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Abstract

As the demand for advanced robotic systems continues to grow, the need for new
technologies and techniques that can improve the efficiency and effectiveness of robot
programming is imperative. The latter relies heavily on the effective communication
of tasks between the user and the robot.
To address this issue, we developed an Augmented Reality (AR) interface that incor-
porates Head Mounted Display (HMD) capabilities, and integrated it with an active
learning framework for intuitive programming of robots. This integration enables
the execution of conditional tasks, bridging the gap between user and robot knowl-
edge. The active learning model with the user’s guidance incrementally programs a
complex task and after encoding the skills, generates a high level task graph. Then
the holographic robot is visualising individual skills of the task in order to increase
the user’s intuition of the whole procedure with sensory information retrieved from
the physical robot in real-time. The interactive aspect of the interface can be utilised
in this phase, by providing the user the option of actively validating the learnt skills
or potentially changing them and thus generating a new skill sequence. Teaching
the real robot through teleoperation by using the HMD is also possible for the user
to increase the directness and immersion factors of teaching procedure while safely
manipulating the physical robot from a distance.
The evaluation of the proposed framework is conducted through a series of exper-
iments employing the developed interface on the real system. These experiments
aim to assess the degree of intuitiveness provided by the interface features to the
user and to determine the extent of similarity between the virtual system’s behavior
during the robot programming procedure and that of its physical counterpart.



2



CONTENTS 3

Contents

1 Introduction 5
1.1 Problem Definition and Motivation . . . . . . . . . . . . . . . . . . . 5
1.2 Research Goals and Novelties of the Proposed Approach . . . . . . . 7

2 State of the Art in Programming by Demonstration and Aug-
mented Reality 11
2.1 Robot Programming by Demonstration . . . . . . . . . . . . . . . . . 11

2.1.1 Skill Encoding and Generalisation . . . . . . . . . . . . . . . . 12
2.1.2 Input Modalities and Demonstration Procedure . . . . . . . . 16

2.2 Intuitive Robot Programming . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 The Teacher’s Role in Programming by Demonstration . . . . 21
2.2.2 Task-Level Learning and Collaborative Programming . . . . . 23
2.2.3 Imitation Learning and Reinforcement Learning . . . . . . . . 26

2.3 Immersive Computing Technologies and Augmented Reality . . . . . 30
2.3.1 The Reality-Virtuality Continuum and Extended Reality (XR) 32
2.3.2 Augmented Reality and Application Domains in Robotics . . . 34
2.3.3 Intuitive Robot Programming and Augmented Reality . . . . 39

3 Interactive Augmented Reality Interface for Intuitive Learning of
Conditional Tasks 47
3.1 Methodology and Design of the Interface . . . . . . . . . . . . . . . . 47
3.2 Hardware Capabilities and Specifications . . . . . . . . . . . . . . . . 50

3.2.1 Microsoft HoloLens 2 Head Mounted Display . . . . . . . . . . 50
3.2.2 SARA DLR Light-weight Robot . . . . . . . . . . . . . . . . . 53

3.3 Input Modalities and Technical Approach . . . . . . . . . . . . . . . . 54
3.3.1 Input Modalities for the AR Interface . . . . . . . . . . . . . . 54
3.3.2 Development Process and Workflow . . . . . . . . . . . . . . . 56

3.4 Human-Robot Interaction Concept . . . . . . . . . . . . . . . . . . . 67
3.4.1 Framework of the Holographic Interaction . . . . . . . . . . . 67
3.4.2 Behavioural Task Graph Representation . . . . . . . . . . . . 70
3.4.3 Robot Joints Manipulation . . . . . . . . . . . . . . . . . . . . 71
3.4.4 Skill Execution and Validation . . . . . . . . . . . . . . . . . . 73
3.4.5 Kinesthetic Teaching and AR Teleoperation . . . . . . . . . . 77



4 CONTENTS

3.4.6 Virtual Workbench . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Evaluation of the Integrated System 83
4.1 Experimental Design and Scenarios . . . . . . . . . . . . . . . . . . . 83
4.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Conclusion 95
5.1 Summary of the Proposed Approach . . . . . . . . . . . . . . . . . . 95
5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

List of Figures 99

Bibliography 103



5

Chapter 1

Introduction

1.1 Problem Definition and Motivation

Human-Robot Interaction (HRI) is a rapidly developing research field, with the pro-
gramming of robots representing a fundamental aspect of its various subfields. The
main goal is to understand, design, and evaluate robotic systems that can interact
with humans in a safe, efficient, and intuitive manner. Collaborative robots repre-
senting an integral component of this approach, as they are designed to work along-
side humans in shared workspaces, enhancing productivity and efficiency. Within the
context of reintroducing the current industrial revolution wave, namely Industry 4.0
(Figure 1.1), solutions to the problem of creating more intuitive and flexible meth-
ods and techniques for robot programming have to be reinvented in order for this
phase to achieve its main goal. That being said, a potential course of actions could
be towards the characterisation of the aforementioned goals by enhanced Human-
centered Robotics (HCR) collaboration environments with improved HRI metrics.
The latter could be accomplished by integrating different cutting edge technologies
in the local industrial ecosystem.

The main problem with the conventional robot programming methods, namely
teaching pedant, offline programming etc., is the prerequisite from the user’s side
to have advanced knowledge of high-level programming, which can be difficult to
acquire. In addition, some of the aforementioned methods can be unsafe and ineffi-
cient during their realisation. Robot Programming by Demonstration (PbD), being
a relatively new programming method and an active research field, constitutes an
easier method to learn and can enable more efficient and accurate programming.
However, it still has its limitations in its current form. One drawback is the limi-
tation of its applications, since the robot must be able to recognise and understand
the task that is being demonstrated. To that end, modern data-driven exploration
techniques can be implemented to train the robot for executing a certain task and
learn new skills. Moreover, graphical programming and scripting languages can be
used that introduce a more visualised way to program and deliver faster results in
a more convenient manner. Whereas this approach positively affects the learning
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Figure 1.1: Rendering of the proposed Industry 4.0 environment by [McK]

procedure outcome from the robot’s side in a more efficient fashion, it renders the
user’s perception of the system incomplete. Thus, it impacts negatively the in-
tended outcome and fails to improve the overall procedure. This is due to one of
the main challenges in PbD, which is the knowledge gap between the user (teacher)
and the robot (learner). The user may have a deep understanding of the task being
taught but may not have the technical expertise to program the robot. On the other
hand, the robot may have the technical knowledge to execute the task, but may not
understand the underlying concepts that the user is trying to implement.

A solution to that problem can be the addition of another rapidly evolving tech-
nology, that of Augmented Reality (AR) (or Mixed Reality (MR) for interactive
frameworks that enable virtual objects to interact with the real world, creating a
seamless hybrid environment) via the usage of Head Mounted Displays (HMD). PbD
that utilises AR techniques, can enable robots to learn complex tasks quickly and
accurately and can be used to develop new processes that can be adapted to chang-
ing or specialised conditions and constraints, ultimately improving the productivity
and effectiveness of the procedure. In that regard, AR and MR are ideal for enhanc-
ing the physical reality and the surroundings of the user by means of virtual object
augmentations and by providing an immersive experience that could also be applied
with great benefits in the field of HRC.

As it is presented more detailed in Sec. 2, there are different techniques that are
used towards the direction of utilising Augmented Reality methods and tools for
achieving better performance on the programming of robots, techniques that their
intuitiveness, as is claimed by the authors of the authors of those researches, can
ameliorate the performance metrics for experts and non-experts alike. It is obvious
that complementary to what the performance indices suggest, the main endeavour of
any work that has been done in this field should focus on creating a more immersive
interface that the user would not only find more intuitive and advantageous, but
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also increase the enthusiasm and eagerness to experience it.

Furthermore, AR-enhanced PbD can be used to provide remote guidance and trou-
bleshooting, allowing for faster problem-solving and more efficient maintenance pro-
cedures. Regarding the user experience (UX), combining PbD with AR methods can
provide an immersive and a more interactive experience, which can further improve
the safety and reliability of the system since the user works in its entirety with holo-
grams. In this context, AR can help bridge the aforementioned knowledge gap by
providing an intuitive and interactive interface that allows the user to communicate
with the robot in a more natural and effective manner. With AR, the user can use
physical gestures and actions to demonstrate the task to the robot, which can be
captured by cameras and sensors and then mapped to the robot’s control system.
This way, the user can teach the robot without having to write complex code and
the robot can learn from the user’s demonstrations.

1.2 Research Goals and Novelties of the Proposed

Approach

The ultimate goal and focus of this thesis lies at the endeavor of enhancing Human-
Robot Interaction, and delving into the potential impact of merging two cutting-
edge techniques within this research domain. Consequently, one could argue that
the overall novelty is the design and development of an interface that aims at a
captivating and fully immersive experience for users, whereby seamless interaction
with robots is made possible through the integrated AR-PbD framework. One of the
most important issues that need to be tackled is the ability of the external agent,
namely the human user, to handle demonstrations in the best way possible. The
variability of human efficiency, the demonstration quality during the teaching process
and the knowledge (tasks) across human subjects, are only few of the evaluation
metrics of the teacher’s performance. To that end, the dependence on the teaching
platform and the human factor are one of the research-aims listed for this thesis.

As mentioned above (and more extensively described in Sec. 2), a thorough literature
review, reveals that there is a knowledge discrepancy between the teacher and the
learner in Programming by Demonstration. Therefore, the need for providing the
user with structured information online (while programming), regarding the robot’s
skills and knowledge, is imperative. This is another one of the main research aims of
this work. Some of the questions that need to be further addressed are the following:

• How can we optimally design the AR interface to increase the intuition of the
user regarding the teaching procedure?

• How do we create a robust and adjustable virtual robot control scheme for
manipulation procedures?
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• What is the best way to visualise the informational retrieval and its propaga-
tion/representation for the user to understand the status of the robot?

• How do we visualise the virtual content in order to render it in a more enjoyable
way for the user (user friendly aspect)?

• How does the use of AR during PbD affect its usability, the user’s understand-
ing and the mental workload?

• How does the user benefit from a more intelligent PbD algorithm that also
makes suggestions by being able to identify the demonstrated skills?

• Research results, such as those mentioned in the previous section and were
presented in [SKG+16, QLP+18], do not yet agree on the effects of AR on
teaching. A premise which begs the question in which situations is it better or
worse to use an AR as a tool to accelerate and improve the learning/teaching
process.

Many approaches of different AR applications on robot programming are trying
to enhance the physical world with virtual objects and schemes that help the user
understand the abilities of the robot and undertake the task of increasing the perfor-
mance of the programming procedure. However, the incorporation of the learning
procedure is being done in a more standardised way without adding some extra
layers of information to visualise this too for increasing the user’s intuition about
the system. One possible novelty of our approach is the addition of a graph-based
knowledge representation, where the previously demonstrated skills are sequenced
on an abstract task-level, a tool through which the teaching process gains a signifi-
cant advantage over more traditional PbD techniques like kinesthetic teaching.

In Figure 1.2 a generic example of the aforementioned graph is depicted. This task-
representation graph assign its nodes as decision states and the skills are represented
by the edges. The user is not only able to understand the task-levels through the
graph, which depicts this sequence of logical skills and sub-goals of that task which
the robot is trying to learn, but also can enable an interactive way to execute each
skill and decision state individually by selecting the respective node or edge.

We also provide the user with the option of choosing different ways through which the
robotic manipulation can be executed. Different options enable a more immersive
interaction with the physical world, for example automatic virtual trajectory execu-
tion or individual joint manipulation can offer the user a more spherical view of the
task at hand and how to choose the best way to execute the teaching/programming
and thus the type of the manipulation. Another functionality that is included in
the developed interface and could be used as an argument in favor of the case for
the combination of AR (by means of an HMD) with PbD, is the execution of kines-
thetic teaching through AR interaction modalities like gesture, gaze and touch. This
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Figure 1.2: Task graph concept [WEL20]

feature enables a more sophisticated way to kinesthetically teach the robot and si-
multaneously minimises the physical interaction with the robot creating the perfect
conditions for a safer manipulation and demonstration procedure.
The thesis is structured as follows: In chapter 2 the most important parts of the
state of the art in Programming by Demonstration, Augmented Reality and In-
tuitive Robot Programming are reviewed. In this chapter the definitions of basic
terms and methods that were used or implemented in the context of this thesis
are given, like Learning from Demonstration, Inverse Reinforcement Learning, Aug-
mented/Virtual/Mixed Reality, as well as to the general context of Intuitive Robot
Programming approach. Furthermore, chapter 3 presents in detail the proposed
approach, the theoretical scheme and high level of the system’s architecture as well
more technical details regarding implementation and hardware that was used dur-
ing the development phase.It also discusses the concept of Human Robot Interaction
(HRI) is discussed. chapter 4 deals with the experimental evaluation of the developed
interface and presents the hypotheses and observations deduced from the procedure.
In the concluding chapter 5, the report provides a short summary of the integrated
system, the overall purpose of the thesis, as well as its outcomes. Additionally, some
suggestions for prospective future research directions are given.



10 CHAPTER 1. INTRODUCTION



11

Chapter 2

State of the Art in Programming
by Demonstration and Augmented
Reality

Programming by Demonstration (PbD) and Augmented Reality (AR) are two rapidly
evolving technologies that have gained significant attention in recent years. PbD
allows users to teach a robotic system by demonstrating a task rather than pro-
gramming it explicitly. On the other hand, AR provides an interactive experience
by overlaying digital information on real-world objects. Both technologies have
immense potential and are being explored for various applications from industrial
automation to healthcare. In this chapter, a comprehensive review of previous work
and recent advances in those scientific areas is provided. The foundations are set,
for exploring the connecting points upon which a unification of these two methods
can offer potentially useful insights on how to approach the problem of Intuitive
Robot Programming, and hence the Human Robot Interaction (HRI).

2.1 Robot Programming by Demonstration

Robot Programming by Demonstration (PbD) or Learning from Demonstration (LfD)
(also mentioned as Imitation Learning) is the paradigm in which robots acquire
new skills by learning to imitate an expert [RPCB20]. PbD constitutes a method
of robot programming that involves teaching the robot how to perform a certain
task by demonstrating that task. In its framework, the user is relieved from writing
extensive and generic controllers that would enable the robot to adapt in differ-
ent scenarios. The development of such a controller would require a fair amount of
advanced reasoning and knowledge implementation from the human side incorporat-
ing a very sophisticated error handling algorithm and very expensive non-pragmatic
concept to materialize. After the robot has learnt from a series of demonstrations,
it imitates the learnt behaviour and it repeats the task autonomously when called
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upon.
The quintessence of Imitation Learning lies in the inherent ability of complex multi-
cellular organisms like mammals to imitate certain behaviours, as part of their low-
level evolutionary encoding. Its emergence originates from the bio-inspired imitation
process of learning a new skill used by both humans and animals. In the human
and animal world, imitation is often observed during the early stages of life, either
instinctively for survival purposes or through social interaction and information
exchange with other beings of the same or different species. There are two types
of biologically inspired imitation systems: the conceptual, where the system mimics
its biological counterpart behaviour and tries to mimic it, and the connectionist
models, where some low-level artificial neural network is used [Sko09]. In robotics,
this behaviour can be programmed into intuitive interfaces that can also be used by
novice users without prior programming experience. Some key questions that could
decipher the process of imitation learning, and determined in a sophisticated way
in [ND07], are the following:

• Who to imitate? That question refers to the problem of who is the expert in
the case of Human Robot Interaction.

• When to imitate? What is the timespan of the imitation and when is the best
time for it to take place.

• What to imitate? What is the goal of performing a certain skill.

• How to map? The translation from a demonstration to actual imitating be-
haviour is not straightforward and usually some encoding procedure of the
acquired information has to take place.

• How to evaluate an imitation? A question that concerns implementation of
self-improvement techniques for the learnt skills by defining and using the
proper metrics.

These questions play a pivotal role on how to approach the problem of Intuitive
Robot Programming by means of Programming by Demonstration and should be in
general thoroughly investigated during any related research conduction.

2.1.1 Skill Encoding and Generalisation

Through PbD, non experts are enabled to intuitively transfer new task knowledge to
the robot through different learning modalities according to the respective situation
applicable to the system. Each task can break down to individual skills in order
to be demonstrated to the robot. Those skills can be imitated multiple times on
alternate scenarios and the desired behaviour can be encoded. That is accomplished
during the skill encoding phase of learning a skill. The other important phase is the
generalisation of the learnt behaviours, previously acquired by the demonstrations.
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During this phase the robot can assimilate the subtle differences of the modified
task and adapt accordingly. These two concepts are the main subject of this section
and are analysed below.

The skill encoding process is one of the main challenges in PbD, which is how the
acquired knowledge is represented and perceived by the robot. Skill representa-
tion can be done either at low-level, namely a non-linear mapping between sensory
and motor information [BCDS08], where the encoded information (i.e. a particular
movement) provides part of the solution to the main question of what is important
to be imitated [Cal09], or at high level, namely a skill decomposition of action-
perception units that symbolically code predefined motion elements [Cal09, AC05].
These representations, also depicted in Figure 2.1 are referred to as trajectory-based
approaches and symbolic approaches respectively.

In more detail, the symbolic level of encoding, also mentioned as task level, is using
a sequential form of skills represented in symbolic way [EK08, PKDZ07], which is
possible to be identified by means of classification techniques and can be used to
create a type of hierarchical structure. Those structures usually are tree-like and
represent some specific state-action as nodes and relations respectively [NOK+15].
Upon skill reproduction, that sequence is mapped on the robot’s own action set.

On the other hand, the trajectory level is related to the mapping of the demonstrated
trajectory to the robotic one [vLGG19] using statistical modeling and dynamical
models and encoded into new robot actions or primitives.

Other levels of encoding imitation includes goal-level approach, where an inference
process derives the goal after observing a specific set of actions, and model-based
level where an exploration-based learning model is used. A combination between
the symbolic level and trajectory level has also been implemented in an effort to
fuse the benefits of both methods in [KPK+15], where a form of sensor information
are synced with movement primitives in order to create the concept of Associative
Skill Memories (ASM) previously introduced in [PKRS12]. These are based on a
small set of stereotypical movement primitives but suffice in order to create large
manipulation skill-sets, in an effort to imitate the auto-associative memory function
of the human brain too and process various sensory readings. They postulate as well
that a manipulation graph can be incorporated into the system in order to encode
in a state machine with imposed constraints in the manipulation sequence.

The second important phase during learning in PbD is the generalisation of a skill.
Generalisation refers to the ability of a robot to adapt and apply the learned skill to
new situations, task conditions, or environments that were not encountered during
the initial demonstrations. In other words, generalisation is the process of extend-
ing the acquired knowledge to perform the skill effectively under varying conditions.
The objective of generalisation in PbD is to enable robots to handle novel circum-
stances without requiring explicit demonstrations for every possible scenario and it
contributes to the robustness, and flexibility of the learned behaviors.

The generalisation of symbolic level encoding involves sequential organization of pre-
defined action elements, an instance that enables the learning of hierarchy, rules and
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Figure 2.1: Different levels of representation for describing the skill [Cal09]

loops but also requires pre-defined set of basic controllers for reproduction [Cal09].
On the other hand, on trajectory encoding level, the generalisation span includes
the movements generalisation. This generalisation could be averaged trajectories
and related variations, with advantageous behaviour when it comes to generic rep-
resentation of motion. The advantage lies on the capability to encode very different
type of signals or gestures, but with the drawback of the inability to reproduce high-
level skills with high complexity [Cal09]. Generalization can be achieved through
various methods, depending on the representation used for encoding the skill. Some
approaches include:

• Dynamic Movement Primitives (DMPs): DMPs can be adapted to new task
conditions by changing the goal position, adjusting the movement duration,
or scaling the amplitude of the movement. This allows the robot to perform
the skill under different circumstances.

• Gaussian Mixture Models (GMMs) and Gaussian Mixture Regression (GMR):
GMMs can be used to model the joint probability distribution of the demon-
strated trajectories and their corresponding task parameters. GMR can then
be employed to estimate the most likely trajectory for a given set of task
parameters, facilitating generalization to new situations.

• Neural Networks (NN): When using NN to learn a skill, the network can be
trained to predict the appropriate actions or trajectories for different task
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conditions or environments. Once trained, the network can generalize to new
situations by adjusting its internal weights based on the input conditions.

• Reinforcement Learning (RL): PbD can be combined with RL to allow the
robot to refine and adapt the learned skills through trial and error. This
enables the robot to generalize its behavior and improve its performance in
varying conditions. This method is analyzed more in section 2.2.

A typical generalisation technique is the use of Dynamic Movement Primitives
(DMPs) introduced in [INS02]. DMPs represent complex motor movements by
decomposing them into temporal (canonical system) and spatial (transformation
system) components. The robot observes a demonstrated skill, extracts the trajec-
tory, and learns a DMP by fitting basis functions to the trajectory. The learned
DMP can be modified to adapt to new task conditions or environments by changing
the goal position, adjusting the movement duration, or scaling the amplitude of the
movement. DMPs capabilities have been extended in many ways with Gaussian
Processes (GP) [MEO+17]. More specific, the generalisation for the trajectory en-
coding case is effectively decreasing the inherent uncertainty factor of the human
demonstration which can be imperfect in some cases. Chernova et. al conducted
researches [CV07, CV08], where the aforementioned problem is addressed by in-
troducing a different representation of the learning policy as a set of GMMs, with
multiple GMM components of each model which corresponds to a single action. In
their approach the training data for the GMMs set were basically the demonstra-
tions examples that were incrementally received, ideally in a way that minimises the
number of demonstrations needed to acquire the policy.
At this point a succinct definition of GMM framework should be given. A Gaus-
sian mixture model is resulting from a combination of several Gaussian components
[TSM85]. A 1-d Gaussian component or a 1-d Gaussian probability density function
(pdf) described by the following distribution with mean µ and variance σ2:

N (x;µ, σ) =
1

σ
√
2π

exp
−(x− µ)2

2σ2
(2.1)

A GMM is characterised by the vector Θ of the means, variances, and weights of its
C components. The weight of each component is the portion of samples belonging
to that component [CV07],:

Θ = {µ1, σ1, ω1, ...µC , σC , ωC} ∋ 0 < ωc ≤ 1 and
C∑
c=1

ωc = 1 (2.2)

The pdf of a GMM parameterised by the Θ vector, is defined as a weighted sum
over the Gaussian distributions:

p(x|Θ) =
C∑
c=1

ωcN (x;µc, σc) (2.3)
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The most popular method to estimate the parameters of the GMM, provided that a
set of data-point is given, is the Expectation-Maximisation algorithm [DLR77] (EM)
where maximum likelihood estimates are used to iteratively optimise the GMM. In
Figure 2.2 an illustration of GMM is provided.

Figure 2.2: Example of 2D Gaussian Mixture Model with three components [CV07].

Gaussian Mixture Regression (GMR), which are complementary to GMMs [CAL16],
is used to retrieve the conditional distribution at each time step and obtain the
generalised reproduction [YYD22]. Given a new input, the trained GMM is used
to compute the conditional probability distribution of the target variable, taking
a weighted average of the Gaussian components conditioned on the input. This
step results in a predicted output (e.g., desired joint angles, positions, velocities) for
the robot to execute the skill in a new situation. The GMR provides a generalised
trajectory, as well as a covariance matrix, for every time step

2.1.2 Input Modalities and Demonstration Procedure

As previously mentioned, at the beginning of this chapter, the demonstration pro-
cedure can be performed in various forms, with the main attributes of defining a
form being the used modality, through which the necessary information, in order to
construct the knowledge base, is obtained. The information retrieval can be done
through various sensor inputs and with the implementation and usage of different
interfaces, that function as a semantic translation for the user to understand and use
that information basis accordingly. Input modalities in PbD refer to the different
ways in which the user can demonstrate the desired task to the robot, including
physical actions, such as gestures or movements, or verbal descriptions of the task.
Effective interface design is critical in PbD, as it directly impacts the user’s ability
to communicate the desired task to the robot. A well-designed interface should be
intuitive, easy to use, and provide real-time feedback to the user. There are several
types of interfaces that can be used in PbD, including:
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• Immersive Interfaces : This VR/AR interfaces use immersive technology to
create a virtual environment that can simulate real-world scenarios, in the VR
case. On the other hand, AR interfaces use computer-generated images and
information to augment the user’s view of the real world, thus providing an
intuitive and interactive interface for the user to demonstrate the task to the
robot by enabling many different layers of functionalities. Users can interact
with virtual objects and demonstrate tasks to the robot in a more natural and
intuitive manner. VR interfaces are particularly useful for tasks that require
a high degree of precision or for tasks that are difficult to simulate in the real
world, whereas AR interfaces can be particularly effective in PbD as they allow
the user to directly interact with the robot in a more natural and immersive
manner while the user interacts with the physical reality as well. This topic is
more extensively addressed in the section 2.3

• Graphical User Interfaces (GUIs): These interfaces use visual representations,
such as buttons or menus, to enable the user to interact with the robot. GUIs
can be effective in PbD as they provide a familiar and intuitive interface for
the user. A notable example is that of FRANKA EMIKA’s GUI, which is
depicted in Figure 2.3, enables the use of many different processes through
one Application.

Figure 2.3: The GUI used for FRANKA EMIKA products, that utilizes a workflow-based robot programming
approach [EMI].

• Natural Language Interfaces (NLIs): NLIs use natural language processing
(NLP) techniques to enable the user to communicate with the robot using
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natural language. Natural language interfaces for robot control aspire to find
the best sequence of actions that reflect the behaviour intended by the instruc-
tion [HTR14]. NLIs can be useful for users who may not have the technical
expertise to use more complex interfaces.

• Voice User Interfaces (VUIs): VUIs, or Spoken Dialogue Interfaces (SDIs),
leverage spoken language, which is the most natural and potent mode of com-
munication between humans, to enhance the usability of human-machine in-
terfaces. The degree of flexibility and robustness in handling spoken input and
output depends on the specific type of Spoken Dialogue Interface (SDI). Con-
sequently, Spoken Dialogue Systems (SDSs) may range from relatively basic
finite-state systems designed to handle a restricted set of commands to more
sophisticated systems that can perform inference and planning as part of a
collaborative interaction approach.[SSK20]. VUIs can differ from NLIs mainly
in the modalities, where the later can incorporate text-based communication
and speech input.

• Tangible User Interfaces : Tangible User Interfaces (TUI) use physical objects,
such as blocks or toys, to represent the task being taught. The function of
these blocks is to provide annotations for objects, locations, or regions, and to
define actions and their sequence. The robot, on the other hand, utilises these
blocks to identify objects and blocks in its workspace and to arrange them
into instructions by resolving any associated constraints [SAC17]. Users can
manipulate these objects to demonstrate the desired task, providing a tactile
interface for the user. Tangible interfaces are particularly useful for users who
may have limited technical expertise or who prefer a more hands-on approach.
In [SD13] the authors compare the effects that a tangible system has to a
group of children of various ages who have to follow the instructions of a robot
programming task, with the performance on a GUI. The results indicate that
the tangible system is more cumbersome for older children who are familiar
with computers and not the easiest interface paradigm to use. It is also more
enjoyable as a learning media in both cases of the older and the younger ones.
For younger children that are not used to computer interaction the TUIs were
easier to use. In this case the TUI was applied on physical blocks without a
projected table. An example of a TUI is depicted in Figure 2.4

• Brain-Computer Interfaces (BCIs): BCIs use electroencephalography (EEG)
or other techniques to measure brain activity and translate this into commands
that the robot can understand. In this type of interface, commands can be con-
veyed using various modalities such as screens, speech, or manual marking of
target objects with a laser pointer [KVBT20]. The problem that arises in this
case, concerns individuals with disabilities who may face difficulties in reliably
controlling the robot using conventional modalities. To address this issue,
brain signals have been proposed as a feedback modality in command-and-
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Figure 2.4: Tangible User Interface on a projected table [vLGG19].

control scenarios within robotics environments. These approaches typically
employ screens for stimulus presentation, while approaches based on mental
imagery do not necessarily require stimulus presentation [KVBT20]. BCIs are
particularly useful for users with physical disabilities or for tasks that require
a high degree of precision.

The choice of different interface, and therefore the selection of input modalities, can
significantly affect the demonstration procedure in PbD. For example, using a tan-
gible interface may be more effective for tasks that involve physical manipulation
or dexterity, whereas using an AR interface may be more effective for tasks that
involve complex spatial reasoning or visualisation. Similarly, the choice of interface
type can significantly impact the user’s ability to communicate the desired task to
the robot, and may depend on factors such as the user’s technical expertise, famil-
iarity with the interface, and level of interactivity required. The biggest challenge
yet is of course the development of an interface trough which a more generic and
adaptive type of robot programming could be realized.
The most notable learning modalities used in PbD are directly related to human
social interactive concepts of teaching and most widely used techniques to provide
demonstrations to the robot, like observational learning, kinesthetic teaching and
teleoperation settings [Cal18].

1. Observational learning, as the term indicates, is the type of learning based
on the visual input of the learner on the demonstrator performing a certain
task [Cal18]. The main input modalities in that case are found in the do-
main of vision systems and motion recording devices like gyroscopes and ac-
celerometers. The use of three-dimensional motion capture systems enables
the replication of a user’s motion onto a robot, which can widely be used in
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applications of humanoid robots. The system is comprised of three main com-
ponents: measurement of human motion, mapping of motion from a human to
a robot, and control of robot motion [CL19]. There are two types of learning
categorized based on the way the observations are done: direct and assisted
type. In the direct case, the video modality is observed without help whereas
in the second case the learner is provided with extra tools, like [LGAL18] Deep
Neural Networks for optimisation to identify and track the observed interac-
tions [Pau21]. The assisted methods are using sensing modalities like trackers,
visual detectors, motion capture and more visual inputs.

2. Kinesthetic teaching is the mode where the user guides the robot through
a specific trajectory by using physical contact and haptic guidance as inputs.
In this modality, the robot is set in gravity compensation mode for easy con-
trol [AS11]. By means of physical interaction, is introduced a more natural
way to propagate the necessary knowledge for demonstrating and reproducing
or refining a skill, thus enabling the user to interact in a more tactile way
and enhance his/her perspective on the robot’s capabilities [CL19]. Kines-
thetic teaching as a method to provide demonstration, poses a good solution
to the correspondence problems which refers to different mapping challenges,
like human to robot mapping function, and capability of adapting to differ-
ent scenarios. Drawbacks include, hindrances on teaching tasks via demon-
strations, that require good synchronization between multiple limbs [BG13] .
Through kinesthetic teaching, one can also generate a good primitives gener-
ation source. When learning in kinesthetic mode, the possibility for the robot
to incrementally learn a task is possible to be exploited as well. Approaches for
incremental learning through the use of multiple learning modalities provide
an intuitive way of teaching natural movements and ensure the synchroniza-
tion of complex whole-body motions. The learning process typically begins
with observation learning, which involves the transfer of whole-body motion
from a human demonstrator to a robot. Subsequently, the process involves
refining kinesthetic motion [CL19].

3. Immersive teleoperation where haptic interfaces can be used and the robot’s
sensory and effectors can be exploited [BG13]. The user is limited on that re-
gard but on the other hand one of the advantages is that of the training from
distance. The other advantage is again the solution to the correspondence
problem. In contrast to kinesthetic teaching, which confines the user to the
physical body of the robot, the learning modality of teleoperation aims to re-
strict the user’s perception to that of the robot as well. Teleoperation can be
accomplished using joysticks or other remote control devices, including hap-
tic devices. In most of the cases, teleoperation is a method majorly used to
transmit the kinematics of motion, and it is highly correlated with the ability
of the teacher to operate the remote control device effectively which naturally
requires training. Another more contemporary approach on the teleoperation



2.2. INTUITIVE ROBOT PROGRAMMING 21

scenarios, is the use of AR and VR which is analysed in more detail in section
2.3.

Figure 2.5: Input modalities and the correspondence challenges in robot Programming by Demonstration [Cal18].

Each learning modality and hence teaching interface presented above, performs bet-
ter at some levels comparing the rest thus being suitable to applied in specific tasks,
and each one has limitations. Research has commenced to explore how these inter-
faces can be combined to take advantage of the complementary information provided
by each modality separately [BG13, SAMB12].

2.2 Intuitive Robot Programming

The term Intuitive Robot Programming (IRP) is mainly referred to the paradigm
of Programming by Demonstration and the effort to develop interfaces that would
demand no prior knowledge or high expertise, thus making them accessible to a
broader range of users, including those who do not have specialized programming
knowledge or related experience. One of the main challenges in traditional robot
programming is the complexity of the programming languages and the need for
precise, explicit instructions. IRP aims to simplify this process and make it more
accessible by allowing users to program robots through more natural means.

2.2.1 The Teacher’s Role in Programming by Demonstra-
tion

As stated in previous sections, a crucial aspect of making LfD feasible in real-world
applications is to guarantee the robot’s ability to learn skills efficiently by adapting
to uncertainty during operation and reducing the teaching effort for the instructor.
Therefore, it does not suffice for the robot only to learn to perform a demonstration
but an indispensable part of the teaching process is the generalisation as well if it
were to perform better.
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In contrast to what was presented in previous section [CV07, CV08], where the
subject of Programming by Demonstration was approached from the robot’s per-
spective and how it learns, a more holistic approach on the improvement of the
complete robot programming concept should include a thorough investigation on
the teacher’s perspective and understanding of the system. One notable argument
on that regard, presented initially from Sena et. al [SH20], is that the discrepancy
between the teacher’s belief of the system’s knowledge and its actual capabilities,
created by the poor quality of the input data mentioned previously, is a significantly
unexplored area that can be potentially problematic and lead to the following major
issues:

• undemonstrated states

• ambiguous demonstrations

• unsuccessful demonstrations.

These issues can have a negative effect on the assimilation of the robot and its
familiarisation to the task during demonstration and thus the skill behaviour repro-
duction. It is important for the users, in order to minimise this effect, to share some
core mental elements. This would enable a behaviour from the teacher’s side, during
the complete teaching phase, with epicenter the understanding of the questions of
how and what the robot learns [HB18, CT14, SH20].
In their approach Sena and Howard are emphasising on the feedback design for the
PbD and by setting the right evaluation metrics, are trying to enhance the teacher’s
role and contribution to the learning procedure. Figure 2.6 depicts an imperfect
PbD model where the teaching framework and the interaction between the central
factors of the procedure, are represented in graph form with the relationships of the
individual parts also being mapped.
The model’s framework maps the learning processes into three different spaces:

1. Jh is the information history space.

2. Π is the policy space,

3. M is the teacher’s belief system.

Within their framework the information history space is containing elements like
initial conditions, observations, and action sequences, including incorrect elements.
The policy space represents all the possible policies learnt. Finally, the teacher’s
belief space contains information related to the extension of the robot’s knowledge
base and skill acquired to perform a specific task. For evaluating the teacher’s
intuition two metrics were defined, the first one is that of teacher’s efficacy which is
related to the primary teacher’s objective, that of accurately teaching a skill. That
is satisfied if the Π set (the policy space) contains a policy π that can generate close
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Figure 2.6: Space set representation of the discrepancy between the user’s understanding of the system, the task
realisation and the learning policy [SH20].

to the goal skill trajectories. The second metric is that of teacher’s efficiency, which
is defined by the minimisation of the total number of demonstrations required.

The most important conclusion of the quantification and evaluation conducted in
[SH20], is the significance of the feedback of a system which not only improves the
teaching procedure and the learner’s performance on the task at hand, but also
leads to greater consistency. With the feedback system focusing on the needs of
the learner, it operates as a determinant factor on what should be demonstrated
by the teacher, excluding that way, the need to understand how learning is realized
[SH20]. Some interesting results and insights that emerged from their experiments
are summarized to the following points:

• the form of feedback (4 different feedback conditions: No Feedback (NF),
Replay Feedback (RF), Batch Feedback (BF), Selected Feedback (SF)) is ben-
eficial to the learning process by improving the teacher’s efficiency, which is
evaluated by the ability of the learner to successfully generalise.

• there are common pitfalls novice teachers encounter, like premature stopping
of the teaching procedure or inability to provide demonstrations for adequate
time period.

• participant’s guidance is essential to retain a pragmatic sense of the quantita-
tive and qualitative nature of the required demonstrations,

• the often falsely derived teacher’s confidence while determining the learning
ability of the robot.

2.2.2 Task-Level Learning and Collaborative Programming

Another approach to developing intuitive interfaces for robot programming, is the
addition and combination of methods that exploit high-level behavioural techniques
to represent knowledge and skills for a task. Some recent researches are tackling
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the skill handling problem with visual programming languages and task-level ap-
proaches, as for example, in [SNS19] a combination of PbD with Task Level Pro-
gramming (TLP) is presented. By means of TLP, the robot is programmed to
perform a task in a manner similar to how a human would perform the same task.
Instead of specifying individual motor commands, the programmer defines a series
of abstract actions that the robot must perform to complete the task. These ab-
stract actions can be defined using natural language, graphical interfaces, or other
high-level programming languages. The advantages of the TLP make PbD more:

• intuitive with robust results, since the error-handling can be incorporated into
individual skills

• safe, since the skills can be certified,

• generic, the skills can be parameterised for different task variations.

According to Steinmetz et. al, combining the TLP with PbD into Task-Level Pro-
gramming by Demonstration (TLPbD) the advantages of both methods are the only
remainders. TLPbD enables experts to semantically annotate robot skills with their
conditions and effects by means of Planning Domain Definition Language (PDDL)
descriptions of the available skills, allowing that way online recognition from demon-
strations to be realized by non-experts.
This is achieved through the core component of the system, the semantic skill recog-
nizer, which sends parameterised skills to the TLP interface, when the latter sends
a signal to verify that the current status of the system is the correct one. The
recognizer creates the skills based on the world model which contains more abstract
representations than only raw trajectories, updated by the world observer, and the
PDDL descriptions of the available skills [SNS19].
In an effort to make a more interactive robot programming interface, Willibald
et. al combined in [WEL20] an incremental framework where the user and the
robot are able to program complex tasks in a collaborative way which is called
Collaborative Incremental Programming (CIP). Two of the main characteristics that
this framework enables is an on-line anomaly detection algorithm and the ability
to refine an existing skill, or demonstrate a new one. A high-level graph which
represents the complete sequence of actions and states of the task at hand, is used
for visualising the whole procedure with purpose to increase the intuition of the user
for the system.
Low-level statistical skill encoding is used to balance out any local perturbation, and
the model’s inherent probability distribution can identify deviations from intended
behaviour [WEL20]. The workflow of the algorithm is presented in the flow chart of
Figure 2.7. The core functionalities of the CIP framework are the following:

1. Probabilistic encoding of demonstrations, where dynamics of the system can
be integrated without the need for user guidance. This is achieved by having
the robot repeat the trajectory of the user’s demonstration and recording a
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Figure 2.7: Collaborative programming with on-line anomaly detection for interactive teaching where the user can
incrementally program the robot by adding new skills or refining existing ones. [WEL20]

second sequence and using the sensor readings as means to learn variability
through several demonstrations and robot reproduction. While exactness is
imperative for parts with less variability, higher deviations are tolerated during
the execution of parts with high variability. This strategy makes the procedure
more robust.

2. On-line anomaly detection, through which the measured sensor modalities are
continuously compared to the commanded ones through a real-time monitoring
segment. If the latter is detected, it is classified to a sensor category (end-
effector position/orientation, force/torque, gripper opening and grasp status),
a feature which allows the anomaly detection algorithm to make use of the
robot’s proprioceptive sensory systems and create a bidirectional dependency
between the learning model and the actual robot.

3. Incremental graph generation, enabling the user to interact with the graph
by choosing between two different actions of either adding a new skill to the
graph or refining a current skill enabling a more interactive way to adapt the
task-graph into any possible changes.
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4. Execution of learnt behaviour is combined with the teaching process in a col-
laborative framework. Insertion of the decision states is done automatically
at critical skill transition timesteps of the task. This inclusion decreases the
necessary computing time of the decision-making process and eliminates per-
ceptual aliasing. Therefore, the risk of selecting an incorrect skill is minimised.

2.2.3 Imitation Learning and Reinforcement Learning

In order to develop intuitive robot programming techniques and incorporate robotic
systems more into our everyday life, Imitation Learning, as a collaborative learning
approach based on human-robot interaction, offers the promising solution of learning
to imitate the behaviour of a teacher by observing a demonstration of the task. The
consensus would agree that learning only from demonstrations adds a limitation in
the performance of PbD techniques and the abilities of the teacher. Those limitations
could stem from one or more of the following:

• the expert’s abilities to demonstrate a skill,

• an incomplete demonstration,

• ambiguity in demonstration (inconsistent or conflicting demonstrations),

• Teacher’s ability to convey knowledge and the task’s objective clearly.

It is self-evident that the user has a major role to play in this, since most of the
limitations are a product of the teaching process. Clear, consistent and compre-
hensive demonstrations must be provided at any time. Ensuring the user’s high
level of expertise is also something recommended as well as the additional provision
of demonstrations or feedback to correct any misconceptions or inaccuracies in the
learnt behaviour.
To tackle this problem, PbD methods can be combined with exploration-based
methods [RPCB20]. Although in some cases, for example the systems presented in
[SPK02, CV07], it has been shown that in the context of Imitation Learning, statisti-
cal supervised learning significantly reduces learning time compared to exploration-
based methods, there are still many that favor the latter approach [AN04, KP08].
Those cases includes the work of [GHCB07] where the described system uses a dy-
namic system generator modulated by a learned speed trajectory and reinforcement
learning to enable the robot to adapt its trajectory when faced with new situations,
such as obstacles. Also in [KP08], a framework that derives both policy gradient
methods and Expectation-Maximisation (EM) inspired algorithms is presented. A
novel EM-inspired algorithm is introduced, specifically suited for dynamical sys-
tem motor primitives. Another approach in [KCC10] is presented, which utilizes
an Expectation-Maximisation based Reinforcement Learning (RL) for modulating
the mixture of dynamical systems derived from user demonstrations. The work in
[AN04] explores learning in a Markov decision process without an explicit reward
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function, relying instead on observing an expert demonstrating the task. The ex-
pert is assumed to maximise a reward function represented as a linear combination
of known features. The proposed algorithm uses Inverse Reinforcement Learning
(IRL) to recover the unknown reward function. The algorithm converges quickly,
and although it may not precisely recover the expert’s reward function, it outputs
a policy with performance close to that of the expert, measured with respect to the
expert’s unknown reward function.

In exploration-based methods, the agent learns through trial and error by taking
actions in the environment and observing the outcomes of those actions. The agent
uses this information to update its knowledge of the environment and adjust its
actions accordingly. This process is repeated iteratively until the agent learns to
navigate the environment effectively.

One of the exploration-based methodologies that could be used for the improve-
ment of the learning process is Reinforcement Learning (RL). Conventional RL is
formulated as a Markov Decision Process (MDP) defined by a 5-tuple (S,A, T,R, γ)
where S,A, γ are the state space and action space, and the discount factor respec-
tively, T : S × A → P (S), with P (St+1 = s′ | St = S,At = A) is the stochastic
transition function and R : S × A → R the reward function. A policy π, that is
a mapping between state space S and action space A, is what the RL agent tries
to learn with motivation and guidance through the cumulative reward function.
Agent and environment are constantly interacting and exchange information on an
action-reward feedback loop. The evaluation of the policy can be done with various
methods, such as Monte Carlo (MC) or Temporal Differences. Policy improvement
is also an important part of the learning process and can be done also with dif-
ferent techniques such as Greedy policy improvement or ”Vanilla” policy gradients
improvements. In addition, methods have to work in continuous state and action
space and also be easily parameterised through function approximation techniques
[SMSM99, KT99, PVS03]. With RL another important problem can be tackled,
that of the limited performance of the robot which can only be as good as the per-
formance of the human demonstration. To that end, RL can be used to explore
new control policies through iterative search in the state-action space, which makes
the method computationally expensive since the convergence rate can be of high
numerical order.

Various approaches have been developed to combine Imitation Learning and RL
with the goal of leveraging their strengths to overcome their limitations. Specifi-
cally, demonstrations can be utilised to initiate and guide the exploration process
undertaken in RL, which ultimately reduces the time required to identify an en-
hanced control policy that may deviate from the demonstrated behaviour [BG13].
Demonstrations in the RL context, can be used as an initial point from which a first
estimate of the iterative optimal policy search is computed [KP08, KCC10, JT13],
or to generate an initial set of primitives [KCC10, BAC04, MKKP13]. When using
primitives for task execution, RL can be employed to learn how to select among
them. Demonstrations can potentially be used as a mean to constrain the search
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space covered by the RL algorithm [GHCB07, PVS03], or to estimate the reward
function [AN04, ZMBD08]. Furthermore, enabling the demonstrator to assume con-
trol over a part of the process during a single trial is a possible occurrence during
the combined use of RL and Imitation Learning according to [RGB11].
In contrast to RL where the reward function is assumed to be known and the explo-
ration process is guided by that assumption, Inverse Reinforcement Learning (IRL)
is trying to derive the reward function of a Markov Decision Process (MDP), i.e.
a discrete state-action space, given the transition function and a set of observed
demonstrations in the form of state-action pairs [MH12, AN04]. The Generic IRL
algorithm [MH12] reads:

1. Initialize reward function parameters w0

2. Iterate from t = 1 to T:

(a) Solve for optimal MDP value function V ∗ corresponding to reward func-
tion R̂(s | w(t−1))

(b) Use V ∗ to define a policy π̂

(c) Choose parameters w(T ) to make π̂ more similar to demonstrations O1:N

in the next iteration.

3. Return Reward function given by R̂(s | w(T ))

Many IRL implementations are aiming in inferring a single reward function which
describes the complete observation set.
The conventional IRL formulation in an MDP environment is used in [MH12] where
the Bayesian Nonparametric IRL model is defined. In this framework, the robot
observes a set of demonstrations represented as a time-ordered set of observed unique
state-action pairs O = {O1, O2, ...}, where an observation Oi = (si ∈ S, ai ∈ A), and
then it models the observed demonstration as an MDP but the partitioning of the
observations is being done into smaller groups and the learning of a set of simple
reward functions [PNP+20]. They also use the Chinese Restaurant Process model of
the Dirichlet Process in order to define the probability distribution over the space of
possible partitions. The inference part is applied for the most likely set of partitions
and the corresponding goals.
In [PNP+20] the authors introduced an enhanced IRL formulation as the Constraint-
based Bayesian Nonparametric IRL (CBN-IRL) framework, which consists an ex-
tension of the model presented in [MH12]. The reward and transition function
are not specified in this MDP environment, instead the subgoal reward Rg and the
constraint transition function Tc are given. Hence, the problem is to infer the decom-
position of the demonstrated trajectory into smaller partitions and for each partition
estimating the subgoal and associated constraints that maximise the likelihood of
the observed trajectory [PNP+20]. This formalization occurs in a descretized state-
action space. A set of predefined generic spatial features is used for representing the



2.2. INTUITIVE ROBOT PROGRAMMING 29

world state, assuming the robot knows the geometry of environment and includes
coordinate-free features. They also use subgoals and constraints as latent variables
θ = {(g1, c1), (g2, c2), ...} which are inferred by the demonstration. That is achieved
by inferring the MAP estimate of the likelihood of subgoals, active constraints, and
assignment variables related to the demonstration.
In the context of intuitive robot programming, the research presented in [WL22] is
incorporating an approach towards Bayesian Non-parametric GMM in combination
with the Inverse Reinforcement Learning paradigm (BNGMM-IRL), a fusion of two
different modellings of Bayesian Non-parametric GMM [MH12] and Bayesian Non-
parametric IRL [Ras99]. The concept of interactive teaching introduced in [WEL20],
where user and robot collaborated with goal to program task by demonstration, is
the foundations to the updated version illustrated in Figure 2.8.

Figure 2.8: Updated interactive framework. The new framework provides the flexibility of switching between
demonstration, learning and execution phase. The high level Task Graph (TG) in the right corner of the figure
is updated from a data-driven segmentation algorithm which infers skills from the user demonstration.After the
update the TG is provided to the robot for execution [WL22].

The approach in [WL22] is leveraging the IRL technique to infer feature constraints
fitted individually to the skills of the task, which is segmented during the early stage
of the procedure into simpler skills, through which the high-level task graph is up-
dated, and use those features to detect anomalies during the autonomous execution



30
CHAPTER 2. STATE OF THE ART IN PROGRAMMING BY DEMONSTRATION AND AUGMENTED

REALITY

phase. Any anomalies detected can be dealt with, using the recovery behaviour of
the task graph. The novelties are summarized in the following points:

• The segmentation algorithm which infers the low-level encoding of a task from
the demonstration by combining intention recognition and feature clustering.

• The feature constraints of a segmented skill is inferred, thus enabling the
anomaly detection to operate multimodally even after a possible generalisation
of a skill.

• Learning process where represented by a high-level task graph, in which the
skills are automatically parameterised by the low-level skill encoding.

2.3 Immersive Computing Technologies and Aug-

mented Reality

In this section of Chapter 2 and before proceeding with the state of the art work on
the field of Augmented Reality and Robot Programming, some essential definitions
and context on the wider scientific area and spectrum of these technologies is covered,
in order for the reader to comprehend the significance of the chosen methodology
that is presented in Chapter 3.
Immersive Computing Technologies is a rapidly expanding field that encompasses
many different technological paradigms of the wider Extended Reality (XR) area,
with utter goal to create digital environments that not only mimic but also enhance
our physical reality. At its core, immersive computing seeks to provide users with a
fully interactive and immersive experience that engages all of their senses, including
sight, sound, touch and even smell.
It refers to any technology that creates a virtual experience that fully or partially
engages the user in a digital environment that befalls in the Virtuality Continuum
[MK94]. This can include everything from Virtual Reality (VR) headsets that create
fully immersive 3D environments, to Augmented Reality (AR) applications that
overlay digital content onto the real world. A combination of technologies and
techniques is required for that to be accomplished, including advanced graphics
processing, 3D modeling, and sensory input devices such as haptic feedback, motion
tracking, and even smell generators.
As mentioned above, different methods are included in the set of Immersive Com-
puting Technologies, each with its own unique focus and technology stack. The most
common subcategories of Immersive Computing include:

• Virtual Reality (VR): VR is perhaps the most well-known subcategory of
Immersive Computing. It creates a fully immersive digital environment that is
completely separate from the physical world. This is frequently accomplished
by wearing a VR headset that tracks the user’s head movements and renders
a 3D environment in real-time [CGRR18].
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• Augmented Reality (AR): AR, as mentioned in section 2.1, overlays digital
content onto the physical world, enhancing or augmenting the user’s experi-
ence of their surroundings by means of computer graphics and virtual objects
[MK94]. This is usually achieved through a mobile device’s camera, which
recognizes and tracks objects in the real world and overlays digital content
onto them.

• Mixed Reality (MR): MR encompasses the entire spectrum between the
real environment and the completely virtual environment, including both Aug-
mented Reality (AR) and Augmented Virtuality (AV). In MR digital content
is overlaid onto the real world in a way that makes it appear to be part of
the environment and enables more realistic interaction concepts [MTUK94].
Instead of simply overlaying objects, like AR, it integrates digital content with
the physical environment in a more interactive and context-aware manner. In
MR, the digital content is aware of and can interact with the real world, al-
lowing for a more immersive and seamless blend of the virtual and physical
realms.

The framework of VR is closely connected with the term of immersion as well, since
in [BF92] VR is defined as: ”real-time interactive graphics with 3D models, combined
with a display technology that gives the user the immersion in the model world and
direct manipulation”.Furthermore, the VR applications can be categorized into 3
different types depending on the level of immersion they introduce [CGRR18]: non-
immersive, immersive and semi-immersive. In [ABB+01], it is stated that an AR
system should combine real and virtual objects in a real environment, operate in
real-time in an interactive way, maps and registers (aligns) real and virtual objects
with each other. Regarding the definition content for MR, it was given initially in
[MK94] but with the marketing policies of today’s big companies the term can be
confused with a slightly diverged one. More information on this topic is presented
in the following subsection 2.3.1.
There are several different emerged technologies used for creating content by means
of immersive computing. The main characteristic of those technologies is a form
of display through which the user interacts with the projected virtual features for
extending reality. Some of those display frameworks are the following:

• Head-Mounted Displays (HMDs), are the most common way of creating XR
interfaces. HMDs consist of a visual display and a set of sensors that track
the user’s head movements in real-time. The visual display typically utilises
stereoscopic or monoscopic images to create a 3D or 2D virtual environment
that is rendered in real-time. The tracking sensors use various technologies,
such as inertial measurement units (IMUs), optical tracking systems, or mag-
netic tracking systems, to detect the user’s head movements and adjust the
virtual environment accordingly. State of the art hardware of that category
includes Microsoft’s HoloLens 2, Oculus Quest 2, HTC Vive Pro 2 and more.
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• Head-up Display (HUD), which consists of a transparent display that is mounted
on a vehicle’s windshield, helmet visor, or eyeglasses, visualises information
without distracting the user from their viewpoints. HUDs originated in mili-
tary aviation as a way to provide pilots with critical flight data, such as air-
speed, altitude, and heading, without having to look down at the instrument
panel. Today, HUDs are used in a variety of industries, including automotive,
aviation, and gaming. More and more applications of that kind of displays are
making their way to the industry as automotive giants like BMW, Mercedes,
Tesla and more, are investing a lot for R&D in that area. HUD are widely used
in aviation as that kind of technology has many military applications, from
data display semi-autonomous guidance systems for pilots, targeting systems
and more.

• Room-Scale Immersion, which involves the use of sensors and cameras to track
the user’s movements within a physical space, allowing them to move around
and interact with the digital environment in a more natural way. This technol-
ogy is often used in conjunction with VR headsets to create a more immersive
experience. A hardware example is Oculus Rift S, a mid range VR headset
with room mapping capabilities up to 400 square feet of playing area.

• Mobile Devices, such as smartphones and tablets are increasingly being used
to create immersive experiences.

2.3.1 The Reality-Virtuality Continuum and Extended Re-
ality (XR)

Reality can be perceived as the collective sensory and perceptual experiences that
we, as humans, receive and interpret from the world around us. These experiences
are shaped by our biological and cognitive capacities, as well as our cultural and
social contexts, and are filtered through our senses of sight, hearing, touch, taste,
and smell. On top of that, immersive extensions of this reality, achieved through
advancements in more than one scientific areas (computer science, electronics, neuro-
science, psychology etc.), is the aggregated effort that embodies the set of Extended
Reality (XR) paradigms like VR and AR.

Oftentimes, the terms Virtual Reality (VR) and Augmented Reality (AR) are con-
fused and in cases misused as well, which is why it is important to clearly set the
boundaries between the various terms included in the general category of Immer-
sive Computing Technologies and XR. To that end, a major effort to identify a
spectrum which will set boarders between different versions of Realities, was made
in the of work of Milgram et al. [MK94, MTUK94]. A significant advantage of
AR systems over their VR counterparts is the exploitation of the physical world
[BS23]. In [MK94], Milgram et al. first gave an official definition for the Mixed
Reality framework and tried to identify the individual cases and create a taxonomy
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of the respective types of Visual Displays. Mixed Reality (MR) visual displays are
a specific subset of Virtual Reality (VR) technologies that combine real and virtual
worlds along the ”virtuality continuum.” This continuum ranges from completely
real environments to entirely virtual ones. Augmented Reality (AR) is arguably the
most popular MR technology, wherein the display of a real environment is enhanced
through virtual computer graphics. The opposite scenario along the virtuality con-
tinuum is known as Augmented Virtuality (AV).

Real Environment Virtual Environment

Mixed Reality 
(MR)

Virtuality Continuum (VC)

Augmented Reality (AR) Augmented Virtuality (VA)

Figure 2.9: The Virtuality Continuum as was presented in [MK94].

The Viruatlity Continuum hyperspace has three main attributes that are defined in
[MTUK94]:

• Reality : there are the computer generated virtual environments that were
created artificially and the primarily real ones.

• Immersion: the need for the observer to be completely immersed within the
interacted environment should not determine the ability to display both virtual
and real environments.

• Directness : this concerns the ability to represent the world objects, if they are
viewed directly or by using an electronic image synthesis process.

In the same work [MK94] Milgram et. al are trying to classify the different MR
displays into 6 different categories. These classes are the following:

1. Non-immersive monitor-based AR displays, upon which Computer Graphic
(CG) images are overlaid or in more modern displays holographic units.

2. Similar to previous using video displays but this time using Immersive HMD-
based AR displays.

3. HMD-based AR systems, incorporating Optical See-Through (OST-HMD) and
video see-through (VST-HMD).

4. Monitor-based Augmented Virtuality (AV) systems, with CG world substra-
tum, employing superimposed video reality.

5. Completely graphical immersive or partially immersive systems, employing
superimposed video or texture mapped reality.
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6. Partially immersive AV systems with completely graphical like large screen
displays, enabling as well real-object interactions.

These three factors define also the taxonomy presented in [MTUK94, MK94], where
the three dimensional structure is basically illustrated in Figure 2.10 and Figure
2.11. The components of the taxonomy are the following:

• Extent of World Knowledge (EWK), this dimension describes the real
world level of modeling, with questions like where (locations of objects) and
what (identification of objects), included in the MR environment.

• Reproduction Fidelity (RF) is the level of accuracy of a virtual world to
recreate the real one.

• Extent of Presence Metaphor (EPM) concerns the level of world-conformal
graphics and viewpoint experienced by the user in the MR environment.

RF

EPM

EW
K

Figure 2.10: Relationship of the three-dimensional taxonomy proposed by [MTUK94] for classifying MR displays.

2.3.2 Augmented Reality and Application Domains in Robotics

Augmented Reality, as an Immersive Computing Technology paradigm, behaves as
a contemporary mean of interaction and information exchange between human and
autonomous systems in the context of HRI, in an effort to ameliorate the overall
performance of the system. Within the AR framework, a variety of technological
mediums have been developed, including mobile displays (e.g., tablets and smart-
phone screens), computer monitors, Head-Mounted Displays (HMDs), and project-
ing systems for Spatial Augmented Reality (SAR) [GBEL15, MV20].
An important factor to the emergence and incorporation of AR techniques in various
areas of robotics is the synchronous advancements in hardware but also the develop-
ment of algorithmic methods to utilise that hardware in optimal way. Regarding the
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Real world 
unmodelled

Real world 
modelled

Extent of World Knowledge (EWK) Continuum

More of the real world modelled/ Real world modelled with 
increasing detail

No virtual content Real and virtual 
content 

indistinguishable

Reproduction Fidelity (RF) Continuum

Increasing quality of the synthesizing display

No display Indistinguishable from 
direct viewing

Extent of Presence Metaphor (EPM) Continuum

User interaction increasingly similar to direct viewing of reality

Figure 2.11: Three-dimensional taxonomy of Virtuality Continuum structured by the Extent of World Knowledge,
the Reproduction Fidelity and the Extent of Presence Metaphor Continuum that were introduced in [MK94].
Illustration presented in [CGRR18].

hardware, modern AR headsets utilise highly advanced display technologies, such as
OLED and MicroLED displays, that provide high-resolution and high-contrast im-
ages with low latency. Additionally, recent advances in headsets technology enable
hardware architectures that integrates highly sophisticated sensors and instrumen-
tation that read from a wide area of values (from magnetic behaviour to inertial,
acoustic, mechanical but also electromagnetic radiation up to infrared wavelength),
with algorithmic methods that implement highly accurate and responsive track-
ing, navigation and registration of real world objects and surfaces. More specifi-
cally, vision-based tracking algorithms, such as feature tracking and model-based
tracking, are used to track the motion of objects and surfaces in the real world by
analysing video feeds from one or more cameras. Camera localization algorithms,
such as Structure from Motion (SfM) and asynchronous localization techniques like
SLAM (Simultaneous Localisation and Mapping), use data from multiple images to
estimate the camera’s position and orientation relative to the scene providing also
significant computational power and efficiency. Registration methods, such as point
cloud registration and surface registration, are used to align virtual objects with
real-world surfaces and objects, allowing for accurate placement and interaction of
virtual content in the real world.
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Numerous displays, have emerged over the last decade that indicate the immense
technological progression on the hardware of AR Headsets. Different categories of
headsets include Optical See-Through (OST-HMDs) displays, such as the HoloLens
1 and HoloLens 2 from Microsoft, nVisor ST60 from NVIS Company, VuzixTM
Star 1200XL, Google Glass, Atheer One Smart Glasses, Recon Jet Eyewear, and
the HTC Vive HMD with ZED Mini AR stereo video passthrough camer. Some
of these are illustrated in Figure 2.12. but also the VST-HMDs headset category,
which commonly employs i-Glasses SVGA Pro technology, enabling stereoscopic-
view 3D capabilities. More recently, a new class of AR glasses has emerged that
leverages small projectors, such as Moverio BT-200 Smart Glasses, where images
are are projected onto transparent display [MV20].

Figure 2.12: A collection of different Augmented Reality Headsets incorporating the Display class defined at [MK94]
of OST-HMDs and VST-HMDs [Cop]

Augmented Reality Approach in Robotics

When designing an AR interface, one should not only be aware of how to approach
any prospective use case, but also of the complete set of benefits that this technology
can offer if integrated properly into a specific framework. That being said, the proper
approach should make the right use of the respective input modalities, and examine
thoroughly the methodology context that should be implemented in order for the
aforementioned benefits to be exploited in each application. To that end, the detailed
examination of the taxonomy created in [SKX+22] is providing a comprehensive
structure of the necessary information that one could use as a base to build a strategy
on developing an AR interface for HRI. This taxonomy is comprised of eight different
dimensions which are depicted in table 2.1. Some of the challenges presented in
[SKX+22] could also be reference points for future work such as, the feature of
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Design elements and 
strategies of the interface

● User Interface and widgets (menus, information panels,, annotations 
and labeling, controls and handles, displays and monitors)

● Spatial references and visualisation (points and location, path and 
trajectories, areas and bounds etc.)

● Embedded visual effects (Anthropomorphic effects, virtual replicas 
and ghost effects texture mapping effects)

● Internal information
● External information
● Plan and activity
● Supplemental content

● Programming and control (facilitate  programming, real-time control)

● Understanding, interpretation, communication (improve safety, 
increase expressiveness, communicate intent) 

● Form factor/ type of robot (robotic arms, humanoid, drones, mobile 
robots etc.)

● Relationship with regard to the number of users and robots 
incorporated in the interface

● Scale of the robot (small, tabletop, body-scale, large)

● Proximity to objects (near, co-location from distance, semi-remote, far)

● Location of the augmentation device (on-body, on-environment, 
on-robot)

● Target location of visual augmentation (augmented surroundings 
and augmented robot)

● Tangible input
● Touch input
● Controllers
● Proximity by 

implementing trackers

● Domestic and everyday ese
● Design and creativity tasks
● Medical and health
● Remote collaboration
● Education and training
● Mobility and Transportation

● Demonstration 
● Technical evaluation
● User studies 

● Industry
● Social interaction
● Data physicalisation
● Entertainment
● Search and Rescue

● Gaze input
● Voice commands
● Gesture input

Table 2.1: AR interfaces and they use in robotics [SKX+22].

reducing the cognitive load for an interface, the AR safety trade-offs, some hardware
and technological limitations, bridging the gap between studies and systems, new
techniques that could be utilised in that context.

An elaborated review of the most recent advancements in robotical AR, is conducted
in [MV20]. In this review of AR applications in Robotics, research papers from three
major application areas of robotics are mentioned, namely medical robotics, motion
planning and control, Human-robot interaction (HRI) and multi-agent systems.
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In the medical domain, Qian et al. in [QDK18] introduced ARssist: an augmented
reality system designed to enhance robotic surgery by providing visualisations of
robotic and hand-held instruments in real time. The system uses a combination
of fiducial markers, robotic kinematics data, and an OST-HMD, i.e. Microsoft
HoloLens, for tracking and visualisation. It employs a hybrid tracking scheme to
ensure accurate and reliable instrument localization. ARssist offers various visualisa-
tion options for stereo endoscopy, including head-up display, virtual stereo monitor,
and endoscopy registered with the endoscope frustum. The system is built on the da
Vinci Research Kit (dVRK) platform and incorporates display and pivot calibrations
for precise operation.

The study conducted in [PDS+14], described the use of AR in assisting with liver
resections for three patients with varying liver conditions. A 3D virtual model
of each patient’s abdominal cavity was generated using VR-Render and Virtual
Surgical Planning (VSP) software. The model was then used during the surgery to
guide port placement and liver resection. Laparoscopic ultrasonography was also
used to check the position of the tumor and delineate resection margins. The results
showed that the AR-guided liver resection allowed for correct dissection of the tumor
with precise and safe recognition of major vascular structures.

The emergence of Industry 4.0 has stimulated the adoption of AR in networks of
connected physical systems and human-machine communication [GSLZ14, MV20].
There is an always increased research interest towards the direction of integration
of AR interfaces in the domain of Industrial Robotics, some of which worth to be
mentioned. In the domain of manufacturing, AR can be used for various purposes,
like robot programming, robot teleoperation, workspace inspection, maintenance,
training of personnel and more.

In [LS15], the authors introduced a telematic control system for tele-maintenance
and inspection of a work environment via an AR interface. The telematic user in-
terface consists of a window displaying different views of the work environment and
another showing system status information and control elements for data display,
customization, work process analysis, and remote robot control. This allows tele-
operators to gain situational awareness and control the robot remotely with AR
modalities. The interface also enables intuitive data display with AR, using lines,
box-plots, or directional symbols to represent data with positional and value infor-
mation. Some of the visualised data are shown in 2.13.

The system presented in [OK18], describes the development of a virtual robot system
that enables human interaction with robots through gestures and virtual tools, using
HoloLens. Virtual robot models KRAgius and iiwa were employed, with their geo-
metric models accurately representing real-world parameters. The system consists
of Application Manager, Geometrical Path Planner, Trajectory Planner, and Simu-
lations. It allows the programming of the robot for various tasks, taking into account
the robot’s kinematic model and limitations. Robot interaction is done through a
combination of gestures and virtual objects, such as menus and spatial maps. The
system can also handle path modification and planning, with minimum-time trajec-
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Figure 2.13: Spatial data visualisation (right) and pre-visualised movement with overlay with possible collision
(left)[LS15]

tory planning and smoothing. The application allows for easy replacement of the
robot model and trajectory planning, Figure 2.14.

Figure 2.14: User path represented with pointer and point to point with collision avoidance, scanning, goal, points
setting and path planning [OK18]

2.3.3 Intuitive Robot Programming and Augmented Real-
ity

Another approach of providing information to the robot in PbD, without relying on
symbolic/verbal cues, is by including the element of XR paradigms like AR/VR in
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the teaching process and enhancing the system with virtual elements for visualisation
and simulation [BG13, BCDS08, Cal09, Cal18]. This helps also to address the
problem of knowledge/skill generalisation, with the introduction of explicit request
to the teacher for additional information [BCDS08].

Figure 2.15: Learning a skill by Demonstration in Augmented Reality setup[Cal09].

AR has found a significant role in robot programming, enhancing human-robot in-
teraction, robotic perception, and decision-making capabilities. To achieve a better
HRI experience and ultimately build a sophisticated interface that would enable
multiple use cases, various input modalities are employed to communicate with and
control robots. Although the nature of the modality heavily depends on the ap-
plication, aimed hardware and task at hand, some of the key modalities that can
generically be used in different AR displays and mediums are mentioned here:

• Visual Input : Cameras and depth sensors are used to capture images or videos
of the environment, allowing the AR system to analyse the scene and overlay
relevant virtual objects or information. This is crucial for tasks like object
recognition, navigation, and motion planning.

• Gesture Input : Gesture-based inputs allow users to interact with robots using
natural hand and body movements, which are captured by sensors like depth
cameras, infrared cameras, or motion tracking devices. This enables intuitive,
touch-less control of robots which could potentially create a more immersive
experience.

• Voice Input : Voice recognition systems enable users to give verbal commands
to robots, which are then processed and executed by the AR system. This
offers a hands-free and accessible method of control, particularly for users
with limited mobility or in situations where manual input is inconvenient or
unsafe.

• Haptic Input : Haptic devices provide tactile feedback to users, allowing them
to ”feel” virtual objects or interactions. In robotics, this can be used to enable
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or enhance teleoperation, giving operators a more realistic sense of touch and
force when controlling a robot remotely.

• Sensor Fusion: Integrated data from multiple sensors, such as accelerometers,
gyroscopes, and magnetometers, to enhance the accuracy and robustness of
the systems software. Sensor fusion algorithms combine this data to provide a
comprehensive understanding of the robot’s position, orientation and motion
in real-time.

• Touch Input : Touchscreen interfaces on tablets, smartphones, projection ta-
bles or control panels can be used to interact with AR content in robotics
applications. Users can manipulate virtual objects, access menus, or issue
commands to the robot through touch gestures.

As mentioned previously, these input modalities are not mutually exclusive and
can be combined in various ways to create a rich and effective AR experience in
robotics. The choice of input modalities depends as well on the desired level of
interactivity and immersion, and is specified in regards with the hardware limitations
and capabilities. For example, in Chapter 3 we describe in a more elaborate way the
used input modalities in the specific case of the interface we developed for HoloLens
2 HMD.

Figure 2.16: Depiction of a Learning from Demonstration scenario where virtual features are enabling an augmented
layer on top of the physical demonstration [AC05, BG13].

Various implementations of AR interfaces developed in the context of HRI explicitly
for improving the Programming of robots by Demonstration the past few years with
the majority of them utilizing the capabilities of Microsoft’s HMD, HoloLens 1 and
2. In the work that is presented in [BWP+18] the authors created an application
that converts virtual assembly steps into a robot program for pick-and-place motion
profiles. They developed the interface for the HoloLens HMD and linked it with the
robot, enabling the worker to interact with virtual components that are displayed
at the same position as the physical ones. The Vuforia SDK is used for object local-
ization and marker tracking, allowing the overlay between real and virtual elements.
In more detail, the virtual components of the assembly are moved with gestures and
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placed in the environment. If they are close to the target position then a green indi-
cator which informs the user that the object can be placed. Then the assembly step
is carried out in an augmented manner by the user, with start and end coordinates
saved in the internal coordinate system of the HoloLens (CSH). The importance of
marker tracking accuracy and precision is highlighted and its evaluation is carried
out by analysing the tracking process under varying conditions. While the accuracy
achieved is not as high as initially expected, it is sufficient for the demonstrated use
case, allowing the robot to grip and place components correctly.

Figure 2.17: The assembly workstation setup with the markers used for positioning and verification of the compo-
nents and assembly process respectively [BWP+18].

The research conducted in [OME+20], presents a Mixed Reality (MR) interface for
interacting with robotic manipulators. The proposed system includes three main
modules: the visualisation and interface on HoloLens, the computing part on ROS
Kinetic, and the real-world robotic manipulators UR10e and KUKA LBR iiwa 14.
The Unity3D game engine and Mixed Reality Toolkit are employed for HoloLens
development. The system includes an interface, geometrical path planning, spatial
mapping, and virtual models, with communication between components provided
by ROS Kinetic. The HoloLens device is responsible for user interaction, action
recognition, and translation to ROS. Users can specify control points for the trajec-
tory, which can be connected using PTP, line, or arc. Unique MR features include
automatic positioning of the virtual robot model, shortest path construction with
obstacle bypass, path scaling, and path drawing. The system employs algorithms
such as Jarvis algorithm for removing internal point in the model point cloud by
constructing a convex hull; random sample consensus algorithm (RANSAC) for
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the image planes initialization; density-based spatial clustering of applications with
noise (DBSCAN) for defining objects and comparing volumes of real objects by ini-
tializing places of point accumulation; iterative closest point algorithm (ICP) for
robot localization; rapidly-exploring random tree algorithm for obstacle avoidance
in joints space (RRT) and A* algorithm for shortest path and obstacle avoidance
search in Cartesian space; and path scaling which is the increase and decrease of
the virtual path through augmentation. The latter was realized by exploiting the
Mixed Reality Toolkit (MRTK) capabilities for virtual object manipulation, with
which the scaling is being done by setting a bounding box around the virtual ob-
ject. The MR-based system provides an intuitive and efficient way for industrial
robot programming, reducing errors and improving trajectory accuracy. In Figure
2.18 some of the core elements can be found.

Figure 2.18: From top right to bottom left: the system architecture, robot recognition feature with sparse point
clouds, the path scaling functionality, obstacle avoidance, and workspace visualization of the robot presented in
[OME+20].

The research of Stadler et al., [SKG+16], investigates the impact that a tablet-
based AR support interface has on industrial robot programmers (experts and non-
experts). The online teaching process they designed was based on three repetitive
tasks: Tool center point (TCP) teaching, through which they calculated the robot
base frame by brushing the TCP against a fixed point, trajectory teaching and
overlap teaching where they used a trajectory plus the overlapping of one point. An
AR session using the interface follows the previous tasks in the respective context
but with a virtual fashion, namely in the first case where the edge of the tool
reached the fixed point it was colored green, in the second case an overlayed virtual
trajectory connected the initial and end point, and in the third case again the start
and end-point were visualised with the addition of the overlap radius of the fly-by
point, as shown in Figure 2.19. The main difference between the AR session and
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the one without AR was that the first one visualised task-based support parameters
which could potentially help the user.

Figure 2.19: Task-based parameters per task, without and with AR session [SKG+16].

A more sophisticated approach, in terms of AR technology, is proposed by Quintero
et al. in [QLP+18], where they present a future-based approach for robot pro-
gramming based on augmented trajectories, as illustrated in Figure 2.20. They use

(a) Participants edit the virtual path.

(b) User’s point of view while executing the task. (c) Specifying the virtual trajectory.

Figure 2.20: Augmented trajectory planning for a pick-and-place task. [QLP+18].
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an MR HMD, namely Microsoft’s HoloLens, and a 7-DOF robotic arm with four
interactive functions: trajectory specification, virtual previews of robot motion, pa-
rameters visualisation and online reprogramming during simulation and execution.
They exemplified two robot functionalities: free space trajectory and contact surface
trajectory. Furthermore, they compared the system’ functionalities with kinesthetic
teaching. The conclusion was contradicting with the one mentioned in [SKG+16],
i.e. although the performance was better, the whole teaching was physically easier
and faster with a trade-off on higher mental workload, which the authors claim to
be neglected when working with larger and heavier labor-intensive robots.

The work presented in [LZS+18] is addressing the tasks of diagnosing, teaching and
patching interpretable knowledge of a robot. By means of AR and Temporal And-
Or Graph (T-AOG), the knowledge representation is structured hierarchically which
enables the end-user not only to understand and oversee the whole decision making
process of the robot in real-time, but also interact with it and provide the robot
with correction-instructions [LZS+18]. The system’s architecture is shown in Figure
2.21. The interpretability on that kind of knowledge representation is being done in
three stages, as mentioned before:

• structuring the knowledge by compositional models (T-AOG),

• visualising the decision making process through the T-AOG in the holographic
interface, in order to make it interpretable,

• enabling the users to interactively patch knowledge gaps by adding/deleting/
updating nodes on the T-AOG.

This consists also an evidence that by incorporating a behavioural graph of tem-
poral decision making for task segmentation into skills, can increase both the total
intuition of the user for the capabilities of the system but also improve the teaching
procedure by constantly updating the knowledge base of the learner, namely the
robot.

Figure 2.21: System’s architecture with the incorporated TAOG task graph, that was presented in [LZS+18].
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Finally, the framework presented in [HO22] includes some very notable features that
can potentially improve the robot PbD and thus the HRI. They developed an MR
interface for Microsoft’s HoloLens 2, through which the digital-twin of an ABB GoFa
robot was used to simplify the collaboration between the human operator and the
aforementioned cobot. The application includes a data model based on the robot’s
sensor data and enables real-time communication between the virtual model and
the physical robot. The robot provides data for the digital twin and responds to
commands, while the interface manages communication between the robot, virtual
controller, and the HoloLens. The MR application, developed using Unity, PTC Vu-
foria engine for marker-based tracking, and Mixed Reality Toolkit (MRTK), allows
users to interact with the digital twin via gesture control. Their MR application
provides clear information about the robot’s state, including visualisations of axis
positions and torque measurements. This approach offers the potential for easier and
more intuitive programming and control of cobots, ultimately improving efficiency
and reducing personnel costs.

(a) Individual joint manipulation of the virtual robot.

(b) AR teleoperation of the physical robot.

(c) Use-case on industrial robot.

Figure 2.22: The developed application in [HO22], which enables individual joint manipulation, end-effector manip-
ulation and teleoperation, and visualise torques and position values.
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Chapter 3

Interactive Augmented Reality
Interface for Intuitive Learning of
Conditional Tasks

3.1 Methodology and Design of the Interface

In this chapter, the development process of the proposed Augmented Reality In-
terface is described in an elaborate way. This chapter consists of three different
sections. In the first section, the high level architecture and methodology is anal-
ysed, and the input modalities that are used for the robot programming procedure
are discussed. In section two, the implementation of the AR subsystem is described
and which tools are utilised, hardware and software-wise. The last section defines
the interaction concept between the robot (also the virtual one) and the user, in the
proposed framework and how, not only the user but rather the complete PbD pro-
cess, could benefit from the fusion of AR with PbD. In more detail, the holographic
concepts and virtual modalities are listed, how the manipulation of the virtual robot
and the real one through AR features benefits the process, and in what ways the
incorporation of the behavioral task graph can affect the intuition of the user about
the overall system.

The proposed approach of this work is the development and integration of the AR
paradigm into the existing PbD framework and the Bayesian Nonparametric Gaus-
sian Mixture Model - Inverse Reinforcement Learning (BNGMM-IRL) algorithm
that was presented in [WL22]. The high level architecture of the system is depicted
in Figure 3.1. The robot programming procedure, in order to be realised, needs
three indispensable components. A user that operates the programming interface
and by extension the robot. The interface, which in this case is an Augmented
Reality Interface (ARI) that acts as the intermediate component that binds the
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User
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Model

Augmented Reality 
Interface

Demonstrations Parameter Validity & Edits,
User’s Gestures/ Gaze/ 
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Skill Representation, Encoded Tasks/ Task Graph 
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Joint States etc.) 

Adjusted Constraint Parameters, Joint States of 
the virtual robot, Pose Goal of the End-Effector  

Figure 3.1: High-level architecture of the proposed integrated system.

interaction process and conveys the necessary information from the user basis to
the programming basis of the robot. Finally, the actual robot which provides the
necessary reaction and a behaviour that acts as a feedback for the user and au-
tonomously conducts the task in the end. The integrated system is comprised of the
two main programmatic elements, namely the BNGM-IRL LfD subsystem and the
developed ARI subsystem. The user’s input modalities to the system include the
demonstrations and the modalities that the Head Mounted Display utilises, like ges-
ture’s, gaze, speech and more. In return, the visual feedback from the AR interface
increase the intuition of the user about the process by visualising the information,
which can be joint states of the virual robot, the task graph, skills and many more.
The task graph is generated from the learning model, and is retrieved from the AR
in order to reduce the knowledge gap and hierarchically decomposes the task, which
would render the system more intuitive for the user to utilise. Since the need for
flexibility from the user’s side is vital, one important feature of the proposed method
is the ability to switch between demonstrations, learning and execution phases. As
an input exchange basis from the user to the integrated system, the following could
be defined: the constraint parameters and the kinesthetically provided trajectory
demonstrations for the learning model. A major issue that need to is tackled is
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the communication between the learning model and the AR subsystem which is
implemented as ROS communication bridge to the AR interface. The information
exchange between the two subsystems from the LfD subsystem to the AR interface,
includes the following:

• Skill representation/ Encoded task/ Task graph

• Updated constrained parameters/sub-goals

Finally, the sequence of the skills executed during the task, is provided to the robot
by the learning model through the derived task graph. Through the learning al-
gorithm, the anomalies can be detected and assigned to a sensor category (end-
effector position/orientation, force/torque, gripper opening and grasp status), a
feature which allows the anomaly detection algorithm to make use of the robot’s
proprioceptive sensory systems.
The integrated architecture with the implemented software and hardware compo-
nents is presented in Figure 3.2. Further programmatic concepts depicted in the
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Figure 3.2: An overview of the Frontend and Backend of the implemented system architecture.

Figure above, are explained in the next sections.
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3.2 Hardware Capabilities and Specifications

3.2.1 Microsoft HoloLens 2 Head Mounted Display

As mentioned above, the HMD that is used in the context of this work, is Microsoft’s
HoloLens 2 Mixed Reality Headset [Mic]. An exploded view diagram is depicted in
Figure 3.3. It is an advanced and improved version of the original HoloLens, designed
to project digital 3D images onto the user’s view of the real world. HoloLens 2 is
a fully untethered holographic computer which enables interaction between user an
augmented/holographic content in the real world. The device features see-through
holographic lenses (waveguides) with a 2K 3:2 resolution from its light engines,
resulting in a holographic density of over 2.5k radiants (light points per radian).
Eye-based rendering optimises the display according to the 3D position of the user’s
eyes.

Figure 3.3: Exploded view of Microsoft’s HoloLens 2 architecture [Har].

A variety of sensors are built into the HoloLens 2, including four visible light cameras
for head tracking (stereo and periphery) which are coupled with IMUs for motion
and pose estimation in an effort to mimic the human perception of motion that uses
the inner ear system in a similar way. It is also comprised of two infrared cameras
for eye tracking, and a 1-MP time-of-flight (ToF) depth sensor. An accelerometer,
gyroscope, and magnetometer are included in the IMU, and an 8-MP camera allows
for still images and 1080p30 video capture.
The headset’s audio and speech capabilities are enhanced by a five-channel micro-
phone array and built-in spatial sound speakers. Human understanding is achieved
through hand tracking, eye tracking, and voice commands, with Windows Hello
providing enterprise-grade security through iris recognition. The HoloLens 2 is de-
signed to understand the user’s environment, featuring 6 DoF tracking for world-
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scale positional tracking, real-time spatial mapping, and Mixed Reality capture that
integrates holograms with physical surroundings in photos and videos. Powered
by a Qualcomm Snapdragon 850 Compute Platform SoC and a second-generation
custom-built holographic processing unit (HPU), the device has 4 GB of LPDDR4x
(Low Power Double Data Rate 4X) system DRAM and 64 GB of UFS 2.1 storage.
Connectivity options include Wi-Fi 5 (802.11ac 2x2), Bluetooth 5, and USB Type-C.
The custom-built HPU is an integration of different components that are combined
to create a dedicated processor designed to handle the complex tasks associated with
MR experiences. The HPU’s main components are depicted in Figure 3.4 and are
the following:

DNN

Audio

R2D

SR

Depth based LSR
(2x frame reprojection; 9ms 

motion-to-photon)

HeT
ET

Display 
Input

HoloLens 2 Holographic Processing Unit (HPU)

Figure 3.4: Holographic Processing Unit architecture

1. Head Tracking (HeT) module: HeT refers to the process of determining the
user’s head position and orientation in real-time. The HPU utilises data from
multiple sensors, such as accelerometers, gyroscopes, and magnetometers, to
estimate the head’s pose, allowing the device to render holograms accurately
and maintain their position as the user moves.

2. Eye Tracking (ET) module : ET is the process of monitoring the user’s eye
movements and gaze direction. The HPU processes data from infrared cameras



52
CHAPTER 3. INTERACTIVE AUGMENTED REALITY INTERFACE FOR INTUITIVE LEARNING OF

CONDITIONAL TASKS

to track the eyes in real-time, enabling more natural and efficient interactions
with holographic content by adapting the display based on the direction of the
user’s gaze.

3. Surface Reconstruction (SR) module : SR refers to the process of creating
a 3D mesh of the environment based on sensor data. The HPU processes
depth information from the time-of-flight (ToF) sensor and combines it with
data from visible light cameras to generate a real-time 3D representation of
the physical space, allowing the device to understand and interact with the
surrounding environment.

4. Raw to Depth (R2D) module: R2D is the process of converting raw sensor
data into depth information. The HPU processes the raw data from the time-
of-flight (ToF) sensor to generate a depth map, which is then used for various
tasks such as spatial mapping, gesture recognition, and surface reconstruction.

5. Audio Chip: The audio chip in the HPU is responsible for processing spa-
tial audio data, enabling the device to provide a 3D audio experience that
complements the visual content. It processes audio signals to deliver accurate
positional audio that matches the user’s perspective and interactions with the
holograms.

6. Deep Neural Network (DNN): The HPU includes a DNN module that leverages
ML algorithms to enhance various features, such as gesture recognition and
hand tracking. The DNN module enables real-time inference and allows for
more accurate and efficient processing of complex sensor data, contributing to
a more immersive and natural user experience.

7. Display Input module: Display input refers to the process of receiving and
processing visual data from the device’s display system. The HPU handles the
synchronization and optimisation of the holographic content, ensuring that it
is accurately displayed in the user’s field of view.

8. Depth-based LSR (Late Stage Reprojection) system: Depth-based LSR is a
technique used to correct the final rendered image based on the user’s head
movements, ensuring that holograms remain stable and properly aligned in the
environment. Depth-based LSR takes into account depth information from the
environment, allowing for more accurate reprojection and minimizing visual
artifacts, resulting in a more immersive and realistic mixed reality experience.
In order for Depth LSR to function properly, the client application must pro-
vide a depth buffer that includes all relevant geometry to be considered during
LSR. This technique utilises the supplied depth buffer to stabilize the video
frame. As a result, any content that has not been rendered to the depth buffer,
such as transparent objects, cannot be stabilized by LSR and may exhibit in-
stability or reprojection artifacts [LSR].
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The HoloLens 2 is designed for a comfortable fit, with a single size that accommo-
dates glasses and weighs 566 grams. The Windows Holographic Operating System
comes preloaded. As a self-contained device it has to be passively cooled and cannot
physically dissipate the heat generated by the computing units. This poses a fun-
damental limitation of the device and a major constraint on its performance after
extended use.

3.2.2 SARA DLR Light-weight Robot

The robot that was used for the experimentation and the implementation, is the
SARA (Safe Autonomous Robotic Assistant) lightweight DLR (German Aerospace
Center) robot presented in Figure 3.5. SARA demonstrates novel functionalities in
force controlled robotics for a smooth human-robot collaboration [SAR].

Figure 3.5: The DLR’s new generation of lightweight robots, SARA, developed at the Center of Robotics and
Mechatronics (RMC) [SAR].

Its goal is the functional enhancement of the output device robot to an intercon-
nected sensor-actuator system in the Factory of the Future (FoF) [FoF], which will
be strongly characterized by digital supervision and control procedures. Another
integral part of the FoF is the use of AR for digital twin manipulation, task super-
vision and intuitive robot programming. The SARA project by DLR has developed
a new generation of lightweight robots with the goal of functional enhancement of
the output device robot to an interconnected sensor-actuator system in the factory
of the future. The torque controlled robot arm with seven axes and 12 kg pay-
load has precise torque sensors and optimised actuators for high dynamics, allowing
swift manipulations and a wide range of applications. More of the technical data
presented in Table 3.1.
A scientific novelty is the redundant force sensor-kinematics that enable high-resolution
force and torque measurement at the robot flange and measuring contact forces dur-
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Size: Length 1250 mm for stretched robot arm

Weight: 22.6 kg

Degrees of freedom: 7 (roll-pitch-roll-pitch-roll-pitch-roll)

Nominal payload: 12 kg

Force resolution: Better than 0.1 N

Axis speed: Up to 400 °/s

Sensors: • Torque sensors in each joint

• Force-Torque-sensor at the base and the wrist

• 2 IMUs

Communication: • Links and Nodes Middleware

• Ethernet via PCIe

Workspace: Spherical hull with r = 297 mm, R = 1024 mm (wrist)

Features: • Recuperation via a capacitor bank

• Sensor-Port (PCIe) for optical sensors

• Limitation of collision torques

• Option for force-teaching in contact

Table 3.1: The technical specifications of the SARA light-weight robot [SAR].

ing manual guidance of the robot. SARA can record position and force trajectories
simultaneously, allowing for accelerated programming by demonstration and more
intuitive programming. High frequency supervision of force directions and values
during assembly operations enables the detection of errors in real-time, increasing
safety in human-robot collaboration.
SARA features an infinitely rotatable seventh axis with energy and communication
transmission, an integrated quick-change mechanism with tool recognition, energy
and data interface, and an operator input with buttons and a display at the robot
arm for on-site inputs. The joint controllers are connected via PCI Express to
the control computer, which performs whole-arm control at an 8 kHz clock rate,
enabling real-time supervision of all internal values and the integration of additional
components via mPCIe-slots.

3.3 Input Modalities and Technical Approach

3.3.1 Input Modalities for the AR Interface

Depending on the range that the developed interface belongs to, in the Virtuality
Continuum spectrum, the interaction of the user with the environment is closely
related to the modalities that are going to be used as input methods. the user
can then interact with the interface through the input modalities in order to start
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the robot programming. These input modalities can vary depending on the type of
system or device being used and the task at hand. This work is realized within the
AR/MR framework and used Microsoft’s HoloLens 2 device. Therefore, it would be
only logical to elaborate more on the most commonly used input modalities for the
environment of the HoloLens 2 headset, which we also incorporated in the context of
the created interface so that the user will exploit the full capabilities of the device:

• Eye tracking: The eye-tracking modality uses four embedded sensors in the
headset to track the user’s eye movements. The data is processed by software
algorithms to adjust the display focus, select objects, and provide feedback.
Achieving high accuracy and precision in the data is a technical challenge due
to various factors such as distractions and incompatible glasses, physiology
and external factors like smudges or intense sunlight. To address this the
sensors capture a high-resolution image of the user’s eye to track even small
movements accurately.

• Head tracking: The device’s sensors and software track the user’s position
and orientation, which is crucial for accurate rendering of virtual content in
the user’s FoV. Head-tracking algorithms analyse changes in eye position and
device orientation to estimate the user’s position and orientation in real-time,
while taking into account head and device motion.

• Speech Input: HoloLens 2 uses Cognitive Services Speech SDK by Microsoft
to implement speech input. The microphone array utilises beamforming to
capture user’s voice and isolate it from surrounding noise for better accu-
racy. The captured audio is processed by the speech recognition engine,
which transcribes speech into text and allows the device to execute a range of
commands. Text-to-speech functionality is also provided, generating natural-
sounding speech using neural TTS technology. Although the speech input
modality is determinant for immersion, it was not used as a primary modality
in the developed interface.

• Gaze: Gaze input combines eye and head tracking to determine the user’s
point of gaze and translate it into input commands for interacting with virtual
objects. By taking into account both the movement of the user’s eyes and
head, the system provides a more accurate and responsive interaction experi-
ence. This modality allows users to select or activate virtual objects simply by
looking at them, making it particularly useful in hands-free situations, such
as in industrial or medical settings. The system uses data from depth sen-
sors and infrared cameras to determine the user’s point of gaze, and responds
accordingly based on that information.

• Gestures: HoloLens recognises, through its sensory, various hand gestures for
performing actions such as selecting, dragging, and resizing holograms. This
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gesture recognition is accompanied by visual feedback in the form of holo-
graphic responses that correspond to the user’s physical cues. For example, a
pinch gesture can be used to zoom in on an object or select an item.

• Hand tracking: Hand tracking is a crucial aspect of the Gesture modal-
ity The depth camera employs active infrared (IR) illumination to determine
depth through phase-based time-of-flight, enabling high-framerate (45 FPS)
near-depth sensing mode for articulating hand tracking. By visualising a vir-
tual hand over the real hand, the user can experience a high level of immersion.
Hand tracking is a widely used modality in MR applications as it can be ap-
plied to any virtual object. Without hand tracking, the Gesture modality
cannot be fully utilised.

• Spatial awareness: Spatial awareness generates a set of mesh models repre-
senting the environment’s geometry facilitated engaging interactions between
holograms and the physical world. It encapsulates the headset’s ability to
understand and interpret the surrounding physical environment in real time,
allowing it to place digital objects and information within that environment
in a way that looks and feels natural to the user. An array of depth cameras
captures images of the environment, while the SLAM algorithm combines the
sensor data with a model of the environment to estimate the headset’s posi-
tion and orientation. This allows for the accurate placement of digital content
within the environment, ensuring it remains in the correct position as the user
moves around.

3.3.2 Development Process and Workflow

The development of the AR interface for robot programming using the HoloLens
2 HMD, employs several software tools and frameworks. These tools facilitate the
creation, testing, and deployment of the application, ensuring smooth integration
between the HMD and the robotic systems. In this subsection, the details of the
used software tools for the development of the interface are given. The main software
for programming HoloLens applications is the Unity game engine, and Microsoft’s
Visual Studio for deploying and script editing. The same methodology was followed
during the software development phase of our interface.

Unity Game Engine

In the context of this thesis the Unity 2020.3.41f1 LTS game engine was used for
developing the interface. The Unity game engine is a powerful and widely-used
development platform that allows creators to build 2D, 3D, VR, AR, and MR appli-
cations, games, and interactive experiences. It provides a rich set of tools, features,
and a scripting API, making it a popular choice for developers of varying skill levels
and backgrounds. Among others, Unity is also compatible with Universal Windows
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Platforms (UWP) such as HoloLens 2 HMD, which is designed for a variety of appli-
cations, including gaming, industrial training, and medical simulations. To create
AR/ MR applications for HoloLens 2 using Unity, developers can utilise several
characteristics and features:

1. Built-in support for UWP: Unity has native support for building UWP appli-
cations, which means, one can create HoloLens 2 apps without the need for
external plugins or tools.

2. Extended Reality (XR) Software Development Kit: Unity’s XR SDK enables
developers to create MR, VR, and AR experiences with a unified framework.
This SDK simplifies development for various platforms, including HoloLens 2,
by providing a common set of tools and features

3. Visual scripting: Unity’s visual scripting system allows developers to cre-
ate and edit scripts using a node-based interface, making it easier for non-
programmers to create interactive MR frameworks for HoloLens 2.

Below, some of the main terms that were used for the Unity development and will
be mentioned in the next sections, are being enumerated:

1. Hierarchy window: The Hierarchy window in Unity is a panel that displays
the list of all GameObjects present in the current scene. It allows users to
view, select, and manage the objects within the scene in a hierarchical tree-
like structure.

2. Game and Scene view: In Unity, there are two primary views to work with
- the Game view and the Scene view. The Game view is used to preview
and test the game, as it will appear to the player during runtime. The Scene
view, on the other hand, is an interactive workspace for designing, editing, and
arranging GameObjects within a scene.

3. Main Camera: The Main Camera is the default camera in a Unity scene
that renders the visual content of the game. It determines the perspective
from which the player views the game world and captures the final image
displayed on the screen.

4. GameObject: In Unity, a GameObject is the basic building block of a scene.
It represents any object or entity that can be placed in the game world, such
as characters, props, or lights. GameObjects can have various components
attached to them to define their behavior and appearance.

5. Prefab Asset: A Prefab Asset is a reusable template for creating instances
of a GameObject with predefined components and properties. It allows devel-
opers to create, configure, and store a GameObject with its components and
settings, which can then be easily instantiated multiple times throughout the
game.
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6. Rigidbody: A Rigidbody is a component in Unity that adds physics properties
to a GameObject. It enables the object to be affected by forces, gravity, and
collisions, allowing it to interact with other objects in the game world according
to the rules of physics. It is also a mandatory component in order to use the
Hinge Joint

7. HingeJoint: A HingeJoint is a physics component in Unity that constrains
the movement of a GameObject to rotation around a single axis, like a hinge.
This can be used to create realistic joint-based interactions between objects,
in our case for representing the dependency between the joints of the robot.

8. Articulation Body: The Articulation Body component in Unity is used
for creating complex, articulated, and physically accurate body simulations.
It offers precise control over joints and their limits, enabling the creation of
realistic and stable robotic systems.

9. Colliders: In Unity, Colliders are components that define the shape and
boundaries of a GameObject for the purpose of detecting collisions and inter-
actions with other GameObjects. They can be added to GameObjects to enable
physics-based interactions, such as collisions or triggers, with other GameOb-
jects in the scene. There are Colliders of standard shape like Box Colliders or
Sphere Colliders etc., and there are non-standard colliders that are generated
from the geometry of the 3D model imported in the scene. The latter type of
Collider is called Mesh Collider.

10. Scripting: Scripting in Unity refers to the process of writing code (usually in
C#) to define the behavior, interactions, and logic of GameObjects and their
components. Through scripts, developers can create custom functionality,
immersive mechanics, and complex interactions between objects in the virtual
world.

In Figure 3.6 the Unity Scene View can be seen, where the user can edit the dif-
ferent elements, GameObjects that are going to be displayed in the HoloLens 2
device. This is an early stage development where a near-menu object with some
functionalities, is used as the main control panel for the activation and deactivation
of GameObjects in the Scene and Game View. Moreover, the 3D model of the robot
along side with a task graph are depicted. The robot model was imported in the
Unity Scene by using the Unity Package of URDf Importer. URDF Importer allows
the user to import a robot defined in URDF (Unified Robot Description Format)
format in a Unity scene. URDF defines the geometry, visual meshes, kinematic and
dynamic attributes of a robot. Importer parses a URDF file and imports it into
Unity using Articulation Body Unity classes. In our interface, the Articulation Body
Unity classes were removed due to some errors that emerged originated from the
Mesh Colliders of the joints of the imported robot model. Instead we used Rigid-
body classes in order to enable the HingeJoint class that was representing each joint



3.3. INPUT MODALITIES AND TECHNICAL APPROACH 59

Figure 3.6: Example of an early stage of the development phase of the interface in the Unity Scene view.

of the 3D model of the robot. The HingeJoint classes enabled the properties of
stiffness, damper, velocity and acceleration as well as joint angles limits to the indi-
vidual joints of the robot model. Through Unity, the developer can build the Unity
project and set as target device in order to deploy in the HoloLens 2 HMD. Then
it generates a Visual Studio solution file (.sln) with the necessary configurations
and dependencies. The deployment to the device is being done through Microsoft’s
Visual Studio environment by compiling the solution and selecting the appropri-
ate compilation option, namely ”Release”, and target platform, namely ARM64 for
HoloLens 2. The compilation process converts the Unity-generated code and assets
into a UWP app package (.appx) that can run on the HoloLens 2 device.

Mixed Reality Toolkit

The Mixed Reality Toolkit (MRTK) is an open-source, cross-platform development
framework provided by Microsoft, specifically designed for building MR applications
on devices such as the HoloLens and HoloLens 2. MRTK aims to simplify the de-
velopment process by offering developers a collection of scripts, components, and
prefabs to support common interactions, spatial awareness, and input handling in
MR contexts. In our interface MRTK modalities and X features from this platform,
were the core building element of the functional modules. Some of the User Expe-
rience (UX) building blocks are depicted in Figure 3.7. Some functionalities that
are enabled with the use of the MRTK, including the cross-platform input system
and building blocks for spatial interactions and UI (User Interface). Furthermore,
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Figure 3.7: The UX building blocks provided by MRTK for development of AR/ MR interfaces [MRT].

accelerated prototyping through the in-editor simulation where the changes can be
easily monitored and supports a broad range of devices. In the proposed system the
most common building block that is used for the core functionalities of the inter-
face, were buttons. Buttons control support different input methods with the major
one and easiest to implement/ use the device’s articulated hand. Bounds control is
used for making the object manipulation, which is provided through a script, more
flexible by giving to the user the ability to manipulate the objects in 3D space.
Slate features were used for creating control panels that overlaid different buttons
for various minor functionalities. The main menu in our scene that includes the core
of the interface, namely the five main functionalities, is an Object collection which
is visualised in a cyclic Grid form menu. More details on that in section 3.3

The main menu appears when using the Hand Menu, a hand-locked UI for quick
access using the Hand Constraint Solver. Among others, the Dialog feature is ex-
ploited for service execution, which is an integral part of the communication process
as it is stated next in this section, but also for increasing the user’s intuition about
the nature of the application and providing text-based instructions of how the user
should use the interface. Scripts like Interactable and Solver are used for providing
the user with the ability to interact in additional ways with the objects with visual
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states and automatic positioning behaviour in the scene, such as tag-along, body-
lock, constant view size and more. Each functionality block spawns a Tooltip where
the user can read which is the functionality of each module.

Model Tracking and Overlaying

Immersion and directness are the two metrics we mentioned in section 2.3 and
define the level of intuitiveness and realistic representation of an AR interface, which
locates it along the Virtuality Continuum spectrum. In order to increase the values
of those metrics in our interface, we introduced the ability to overlay and position
the virtual objects, i.e. holograms, on top of the real ones. With the term objects,
we are referring to the robot model, the workbench of the robot in addition to
different objects that can be used in various tasks, like tools, small box containers,
grippers and more. That way the digital twin of the robot can visualise a simulated
scenario and the user is able to verify a certain behaviour, like an executed skill or
a specific pose that the robot could potential get to. This also helps in the overall
creation of a more immersive environment without taking out of the picture elements
existed on the physical reality. The Vuforia Engine library was utilised for the
overlay functionality in the augmented HoloLens scene. This library was developed
for the robotics community as the framework for image- or model-based tracking
of objects. Vuforia Library can be integrated with external sensory devices, such
as gyroscopes and accelerometers [SCLO21, MV20]. Vuforia’s Model Target feature
was implemented for tracking the physical objects and overlaying the virtual models
on top of the real ones in the coordinates that are located in physical space. Unlike
traditional marker-based tracking, Model Targets use the actual 3D geometry of an
object to recognise and track it. This makes it particularly suitable for applications
like robotic programming, where complex 3D objects like robots or robot parts are
involved.

First, a 3D model of the target object is imported into the Vuforia Engine. The
model is then used to generate a database containing features and descriptors of the
object. These include the orientation of the object in the real scene, the scale of the
object, any color or surface texture mismatch that needs to be defined, how accurate
the 3D model is to the real object, and the target recognition range that the object
is expected to be tracked in the scene. During runtime, the Vuforia Engine processes
the RGB camera input to extract features and matches them against the database
where several references are stored. This corresponds to the case of the use of certain
”Guide views” of the object as input for tracking. These ”Guide views” are some
specific pictures of the object that are set by the user in the Model Target Generator
application. Additionally, the user has the choice of training the an Advanced Model
Target database for a complete 360◦ recognition view without requiring the user to
align an outline of the model with the physical object to start tracking. Once a
match is found, the object’s position and orientation are estimated, allowing for the
augmentation of the object in the AR scene.
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In our interface the Model Target was used to overlay both the virtual robot and the
virtual model of the complete workbench where the robot operates, onto the physical
ones. That way the immersion factor is increased. In Figure 3.8 the three different
phases of the Model Target are depicted. Initially he contour of the 3D model is
derived and used from the Vuforia SDK for positioning the Unity SARA Game-
object that is rendered on the HoloLens scene. Then, the model of the tracked
object that is going to be overlaid on the physical robot is generated but is not
visible in the Unity or HoloLens scene it is only used as reference. Finally the actual
virtual object is activated and placed on top of the reference after the tracking is
done and the contour is matched to the real object. When Vuforia detects the object

Figure 3.8: The three different stages of the Model Target tracking and overlaying.

in the camera feed of the HoloLens in our case, it computes the object’s position
(translation) and orientation (rotation) relative to the camera. This information
is represented as a 4x4 transformation matrix, which encodes both rotation and
translation information. The transformation matrix is used to convert points from
the object’s coordinate system to the camera’s coordinate system or vice versa. This
process enables the virtual robot to be aligned with the real-world robot correctly.
The transformation process is visualised in Figure 3.9. In Unity, the coordinate
system adheres to the DirectX convention, which is a left-handed Y-up system,
and poses are automatically assigned to objects within the scene. The world is a
left-handed, Y-Up system with gravity alignment. The camera or device uses a
left-handed, Y-Up system. For the Model Target, the coordinate system depends
on the original model. One of the benefits of Vuforia’s Model Targets over the more
traditional marker-based positioning and overlaying, is that the first one can track
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Figure 3.9: The coordinate transformation between the device’s camera and the World coordinate system [Tar].

objects without the need for attaching marker images to them or the area around
them. This can be particularly useful when dealing with objects that cannot be
easily modified, such as machinery. Furthermore, Model Targets can handle partial
occlusions better than markers, as they rely on the 3D features of the object for
tracking. This means that even if a part of the object is blocked, the virtual robot’s
position in the world frame can still be maintained.

ROS and TCP Communication

An integral part of this implementation is the communication layer between HoloLens
2 and the Backend, which includes the robot, the ROS node (including the RViz
vizualisation environment of the simulated robot) and the BNGMM-IRL learning
algorithm [WL22], that was previously mentioned in section 2.7. Robot Operating
System (ROS) is an open-source, flexible framework for robot software development
that provides libraries, tools, and conventions for creating complex robotic systems.
In the context of development of AR applications, ROS can play a crucial role in
facilitating communication and integration between the application and the robotic
system. That can be achieved by integrating ROS with HoloLens 2 and Unity
through third-party plugins and libraries, such as ROS#, a set of libraries and tools
for ROS-Unity communication. RViz (ROS visualisation) is a 3D visualisation tool
that comes with ROS, designed for displaying sensor data, robot state, and planned
trajectories in a simulated environment. RViz allows users to simulate and visualise
various aspects of the robotic system, such as point clouds, odometry, and joint
states, which can be useful for understanding the robot’s current status and behav-
ior. In our case it is used to simulate different trajectories and skill executions. After
the simulation is accurate these values can be sent to the Unity side. That way the
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behaviour of the virtual robot can be tested and it can be verified whether or not the
Unity configuration is representative of the real case by identifying possible errors
in the scene. A preview of the simulated SARA robot is shown in Figure 3.10. Rviz
provides also the option of visualising many different objects, as it can be seen in
the Figure. The complete workbench that the robot is operating on is visualised,
and the coordinate system of the base and flange that can be used to understand
positioning and orientation of the robot’s joints.

Figure 3.10: The simulated robot movement as it is shown in the Rviz visualisation environment.

The communication consists of three major parts: The protocol, the messaging
architecture pattern and the mean of communication, namely the used hardware.
Transmission Control Protocol (TCP) was favoured over other protocols because it
is more suitable for ordered data delivery. An alternative solution could be the User
Datagram Protocol (UDP), which is more appropriate for applications where speed
and low latency are prioritised over reliability. TCP is a fundamental communication
protocol used on the internet and falls under the category of transport-layer proto-
cols. It ensures reliable, ordered, and error-checked delivery of data between devices.
In Fiure 3.11, the communication layers of the proposed system are represented as
an Open Systems Interconnection (OSI) model.

Another important decision regarding the communication, is the messaging archi-
tecture patterns through which the connectivity layers are defined. These patterns
determine the type of messaging and the efficiency of the final communication pro-
tocol. Different messaging patterns in the context of the respective communication
protocol, enable different kind of communication and increases the system’s robust-
ness, reliability, performance, and scalability. Some of these patterns are:
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1. Publish-Subscribe (Pub-Sub): In the publish-subscribe pattern, messages are
sent to ”topics” or ”channels” instead of directly to individual recipients. Sub-
scribers express an interest in one or more topics and only receive messages
that are sent to those topics. This pattern allows for decoupling of message
producers (publishers) from message consumers (subscribers), enabling greater
flexibility and scalability.

2. Point-to-Point (Queue): In the point-to-point pattern, messages are sent to
a specific message queue and processed by a single consumer. This pattern
ensures that a message is consumed by only one recipient, allowing for load
balancing and fault tolerance. Queues can be used to implement asynchronous
communication between components, where the sender and receiver do not
need to be available simultaneously.

3. Request-Reply (Request-Response): The request-reply pattern is a synchronous
messaging pattern where a sender (client) sends a request message to a receiver
(server), and the receiver processes the request and sends back a response. This
pattern is often used in Remote Procedure Call (RPC) scenarios, where the
client needs the result of a server-side operation before it can continue.

Application

Presentation

Session

Augmented  Reality 
Interface

Transport Transport layer: Transmission 
Control Protocol (TCP)

Internet Protocol (IP) layer: 
IPv4Network

Wi-Fi Protocol

Data Link

Physical

Application

Presentation

Session

HoloLens Application layer: 
WebSocketUWPProtocol- 
ROS# Websocket Protocol 

for Universal Windows 
Platforms

Transport

Network

Network Access layer: Wi-Fi 
(MAC Address, Wireless)

Data Link

Physical

Figure 3.11: The OSI abstraction layers and the respective ones on the developed system.

The type of messaging pattern was determined mainly by the respective user case
we implemented. In our case, we used both request/reply pattern, and the pub-
lisher/subscriber pattern for transferring sensor values, joint states and pose goals.
In order to establish robust and secure communication, the ROS TCP Connector
package from Unity Robotics Hub was used [URH]. The ROS TCP Connector is
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a communication package that enables integration between Unity and ROS. It uses
TCP as the underlying transport protocol for communication between the client,
which in this case is the HoloLens application, and a ROS-based system.

The ROS TCP Connector sets up a TCP server on the ROS side and a TCP client
on the Unity side. The package communicates using a custom message format built
on top of TCP, which allows Unity and ROS to exchange data efficiently, such as
sensor data, robot control commands, and other relevant information. The package
facilitates the development and testing of robotics applications in Unity by providing
a way to interface with ROS-based robots. A TCP endpoint runs on a ROS node,
which facilitates message passing to and from Unity and ROS. The passed messages
between Unity and ROS are expected to be serialized as ROS would internally
serialize them from ROS .msg files. To achieve this, the MessageGeneration
plugin can generate C# classes, including serialization and deserialization classes
in order for the data to be handled efficiently and to be easily transmitted, stored,
or used by other components. The ROS Connection plugin provides the Unity
scripts necessary to publish, subscribe, or call a service. In Figure 3.12 the high-level
architecture of the TCP client-server system is depicted.

ROS Service 
Script

ROS Subscriber 
Script

ROS Publisher 
Script

Server Endpoint

ROS Node

Unity Scene ROS Network

ROS Serialised Messages

Publish / Subscribe

Figure 3.12: The high-level architecture of the TCP connection package in [URH].

After careful consideration, the chosen hardware to establish communication was a
router for Wi-Fi connection that operates as an access point for the HoloLens. Wi-Fi
is a common choice for data exchange also in the literature, due to its widespread
availability, reliability, and relatively high data transfer speeds. It can be used for
both local network communication and internet-based communication. In our case
it is used for local network communication.
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3.4 Human-Robot Interaction Concept

In this section the concept and details of the implemented functionalities are thor-
oughly analysed. It intended interaction framework between the holographic ob-
jects, the user and the robot, are elaborated, in an effort to convey the purposes
and original ideas of the design and development process.

3.4.1 Framework of the Holographic Interaction

The interface uses at its foundation, almost all the core input modalities of the
HoloLens 2 HMD (3.3.1), as well many of the UX building tools provided from the
MRTK (3.3.2). In addition, the holograms are in most of the cases movable with
respect to the scene. By that, the user can be independent when the need to move the
objects to a different configuration or compare different working stations emerges.
Starting the application the user is interacting with a message-based window that
provides some guidance and information regarding the workflow and how the main
modules are activated. To minimise the virtual objects in the scene, the Hand
Menu tool, depicted in Figure 3.13 from the MRTK UX toolbox is implemented
as the origin of the hierarchical structure upon which the interaction process with
the holograms is initiated. Through the Hand Menu feature, a more minimalistic

Figure 3.13: The Hand Menu that the user can use to initiate the main interaction instance, check for the status of
the connection or terminate the app.

design is implemented for a more smooth transition of the user into the MR scene.
This type of menu, as stated previously, is activated only with immediate track of
the hand by the cameras of the HMD. Two more buttons are implemented as well,
the connection, which if enabled, the displayed number of the ip address, that the
HoloLens is connected to, turns green, otherwise it turns red. Also a termination
that for the user to close the application.
We already established that the interface is built in a modular way, visualised as
a cyclic grid of a characteristic radial area analogous to the area of interest. By



68
CHAPTER 3. INTERACTIVE AUGMENTED REALITY INTERFACE FOR INTUITIVE LEARNING OF

CONDITIONAL TASKS

area of interest is meant here the area where the robot the workbench and the tools
are placed. That way, the user is able to identify the functionalities immediately
in a more immersive way, as each functionality is represented by a virtual block,
positioned in a convenient place in the scene at the field of view of the user, slightly
above the robot. The block functionalities are depicted in Figure 3.14.

Figure 3.14: The Grid menu that enables modular function over the interface and its core functionalities.

The Tooltip feature from the MRTK, is also implemented on each block with which
a tip-message is spawned when the user points at it with the virtual pointer for five
seconds. That way, a brief explanation on what the pointed block’s main operation
is, is provided to the user. This grid menu can be activated through the main Hand
Menu, also an MRTK feature, that is activated when the user tracks his/her hand,
and located in the inner hand-side. That way the choice of controlling the amount
of virtual objects in the scene, is given to the user. The five different blocks of the
grid menu represent the following functionalitiess:

1. Task Execution.

2. Robot Joints Manipulation.

3. Skill Execution and Validation.

4. Kinesthetic Teaching and AR Teleoperation.

5. Virtual Workbench.
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Figure 3.15: The outline of the main functionalities of the interface.

The aforementioned functionalities are summarised in the Figure 3.15 The intention
behind the design of the depicted outline, was for the AR interface to be more
modular and flexible which is an important characteristic in Robot Programming.
The theoretical conceptualisation of this architecture is mainly to provide the user
with the ability to combine or use separately the individual functionalities. In Figure
3.16 the manifestation of this theoretical concept of a commutation scenario between
the use of the functional modules is represented. These individual functionalities
are more thoroughly analysed in the following sections.

Task Execution

The recorded trajectories after 
segmented and modeled as DMPs, 

generates the behavioral task 
graph which can be visualised on 
the holographic “Task Execution” 

module in the interface. The 
graph’s visual feedback, can 

increase the intuition of the user 
about how the task execution can 

be realised. 

Preview Skill and Validate

The user initiates in the interface the 
“Skill Execution and Validation” 

module and sends a command to the 
backend for the recorded trajectory of 
the previous stage to be executed on 

the holographic robot. The user 
previews the skill(s) and validates it 
(them) sequentially one by one. In 

case of inconsistency the skill can be 
parameterised by executing an 

additional trajectory on the 
holographic robot.

Provide Demonstration

The user initiates in the interface the 
“Kinesthetic Teaching and AR 

Teleoperation” module. Then, provides 
demonstration on the physical robot, by 
choosing among two methods, namely 
kinesthetic teaching or AR immersive 

teleoperation. During the demonstration 
the skill/task is recorded in the backend.

Figure 3.16: A theoretical concept of the combination of the different modules of the interface.
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3.4.2 Behavioural Task Graph Representation

The first module of the core functionalities is called ”Task Execution”. The notion
behind this feature is the initiation of a behavioural task graph that represents the
skills of the task. The concept behind the function of this module is the integration
of the interface with the PbD framework that was previously mentioned in section
2.2 and introduced in [WEL20, WL22].
The task graph’s (Figure 3.17) theoretical concept incorporates a modular way to
execute skills and potentially correct the executed skills by editing the constraint
parameters of each skill separately. This proposed feature enables the visualisa-
tion of the task graph, generated by the learning algorithm in the backend, within
the HoloLens 2 scene, thereby accurately representing the intended behavior. By
creating the separate nodes of the graph as Interactable objects in the scene, the
user would be able to preview and verify the individual skills and the interaction
concept would transition towards an immersive experience. Alternatively, the user
could initiate the complete task in the given sequence. A feature of the task graph
concept in the AR framework could also be the correction of a specific pose or point
on an executed trajectory. The communication between the HoloLens and the robot

Figure 3.17: The proposed solution for the task graph feature in the HoloLens 2 scene.

would enable basically the preview of the task execution on the holographic robot.
This process could involve, within the current system architecture and setup, a ROS
service call that requests the initiation of the task execution skill-by-skill or in its
entirety. Then the joint states are being published to the subscriber that is acti-
vated in the interface at the beginning of the phase. The individual skill trajectories
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or actions are executed in the augmented robot so that the user would understand
and oversee the complete task. Through that process, the user’s intuition about the
actual behaviour of the robot during the execution phase is increased. This could
be beneficial for the robot programming procedure, by combining it with the other
functionalities of the interface too, like the individual skill validation.

3.4.3 Robot Joints Manipulation

The ”Robot Joints Manipulation” module’s main purpose is to enable the user
to move the robot in Joint Space and manipulate individual joints of the robot.
Through a control panel, called ”Joint Control Panel” as it is shown in Figure 3.18,
the user is able to move any of the joints in order to bring the robot in a specific
configuration, by moving the Sliders that represents the respective joint. These

Figure 3.18: The ”Robot Joint Manipulation” module that enables individual joint configuration of the robot.

Sliders are also implemented through the MRTK UX features mentioned in ??.
This functionality introduces more flexibility and direct control of the joints, and
since it is a more simple concept of manipulation it also increase the user’s intuition
for how the robot’s joints behave. Furthermore, this programming way offers more
simplicity since configuring individual joints it can be in some cases easier to realise
than programming a robot to execute a trajectory.
Additionally, in the lower part of the control panel some extra modalities have been
added, namely a ”Reset Robot” button which brings the robot to the initial posi-
tion in case the user wants to restart the programming or execute a new session,
and two more switches for adding two different grippers on the robot’s end-effector,
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one static box gripper that is meant to be used for moving box objects around the
workstation, and a 2F-140 adaptive Robotiq gripper for pick-and-place tasks. An
”Overlay SARA” switch activates the Model Target algorithm and the holographic
robot model can be place on top of the physical one for adding a sense of real-
ism in the programming process. Lastly the user has the ability to send the joint
configuration to the real robot by enabling the ”Publish” switch. The Joint Space
manipulation of the robot can be also effective during the robot programming stages.
For example, some of the benefits that can offer are the following:

• Simplicity: In some cases, it is easier and more intuitive to control each joint
separately, especially for simple tasks or when programming a robot for the
first time.

• Direct control: Manipulating individual joints allows direct control over the
robot’s configuration, which can be helpful in avoiding singularities, joint lim-
its, or other constraints.

• Reduced computation: Compared to trajectory planning, controlling individ-
ual joints usually requires less computational resources since it doesn’t involve
generating complex trajectories and solving inverse kinematics.

• Easier calibration: It can be easier to calibrate the robot by manipulating
individual joints, as one can directly relate joint angle changes to corresponding
changes in position or orientation.

Overall, this module can be used in different ways for various reasons. For example,
through this case the users can familiarise themselves with each joint’s capabilities,
both virtually and physically. Another interaction concept related to this feature is
the correction of a specific pose or point on a trajectory or adjustment of a point
on the executed trajectory, into a specific configuration of interest. Although the
decision regarding the exploitation of the functionalities, is up to the user to make
in a free way, a flowchart in Figure 3.19 displays a suggested workflow that could
optimise the robot programming process.
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Figure 3.19: The flowchart of a step by step guide for the ”Robot Joint Manipulation” module.

3.4.4 Skill Execution and Validation

This feature is meant for individual skill execution and validation. Trough that
functionality, the user moves around the end-effector of the holographic robot. Then
the demonstrated trajectory, which is executed simultaneously in the Rviz simulated
environment. In this case as well the modularity of the interface could be showcased
by potentially having the demonstration recorded with the possibility to be added
as a new skill in the task graph. The user can observe how the holographic version
of the robot behaves when executing the trajectory of the respective skill, and if
the behaviour fulfils the requirements then it can be validated through a text-based
Dialog sequence.
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A small panel, depicted in Figure 3.20 is used to control the workflow, and for en-
abling and disabling the extra functionalities appears at the beginning of the process
when the user activates the block functionality, i.e. presses the ”Skill Execution and
Validation” button from the Grid menu. The button and switch options that are
located on this panel include:

Figure 3.20: The panel for controlling the ”Skill execution and Validation” block functionality.

• A ”Setup Robot” button which moves the virtual robot into a specific config-
uration. The purpose of this button is to avoid the occurrence of any possible
singularities in the starting pose of the robot’s joints configuration.

• A ”Reset Robot” button where the user can reset the robot into the initial
position, in case a restart is necessary.

• A ”Publish Goal Pose” switch, which when enabled, publishes continuously,
as a ROS topic, the position and orientation of the end-effector to the backend
in order for the inverse kinematic of the robot to be calculated.

• An ”Execute Skill” switch where the user is able to record and execute the
trajectory of the skill and validate it, if behaving as intended. The visualisation
of the skill’s trajectory is achieved through subscribing to the calculated by
the inverse kinematic joint state topic, namely a ROS topic for the standard
sensor message (sensor msgs/JointState.msg) for joint states values.

• A ”Show Workspace” button for the user to be aware of the robot’s workspace
and capabilities, as it is displayed in Figure 3.21. An option of alternate
between different grippers as presented in the previous functionality of the
”Robot Joints Manipulation” block, where the user can change between an
adaptive gripper and a static box gripper.



3.4. HUMAN-ROBOT INTERACTION CONCEPT 75

Figure 3.21: The projected workspace of the robot.

• A ”Confirm Pose” button, where the user can verify a valid overlay pose of
the robot’s virtual robot on top of the physical one. The positioning of the
holographic robot model on top of the physical one is happening continuously
with the Model Target algorithm constantly trying to overlay the robot model.
This can have an effect to the actual value of the position, by creating an offset
between physical and holographic object and orientation of the holographic
robot that is being sent to the control algorithm that runs on the backend. This
can also create some perturbations on the calculation of the inverse kinematic,
thus producing an unwanted behaviour.

One major issue that had to be resolved, was the transformation between the coor-
dinate systems of HoloLens, and thus Unity, and ROS coordinate system, which uses
the real-world coordinate reference. The mathematical formulation of the transfor-
mation between the base of the robot and the end-effector is the following:

BT
EE = (GlT

B)−1 · GlT
EE (3.1)

where BT
EE is the transformation matrix of the end-effector relative to the base

reference of the robot, GlT
B is the transformation matrix of the base relative to the

global coordinate frame and GlT
EE is the transformation matrix of the end-effector

relative to the global coordinate frame.
In Figure 3.22 the coordinate systems are illustrated. Unity uses Left-handed Carte-
sian Coordinates, namely the X axis points right, Y up, and Z forward. ROS, on
the other hand, supports various coordinate frames: in the most commonly-used
one, X points forward, Y left, and Z up. In ROS terminology, this frame is called
”FLU” (forward, left, up), whereas the Unity coordinate frame would be ”RUF”
(right, up, forward). A respective transformation had to be applied in order for the
robot trajectory to be executed correctly.



76
CHAPTER 3. INTERACTIVE AUGMENTED REALITY INTERFACE FOR INTUITIVE LEARNING OF

CONDITIONAL TASKS

Figure 3.22: The Cartesian coordinate system of the Unity scene and the ROS coordinate system [ROS].

In Figure 3.23 the flowchart of the intended optimised workflow is presented, al-
though again it this case the user is not limited to it for using that module in the
actual robot programming procedure.
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Figure 3.23: Suggested workflow of the ”Skill Execution and Validation” functionality.



3.4. HUMAN-ROBOT INTERACTION CONCEPT 77

3.4.5 Kinesthetic Teaching and AR Teleoperation

The function of this module is based on the decision of the user, regarding the chosen
method for the teaching of a new skill. The user interacts with an initial text-based
Dialog window (Figure 3.24) on which there are two options, namely the activation
of the kinesthetic teaching mode and the use of teleoperation through holographic
elements. In the first case a command is sent to the backend as a ROS service

Figure 3.24: The text-based message appears immediately after the user chose the fourth functionality.

call where it requests for the robot to be set on demonstration recording mode
and the system responds by enabling the kinesthetic teaching mode on the physical
robot. Moreover, a command is sent back on the interface from the backend which
enables another text-based Dialog that informs the user that the robot is ready to
record the kinesthetic teaching. In the second case, the user is manipulating the
physical robot, whereas in the previous module the interaction was only with the
virtual one, in Cartesian Space by moving a holographic version of the end-effector.
The holographic unit is represented as a Bounds Control cube (MRTK UX tools
3.3.2) around the position of the end-effector (see Figure 3.25) and it uses an Object
Manipulator (MRTK UX tool as well, section 3.3.2) element through which the user
can grab and move the hologram around the scene. A holographic model of the
adaptive Robotiq gripper is located inside the cube and is used for the orientation
reference of the real end-effector in order to increase the intuition for the user. The
position and the orientation of the virtual object are constantly published to the real
robot for calculation of the inverse kinematic. The same communication instances
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that were used in the previous functionality are used here too. Namely, the interface
sends publishes the pose goals of the end-effector to the robot in order to calculate
the inverse kinematic and move physically to Cartesian space.

Figure 3.25: The holographic Bounds Control object around the end-effector and a virtual gripper is used as
orientation reference.

Through this feature, the user is able to exploit an immersive teleoperation scenario,
compare it with kinesthetic teaching in different instantiations of he module, and
choose the most suitable teaching method to the requirements of the task. That way
the physical interaction with the robot is minimised and the safety factor increase
as well. Another advantage of the minimisation of physical contact with the robot
during demonstration is the addition of an extra layer between the robot and the
user. This could be proven beneficial to the teaching process, as described in [SH20],
since the human factor could be prone to errors also during demonstrations. This
limitation was previously mentioned in 2.2, as a limitation on the expert’s abilities to
demonstrate a skill. With employing means as the holographic end-effector the user’s
task is only to drag and drop the virtual object to a desired position. Consequently,
the workflow of the fourth feature can be seen in the Figure 3.26.
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Figure 3.26: The flowchart of the module ”Kinesthetic Teaching and AR Teleoperation”.

3.4.6 Virtual Workbench

The final functionality block can be identified as ”Virtual Workbench” in the Grid
menu, and the motivation behind its creation is the scaling possibility of the robot
programming procedure. Furthermore, its addition to the main functionalities, tran-
sitions the system more towards the Augmented Virtuality area of interest in the
Virtuality Continuum previously mentioned in 2.3 and introduced in [MK94]. This
scaling and transition is accomplished through the virtualisation of the entire work-
bench upon which the robot operates, including the various tools and objects used
for various tasks, such as container boxes, parts of a product in an assembly line, or
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different tools for the end-effector.

In this module, as with the previous ones, there are two modes that the user can
change to. The first mode includes the overlay of the workbench and the robot on
top of the real ones. The second one is an unconstrained mode where the virtual
objects can be moved around the scene according to the user’s preferences. Both
modes enable an identical joint control panel as seen in section 3.4.2 and 3.4.3 in
order for the user to control the robot in Joint Space. In this case, the control panel
incorporates more features such as a switch that subscribes to the joint states of
the simulated robot in Rviz, or the real robot, for individual skill execution or a
complete task. For example, it could be use to validate a skill of a pick and place
task, or the complete task as well, and preview the execution on the holographic
workbench with the virtual model of the item that is being picked and placed as
well. An example of how the combined holographic workbench with the robot on
top looks like, can be found in Figure 3.27. The user is able to interact with the

Figure 3.27: The holographic robot and workbench in a free-to-move mode.

objects around the workbench, as well as move around the entire workbench and
place it in a convenient spot where it would be possible to preview a set of skills or
a task on the holographic robot.

As previously, the control panel provides the possibility to the user to activate the
Model Target and position the holographic workbench onto the physical one. When
the ”Overlay” switch is activated, a text-based Dialog appears to verify that the
user indeed wants to overlay the complete workbench. As soon as the workbench is
overlaid another Dialog appears to ask whether or not the user wants to overlay the
robot as well, as it is depicted in Figure 3.28.
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Figure 3.28: The text-based Dialogues for enabling the Model Target activation on the real robot and on the
workbench.

If the answer is no, there is still the possibility to overlay the robot afterwards by
activating the ”Overlay SARA” switch from the control panel. Then the complete
overlaid system can be seen in the Figure 3.29. The possibility to overlay individual

Figure 3.29: The overlaid workbench and SARA robot on top of the real one.

objects on the virtual workbench is also presented here. This feature could be
potentially exploited in other ways as well, by including the ontology framework
into an integrated version of the production line. Through these implementation,
the immersive factor could increase significantly by potentially exposing the user
into a complete digitalised and virtual setup.
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Chapter 4

Evaluation of the Integrated
System

4.1 Experimental Design and Scenarios

As it is presented in the taxonomy introduced in [SKX+22] and mentioned in 2.3, an
AR interface that is developed for utilisation in the HRI context, can be evaluated
through three different methods: a demonstration, technical evaluation or a user
study. To determine the potential advantages of the developed AR interface for
IRP, a technical evaluation took place. The experiments were designed as simpli-
fied versions of possible tasks or skills that could be performed in a manufacturing
setting, with the aim of replicating specific trajectories, that could for example be
part of a pick-and-place task commonly carried out by robotic systems.

The technical evaluation was realised in the workstation laboratory of the Factory
of the Future [FoF] project in the Robotics and Mechatronics Center of the German
Aerospace Center (DLR). The SARA DLR lightweight robot, which was mentioned
in 3.2.2, was used for experimenting with a real robotic system. The key success
factor for this application was identified as time savings with similar precision, as
well as reduced workload compared to conventional methods. As a side-evaluation
for our interface and in order to include extra feedback, a small sample of untrained
users tried and tested the different functionalities that the interface offers, in a
more abstract way of experimentation. Four out of five different functionalities were
tested, including:

1. ”Robot Joints Manipulation”: In the first case, the main goal of the exper-
imentation was meant for the user to establish a first contact with the system
and try to change the joint configuration of the holographic robot to a specific
position where a box is positioned. The user could perform the task twice,
once with the overlaid robot and once with a free of constraints holographic
robot that could be positioned anywhere in the scene by the user and not
rendered automatically by the interface.



84 CHAPTER 4. EVALUATION OF THE INTEGRATED SYSTEM

2. ”Skill Execution and Validation”: The technical assessment of this func-
tionality module involved positioning the end-effector in a specific configura-
tion by moving it between two different points and returning to the starting
position. The setup was designed in a more abstract way, without specific
anchors for the two points in the scene, in order for the demonstration phase
to be more flexible. It utilises a text-based Dialog validation system too, for
the virtually executed trajectory. The evaluation component in this case was
accuracy of the systems behaviour to the intended one, mental workload be-
cause for the user for the manipulation of the holographic robot and how much
time does it take for the process.

3. ”Kinesthetic Teaching and AR Teleoperation”: The experimentation
with this functionality included a teleoperation task where the user could move
the real robot on the robot’s workspace in a unconstrained way. Moreover,
a precision task where the tip of a feature tool was passing inside a ring
area took place. For safety reasons a virtual box constrained the robot from
reaching singularities or hitting with the workbench and other objects. The
main goal was to move the Tool Center Point (TCP) to multiple positions
around the workbench and compare it with previous experience they had with
kinesthetic teaching. Evaluation components of that setup were mainly the
mental workload, the precision of the executed task and an overall method
preference.

4. ”Virtual Workbench”: The evaluation procedure on this module was more
abstract than the others. For experimenting with this functionality, a free-
to-play approach was followed, allowing the user to interact freely with the
holograms. The primary objective of examining a fully holographic environ-
ment lies in delving into the potential opportunities arising from a more im-
mersive system. This exploration facilitates discussions around possible im-
plementation scenarios and how they may be harnessed within the context of
human-robot collaboration. The evaluation metrics that were used for this
case included the sense of immersion, essentially meaning to ask the user how
close this setup is to physical reality and how distinguishable could be while
operating in a workstation with the robot. Another important factor that this
functionality employs is the safety factor.

The experimental setup that includes, the objective of the experiments, the inter-
action concept, the robot control method and the sequence of demonstration, is
summarised also in Table 4.1.
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Table 4.1: The different functionalities that were used during the experiments

Functionalities
Robot
Joints Ma-
nipulation

Skill Exe-
cution and
Validation

AR Teleop-
eration

Virtual
Workbench

Objectives
Familiarisation
with the
robot

Skill valida-
tion based on
the increased
teacher’s in-
tuition

Skill/task
teaching

Increase im-
mersion and
safety factors

Interaction
modality

Slider panel
for individual
joint control

TCPManipu-
lation, Dialog

TCPManipu-
lation, Dialog

Slider panel
for individual
joint control,
Dialog

Robot con-
trol space

Joint Space
Cartesian
Space

Cartesian
Space

Joint Space

Sequence
of demon-
stration

execution
and demon-
stration are
asynchronous

execution
and demon-
stration are
asynchronous

demonstration
initiates exe-
cution

execution
and demon-
stration are
asynchronous

Evaluation
metrics

mental work-
load, physical
workload,
time, pre-
cision/ per-
formance,
frustration

mental work-
load, physical
workload,
time, pre-
cision/ per-
formance,
frustration

mental work-
load, physical
workload,
time, pre-
cision/ per-
formance,
frustration,
sense of
immersion,
safety factor

sense of
immersion,
safety factor,
scaling

4.2 Hypotheses

In this section, we will discuss the hypotheses that our technical evaluation aims to
prove. Through a series of experiments and tests, we seek to validate the potential
benefits and advantages of our developed AR interface. Specifically, we aim to
demonstrate the effectiveness of the interface in terms of performance, efficiency,
ease of use, immersion factor, safety and scaling. The following hypotheses are
presented for the evaluation of the functional features of the developed interface,
with the aim of testing and providing supporting evidence.
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H1: The individual robot joint manipulation concept, can familiarise the user with
the system and increase awareness of the robots capabilities.

H2: The execution of a skill, or a task, and its previewing in a holographic form, can
occur iterative without the physical restrictions of the system, thus optimising
the process.

H3: The AR teleoperation interaction, when used during the teaching phase, can
significantly reduce the physical workload compared to kinesthetic teaching.

H4: The AR-based teleoperation adds an extra layer between the human factor
and the robot, thus minimising the error-prone human factor during demon-
stration.

H5: The AR teleoperation interaction is more appealing to the user by creating an
immersive experience, which can also increase the focus and thus the perfor-
mance of the user during the teaching phase, compared to kinesthetic teaching.

H6: The use of a holographic version of the workstation can enhance the sense
of immersion and provide increased safety when it comes to heavy physical
workload tasks, and increase the overall intuition of the execution phase in a
more holistic manner.

By establishing the validity of these hypotheses through the following experimental
results, we can provide valuable insights and evidence for the potential of AR tech-
nology and contribute to the development of more advanced and effective human-
robot interaction systems.

4.3 Experimental Results

Robot Joints Manipulation

In the first case, the users could easily move the robot from position A to position
B (see Figure 4.1) as soon as they familiarised with the control panel that the
Sliders were located. It was not, however, very appealing for the users to operate,
since the manipulation would require precise moving of the Sliders. The interaction
with the holograms can sometimes be affected by different misbehaviour due to
conflicting physics-related components that governs the virtual objects (see section
3.3.2 for Colliders, Rigidbody and MRTK modalities, i.e. Object Manipulators etc.),
especially when untrained users are operating it. In our case, this had as an effect to
increase the mental demand of some users, for completing the joint manipulation of
the holographic robot and an emerged sense of frustration. In the cases of successful
attempts, and when the users could easily grasp the notion behind the operation of
the control panel and its components, they stated that the mental workload was not
significant. Precision and performance, for the successful attempts, were also high
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(a) Start of the execution from position A (b) Finish of the execution by moving into position B

Figure 4.1: Manipulation and evaluation of the manipulation of the robot in Joint Space through the ”Joint Control
Panel”.

for this simple manipulation case. The two latter evaluation metrics might change
values for more complex task that could realised in a complex robot programming
procedure.
In a more suitable scenario, the manipulation of the robot in Joint Space using
the developed control panel that employs the Sliders modality, could be applied
more effectively for educational purposes, enabling untrained users to gain a better
understanding of the robot’s capabilities.

Skill Execution and Validation

During the evaluation of the third feature, a simple trajectory execution was recorded.
The task included moving the holographic robot in Cartesian Space into two differ-
ent positions and then returning to the initial position. The setup is visible in the
Figure 4.2.
According to the users’ opinions, the offset that is created after some time of receiv-
ing the joint values due to accumulation reasons, was a disadvantage of the feature.
The mental workload and precision/ performance of the executed task were nega-
tively affected in some cases. That also increased the frustration of the unsuccessful
cases. The completion of task was realised relatively fast for the successful cases
The received feedback regarding the possible use of this functionality is also of big
importance for the integration process to the real robot.
Users experienced in robot programming, suggested that the examined functionality
could be exploited more effectively for previously recorded skills as well and preview
any possible parameters editing on the holographic robot. Through that feature
the user can understand better the individual steps of the procedure and repeat the
skill recording and execution in an iterative way for ameliorating the demonstration
process and thus minimising the discrepancy between the robot’s learning and the
user’s knowledge about the system efficiently.
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(a) Start of the manipulation, move to position A (b) Move into position A

(c) Move into position B (d) Return Home

Figure 4.2: An execution of a skill trajectory that is demonstrated for the robot.

(a) Start of the execution (b) Move into position A

Figure 4.3: Text-based Dialog modality for skill validation.

Additionally, further experimentation had to realised to determine the physics of the
holographic robot to compensate for a possible bottleneck that emerged from the
data exchange and the bandwidth limitations of the implemented communication
protocol and the network connection.

Kinesthetic Teaching and AR Teleoperation

For the AR Teleoperation functionality, abstract trajectories were executed, where
the TCP was moving around the scene. The users were manipulating the robot in
Cartesian space. When moving it freely, they were instructed to bring it in different
poses so that the behaviour of the robot could be determined if it was the intended
one, even in complex configurations. The robot’s behaviour was indeed very accurate
and responsive to the user’s command. An example of such a configuration can be
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seen in Figure 4.4.

Figure 4.4: An example of a more complex pose.

The users noticed a small offset that although it didn’t affect the positioning and the
manipulation in the end, but instead caused some small confusion at the beginning
a of the process. The precision of the manipulation is very accurate as it is visible
in Figure 4.5. They also expressed a sense of enthusiasm when using the app and
eagerness to use such a feature. it offered them an improved sense of immersion,
too. The former outcome has as an immediate consequence the minimisation of the
frustration factor, too.

(a) Start of the execution (b) Move into position A

Figure 4.5: AR Teleoperation for a precision task.

A disadvantage of the immersive teleoperation funcitonality, is the lack of haptic
feedback which could affect the effectiveness of the demonstration and the user’s
intuition of the process. This effectively means that the mental workload is increased
in comparison with the physical workload where there is no physical contact with the
robot. Although, in our case the absence of haptic feedback did not affect the task
execution, for more complex robot programming procedure this should be taken into
consideration. Lastly, since the teleoperation is by definition a method operating
at distance, the safety factor is unequivocally increased with the utilisation of AR
features as implemented in our case.
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Virtual Workbench

The experiments on the overlaid virtual workbench included also some individual
joint manipulation in Joint Space, to show the concept of the complete and opera-
tional workstation. As it can be seen in Figure 4.6, the robot was moved into three
different configurations before returning in home position. Although the setup is
quite similar to the one in the first case, the logic behind the inclusion of this ex-
perimental case is aiming more to unravel the levels that the immersion factor can
reach through this interface. This can be achieved by incorporating additional ob-
jects into the scene, which could potentially be utilised for a task and manipulated
accordingly.

(a) Start of the execution (b) Move into position A

(c) Move into position B (d) Return Home

Figure 4.6: The overlaid workbench creating a more immersive sensation of the scene.

The concept of positioning an object in the virtual workbench is depicted in the
Figure 4.7. The user can either overlay the virtual object on top of the real one or
freely position the object at a specific location in the workbench. This location can
be used as utilised in a scaling scenario were it is stored in the ontology’s database in
order to be used in a way that could digitalise the workstation and hence the manu-
facturing process. The latter is also the most effective way to accomplish immersive
awareness in the scene in a such a manner that can be productively exploited. The
possibility that the feature could integrate the ontology of a workstation into the in-
terface, can be used as a metric for postulate that the scaling factor of the proposed
functionality is effectively increased. This concepts of scaling are comprehensively
elaborated in the next section.
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(a) Virtual box positioned on the overlaid workbench

(b) Box moved to the position of the real one (c) Positioning the box on top of the real one

Figure 4.7: The ontology concept and how it can be utilised through the interface with the example of box posi-
tioning.

4.4 Discussion

The technical evaluation revealed that the use of the proposed AR interface in con-
junction with Intuitive Robot Programming has significant potential for improve-
ment, especially for users with prior experience with AR/MR headsets. However,
a steep learning curve was observed for users with limited or no experience with
similar headsets, resulting in limited observed temporal improvements. Neverthe-
less, most of the participants showed improved success rates in the usage of some
functionalities after a short period of self-exploration and practice. These findings
suggest the need for further investigation to determine the optimal training and
on-boarding methods for new users of AR interfaces in industrial settings. Further-
more, the interface’s capabilities, especially features like the AR teleoperation, could
be applied in a manufacturing line where heavy industrial robots are operating by
humans, thus increasing the safety factor, which it is crucial in such setups.

Increased Intuition: With hypotheses H2 and H3 to be supported by the results
mentioned in the previous section, more specifically during the results mentioned
in the results of the AR teleoperation. H1 could also be observed for users that
are aware of the robot’s capabilities without being limited to them. Also during
the experiments of the precision task that took place, an observed behaviour that
is described in H4 was displayed and deduced by the result. It goes without saying
that the hypothesis H5 was obseved for every case of a user that tried the system
since it is a technique that is rarely used by individuals.
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Increased ImmersionThe tendency of hypothesis H6 is also discussed next. The
safety factor and remote operation is a concept also demonstrated during the exper-
iments of the ”Virtual Workbench” module. By setting up a holographic working
station the processes can be simulated and safely observe if their behaviour is the
intended one, before executing in the real system. Another interesting outcome of
the experimentation on this feature, is the conceptualisation of a more digitalised
industrial environment. A feature of this setup on a real laboratory-manufacturing
environment, could be the inclusion of the ontology on an integrated system. An
ontology defines a set of representational primitives with which to model a domain
of knowledge or discourse. It utilises database systems, in order to serve as a level
of abstraction for modeling knowledge about individual objects and their respective
attributes and relationships, analogous to hierarchical and relational models [Gru].
In the Figure 4.8 the concept and setup of the Factory of the Future laboratory
is depicted, which is designed to simulate various workstations of a manufacturing
line and conduct research on future manufacturing, with the aim of developing a
manufacturing paradigm that aligns with and surpasses the limits of Industry 4.0.

Figure 4.8: The main setup of the Factory of the Future laboratory at DLR Robotics and Mechatronics Center
[RMC].

The position of each object on the top of the workbench is mapped and stored in the
ontology and any prospective task that involves some object ( a tool, a box a product
in the assembly line etc.), can be executed in a flexible way. The visualisation feature
of the ontology through the interface, can help the user in various ways, some of
which are listed below:

• With means of gesture interaction provided by the interface, the user can drag
and place around the workbench the different components and items.

• The user can verify if the arranged layout is valid.

• Potentially the user can submit the self-arranged physical layout to the database
that all the related information is stored and start the reconfiguration process.
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The attainable integration and implementation of ontology in the interface could
enable universal awareness and the creation of a holographic version of the current
setup of the workstation and the operations that can be carried out on them. Po-
tential advantages of such feature include but not limited to, data integration from
different sources (ERP, sensors), decision support, intuitive collaboration between
the human operator of the HoloLens and the robot and knowledge discovery in order
to make the teaching more efficient by introducing an extra input to the system, i.e.
some predefined patterns and a common vocabulary that could be identify from the
robot, HoloLens and other devices.
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Chapter 5

Conclusion

In the concluding chapter, we ascertain the implications of the analytical and exper-
imental outcomes, as well as review the objectives accomplished by the developed
interface. Furthermore, we define the limitations inherent to our methodology and
outline an outlook for potential improvements and expansion of our work.

5.1 Summary of the Proposed Approach

The main objective of the framework we conceptualised within the scope of our
research, is the manifestation of an Augmented Reality interface that enables in-
tuitive robot programming through demonstration. The premises for the argumen-
tation in favor of the validity of the aforementioned claim, can be deduced from
the confirmed hypotheses supported by the experimental results on the proposed
interface. Through the use of the AR interface, the robot programming introduces
immersive characteristics that could potentially increase the user’s intuition about
the capabilities of the robot, how to efficiently perform programming and manip-
ulation tasks. Furthermore, the theoretical concept of five different functionalities
is introduced, within a modular implementation framework. The integrated con-
cept utilises demonstrations provided by the user in different modes. The interface
provides flexibility to the user on the demonstration choice between virtual teach-
ing where the holographic robot is executing the trajectory provided by the user,
kinesthetic teaching and immersive teleoperation through augmented elements. The
recorded demonstration could be used to generate a behavioural task graph contain-
ing the segmented task into a sequence of skills. Each skill could be previewed in the
AR interface in order to verify that the behaviour of the robot is the intended, then
dynamically edited by the user, if necessary. After editing the constraint parameters,
the user could validate the skill and renew or extend the graph.
A key feature of our interface is the provision of demonstration through immer-
sive teleoperation scenario that utilises AR elements. The main motivation behind
this feature is the intention to create an interface that enhances the user’s intuition
by minimising the knowledge discrepancy between the robot’s capabilities and the
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user’s understanding about the robot’s capability range during demonstration. A
secondary motivation that is hypothesised to affect the robot programming pro-
cedure could potentially be an increasing immersion factor. To that end, another
feature was developed, that of a completely virtual workstation which potentially
could exploit ontology capabilities in a manufacturing environment in order to vi-
sualise, simulate and consequently optimise the processes.

5.2 Limitations

The use of HoloLens 2 for developing an Intuitive Robot Programming interface,
has shown promise, however, several limitations must be considered when adopt-
ing this technology not only in the scientific domain but most importantly in the
actual manufacturing environment as well. In this response, this section discusses
the limitations in terms of hardware, software, user experience, and environmental
factors.

Hardware-wise, the device has inherent limitations in terms of processing power,
field of view (FOV), and battery life. These constraints may lead to slow rendering
of AR content, limited interactivity, and reduced usage time. Furthermore, the need
for high precision in robot programming may be hindered by the device’s tracking
accuracy, potentially affecting the efficacy of AR-assisted tasks.Moreover, the sys-
tem’s underlying software may lack compatibility with existing robot programming
frameworks or require additional development effort for integration. This could cre-
ate a barrier to adoption and limit the extent to which AR can be utilised in robot
programming tasks. Regarding the user’s, the effectiveness of the headset depends
on their ability to provide intuitive and seamless experiences. However, the system
may suffer from usability issues such as increased complexity of the interface, visual
discomfort, or cognitive overload, which could negatively impact the learning curve
and adoption of the interface in a robot programming environment.

The performance of similar interfaces using HoloLens 2 or similar devices, can be
affected by external factors such as lighting conditions, physical space constraints,
and occlusion. These factors may limit the applicability of AR in certain robot
programming scenarios or necessitate additional setup and calibration efforts. An
important factor when developing an interface that employs AR capabilities is the
ability to generalise and adapt across different robotic platforms, programming lan-
guages, and tasks. However, achieving such generalisation may be challenging, given
the diversity of robotic systems and the rapidly evolving landscape of robot program-
ming methodologies. Acknowledging these limitations and addressing them through
continued research and development will be crucial for the successful integration of
AR into the robot programming domain for the future.
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5.3 Future Work

Further research and implementation needs to be conducted towards the AR inter-
face. New features could be added to the system, including for example an integrated
version of the task graph functionality. It could be applied to a specific use-case along
with a meticulously structured user study that could prove the benefits of using the
AR interface. Another feature that was discussed extensively in section 4.4, is the
bidirectional integration of the ontology visualisation on the interface. Through the
AR interface, the virtual paths of the objects could be rendered and the components
could be placed by the user in either a predetermined or more adaptable manner.
Furthermore, the user could validate the positioning of the holographic objects in
the scene and reconfigure them accordingly in a self-arranged layout.
As a theoretical concept, the paradigm of the manufacturing line mentioned in, could
scale-up even more in a virtual setup. An advanced concept could be the incorpo-
ration of multiple virtual workstations simulating the complete production process
of a specific product from start to end, in an effort to optimise the manufactur-
ing process by finding error prone stages. Multiple HoloLens devices could be also
connected to a network and utilise a swarm like like control to achieve synchronisa-
tion during the process executions. Cloud capabilities could render the development
phase of such a system also easier to realise. This concept could also introduced the
theoretical notion of intersubjectivity into the system. Intersubjectivity is related
only to the human factor and how the different users, while operating in immersive
Mixed Reality environment, would share understanding, interpretation and mean-
ing that emerges through communication, social interaction and shared experiences.
This emergence, combines elements of both virtual and physical environments, and
could serve as a platform for fostering intersubjective perception not only between
humans, but also during human-robot collaboration. Potentially, it could also build
up a workforce of robot programmers that would develop advanced skills on process
involving in a industrial environment, thus leading to the next wave of industrial
revolution.
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26(3):153â177, aug 1992. doi:10.1145/142413.142416.

[BG13] A. Billard and D. Grollman. Robot learning by demonstration.
Scholarpedia, 8(12):3824, 2013. revision #138061. doi:10.4249/
scholarpedia.3824.

https://doi.org/10.1109/38.963459
https://doi.org/10.1109/IROS.2005.1545365
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1016/j.robot.2004.03.010
https://doi.org/10.1007/978-3-540-30301-5_60
https://doi.org/10.1007/978-3-540-30301-5_60
https://doi.org/10.1145/142413.142416
https://doi.org/10.4249/scholarpedia.3824
https://doi.org/10.4249/scholarpedia.3824


104 BIBLIOGRAPHY

[BS23] István Barakonyi and Dieter Schmalstieg. Exploiting the physical world
as user interface in augmented reality applications. 03 2023.

[BWP+18] Sebastian Blankemeyer, Rolf Wiemann, Lukas Posniak, Christoph
Pregizer, and Annika Raatz. Intuitive robot programming using
augmented reality. Procedia CIRP, 76:155–160, 2018. 7th CIRP
Conference on Assembly Technologies and Systems (CATS 2018).
URL: https://www.sciencedirect.com/science/article/
pii/S2212827118300933, doi:https://doi.org/10.1016/
j.procir.2018.02.028.

[Cal09] S. Calinon. Robot Programming by Demonstration: A Probabilistic Ap-
proach. Engineering sciences. CRC, 2009. URL: https://books.
google.de/books?id=7l65QwAACAAJ.

[CAL16] Sylvain CALinon. A tutorial on task-parameterized movement learning
and retrieval. Intelligent Service Robotics, 9, 01 2016. doi:10.1007/
s11370-015-0187-9.

[Cal18] Sylvain Calinon. Learning from Demonstration (Programming by
Demonstration), pages 1–8. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2018. doi:10.1007/978-3-642-41610-1_27-1.

[CGRR18] Pietro Cipresso, Irene Alice Chicchi Giglioli, Mariano Alcañiz Raya, and
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