate fusion
strategies in the multi-sensor scenario.

We, therefore, hope that this dataset contributes to robust
yet low-cost robots in home environments.
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