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Abstract—Future crewed missions beyond low earth orbit will
greatly rely on the support of robotic assistance platforms to
perform inspection and manipulation of critical assets. This
includes crew habitats, landing sites or assets for life support
and operation.

Maintenance and manipulation of a crewed site in extra-
terrestrial environments is a complex task and the system will
have to face different challenges during operation. While most
may be solved autonomously, in certain occasions human inter-
vention will be required. The telerobotic demonstration mission,
Surface Avatar, led by the German Aerospace Center (DLR),
with partner European Space Agency (ESA), investigates differ-
ent approaches offering astronauts on board the International
Space Station (ISS) control of ground robots in representative
scenarios, e.g. a Martian landing and exploration site.

In this work we present a feasibility study on how to integrate
auditory information into the mentioned application. We will
discuss methods for obtaining audio information and localizing
audio sources in the environment, as well as fusing auditory
and visual information to perform state estimation based on the
gathered data. We demonstrate our work in different experi-
ments to show the effectiveness of utilizing audio information,
the results of spectral analysis of our mission assets, and how
this information could help future astronauts to argue about the
current mission situation.

TABLE OF CONTENTS

1. INTRODUCTION . c.ttiteneenrencencancascascascnnas 1
2. RELATED WORK ..ctietieteateateacascascascnnans 2
3. SYSTEM OVERVIEW ...iiuiieiieceecscescescnnans 2
4. METHODOLOGY tevvversncencsssoscsscoscescnssns 4
5. EVALUATION..ccuttutenroncencescoscsscnscnssnsons 5
6. CONCLUSION AND OUTLOOK ...cvvveereraesacess 8
REFERENCES .tutietateteeeeeacacecesencncasasancnns 8
BIOGRAPHY ..ciuiiiniininnrnnseassoseocascascnscnnans 10

1. INTRODUCTION

Accomplishing the goals of bringing humankind to the Moon
and Mars is some of the greatest challenges ahead for the
space community. To help meet these challenges, robotic
assistance will be key, particularly for the construction and
support of habitat infrastructure, as well as for carrying out
scientific tasks. However, due to the long distances, com-
munication round trip will cause delays of 20min to several
hours between Earth and Mars.

Surface Avatar, a telerobotic technology validation mission
led by German Aerospace Center (DLR) with partner Euro-
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Figure 1: Integrated audio perception into the telerobotic
system of Surface Avatar. The robot in the experimental
area detected a sound event with an unknown spectral profile
and requests manual action from an astronaut on board the
International Space Station (ISS).

pean Space Agency (ESA), gives astronauts on board the In-
ternational Space Station (ISS) control over robotic assets [1].
It investigates a combined approach offering scalable auton-
omy through multi-modal teleoperation to perform tasks in
different scenarios. These can range from simple surveillance
to complex maintenance tasks which often include a search
for failure in which the astronaut has to detect an anomaly
in the environment. The astronaut has to investigate multiple
objects to observe their state, often accompanied by detailed
inspection and manipulation of inner components.

Audio perception provides an additional modality that may
decrease crew time to find the anomaly in extra-terrestrial
environments with an atmosphere like Mars. The direction
of arrival of a sound event received by the system can be
estimated and displayed to the astronaut. Furthermore, the
robot’s knowledge of the world can be used to infer the
current state of a known object remotely and detect failures.
All of these can be displayed to the crew as illustrated in the
simulated view in Figure 1.

In this feasibility study, we aim to show our preliminary re-
sults on using audio perception, in the context of a telerobotic
mission, to help understand the world around the robot and
propose an approach to:

« detect sound events

« localize sound sources

« fuse sound input with vision sensors and prior knowledge
« obtain spectral knowledge and infer objects’ state based on
the received data
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2. RELATED WORK

Early research in the field of sound source localization has fo-
cused on the imitation of binaural audio perception of humans
and animals [2][3][4][5]. They are based on the interaural
phase difference (IPD) and interaural intensity difference
(IID) of received signals. The inclusion of the head-related
transfer function [6] and the modeling of the reverberation
of the environment [7][8] increases the robustness further.
However, these approaches require an accurate calibration
process, where deviations and unexpected components in the
environmental modeling greatly influence the outcome.

Successive work has been carried out on the estimation of
Direction of Arrival (DoA) of a signal [9][10]. Incorporat-
ing a delay and sum beamformer (DSBF) these approaches
estimate the direction using the time delay between the input
signal of individual sensors. But low signal to noise ratio
(SNR) environments or varying spectral profiles of the sound
sources prevent usable results. Approaches based on deep
learning [11][12][13][14][15] promise to overcome the men-
tioned problems, but require dedicated data sets for specific
sources for training or immense data for generalization.

More recently, research attention has shifted toward
subspace-based approaches like multiple signal classification
(MUSIC) [16] or Estimation of Signal Parameters via Rota-
tional Invariance Techniques (ESPRIT) [17]. To overcome
the limitations and constraints of the chosen sampling fre-
quency, they offer increased robustness and angular resolu-
tion [18][19][20]. The initial high computational demand
could be decreased with recent advances in offering real-time
estimations for outdoor [21] and indoor [22] environments.

The field of acoustic monitoring is well established in the area
of ecological research, especially for ornithology [23][24].
Semi-automated analysis [25][26][27] are utilized for tem-
poral and spatial estimation of bird behavior, which has
been developed to detect and monitor audio events. How-
ever, expert knowledge is necessary to label received au-
dio fragments. Full-automation methods [28][29][30][31]
offering an unsupervised approach, which requires intense
training. These methods have been applied toward factory
and technical applications for process monitoring for additive
manufacturing [32][33]. Furthermore, convolutional neural
networks have been added for detecting the degradation state
of robotic system [34]. However, the unknown spectral
profiles or signals with high variances are still problematic.

In this work, we aim to show that acoustic perception can be
effectively used as an additional modality in telepresence ap-
plications by implementing it in a ISS-to-Earth demonstration
missions, Surface Avatar [1]. It depends on knowledge gained
in previous space-to-ground missions, Analog-1 [35][36][37]
and Meteron Supvis Justin [38]. We focus on a system
that extends the immersion of the robot operator to obtain
more knowledge about the environment and which keeps the
astronaut in the loop.

3. SYSTEM OVERVIEW

This work is intended to be integrated into DLR’s Rollin’
Justin [39]. It is a dexterous humanoid robot with a mobile
wheel-base, which has served in a wide array of research
toward space exploration and terrestrial applications [38]
[40]. Equipped with an Intel Realsense D4351 RGBD camera,
it is able to visually perceive its environment. The sensor
is mounted on the head to mimic human-like anatomy and
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Figure 2: DLR’s dexterous humanoid robot, Rollin’ Justin,
and the microphone array (red) used in this work.
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Figure 3: Overview of the system architecture. The approach
is divided into auditoral, visual and prior knowledge.
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follows the head movement to stay aligned with the visual
processing pipeline.

We utilize a four-sensor microphone array as depicted in
Figure 2 to receive audio information on the environ-
ment. The sensors are arranged linearly with located
d =10.00,0.015,0.06, 0.09] cm along the x-axis and enables
broadband estimation of signals in the audible range. We
investigated a future integration of the array into a novel head
design [41] consisting of eight microphones heterogeneously
placed on the forehead of the robot. The estimated directivity
patterns (—3dB at £40°) are integrated into this feasibility
study to assure the applicability.

Furthermore, the robot operates in an environment at the
DLR simulating a Martian exploration and science site [42].
The environment includes a mechanical mock-up of a lander,
several Smart Payload Units (SPUs) for scientific experi-
ments and monitoring and a visual representation of Martian
setting. All objects a marked with Apriltags [43] for easy
identification and localization.

All data are recorded and pre-processed before fusing them
together. Afterwards, using prior knowledge on the environ-
ment, the semantic information on the current perception of
the world will be jointly inferred. An overview is given in
Figure 3.

Audition

Audio is captured using the microphone array. For pro-
cessing it is essential to have synchronous data acquisition.



Figure 4: Estimation of the background noise profile for the
robot environment. An audio probe is used to capture a highly
accurate frequency spectrum that can be used for spectral
subtraction in noise filtering.
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Figure 5: Audio processing branch. After pre-processing the
received signals are transformed into the frequency domain
and the presence of a sound source is estimated. Afterwards,
a possible source is localized.

Therefore, the analog-to-digital conversion is triggered on
hardware side. The sampling rate is set to 44100Hz to
capture the full spectrum of most signals available in our
environment.

Background noise such as wind or system noise created
by mechanical components, e.g. cooling fans, induce an
omnipresent spectral component that is always accumulated
to the received signal. A prior statistical profile is estimated
using a sound probe as shown in Figure 4 to obtain an accu-
rate recording of the actual noise. Then, a Fourier analysis
is performed to obtain the gains of the spectral components.
These can be applied later for noise reduction by spectral
subtraction. To prohibit unnecessary detection and estimation
efforts that may lead to false positive results in subsequent
modules, the presence of a suitable input signal is detected.
An evaluation of the power equivalent of the sound signal
is performed, comparing the active input to the previously
acquired noise spectrum. The received response is used to
classify the audio as noise or sound event. Afterwards, the
DoA of the signal is estimated to obtain the spatial informa-
tion of the sound source used later in the fusion process. The
chain of modules is shown in Figure 5.
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Figure 6: Components of the vision processing. The cam-
era data is used for a global position strategy based on a
Simultaneous Localization and Mapping (SLAM) approach
and refinement using AprilTags. This information is used to
receive current scene objects from a knowledge base.
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Figure 7: The object database is storage of the robots per-
ception and knowledge about the world. It included the poses
of known objects, their geometric outlines and previously
obtained spectral profiles of observed states.

Visual Perception

The vision system is primarily used to obtain the localization
information of the system. The coarse ego-pose estimation
is retrieved by a SLAM system based on a multi-camera
approach [44] in the base. Further refinement of the pose
is obtained by using visible AprilTags in the environment.
Finally, based on the current localization, all scene objects
are loaded from a central object database. It is noteworthy
that the query returns more objects than visible to the camera
as the auditory system is capable of perceiving more of the
world than the field-of-view of the camera. As seen in
Figure 6 the system returns the list of scene objects needed
for the fusion process.

Multi-Modal Fusion and Processing

In this step the information of the audio and visual branch
are fused together to obtain a multi-modal description of
the world. The DoA estimation retrieved from the audio
beamforming module is used to cast a ray from the current
position of the robot and infer the 3D position of the sound
source using the known geometric outline of scene objects
obtained from the vision branch. If a sound source can be
located within an object, the relevant spectral information of
the given entity is loaded from the database. Finally, this is
compared to the received spectrum and the state is inferred.

Object Database

The aforementioned object database is a storage of prior
knowledge obtained before the operation of the system (Fig-
ure 7). It contains for each object in the environment its exact
position, orientation and geometric outline. Furthermore,
it also contains a list of spectral information of different
states. Each consists of the median and an acceptance band
of normalized frequency spectra, e.g. Figure 8 displays the
characteristic spectrum of a running drill. This is used to
estimate the state of an object or infer if the observed situation
is unknown.
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Figure 8: Normalized frequency spectrum of a running drill.
The median is depicted as a dashed line. The acceptance
band of the sound spectrum is shown by the 20th and 80th
percentile.

4. METHODOLOGY

The following sections describes the key aspects of the se-
lected approaches and applied customizations in depth.

LTSD Power Evalutation

The module for detecting sound events is based on the voice
activity detection (VAD) approach by Ramirez et al. [45].
The received input signal is analyzed on smaller chunks.
Each is further divided into overlapping subframes, which
are transformed into the frequency domain using a short-term
Fourier transform. We estimate the spectral envelope for the
chunk for the frequency bin [ on N subframes as

LTSEx (k) = max (X(k, 0), X(k, 1), ..., X(k, N)) (1)

with X (k, n) representing the k-th bin of the n-th subframe.

Each long-term spectral envelope (LTSE) value represents the
current maximal gain for each frequency bin in the envelope.
To receive information on the overall spectrum differs from
the noise reference &, we calculate the long-term spectral
divergence (LTSD) as given by

LTSE?(k
S ()) @)

1
LTSDy = 1010
N 810 <nm 2. (k)

with nppT as the amount of frequency bins in each subframe
analysis. Subsequently inserting the audio chunks, we receive
a temporal trend of the LTSD responses. A typical result can
be seen in Figure 9. Furthermore, we exploit Equation (2) and
retrieve the m-most deviating frequency bins compared to the
reference ¢ and propagate this information to the beamformer
module.

MUSIC DoA Estimation

We integrate a modified implementation [22] of the MUSIC
algorithm [16] [21] to locate sources using the directed sub-
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Figure 9: LTSD response for three different sound sources.
The input audio is separated into sound event (SED=high)
and noise (SED=low).

spaces of the frequency domain. Considering the complex
short-term input signal sy (¢) for the k-th frequency band, we
get

Sk(t) = )\k(t>612wfkt
= Ap(t)e™r? (3)

For a linear microphone array of /N sensors where each signal
is delayed by

dpsin (6
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with the DoA 6 and the speed of sound ¢y, we can construct

the system equation as

1
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We denote ay, as the steering vector of the sound source,
describing the angular dependency of the received signal to
the direction of arrival. As described in the referenced work,
the source subspace U g of the received signal is extracted.
The aforementioned steering vector is an element of the
signal subspace, therefore

ag € Us, (6)
=ar 1L Us @)

of the noise subspace Uy. We can formulate the response
equation as
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Figure 10: Pseudospectrum as returned from the custom
MUSIC implementation. The frequency evaluation is adapted
to the current received spectrum and the DoA can be recon-
structed from the signal maximum.
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where (-,-) denotes the inner product. We further only
examine the N-most deviating frequency bins as calculated
in the LTSD power evaluation to integrate into the final
response. This reduces the amount of resources needed to
process the data while increasing the robustness in low SNR
scenarios. An exemplary pseudospectrum is displayed in
Figure 10 showing a detected sound source at ~ 100°.

Modality Fusion

Processing the separate modalities independently, the modal-
ity fusion combines both branches and estimates the joint
state. Based on the global position of the system, a set
of scene objects is loaded from the object database. The
received geometry is projected on the 2D ground plane as
the microphone array is only capable to distinguish between
azimuth but not elevation angles. As ray is casted starting
at the microphones reference position and with the estimated
orientation. The ray is tested with each outline of the scene
objects for an intersection. The point is reprojected to the
microphone array and checked against the sensor accuracy
to take measurement tolerances into account. Finally, after
testing all lines, the intersection with the shortest ray length
is taken as the source position.

Spectral Classification

As a last step, the spectral information of the object is
examined. The received audio is compared in the frequency
domain with already obtained spectral profiles. For each
profile, a audio sample is recorded with a duration of at least
5s. These audio samples are transformed with a short-term
Fourier transform (SFTF) using small overlapping subframes
with a hop-parameter of 32 samples. The median spectrum
Ps5p is calculated over all received spectra. The highest
value of the median is used to normalize the spectrum and
constraint it to [0, 1]. Afterwards, the 20th percentile P5g and
the 80th percentile Py for each frequency bin are taken as

the lower and upper bound of the acceptance band. When
receiving a new and unclassified spectrum, first the spectral
components of the background noise is subtracted from the
input signal. Afterwards, the median spectrum is estimated
and normalized. We calculate the sum of the squared dif-
ferences of frequencies that are within the acceptance band
range of each bin.
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The received score describes the similarity of two frequency
spectra within the acceptance band. Further we can set a
threshold 7 for recognizing known profiles. A analyzed
spectrum is only considered if the s > 7, ultimately leading to
the assumption, if no score passes the threshold, the spectrum
originates from an unknown source.

5. EVALUATION

For the evaluation, we consider the scenario of a dexterous
mobile robot operating in a Martian environment. During the
final ISS-Earth experiment session of METERON SUPVIS
Justin [38] [46], ESA astronaut Alexander Gerst was tasked
with finding, and replacing a failed component in a SPUs in
the simulated Martian environment on ground. To recover
to nominal operation, the operator first had to search for
the problem with visual inspection of all components in the
environment. This failure investigation and maintenance
(shown in Figure 11), was, as expected, time-consuming.
This inspired us to consider other modes of surveying the en-
vironment to achieve faster failure detection and localization.
This desire turned us to audio perception, to remotely infer
the state of an object.

We start with an evaluation in a simulated environment show-
ing the applicability of our method for audio perception and
finally show experiments conducted in our laboratory to show
the transferability to actual applications.

Simulation

We use a simulated environment of a room with a rectangular
floor shape of W = 8m, L = 8m and a constant height
of H = 4m. Further, we define the absorption properties
of the walls, the floor and the ceiling based on the data
in [47] to mimic the acoustic behavior of our lab. The floor
is constructed of rigid plywood with a linoleum surface. The
northern and eastern wall are of hard surfaces. The ceiling
and southern, as well as the western wall are with high
absorption to reflect open space. All parameters are shown
in Table 1. We design a reverberation time of ¢ty = 0.5s for
our evaluation.

We further placed three sound sources (an engine, a press, and
an unknown air valve) in the room, each emitting a different
pre-recorded sound. An eight-sensor microphone array with
the same directivity pattern as the future integrated sensor
array of the system is placed at the south wall of the room.
The resulting room is shown in Figure 12 and the source-
specific room impulse response (RIR) in Figure 13.



Figure 11: Detecting and replacing a failed component in
a simulated Martian habitat. Prior missions required visual
inspection of the enclosed modules for failure detection.
Robot audition can enable remote detect the components’
state, which can speed up anomaly detection.

Table 1: Material absorption properties at different frequen-
cies were used for the simulation.

Element | 250Hz | 500Hz | 1kHz | 2kHz | 4kHz | 8kHz
Floor 0.21 0.10 | 0.08 | 0.06 | 0.06 | 0.06
Ceiling | 045 0.55 | 0.60 | 0.90 | 0.86 | 0.75
WallN | 0.02 | 0.03 | 0.03 | 0.04 | 0.05 | 0.05
WallE | 0.02 | 0.03 | 0.03 | 0.04 | 0.05 | 0.05
Wall S | 0.93 1.00 | 1.00 | 1.00 | 1.00 | 1.00
WallW | 0.93 1.00 | 1.00 | 1.00 | 1.00 | 1.00

— wall
X  source
® microphone

Figure 12: Simulated room environment. Displayed are the
three sound sources, the position of the first microphone of
the sensor array and the dimensions of the room. Absorption
properties of all elements can be extracted from Table 1.
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Figure 13: Estimated RIR of the simulated environment in
Figure 12. The graphs show the propagation delay each signal
needs to reach the first microphone. Further, echo can be
identified as the following peaks in the graph. The slow drop
after the impulse is due to the reverberation of tgg = 0.5s.

The simulated audio data is loaded into the proposed process-
ing pipeline. Positions of the system and scene objects are
altered by an uncertainty of 10cm. An exemplary result of the
data fusion is shown in Figure 14 and shows the localization
of a simulated source. For classification, we evaluate the
naive approach of comparing the sum of squared differences
(SSD) and our proposed method of calculating the difference
in the acceptance band.

The resulting score distribution is shown in Figure 15. The
SSD approach for classification yields to individual class
scores that are mostly in the range of [10,20]. In general,
narrow spectral profiles like drill or saw result in similar
scoring results. Since the complete spectrum is compared,
and in the case of a narrow-band signal, most of the spectral
components are the background noise which scores a high
similarity in this approach. Contrary, our approach takes the
variance of the pre-recorded profile into account. While still a
fairly simple approach, it results in high deviating class scores
and is more robust to narrow-band profiles.

Further, we expect unforeseen sound events to occur and
the spectral information of those is unknown. Since our
classification approach is explicitly designed to handle this
case, it estimates the score only on the acceptance band, thus
yielding a significantly lower score compared to known sound
profiles. An example can be seen in Figure 16. SSD scores in
a comparable range as in the case of a known source. In the
given example, it results in the selecting the saw class as itis a
highly narrow-band profile and therefore more frequency bins
with only the background noise. Our approach scores higher
values for wide-band profiles like engine or press due to
the higher probability of components of the unknown source
laying coincidentally within the acceptance band. However,
the overall scoring range is below 1 and by deploying a
threshold of 7 = 5 including a safety margin, we can safely
classify the input signal as unknown.

We further investigate the impact of the SNR and the number
of simultaneously emitting sources on the successful infer-
ence in the modality fusion outcome. We place one, two and
three sources in the room and artificially change the SNR



Figure 14: Illustration of the simulated room including three
objects and the microphone array. The estimated DoA is
shown as a dashed line. By using ray tracing, the source can
be located within the object on the upper left-hand side.
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Figure 15: Results of the classification process for a known
spectral profile of an engine. While the naive approach SSD
performs poorly and only small deviations between different
sound profiles are recognizable, our approach correctly clas-
sifies the profile.

of the target in the simulation. The noise sources are set
to be at SNR = 10dB compared to the background noise.
We sample 50 different scenarios where the sources a placed
at random positions in the 3m cone as defined in [41] at
distances in the range of [0.5m, 5.0m]. We define a threshold
of 0.90 for the desired hit rate as this is a good trade-off on
correctly detected sound events and misses in our scenario.
The results of the evaluation are shown in Figure 17. While
in the single source case the threshold is already reached
at SNRytarget,1 ~ 5dB, additional sources decrease the
performance. For two active sources the minimum ration
is increased to SNRyarger,2 = 20dB, for three sources the
threshold is reached at §NRtarget, 3 =~ 30dB.

Concluding with respect to a future use-case within the Sur-
face Avatar mission, the results show that the perception of
audio events and the fusion of the different modalities is feasi-
ble. The simulated signals could be identified for their origin
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Figure 16: Results of the classification process for an un-
known sound event. Compared to the results in Figure 15
the score of our approach is significantly lower and it can be
easily stated the system received an unknown spectral profile.
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Figure 17: Evaluation of the relation between SNR, the num-
ber of active emitting sources and the success rate of detecting
the target object. The three curves (blue, orange, green) show
the rates for one, two and three sources respectively. We
added a threshold of 0.90 as the minimum success rate for
use in our scenario. It can be seen that additional sources
increase the minimum SNR for successful operation.

and a simple yet effective approach based on an acceptance
band in the spectral profile led to the successful estimation of
different states. However, the presence of additional sources
in the environment affects the performance of the processing
pipeline and the rate of successful identification of emitting
objects. Assuming that the robotic system itself will be acting
as an emitting source in the world, a SNR of at least 20dB
must be assured for operation.

Lab Evaluation

Further evaluation is conducted on recordings taken in a
laboratory environment. In this experiment, we aim to show
the transferability of our approach into a realistic scenario.

A speaker is placed inside of one of the scene objects and



Figure 18: Audio perception evaluation in the METERON
environment. A speaker is placed inside the SPU, shown
with an antenna mounted on top, and is emitting a recording
of running drill at low and high speed. The system shall
differentiate between both states.

is set to alternately emit the sound of the pre-recorded drill at
low and high speed. As discussed before, the robot is emitting
noise and is a sound source itself in the environment resulting
in a minimum of at least two sources at the same time. The
speaker is set to transmit at an average of 50dB taking into
account the transmission from inside the object and over
the distance to the sensor array to meet the requirement of
SNRyiarget,2 &~ 20dB. The sensor array is positioned in front
of the robot facing the same direction as the camera interface.
The setup is shown in Figure 18 including the robot, the
sensor array and the target object. All data is fed into the
proposed processing pipeline, including the prior knowledge
of the positions of objects, possible spectral profiles and the
mapping of object’s emitting frequencies. The source object
is detected in the localization module, the robot’s knowledge
is updated according to the database content and the state is
determined based on the received audio signal.

An exemplary result is shown in Figure 19. Based on the
prior knowledge, the system reduced the total amount of
possible spectral profiles to two, drill_I and drill 2. The
classification resulted in correct associations with the emit-
ting profiles. However, the yielded scores a significantly
lower than compared to the simulated ones. This is due
to further sources in the environment emitting sounds that
are overlaying the audio signal and induce further spectral
noise. The transmission through the scene objects and the
frequency depending sampling accuracy of the microphones
were not simulated. Nevertheless, the preliminary results
already show that the desired estimation can be achieved
under lab conditions.

6. CONCLUSION AND OUTLOOK

In this work we presented a first study on the integration
of audio perception into the context of the Surface Avatar
mission led by DLR with partner ESA. We aimed to show the
usability of audio input as an additional perception modality
to improve situational awareness of the surface environment
where the robot is operating in. This can offer further
information on the world and the state of objects in the robot’s
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Figure 19: Scoring results for the state estimation of the drill
object. The approach correctly estimated the correct states of
the object on low and high speed. As the system identified the
object according to its prior knowledge, only the associated
sound profiles are loaded for estimation.

surrounding.

Our approach is divided into an audio and vision branch,
which eventually are fused into a single state estimation of
located sources withing known objects. We further introduces
a method to compare the received spectral information with
prior learned profiles. Moreover, the system is able to detect
unknown profiles which are not part of the set of known data.

We showed the performance of our proposed method in
simulation as well as the transferability in a real scenario.
The sound source localization yields high accuracy in combi-
nation with the visual perception and results in robust fusion
of the two modalities for spectral profile and state estimation.
Deployed to our laboratory, the system was able to detect and
estimate the current state of the target object.

The presented system shall be integrated into the perceptional
system of the robotic assistance platforms and provide the
audio modality in the upcoming Surface Avatar ISS-Earth
telerobotic experiment sessions in 2023-2024.
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