OTTO VON GUERICKE
UNIVERSITAT FAKULTAT FUR
IN F INFORMATIK

MAGDEBURG

Otto-von-Guericke-University Magdeburg

Faculty of Computer Science

Department for Technical & Business Information Systems (ITT)

Trusted Provenance with Blockchain

A Blockchain-based Provenance Tracking System for Virtual Aircraft
Component Manufacturing

Master’s Thesis

In cooperation with the German Aerospace Center

Author:

Steven Kocadag

Supervisors:

Prof. Dr. Klaus Turowski
Dipl.-Math. Matthias Pohl

External Advisor:

Andreas Schreiber

Magdeburg, 14.04.2023

Abstract

The importance of provenance in the digital age has led to significant interest in utilizing
blockchain technology for tamper-proof storage of provenance data. This thesis proposes a
blockchain-based provenance tracking system for the certification of aircraft components. The
aim is to design and implement a system that can ensure the trustworthy, tamper-resistant
storage of provenance documents originating from an aircraft manufacturing process. To achieve
this, the thesis presents a systematic literature review, which provides a comprehensive overview
of existing works in the field of provenance and blockchain technology. After obtaining strategies
to utilize blockchain for the storage of provenance data on the blockchain, a system was designed
to meet the requirements of stakeholders in the aviation industry. The thesis utilized a systematic
approach to gather requirements by conducting interviews with stakeholders. The system was
implemented using a combination of smart contracts and a graphical user interface to provide
tamper-resistant, traceable storage of relevant data on a transparent blockchain. An evaluation
based on the requirements identified during the requirement engineering process found that the
proposed system meets all identified requirements. Overall, this thesis offers insight into a po-
tential application of blockchain technology in the aviation industry and provides a valuable
resource for researchers and industry professionals seeking to leverage blockchain technology for
provenance tracking and certification purposes.

Contents

1 Introduction

1.1 Motivation & Problem Statement
1.2 Goals s
1.3 Structure e,

2 Provenance

2.1 Definition L e e e
2.2 PROV Standard & Data Model
3 Blockchain
3.1 Development History
3.2 Features of Blockchain
3.3 Architecture e
3.4 Types of Blockchain Networks
3.5 Consensus Mechanisms e
3.6 Transactions e e

4 Systematic Literature Review

4.1 Search Strategy
4.2 Study Selection Criteria Lo
4.3 Data Extraction
4.4 Synthesis
4.5 Comparison of Storage Strategies Lo

5 Requirement Engineering

5.1 Elicitation of Requirements o
5.2 Documentation of Requirements L.
6 Concept
6.1 Architecture L
6.2 Storage of PROV Documents
6.3 Blockchain Technology L
6.4 Smart Contracts e
6.5 Graphical User Interface
6.6 Permission Management Lo L o oo

7 Software Prototype
7.1 Smart Contract e
7.2 Graphical User Interface

8 Tests and Analysis

8.1 Environment e
8.2 Functional Requirements
8.3 Quality Requirements

9 Conclusion

(NGRS

w w W

© 0o O &

26
26
31

35
35
36
37
39
40
41

43
43
48

51
ol
54
o7

60

Statement of Authorship

Appendices
A.
B. Collection of Studies .
C.
D. Implementation
E. Evaluation.
F. Data Extraction Table

References
List of Figures
List of Tables

List of Listings

PROV-DM Types and Relations

PROV Document of a Workflow

62

63
63
63
65
68
76
7

83
92
93

94

1 Introduction

1.1 Motivation & Problem Statement

Provenance refers to the origin or history of an artifact, object or data. For centuries, provenance
information has played an important role in estimating the value of art, books, and wines. With
the advent of the digital age, provenance became increasingly important for digital content.
Because of the widespread adoption of digital technology and the growing prevalence of online
communication and collaboration, digital artifacts arise at a higher rate than ever before. Unlike
physical objects, digital artifacts can be easily copied, altered, and distributed without leaving a
trace. Provenance provides a way to trace the origin and history of a digital artifact, helping to
establish its authenticity and ownership. This is especially important for assets used for research
or legal proceedings, as well as for assets with high value, like digital art or cryptocurrency.
While digital artifacts are changing frequently, provenance records shall usually remain un-
changed. This is due to the nature of provenance, which documents past events that have al-
ready happened. Altering provenance records involves manipulating historical activities, which
diminishes the value of provenance data. To ensure the quality, reliability and trustworthiness
of provenance data, it is therefore desired to store provenance data tamper-proof. For this rea-
son, the storage of provenance information using blockchain technology has become a topic of
significant research interest over the past few years.

Blockchain is a revolutionary technology that has gained widespread attention in the last decade.
IBM defines blockchain as a ”shared, unalterable ledger that simplifies the recording of trans-
actions and tracking of assets.” [1]. The core attributes of blockchain technology include im-
mutability and traceability, making it a promising opportunity to ensure the tamper-resistance
of provenance data. While being mostly associated with cryptocurrencies as bitcoin, blockchain
became a flexible technology, that is increasingly used for a variety of other use cases, such as
supply chain management, real estate or provenance tracking.

This master thesis aims to investigate the use of blockchain technology for tamper-proof storage
of provenance data. Speaking of provenance data, we will refer to the PROV standard [2] in-
troduced by the World Wide Web Consortium [3]. PROV is a specification for representing and
exchanging provenance information on the web. It provides a set of concepts and relationships to
describe the provenance of resources, including entities, activities, and agents involved in their
creation, modification, and usage. By using the PROV standard, we ensure interoperability and
consistency in the representation and exchange of provenance data across different systems and
platforms. This facilitates the integration of blockchain technology into existing workflows and
systems for provenance management.

1.2 Goals
In order to accomplish its aim, this thesis will follow two goals:

1. Conduct a systematic literature review to identify existing works that utilize blockchain
technology to store provenance information using a PROV-related standard.

2. Design and implement a blockchain-based provenance storage system for the manufactur-
ing of virtual aircraft components.

1.3 Structure

The structure of this thesis is organized as follows:

Following the introduction, the thesis provides an overview of the relevant theoretical back-
ground. This includes a brief introduction to Provenance in Chapter 2. Provenance is defined
and the PROV standard and data model are introduced. This includes an overview of basic
types, relationships, and forming provenance graphs, serializations, and documents.

Chapter 3 introduces blockchain technology, which is the second theoretical bachground sec-
tion. Since a good understanding of blockchain technology is necessary to assess their capabilities
and possible applications, this chapter is slightly more comprehensive than a classical, repro-
ducing theoretical chapter. It provide the groundwork necessary for designing an appropriate
blockchain solution at a later stage. The Chapter will begin with a short overview over its de-
velopment history, its capabilities and have a closer look of immutability. Between 3.3.-3.6 the
chapter have a more technical look on the architecture, types of networks, concensus mechanisms
and transactions. The chapter ends with a brief classification of blockchain use cases.

Chapter 4 presents the systematic literature review, which satisfies the first goal of the thesis.
The SLR aims to identify existing works that store provenance information using blockchain
and follows Kitchenhams et als approach. The chapter is structured according to the phases
through which the review has passed. Those cover Search Strategy, Study Selection Criteria,
Data Extraction and Synthesis. The chapter ends with a brief summary of the results, which
compares the identified storage strategies regarding their properties and helps to identify an
appropriate approach later.

Chapter 5 leads to the second part the thesis and provides a requirement analysis of the aimed
provenance tracking system. The chapters follows the approach from Rupp and Pohl and aims
to identify the requirements of the system by interviewing the stakeholders of the project. The
first part presents the elicitation method, including questions prepared for the survey and the
results of the survey. The second part documents the requirements using combination of model
and natural language representation.

Chapter 6 proposes a concept, that aims to satisfy the defined requirements. The chapter
is organized according to the critical components of the system. Additionally, to discuss an
appropriate storage strategy and blockchain solution, it proposes a system architecture, the
design of Smart Contracts, a Graphical User Interface, and Permission Management.

Chapter 7 propose a Software Prototype, which aims to proof the feasibility of the proposed
concept. It gives an overview of the architecture and presents the implementation of a Smart
Contract and GUI.

In Chapter 8, the Prototype is evaluated regarding the Requirements of the System. After
describing the Testbed, to make our Environment reproducible, we test or discuss each require-
ment, and whether it is satisfied.

The thesis closes with a conclusion in Chapter 9, reflecting its results, and limitations and
providing an outlook for future works.

2 Provenance

2.1 Definition

Provenance, originating from the French term provenir means to come from and refers to the
original source or place of something [4]. Historically, the concept of provenance was utilized
in determining the origin of food and art, as the source directly impacted the authenticity
and quality of the product. However, with the emergence of information technologies, it has
become possible to trace the origin of information, and as a result, provenance has extended
into other fields. Jeff Jarvis notes that ”good curation demands good provenance” [5] indicating
that provenance is no longer limited to artists, academics, and wine makers but has become
an expected ethic in various fields. Since provenance also became more popular in computer
science, the World Wide Web Consortium (W3C) defined Provenance as ”information about
entities, activities, and people involved in producing a piece of data or thing, which can be used
to form assessments about its quality, reliability or trustworthiness.” [2]. Besides definitions,
W3C defined a standardized data model and serializations for the representation and exchange
of provenance data. In the following sections, we gonna present the PROV standard alongside
its Data Model and components.

2.2 PROV Standard & Data Model

The W3C Provenance Working Group released the PROV standard [2] in April 2013, replac-
ing the previous OPM Model [6]. The PROV standard provides a comprehensive framework
that includes a model, serializations, and other supporting definitions, that are designed to pro-
mote the seamless interchange of provenance information in heterogeneous environments [2].
The PROV-Data-Model [7] defines formal semantics, which can be mapped into various rep-
resentations, including PROV-O [8], PROV-N [9], and PROV-JSON [10]. PROV-O represents
the model with the Web Ontology Language and RDF [8]. PROV-N is a specialized notation
used to express provenance data in a more readable format and that uses constraints to vali-
date provenance data against the standard [9]. PROV-JSON represents the PROV Data Model
in JSON format. Its purpose is to enable easy manipulation of provenance information on the
client side. By offering a concise and accurate representation of PROV, PROV-JSON allows for
efficient data retrieval and is especially useful for exchanging PROV documents between web
services and clients [10]

The PROV Data Model defines vocabulary to describe the Flow of data, processes, and respon-
sibilities. PROV-DM consists of core structures that form the essence of provenance information
[7]. The core structures are presented in Figure 1 and consist of three types and seven relations.
A more detailed list that includes extended structures is provided in Appendix A..

Entities

Entities are the main type of PROV-DM. They describe the thing that provenance is collected
about. An entity can be something physical, such as a book, a house, or a work of art, as well
as something ideational, such as a data resource, a software application, or a concept.

An Entity in PROV-N is defined as entity(id, [attri=vall, ...]), where id represents a
unique, mandatory identifier and is followed by an optional list of attribute-value pairs. There

Name
T wasDerivedFrom
Entity

Types Activity q
sAttributedT
Agent wasAttributedTo Entity
WasGeneratedBy /_
Used

WasInformedBy used, wasGeneratedBy
Relations | WasDerivedFrom e

WasAttributedTo
WasAssociated With
ActedOnBehalfOf

(a) (b)
Figure 1: PROV-DM Overview of Core Types and Relations. Sources: [7] [11]

wasAssociatedWith Activity

are predefined attributes, such as prov:type, which belong to the PROV namespace. More details
about attributes and namespaces are provided in [7].

Activities

If entities are described as things that are, then activities are things that are happening. An
activity may be coloring a house, sending a computer file, explaining an abstract concept, or
driving a car from A to B. Activities are defined more formally as ”something that occurs
over a period of time and acts upon or with entities; it may include consuming, processing,
transforming, modifying, relocating, using, or generating entities” [7].

An Activity is expressed by activity(id, st, et, [attri=vall, ...]). The identifier id
is followed by the activities start st and end time et.

Agents

An Agent is responsible for the existence of an entity, for an activity taking place, or for another
agent’s activity. An agent that creates an entity might be a manufacturer that produces a car,
an artist who draws a picture, or a non-government organization, that creates a human rights
report. An agent that is responsible for an activity could be a text parser when reading a text
file. An example of an agent taking place in another agent’s activity might be a service that
processes orders from a customer buying an article.

An Agent is defined as analog to an entity, by providing a unique identifier and a list of attributes:
agent(id, [attril=vall, ...]).

Generation

The Generation relation represents the creation of a new entity by an activity. The entity is
considered to have been generated by the activity. Examples of Generations are the production
of bread through baking, the creation of a text file by a computer program, or the development
of a concept through a critical thinking process.

Using PROV-N, Generation is presented by the following expression: wasGeneratedBy(id; e,
a, t, attrs). The e stands for the generated entity, a is the generating activity and t stands
for the generation time. The only required attribute is e, which specifies the entity to create. All
other attributes are optional.

Usage

This relation represents the use of an entity by an activity. The activity is considered to have
used the entity. Examples of Usage may be using an ingredient for a baking activity, a program
reading a CSV file as a dataset, or a service reading the value in an environmental variable.
Usage is expressed as used(id;a,e,t,attrs). The identifiers a and e specify the activity and
the entity that it uses. The activity is the only required attribute.

Communication

The communication relation in PROV-DM is used to denote the transfer of an entity between
two activities. It indicates that an entity was transferred from one activity to another.

The expression wasInformedBy(id; a2, al, attrs) in PROV-N represents Communication.
The a2 identifier specifies the informed activity, that receives an entity. The other activity al
represents the sending activity. It is important to note, that the sent entity is not specified.

Derivation

When a new entity is created through the transformation or processing of one or more existing
entities, the derivation relation in PROV-DM is used to represent this relationship. In PROV-N,
this relation is expressed as wasDerivedFrom(id; e2, el, a, g2, ul, attrs). The identifier
e2 stands for the generated entity. el is the entity used by the derivation. a stands for the
activity using and generating the entity. g2 is the generation involving the generated entity
(e2) and activity (a). ul specifies the usage involving the used entity (el) and activity (a). The
required parameters are the entities e2 and el.

Attribution

The attribution relation in PROV-DM associates an entity with an agent. It is used when an
entity is generated by an unspecified activity and will be associated with an agent. In PROV-
N notation, this relation is expressed as wasAttributedTo(id; e, ag, attrs). The required
attributes are the generated entity e and agent ag.

Association

Association is similar to the Attribution relation, but associating an agent with an activity it is
responsible for, instead of an entity. An association is defined as wasAssociatedWith(id; a,
ag, pl, attrs), where the activity a is the only required attribute. The optional identifier pl
stands for the plan, the agent relied on. Plans are not among PROV-DMs core structures and
are explained in detail in [7].

Delegation

The delegation relation in PROV-DM represents the transfer of responsibility for an activity
to an agent. The responsibility can be transferred from another agent or itself. Delegation is
presented in PROV-N by actedOnBehalf0f (id; ag2, agl, a, attrs) and states that ag?2
acted on behalf of agl. Both identifiers are required, while the activity a, for which the delegation
holds, is optional.

3 Blockchain

This Chapter introduces Blockchain Technology. Section 3.1 provides a brief outline of the
development history of Blockchain. In section 3.2 the features and capabilities of Blockchain
are explained. Afterward section 3.3 takes a look at Blockchains architecture. Different types of
Blockchain networks are distinguished and compared in section 3.4. Section 3.5 explains the most
popular consensus mechanisms. The chapter closes with section 3.6, which proposes transactions
and Smart Contracts.

3.1 Development History

Blockchain technology has its roots in the field of cryptography, and it was first proposed in
1991 by Stuart Haber and W. Scott Stornetta in their paper "How to Time-Stamp a Digital
Document” [12]. The first implementation was proposed when the pseudonym Satoshi Nakamoto
published the Bitcoin whitepaper ” A Peer-to-Peer Electronic Cash System” [13] in 2008. Bitcoin
is the first application that utilizes blockchain technology and became the largest and most widely
used blockchain application [14]. The invention of Bitcoin is referred to as the first milestone of
blockchain development. The evolution of Blockchain has progressed beyond the development of
Bitcoin and can now be identified by four phases of transformation. The following sections give
an overview of the 4 Phases, which are shown in Figure 2.

Blockchain 1.0: Digital Currency

The first generation of Blockchain including Bitcoin as a pioneering example is well-known for
Cryptocurrencies, which established itself as the ”cash for the internet” [16]. From a technical
perspective, Bitcoin represents a noteworthy advancement in the realm of digital currency. Unlike
conventional currencies and earlier digital currencies, Bitcoin distinguishes itself by not relying
on any centralized authority, instead utilizing the concept of Distributed Ledger Technology
(DLT), which involves a shared database among multiple participants. This fundamental shift
eliminates the need for individuals to expend resources to establish trust, generating significant
interest in Bitcoin and blockchain technology.

Bitcoin’s reliability, efficiency, simplicity, independence, and security have enabled users to di-
rectly transfer authority and keep track of transaction records. By solving the Double-spending
[17] and Byzantine General problem [18], the blockchain of Bitcoin effectively removes the pri-
mary barrier to the circulation of ”digital currency.” [14]. Consequently, numerous copycat dig-
ital currencies emerged [19] [20] [21], utilizing a three-layer technical architecture consisting of
blockchain, protocol, and currency layers [14].

Blockchain 1.0 utilized the Proof of Work (PoW) consensus mechanism, which necessitated
the completion of complex mathematical puzzles, resulting in high energy consumption and
slow transaction approvals [16]. It was observed that Blockchain 1.0 could handle only seven
transactions per second [16], leading to slow throughput. Additionally, Blockchain 1.0 was limited
in its ability to support Smart Contracts and other application sectors beyond financial utilities.

Blockchain 2.0: Smart Contracts

The limitations of the first-generation blockchain, including wasteful mining, poor scalability, and
its "inability to handle complex logic” [14], prompted the development of the second-generation

Currency Smart DApps Industry
Contracts

Blockchain
4.0

Blockchain
3.0

Blockchain
2.0

Blockchain
1.0

Digital Currency Smart Contract Scalable Good Industry
Distributed Ledger Virtual Machine User Interface Infrastructure
Merkle Tree Decentralized User Experience Based Blockchain
Blockchain Data Distributed Inter Operability EcoSystem
PoW Applications Efficient

Figure 2: Phases of Evolution of Blockchain. Source: [15]

blockchain. Ethereum [22], the representative platform of this phase, is designed as a devel-
opment platform based on blockchain. Users can create smart contracts, which are programs
using Ethereum. The Turing-complete property of Ethereum smart contracts enables developers
to upload any valid program and run it in the Ethereum Virtual Machine (EVM). As a result,
Blockchain 2.0 gains flexibility and allows a variety of applications to run, such as voting systems,
domain name management, financial transactions, crowdfunding, and smart property manage-
ment [16]. Ethereum utilizes the Proof of Work consensus mechanism, where miners compete
for Ether, a cryptocurrency used to reward miners for including transactions in their block. This
way, the scalability problem of the first phase persists. In addition, there are costs for upload-
ing code and data on the blockchain. Overall, Smart contracts provided an array of benefits to
Blockchain 2.0, including accuracy, transparency, and fast execution speeds, making Ethereum
attractive for several non-financial sectors such as e-voting systems, student evaluation systems,
smart home schemes, and smart healthcare systems [16].

Blockchain 3.0: Beyond “Currency,” Economy and Market

Blockchain 3.0 exploit the potential of Smart Contracts by building complete Decentralized Apps
(DApps) [14]. Decentralized applications run on a network of computers within a blockchain
network, rather than on a single computer. Consequently, they operate outside the control of
any central authority. In a DApp, smart contracts are used to store the business logic and the
related state of an application. This way the backend of a dApp is fully distributed and managed
on a blockchain platform, making it resilient, transparent, and resistant to censorship.

Blockchain 3.0 employs a variety of consensus mechanisms such as Proof of Stake and Proof of
Authority, which eliminate the need for separate transaction fees and enhance the speed and
computing power of smart contracts. This new generation of blockchain, designed around the
"FFM” concept [16], which stands for Fast, Feeless, and Minerless and seeks to improve upon
the scalability, interoperability, privacy, and sustainability limitations of previous generations
[16]. Unlike earlier versions, Blockchain 3.0 does not rely on miners to verify and authenti-
cate transactions; instead, it employs built-in mechanisms for the same, resulting in extremely
fast transaction speeds that can handle thousands of transactions per second. Additionally,
the third generation of Blockchain has produced Directed Acyclic Graph (DAG) protocols, as
described in [23] [24]. This platform does not rely on blocks, chains, or miners, but instead uti-

lizes a directed acyclic graph structure, where transactions are directly connected. DAG-based
Blockchains promise fast confirmation and high scalability by avoiding competitive transactions
caused by linear sequenced blocks [25]. While still in its early stages, Blockchain 3.0 has the
potential to revolutionize the blockchain industry. At this stage, blockchain’s potential role goes
beyond monetary, economic, and market aspects and extends to social, industrial, and scientific
fields [14].

Blockchain 4.0: For Business and Industry

The evolution of Blockchain technology continues to progress, with Blockchain 4.0 expected to
become the next propitious step [16]. It aims to transform Blockchain Technology into a business-
friendly platform that can create and operate applications, and support the accessibility of the
technology for the mainstream. Blockchain 4.0 has the potential to integrate other prosperous
technologies like Artificial Intelligence with Blockchain [16], facilitating a seamless integration of
different platforms to meet business and industry demands. Unibright [26] and SEELE [27] are
examples of Blockchain 4.0 platforms, that enable the integration of several blockchain business
models and permit cross-communication between different protocols and various services [16].
The fourth generation has the potential to increase transactional speed to 1M transactions per
second [16].

3.2 Features of Blockchain

As the development history shows, blockchain is a very new field that underlies ongoing devel-
opment. There is now a multitude of implementations and types that differ in terms of their
properties. Independent of specific implementations, the following features are attributed to
blockchain [28] [29] [30]:

e Decentralization: All nodes in the network record transactions and have a local copy of
the ledger, providing protection against single points of failure.

e Trustlessness: A trusted third party is not required to validate transactions, and nodes do
not need to trust each other before transacting. The consensus algorithm validates and
records transactions democratically

e Immutability: Modifying previous blocks invalidates all subsequent blocks due to one-way
cryptographic hash functions, making it difficult to manipulate the blockchain.

e Non-repudiation: Transactions are cryptographically signed with a private key and can be
verified by others via the corresponding public key. Transactions cannot be falsely initiated
or denied by their originator

e Anonymity: Users can communicate with the blockchain by utilizing a randomly generated
address that conceals their true identity

e Transparency: All nodes can access and verify transactions stored in the blockchain, pro-
viding public transparency.

e Traceability: Block headers are timestamped, allowing nodes to trace the origin of historical
blocks

Although it is a fairly new technology, blockchain quickly became a trending topic outside
of the tech communities. The rapid, cross-societal popularisation of new technology can be
accompanied by over-optimism [31]. Claims about the capabilities of new technologies such as
blockchain may be overstated, so it’s important to assess them carefully. Here we want to take a

look at immutability since it is strongly desired for the storage of provenance data and therefore
has an outstanding importance for our work.

According to Hasan et al. in ”The Techniques and Challenges of Immutable Storage with Ap-
plications in Multimedia” [32], immutability means an unchangeable nature or quality given to
an object. By definition, it prohibits any alterations to that object over time. In terms of data,
this would imply that no modifications can be made since the data is permanent.

As Haubert et al. note in ” Tamper-Resistant Storage Techniques for Multimedia Systems” [33],
software-based solutions cannot provide complete protection against tampering if the storage
medium itself is not immutable. Therefore immutability cannot be attributed to the blockchain.
Its more precise, to consider blockchains as distributed storage with software protection mecha-
nisms and algorithms, Those make blockchains strongly tamper-resistant, as modifying the data
they contain is very difficult. Blockchain achieves tamper resistance through its decentralized
nature and the utilization of consensus mechanisms. However, depending on whether it is a pub-
lic, private, or hybrid blockchain, the level of anonymity and decentralization can vary, which
will be discussed in section 3.4. Before that, the next section covers how the architecture of a
blockchain is built.

3.3 Architecture

The actual blockchain is built as a sequence of blocks and is shown in Figure 3. Each block holds
a reference to the previous block in the form of a cryptographic hash. The cryptographic hash
of each block is derived by calculating the hash value of a block’s header.

Hashing

Hashing is a cryptographic process that transforms a character string of arbitrary length into
a fixed-length unique output [34]. This implies that regardless of the size of the input, a hash
of fixed length is produced. Hashing is a deterministic process [35], meaning that the same
input will always produce the same output. The process is non-invertible [34], which makes it
practically impossible to retrieve the original input from its hash output.

In Blockchain, hashing is utilized to ensure the integrity of the data stored on the blockchain.
Each block on the blockchain contains a hash of the previous block’s header, which creates a
chain of blocks that cannot be altered without affecting all subsequent blocks. Any attempt
to change the data in a block will change its hash, making it invalid and breaking the chain.
Additionally hashing is used to secure the blockchain against tampering and fraud. The hash
function used in blockchain technology is designed to be collision-resistant [35], meaning it is
difficult to find two inputs that produce the same output. Because of the Avalanche effect [36]
a small change in the input should lead to a significant change in the hash output [35]. This
makes it practically impossible to alter the data on the blockchain without being detected.
The hash method a blockchain utilizes varies between implementations. Bitcoin utilizes a two
rounds of SHA-256 [37] [14], while in Ethereum Keccak-256 is used [38].

Structure of a Block

Each block contains a header and a body. The header stores the hash of the previous block.
The only block without a predecessor is the first block in the chain, also known as the Genesis
block. Besides the hash of the previous block, the header contains a timestamp, a Nonce, and
a Merkle Root as shown in Figure 3. A Nonce is a random number that is generated as part
of the process of mining a block. Miners try different nonce values and use them to calculate
the hash of the block. The first miner to find a hash that meets certain criteria gets to add
the block to the chain. The Merkle Tree is a hash binary tree, which is used to effectively store
and summarize transactions inside a block’s body. A transaction can be a contract, agreement,

Header .

| Hash of Previous Block |

| Time Stamp H Nonce I

Merkle Root

Header <
-| Hash of Previous Block |

| Time Stamp || Nonce |

Merkle Root

Header
-\ Hash of Previous Block |

l Time Stamp ” Nonce I

Merkle Root ||<

Body Body Body
EREN e
T T T T
Block 0 Block 1 Block 2 v] ™G A
Merkle Tree

Figure 3: Sequence of Blocks of a Blockchain. Source: [29]

transfer, or exchange of assets between two or more parties. Transactions are covered in section
3.6. For now it is sufficient to know, that blockchains are mainly built to allow the immutable
storage of transactions. In a Merkle Tree, each leaf contains the hash of a transaction. Parent
nodes combine the hashes of their children into a new hash until the root node is reached. A
merkle tree guarantees that if any transaction is changed, the hash of the Merkle root will change
too. Since the Merkle root is stored in the header, it will change the the block’s hash, which
makes it simple to detect if a block’s transaction has been modified.

The example in Figure 3 shows the most common and simple form of a Merkle tree, i.e. a Binary
Merkle Tree. There are four transactions in a block: TX1, TX2, TX3, and TX4. Each of them is
hashed and stored in a leaf node, resulting in Hy, Hy, H3 and Hy. Consecutive pairs of leaf nodes
are then summarized in a parent node by hashing Hy and Hy, resulting in H; o, and separately
hashing H3 and Hy, resulting in H3 4. The two hashes H; 2 and H3 4 are then hashed again to
produce Hj 234, which is the Merkle Root. By including the Merkle root in the block header,
the transactions become resistant to tampering.

3.4 Types of Blockchain Networks

The described blockchain structure is distributed across a network of nodes, with each node
maintaining a copy of the blockchain. This makes blockchain a Distributed Ledger Technology
(DLT) [39]. A distributed ledger is a database that is spread across multiple nodes or computers
in a network. Each node in the network maintains a copy of the ledger, and any changes to the
ledger are replicated and verified by all nodes in the network through a consensus mechanism.
This ensures that the ledger is immutable and tamper-proof, as any attempt to modify or falsify
data on one node will be rejected by the other nodes. Distributed ledgers are commonly used in
blockchain technology, where they serve as the underlying data structure for maintaining and
verifying transactions. Blockchain networks are distinguished by who can access them. The three
main types are public, private, and hybrid networks. They are shown in Figure 4 and explained
in the following.

Public

A public network, also known as a permissionless network, is a decentralized network [41] that
allows anyone who meets the hardware requirements to participate in the network, validate
transactions, and access the data stored on the blockchain [29]. Anyone can develop applications
and services on top of the network. Bitcoin and Ethereum are two of the most well-known public
blockchain networks. Public networks are highly resistant to tamper because the blockchain is
distributed among a high number of nodes and utilizes a consensus mechanism to ensure that all
participants agree on the state of the network [42]. They are transparent, as all participants can

10

Permissionless Permissioned

Private
Controlled by one authority

Public Hybrid
No central authority Controlled by one
authority with some
permissionless
processes

Consortium
Controlled by a group

Figure 4: Public, Private and Hybrid Blockchains. Source: [40]

view the transactions and data stored on the blockchain. However, public networks can be slow
and expensive, as a large number of nodes are required to validate transactions and maintain
the network [43]. Reading and especially writing data can take longer and accompany by higher
amounts of transaction fees, compared to private and hybrid blockchains.

Private

On the other hand, private networks, also known as permissioned networks, are usually main-
tained by a single organization [29]. The organization controls, who can access the network and
validate transactions. Hence, private networks are accessible for a selected group of participants,
that usually belong to the organization. Private networks are typically used by businesses and
organizations that want to keep their transactions and data private. They are more efficient in
terms of cost and speed [41] than public networks, as they have fewer nodes and can there-
fore validate transactions more quickly and usually utilize consensus mechanisms, that requires
less computational power. They are also more secure in a way, as only authorized participants
have access to the network. However, as they are typically controlled by a single entity, they
have a single point of failure, which makes them more vulnerable to tampering compared to
decentralized public blockchains.

Hybrid: Federated and Consortium

Hybrid blockchains, as the name suggests, are a combination of public and private blockchains.
They provide a balance between immutability, decentralization, and performance. Federated
blockchains are a type of hybrid blockchain that combines the decentralization of public blockchains
with the performance and privacy of private blockchains. In a federated blockchain, the network
is governed by a group of nodes, which are selected and trusted by the members of the network.
The consensus mechanism in a federated blockchain is typically managed by the trusted nodes,
which work together to validate transactions and maintain the network’s state. The main advan-
tage of a federated blockchain is its increased security, as the trusted nodes are selected based
on their reputation and expertise, ensuring the security and integrity of the network. Federated
blockchains also offer better performance and scalability compared to public blockchains, as the

11

network is controlled by a smaller number of trusted nodes. However, federated blockchains
are less decentralized than public blockchains, as the network is governed by a small group of
trusted nodes, and is therefore more susceptible to centralization and potential attacks. In ad-
dition, the selection of trusted nodes can be subjective, leading to potential biases and unequal
representation in the network.

Consortium blockchains are another type of hybrid blockchain that combines the decentraliza-
tion of public blockchains with the privacy and control of private blockchains. In a consortium
blockchain, a group of organizations or entities collectively control and operate the network.
The consensus mechanism in a consortium blockchain is typically managed by a limited number
of nodes, which are selected and trusted by the consortium members. Consortium blockchains
offer better privacy and control compared to public blockchains, as the network is controlled by
a group of trusted organizations. However, consortium blockchains are less decentralized than
public blockchains, as the network is controlled by a group of trusted organizations, and are
therefore more susceptible to centralization and potential attacks. In addition, the selection of
consortium members can be subjective, leading to potential biases and unequal representation
in the network.

Comparison

After introducing different types of blockchain networks, we gonna compare their key features
now. Table 1 compares the different types of blockchain networks. Public blockchains are de-
signed to be decentralized and accessible to anyone. While this promotes transparency and
immutability, it also means that all data stored on the blockchain is visible to all participants.
This can lead to privacy concerns, as sensitive information may be exposed to the public. There-
fore, data privacy on public blockchains is generally considered to be low. Private blockchains are
designed to restrict access to a select group of participants, usually within a single organization.
This allows for greater control over who can view and modify data, as well as increased privacy
for sensitive information. However, the level of data privacy on a private blockchain largely
depends on the access control mechanisms implemented by the organization. To join a hybrid
network, permission needs to be asked first. The level of data privacy on a hybrid blockchain
can vary from high to low and depend on the specific implementation. In terms of Immutability,
data stored on a public blockchain is almost tamper-proof. That’s because a public blockchain
is decentralized and all the nodes of the network have to agree on a state. When a node tries
to tamper a transaction inside a block, its hash changes too. Hence the previous block pointer
in the next block won’t match its hash anymore, the tampered block would be unchained. If
other nodes in the network would recognize the unchaining, they won’t accept the block. To
make the tamper successful, the node would have to change the hash of the previous block in
the following blocks as well. This is theoretically possible, but to be able to broadcast this block
to the network, the node needs to have power over the consensus mechanism, i.e. by having
more computational power or a higher stake than the rest of the network. Section 3.5 will give
more details about possible attacks on blockchain networks. In private and hybrid networks,
the risk of tampering is higher, because they are more centralized. In a private blockchain, the
network is controlled by a single entity, which opens a single point to tamper the blockchain.
Additionally, private and hybrid blockchains often use less robust consensus mechanisms, such
as proof-of-authority, which gives more power to pre-selected nodes. Despite the higher risk of
tampering, PoA allows adding blocks much faster, which makes blockchain applications more
scalable. Since the participants in private and hybrid blockchains are usually known, in PoA
particularly reliable nodes are selected as validators. This way achieving consensus involves less
effort and the costs for generating new blocks are lower than in public blockchains.

12

Public Hybrid Private

Access Anyone Ask for Permission Selected Participants
Consensus PoW, PoS, others PBFT, PoA, Raft PBFT, PoA, Raft
Immutability ~ Almost tamper-proof Risk of tamper Risk of tamper
Speed Slow High High
Cost High Medium - Low Low
Centralized No Partial Yes
Anonymity Yes No No
Data Privacy Low Medium High

Table 1: Comparison between Public, Hybrid and Private Blockchains. Own representation
based on: [41] [29] [43] [42]

3.5 Consensus Mechanisms

A consensus mechanism is a fundamental component of blockchain. Its purpose is to ensure that
all nodes in the network agree on the state of the ledger. The consensus mechanism is responsible
for verifying transactions, preventing malicious actors from compromising the network, and
ensuring that the ledger remains secure and accurate. A consensus mechanism ensures that
all nodes in the network have a common understanding of the state of the network and that
malicious nodes are unable to manipulate the network. Several types of consensus mechanisms
are used in blockchain technology, including Proof of Work (PoW), Proof of Stake (PoS), and
Proof of Authority (PoA).

Proof of Work (PoW)

Proof of Work is the first and a still most widely used consensus mechanism in the blockchain.
It was introduced by Satoshi Nakamoto in the original Bitcoin white paper [13] and builds the
basis for the security of the Bitcoin network. In PoW, nodes in the network compete to solve a
cryptographic puzzle, and the first node to solve the puzzle is allowed to validate the transac-
tions and add a new block to the blockchain. As a reward, the node receives a specific amount
of cryptocurrency. The cryptographic puzzle used in PoW is designed to be computationally
intensive, making it difficult for a malicious node to manipulate the network. At the same time,
checking if a solution solves the puzzle can be performed fast. The computational effort required
to solve the puzzle is known as ”work,” hence the name ”Proof of Work.” The difficulty of the
puzzle is adjusted periodically to ensure that blocks are added to the blockchain at a consistent
rate, typically once every 10 minutes in the case of the Bitcoin network. The main advantage of
PoW is its security, as it is computationally intensive to solve the cryptographic puzzle, making
it difficult for a malicious node to manipulate the network. In addition, PoW is a decentral-
ized consensus mechanism, as all nodes in the network have an equal opportunity to validate
transactions and add new blocks to the blockchain. However, PoW is computationally intensive
and requires a large amount of energy to validate transactions, leading to high energy costs
and environmental concerns. In addition, PoW can be slow and inefficient, as it can take time
for a node to solve the cryptographic puzzle and validate transactions. This can lead to long
confirmation times for transactions and decreased scalability for the network.

51% Attack

In a Proof of Work (PoW) consensus mechanism, if 51% or more of the computing power in
the network becomes malicious, the network is vulnerable to a 51% attack. In a 51% attack,
the malicious nodes control the majority of the computational power in the network and have a
high chance to perform a succeeding attack [44].

13

One possible attack vector is a double-spend attack [44] [45]. In a double-spend attack, the
attacker may mine a block, but withhold the solution instead of broadcasting it to the network.
By not sharing the solution, the attacker maintains a local version of the blockchain, which is
isolated from the rest of the network. Hence, there exist 2 versions of the blockchain: The clean
one, which is accessed by the uncorrupted nodes, and the isolated version of the corrupted node.
The corrupted node continues working on his local copy, i.e. adding blocks to it while buying an
expensive product on the clean version. This transaction is only included in the clean version,
but not in his local one. When the attacker can make his chain longer, than the public owns,
he can broadcast it. Blockchain protocols like Bitcoin are designed, to follow the longest chain.
Hence, the attacker could broadcast a blockchain to the network, that reverts his spending and
allows him to spend that amount again.

To be able to mine blocks faster than the rest of the network and win the mining race is why a
higher mining power is necessary to successfully attack Proof of Work Networks. The required
computing power rises with the depth of the fork, which makes older blocks practically immutable
[44]. Consensus attacks can only affect future blocks or at best the last 10 blocks [44]. Also,
Bitcoins cannot be stolen, spent without signatures, or redirected through a consensus attack.
An attacker cannot simply create and send transactions between arbitrary nodes, as long as he
doesn’t know their private keys. A 51% attack can have serious consequences for the security
and stability of a PoW network. This is why networks need to have a decentralized distribution
of computational power so that no one group or entity can control 51% of the network.

Proof of Stake (PoS)

Proof of Stake is a consensus mechanism that is designed to address the limitations of PoW. In a
PoS system, nodes in the network validate transactions based on the number of tokens they hold
or their "stake”. The more tokens a node holds, the more likely it is to be selected to validate
transactions and add new blocks to the blockchain. The main advantage of PoS is its efficiency
and low energy costs, as it does not require intensive computations to validate transactions.
Due to its lower hardware requirements, the PoS consensus process is more accessible and less
exclusive to high-end computing resources. However, PoS also has several disadvantages. It is
more centralized than PoW, as nodes with a larger stake are more likely to validate transactions
and add new blocks to the blockchain. In addition, PoS can also lead to a concentration of power
and wealth in the hands of a few large token holders, leading to potential centralization and
inequality in the network. While being less energy-consuming than PoW, Proof of Stake can be
more prone to several attacks [46]. To protect a PoS-based Blockchain from those, additional
rules are necessary, which increases the complexity of those systems.

Proof of Authority (PoA)

Proof of Authority (PoA) is a consensus mechanism used in some blockchain networks. Unlike
Proof of Work (PoW) and Proof of Stake (PoS), which rely on computational power and token
ownership, respectively, PoA relies on identity and reputation. In a PoA network, nodes are
not required to solve complex mathematical problems or stake tokens to validate transactions
and add them to the blockchain. Instead, a small group of trusted nodes, called validators or
authorities, are responsible for validating transactions and adding them to the blockchain.

In a PoA network, the validators are selected based on their reputation and credibility within
the network. They are usually individuals or organizations with a proven track record of being
reliable and trustworthy. The validators are responsible for signing transactions, which proves
that they have validated and approved them. Once a certain number of validators have signed
a transaction, it is added to the blockchain.

One of the benefits of PoA is that it is faster and more efficient than PoW and PoS. Since
validators are pre-selected and trusted, they can quickly validate transactions and add them to

14

the blockchain without the need for extensive computational power or staked tokens. This makes
PoA a good choice for private blockchain networks, where efficiency and speed are important.
However, one of the drawbacks of PoA is that it is less decentralized than PoW and PoS. Since
the network relies on a small group of validators to validate transactions, it is vulnerable to
centralization and censorship. If a validator becomes malicious or is compromised, they could
potentially harm the network by validating fraudulent transactions and adding them to the
blockchain. Additionally, if the validator nodes are controlled by a single entity or organization,
they could potentially collude and harm the network by censoring transactions or manipulating
the blockchain.

To mitigate these risks, some PoA networks implement rotation or randomization of validator
nodes. This ensures that no single validator has too much power or influence over the network.
Additionally, some networks have governance models that allow participants to vote on changes
to the network or the selection of validators. This helps to ensure that the network is run in a
fair and transparent manner.

Validator takeover attack

While PoA is generally considered to be more efficient than PoW and PoS, there is still a risk
that a group of validators could collude to harm the network. This could occur if a group of
validators decide to maliciously validate invalid transactions or attempt to censor legitimate
transactions.

For example, in a PoA network with 10 validators, if a group of five validators collude to validate
invalid transactions or censor legitimate transactions, the network could become vulnerable to
attacks and the integrity of the blockchain could be compromised. This type of attack is known
as a "validator takeover attack” and it can be difficult to detect and prevent.

To mitigate the risk of a validator takeover attack in a PoA network, it is important to care-
fully select and monitor validators and to have mechanisms in place to detect and respond to
suspicious behavior. Additionally, some PoA networks implement a rotating validator selection
process, in which validators are periodically rotated to prevent collusion and centralization.

3.6 Transactions

Transactions are a key component of blockchains. The whole Blockchain structure is there to
ensure that transactions can be ”created, propagated on the network, validated, and finally
added to the global ledger of transactions” [44]. Transactions allow the transfer of values from one
address to another. This way, Alice can transfer as many Bitcoins to Bob, as her credit balance
holds. Essentially a transaction is a digital messages that contain the necessary information to
be executed. A transaction typically includes the sender’s address, the recipient’s address, the
amount of cryptocurrency being transferred and a digital signature. The digital signature is
generated using the sender’s private key and serves as proof that the transaction was authorized
by the sender. When a transaction is created, it has to be signed by all the parties who’s funds
are involved and needs to be validated before it can be added to the blockchain. This is where the
consensus mechanism comes into play, which we discussed in section 3.5. As a short refresher, a
consensus mechanism is a set of rules that govern how transactions are validated and added to
the blockchain. In a network with PoW, the transaction is broadcast across the network, where
each node verifies it against a checklist of criteria [44] and forward it to their neighbours, until the
transaction reached the whole network. This way invalid transactions are discarded at the first
node that encounters them [44]. From the valid transactions, each node maintains a transaction
pool of unconfirmed transactions. After a mining node propose a block including the transaction
and after each node has verified it against another list of criterias [44], the transaction is stored
on the blockchain permanently and cant be changed anymore. The relocated funds can be spent

15

inside new transactions, which which in turn must be signed and validated before they extend
the blockchain as part of new blocks. The described transaction, that transmit value from one
account to another is the essence of blockchain technology’s cryptocurrency use-cases and was
already included in Blockchain 1.0.

Smart Contracts

Many of today’s Blockchain implementations allow transactions to include programs called smart
contracts. Smart Contracts were introduced by Ethereum during Blockchain 2.0 and extend
Blockchain technology by supporting the execution of computer programs. Smart Contracts are
often referred to as self-executing contract with the terms of the agreement between buyer and
seller being directly written into lines of code. The code and the agreements contained therein
are stored and replicated on the blockchain network. But Smart Contracts are not limited to
transferring assets between parties. A smart contract is a collection of code and data [47], that
can be used for a wealth of different applications, such as information management and executing
business logic.

Smart Contracts can be implemented flexible in programming languages such as Solidity or Go.
To illustrate how a smart contract can look like, Figure 5 gives a practical example of a Smart
Contract implemented in Solidity. The example contains counter.sol, which is a simple counter
application. Line 1 shows a machine-readable SPDX-identifier to indicate its license. If no license
shall be given or if the code is not open source, developers can write ”UNLICENSED”. More
information about SPDX can be found in [48]. The second line specifies, which compiler should
be used to call this contract. By specifying ~0.8.17 the contract accept any version starting from
0.8.17 and below 0.9. Line 4 defines the contract with the identifier Counter. A contract has some
similarities to a static class. Line 5 defines a public count attribute of type unsigned-integer,
where the value of the counter application is stored. The public keyword allows the method
to be called from inside and outside of the contract. Other options are private, internal and
external. Line 8 - 10 define a public getter function, that returns the actual count. This function
is not nescessary, since Solidity automatically creates getter functions for public variables. The
view keyboard indicates, that the method don’t modify the state. View methods cant modify
state variables, create other contracts or send ether. The inc method in line 13 - 15 is meant
to increment the state by 1. Hence it is modifying the state, it is not a view method. Since it
dont return anything, it dont have the return keyword the header. The decrement function in
line 18 - 20 works analoge to increment. All methods and classes are opened and closed by curly
brackets.

In Ethereum Smart Contracts introduce two more types of transactions: Deployment and Ex-
ecution (Call) [50]. After a contract deployment transaction is stored inside a blocks list of
transactions, it cant be changed. The Contract is deployed to a account address, from which the
contract can be referenced and its methods can be called. Since the blocks are immutable, meth-
ods cannot change attributes, unless they are packed inside a new transaction. Thus, the current
state of a smart contract can be understood from the successive execution of all transactions
that call that contract.

Blockchains that allow Smart Contracts come with a Virtual Machine, that enable Turing com-
plete code to run on the blockchain. Virtual Machines calculates the state of the network after a
block has been added to the network. Transactions can have different impacts on the networks
state. A regular transaction is likely to change the amount of currency, e.g. reducing the amount
of Ether that Alice’s holds by the amount that she has sent to Bob. A contract call can influence
the data stored inside a contract, i.e. the values assigned to a variable.

16

OO~ WN

// SPDX-License-Identifier: MIT
pragma solidity °“0.8.17;

contract Counter {
uint public count;

// Function to get the current count

function get() public view returns (uint) {

return count;

}

// Function to increment count by 1
function inc () public {

count += 1;
}

// Function to decrement count by 1
function dec() public {
// This function will fail if count
count —= 1;

=0

Figure 5: Smart Contract of a Counter Application counter.sol. Source: [49]

17

4 Systematic Literature Review

One of the most famous use cases for Blockchain technology is its application in the cryp-
tocurrency industry. Bitcoin, the first and most well-known cryptocurrency, was created in 2009
using Blockchain technology to provide a decentralized and secure alternative to traditional fi-
nancial systems. Since then, numerous other cryptocurrencies have been developed, relying on
Blockchain technology to function. However, the potential applications for Blockchain technol-
ogy extend far beyond cryptocurrencies. Smart contracts have opened up a world of possibilities
for Blockchain technology by making it much more flexible for a wide range of use cases, such
as Supply chain management, Real Estate, and Provenance Tracking. In this chapter, we will
take a closer look at the storage of Provenance information on Blockchain. To be precise, we
will conduct a Systematic Literature Review using the approach proposed by Kitchenham [51],
which provides a rigor, reproducible and clear methodology. By analyzing the literature, we aim
to identify possible ways to store Provenance on Blockchain that can later be applied to our use
case.

Background

Provenance information is important for a wide range of applications and industries, including
art, finance, supply chain management, and digital manufacturing. Provenance information refers
to data that describes the origin, ownership, and history of an asset, such as a piece of art, a
financial transaction, a product in a supply chain, or a designed component. This information can
be critical for ensuring the authenticity, integrity, and quality of the asset, as well as for verifying
compliance with legal and ethical standards. Storing Provenance information on a Blockchain
can provide a tamper-evident and permanent record of this data, which can help to ensure the
integrity and reliability of the information. Additionally, because a Blockchain is a decentralized
system, it can enable multiple parties to access and verify the Provenance information without
requiring a central authority. This can increase transparency, trust, and accountability in the
Provenance data. For this reason, many studies have proposed the use of Blockchain for storing
Provenance information. Through this SLR we aim to gain a deeper insight and an overview of
existing studies in the field.

Goal

To state it clearly, the Systematic Literature Review aims to identify existing works that use
Blockchain technology to store Provenance information using W3C-PROV or a related standard.

4.1 Search Strategy

Keyword Search

To find existing works that use Blockchain technology to store Provenance information using
a PROV-related standard we first searched for articles, that contain Prov AND Blockchain in
their Title, Abstract, or Keywords:

TAK(PROV AND Blockchain)

18

Searching directly for PROV is restrictive because some articles and PROV modifications put
a prefix or suffix around PROV. By adding an asterisk, we can make our search more flexible.
Asterisk (*) represents any group of characters, including no character. Hence, we tried *PROV,
PROV* and *PROV™*. It turned out that PROV* and *PROV* were adding too many results
since PROV is included in many words such as prove or provide. However, *PROV seemed
effective since PROV is added as a suffix to frameworks such as BSTPROV or ETHERPROV:

TAK(*PROV AND Blockchain)

A search with the query *PROV AND Blockchain delivers 24 results over the four databases
(duplicates included). This query assumes, that the authors specify in the title, abstract, or
keywords which standard they use. However, some articles refer to the general term Provenance
and specify the used encoding in the paper. As we changed our query to the more general query
Provenance AND Blockchain, our number of results increased to 217 for just one database.
Checking the resulting articles manually, whether they encode Provenance with the PROV or
a PROV-related standard, would be too costly with that number of entries. That’s why we
extended our query, in a way that allows also papers that mentions the more general term
Provenance in combination with Blockchain in their Abstract while mentioning the PROV in
any other field. Using this query, we found 33 unique articles in four databases. The final query
looks as follows:

TAK (*PROV AND Blockchain) OR (Abstract(Provenance and Blockchain) AND
ALL(PROV))

The databases used vary depending on the allowed parameters and syntax. Table 2 shows the
queries used and the number of results per database.

Database Query #Results
Web of Science | ((TS=(*PROV AND Blockchain)) OR (TS=(Provenance | 3
and Blockchain) AND ALL=(PROV)))
Scopus (TITLE-ABS-KEY(*prov AND Blockchain) OR (ABS(| 32
Provenance AND Blockchain) AND ALL (prov)))
IEEE Xplore (("Document Title”:*PROV ~ AND ”Document Ti- | 5
tle”:Blockchain) OR (”Abstract”:*PROV AND ”Ab-
stract”:Blockchain) OR((”Author Keywords”:*PROV
AND 7Author Keywords”:Blockchain) OR (”Ab-
stract” :Provenance AND 7 Abstract”:Blockchain) AND
(" All Metadata”:PROV)))

ScienceDirect | TAK (PROV AND Blockchain) OR (Provenance AND | 4
Blockchain) AND ALL(PROV)

Table 2: Search Results of Queries among Databases

Backward Search

The keyword search enables the collection of articles from the desired research area. Despite
the use of different databases, relevant articles may not be found due to the limitations of the
keyword search. One way to find more relevant articles is to look at the referenced articles. With
the help of the Open Citations API, we collected the articles that are referenced most by the
articles in our collection. Therefore, for each article that appears in the references, we count in
how many articles of our collection it is mentioned. We looked at each article that appeared more
often than the median value, thus at least three times. Apart from standardization documents

19

about W3C and Hyperledger Fabric, we discovered two more articles, that haven’t been in our
collection and added those. Hence we found a total of 35 studies, which are listed in Appendix
B.

4.2 Study Selection Criteria

1. The Study must be accessible.
2. The Study must be available in English or German language.

3. The Study must encode Provenance according to W3C Prov or a related standard, like
OPM.

4. The Study must either
a) store Provenance model using a Blockchain or

b) provide a theoretical concept on how a Provenance model can be stored on a Blockchain.

Due to our Study selection criteria, we had to eliminate 15 studies and continue our Systematic
Literature Review with 20 remaining studies. Which study has been selected, is documented in
the last column of Appendix B. The Data Extraction proceeds with the 20 remaining studies.

4.3 Data Extraction

According to Kitchenham, the Data Extraction form must be designed to ”Collect all the in-
formation needed to address the review question” [51]. In our case we want to identify existing
works that use Blockchain technology to store PROV-related documents. Therefore, we are look-
ing for fields that will help us group the work in this research area in a meaningful way. It should
be added that, in contrast to the intended case of Systematic Literature Reviews, we do not
primarily collect numerical values. Of course, numerical values can be compared better, however
different architectures for storing Provenance information can be captured more comprehensibly
via text.

Goal What are the aims of the study?

Application area What’s the domain of the entities, that Provenance is tracked (e.g., Medicine
or Finance)?

Blockchain What Blockchain is used?

Provenance Standard How is Provenance Information encoded?
Provenance Data Generation How is Provenance Data created?
Blockchain Storage How is Provenance Data stored on the Blockchain?

The first step in our systematic literature review is to extract the aim of each study. Under-
standing the overall goal of the research is crucial as it justifies the claim and methodology of
the work and helps to inform other relevant fields such as the Blockchain technology used and
access permissions. Additionally, we extract the application area of each study to group our
findings and identify areas where storing Provenance information on the Blockchain is partic-
ularly popular. We also pay attention to the Blockchain technology used in each study, as this
allows us to understand which platforms are commonly used for this purpose. As we move on to
the process of storing Provenance information, we analyze how the information is encoded, and
document any processes used to generate Provenance documents if they are not received in a
PROV format. We then examine the methods used to store the information on the Blockchain,
allowing us to compare and contrast different approaches.

20

4.4 Synthesis

This literature review examined a total of 20 studies that mainly propose systems for tracking
and storing Provenance information using Blockchain technology. An Overview gives the Data
Extraction Table in Appendix E. The studies explored used different Blockchain platforms, such
as Hyperledger Fabric and Ethereum, and different W3C PROV-related Provenance standards
such as SWPROV and OPM. The majority of studies used Hyperledger Fabric as Blockchain.
Among 20 studies, out of which 16 named the Blockchain they used, 11 choose Hyperledger.
The authors highlight Hyperledger Fabric’s modular architecture as a key factor in their deci-
sion [52, 53][54]. This architecture grants flexibility in configuring and plugging in components,
making it well-suited for use in industries such as banking, finance, and health insurance that
require frequent innovation and flexible domain logic. Additionally, the authors point out that
Hyperledger Fabric uses general-purpose programming languages (GPL) such as Java, Go, and
Nodejs, which makes it more accessible and easier for developers to work with compared to
other platforms that use domain-specific-languages (DSL). Finally, the authors mention that
Hyperledger Fabric is a permissioned Blockchain platform, which is essential for organizations
that want to keep their data private and should not be exposed to public audiences. Besides
Hyperledger Fabric and Ethereum, Tendermint and Tieron API are used. The application areas
are broadly distributed across Open Data, Food Delivery, Internet of Things, and Healthcare.
In the study conducted by Kirstein[55] in 2019, the author defined requirements for a system
that tracks and stores Provenance data in the context of linked open data. The W3C PROV
standard was used in this study to guide the development of the proposed system. The next
steps to develop the system were outlined in the study, but haven’t been carried out.

Similarly, Hogan and Helfert [56] in 2019 investigated the application of distributed ledger tech-
nology (DLT) in the tracking and storage of Provenance data theoretically. Using the W3C
PROV standard as a reference, the authors mapped PROV components to Blockchain elements
and evaluated the alignment between the PROV data model and the Bitcoin implementation
of Blockchain. The study found that while a simple alignment existed between the two, certain
relationships such as WasInformedBy, WasDerivedFrom, and ActedOnBehalfOf could not be
expressed in a single linked list DLT such as Blockchain. This was considered a key finding, as
it suggests that data Provenance instances which rely on these circular reference relationships
may not be implementable on a Blockchain.

In the most proposed systems for tracking and storing Provenance information, data is stored
directly on the Blockchain. Ioni and Pahl [57] propose a Blockchain container-based architecture
to track identities and Provenance of orchestration decisions of a business network using the
W3C PROYV standard. They store the PROV components as classes in smart contracts, mapping
entities to assets, agents to participants, and activities to transactions. Similarly, Fadhel et al.
[58] modified PROV-N to model attacks towards IoT Devices, storing documents in Hyperledger
Fabric’s keystore.

Markovic et al. [59, 60] in 2019 and 2020 use Provenance to keep track of food deliveries, storing
FS-PROV data in smart contracts that are exposed via a RESTful API [60]. They also use an
EP-PLAN ontology, an extension of the PROV model for linking plans [60]. Dang and Anh [52]
in 2020 use a similar approach, storing data in five smart contracts, which combine to form the
actual Provenance information. To track Provenance in the context of Open Data, their tool
receives a synchronization request from Open Data Platform, whenever a user changes data.
Then the received context changes of the Objects properties result in Provenance data. Each
action creates a new ”chapter” of Provenance information, resulting in a Provenance Story.

In 2021, Dang and Duong [53] continue this line of research, using the W3C PROV standard to
track changes in open data and storing the URL and checksum of the dataset in the Blockchain.
Song et al. [61] in 2020 also focus on tracking and sharing Provenance data, using the W3C
PROV standard and storing relevant data, such as a person’s identity signature and the type
and time of an operation, in the body of the Blockchain in order to detect tamper. To generate

21

Data Provenance, they mapped relevant components such as Assets, Actions and Initiators to
the W3C PROV Elements Entities, Activities and Agents.

In the field of healthcare, Margheri et al. [62] in 2020 track data Provenance using the W3C
PROV standard. They consider the underlying health documents as Entities of PROV docu-
ments. Their approach is to canonicalize the PROV documents and store key-value pairs of a
document’s hash and Provenance information in the Blockchain. Similarly, Lautert et al. [63] in
2020 focus on fog computing and use the W3C PROV standard, storing Provenance information
in private Blockchains for each fog, which are later shared with a global Blockchain.

Sigwart et al.[64] in 2020 propose a generic framework for tracking Provenance in IoT systems,
using a data Provenance model for IoT and storing relevant data in the Blockchain [64]. This
framework includes a storage layer for low-level representation and storage of Provenance data,
a generic Provenance layer for general-purpose functionality, and a specific Provenance layer for
fine-tuning the framework to the requirements of a specific use-case.

Demichev in 2021 presents a decentralized data management system using Hyperledger Fabric
and an adapted version of the W3C PROV standard [54]. This system, called PROVHL, stores
key-value pairs of assets such as files in the Blockchain. The assets, operations or transactions,
and participants are all mapped to the adapted W3C Prov elements.

Additionally, Zhang et al. [65] in 2021 proposed a system for dispatching and control of Prove-
nance data in power grids. This system uses Hyperledger Fabric and a modified version of the
PROV standard for power-grid systems. To store data, they use three smart contracts: one for
data access, one for data logging, and one for data Provenance. The data logging contract creates
a Provenance chain based on the activity, such as initialization, deletion, update, or query, and
the data Provenance contract accesses the data operation log to create a complete Provenance
chain.

In recent studies, researchers moved on from storing Provenance data directly on the Blockchain.
Bose et al.[66] point out that there are challenges in building decentralized Blockchain appli-
cations for data-intensive applications, as storage of data on some Blockchain platforms like
Ethereum can be costly due to cryptocurrency costs. Additionally, Sun et al. [67] argue that
Provenance data cannot be embedded in blocks as a whole because its size may exceed the block
limit, and it may include sensitive information that can only be legally accessed by specific users.
Thus, alternative storage solutions are being proposed to address these challenges.

Liang et al. [68]in 2017 proposed a system called PROVCHAIN, which uses the Tierion API to
track cloud operations while storing the actual Provenance Data in a Database. The system
generates Provenance data in the form of Data Records, which include information such as the
date and time of the operation, the username of the user who performed the operation, the name
of the affected file, and the action performed (e.g., file creation, modification, or copy). The Data
Record is then published to the Blockchain using the Chainpoint standard, which combines the
hashes of the Data Record elements to form a Merkle tree.

In the field of knowledge management, Ramachandran and Kantarcioglu [69] proposed in 2018 a
system that uses Ethereum to collect and verify data Provenance. The system utilizes the Open
Provenance Model (OPM), which represents Provenance data as a triplet of agents, artefacts,
and processes (e.g. (user, file: old version, file: new version, process used for modifications). The
system also includes a Document Tracker that logs change event data and stores the included
OPM data in a database.

Tunstadt et al. [70] proposed 2019 a general framework for tracking data Provenance that utilizes
the Open Provenance Model. The system stores data on-chain and off-chain. On-chain data
includes checksum, editors, operations, data ownership, and data pointers, while off-chain data
includes the actual data.

In the field of software Provenance, Bose et al. proposed in 2019 a system that uses Ethereum
to capture, store, explore and analyze Provenance data [66]. The system utilizes the SWProcess
Specification (Prov for Software Development) and generates Provenance data by converting

22

review data to SWProcess. While storing the critical parts of PROV Data and its hashes on the
Blockchain, full PROV data is stored in an Off-Chain database. They also suggest the use of
cryptographic immutable distributed databases such as IPFS to store full Provenance data.
Coelho et al. [71] in 2021 proposed a system for capturing, storing and analyzing Provenance-
related data in collaborative research. The system uses ProvONE (PROV for scientific workflows)
as the Provenance standard.

Sun et al. [67] in 2022 proposed a system for sharing Provenance data using Ethereum and the
W3C PROV standard. The system partitions the PROV graph into several subgraphs using
a BFS-based Provenance Graph Partition method, encrypts the subgraphs, and uploads them
onto the Blockchain. Users can then obtain a subset of the Provenance subgraphs and compose
them into a new graph. The system stores the Provenance subgraphs, overall dependency struc-
ture, and access control policies on-chain and the local Provenance graph, information of the
transaction and block where a subgraph is embedded in and access control policies off-chain.

4.5 Comparison of Storage Strategies

The SLR has identified various strategies for storing Provenance information using Blockchain.
To find out, which approach is suitable for our interest, we first gonna summarize the different
approaches and secondly reflect on them critically, regarding their advantages and disadvantages
for storing and retrieving W3C PROV documents. Having a closer look at the approaches,
the first thing to distinguish is where the data is stored. One approach is to directly store
data on the Blockchain, while others solely keep the hash on-chain and refer to a database
or URL to obtain the actual data. Additionally, there are differences in the structure of stored
Provenance data. One way is to store the entire W3C PROV document or its hash, although some
works combine documents beforehand or divide them into subgraphs or elements like entities,
agents, and activities and then store their interrelationships. The units differ depending on the
Provenance standard used. We classify the approaches based on the location and structure of
the stored data in Table 3.

Most of the works are considered to store Provenance data in smart contracts on the Blockchain.
Storing data directly on-chain has several advantages, which are summarized in Table 4. Data
stored on-chain is immutable and cannot be altered once it is stored, which provides a high
degree of trust and transparency in the data. In decentralized networks, stored on-chain data is
replicated across all nodes in the network. This means that there is no single point of failure, and
the data is always available as long as the network is up and running. Since data stored on-chain
is distributed and cryptographically secured, it is highly resistant to tampering and hacking
attempts, which is a major advantage over traditional database systems. However, due to its
nature data on the Blockchain is accessible to everyone. The transparency of data can cause
privacy issues, i.e. when sensitive data is stored and information shouldn’t be visible to other
participants of the network. Additionally storing data on-chain also have two major downsides:
Speed and Cost. Blockchains have a slow writing speed and are also not particularly fast when
reading data. Thus, even low-performance databases can surpass the speed of Blockchains and
to this point, there is no known Blockchain, that is able to compete with databases in terms of
speed. Uploading large amounts of data can take an extremely long time, making storage more
error-prone. If speed is an important factor, on-chain storage is impractical. When considering

Document-wise Canonicalized Element-wise Subgraphs
: [52] [65] [57] [61]
On-Chain [63] [59] [60] [58] [62] (64] [54]
Off-Chain [66] [53] [70] [69] [68] [72] [67]

Table 3: Overview of PROV Storage Strategies

23

On-Chain | Off-Chain

Immutability v o
Dezentralization | v/ o
Data Integrity v v
Cost — +
Speed — +
Privacy o v

Table 4: Comparison of Storage Methods: On-Chain vs Off-Chain

a public Blockchain, writing to the Blockchain usually requires a payment. The cost of writing
depends on the size of the data being stored and the particular Blockchain in use. In terms of
the Ethereum Blockchain the cost to store 1 kilobyte is 640 gas, which is around 0.20€ in March
2023. While the cost for one kilobyte seems quite affordable, the cost of storing 1 megabyte is
around 20€. When transaction fees are that high, in use cases where expenses matter, it doesn’t
make sense to store more data than necessary directly on the chain. Instead, approaches use the
possibility of storing intensive amounts of data outside the Blockchain, for example in databases
or InterPlanetary File Systems (IPFS). The Blockchain only keeps the hash value of the stored
data along with a reference to the data, e.g. in the form of an ID, URL or IPFS address. In this
way, the downsides of on-chain solutions can be mitigated. Since the actual data is stored off-
chain, the solution is more scalable in terms of speed and cost and can handle large amounts of
data. Also the privacy of data can be preserved, by controlling access to the external file system
or database. Storing the hash value of data allows for the detection of any manipulation, thus
ensuring the integrity of the data. However, in the event of data tampering, the ability to restore
the referenced data and maintain version history will determine whether or not the data can be
recovered. Depending on the security of the hash method chosen and whether the hacker knows
the hash method and the hash of the data, which he wants to modify, there is also a risk that
the change will not be detected. If the hacker manages to modify the data in such a way that
the hash remains the same, the tamper may remain undetected. However for SHA-256, which
is the most prominent hash function in Blockchain, finding a document that would produce
the exact same hash is already extremely hard, due to the avalanche effect and 2%2°6 possible
hash-values of SHA-256. Another weak point of storing data off-chain is that, depending of the
type of storage, it might open up a single point of failure. When the data, which is referenced by
the Blockchain is stored in a centralized database, the decentralized nature of Blockchain cant
protect the data. As stated before, the Blockchain can only ensure to detect if data has been
tampered, but cannot restore it.

When comparing the structure of stored Provenance documents, significant differences occur be-
tween document-wise storage and element-wise storage. The differences are summarised in Table
5 Because their properties are similar, we combined document-wise storage and canonicalized
documents to the first group and element-wise storage and subgraphs to the second one. Stor-
ing a document as a whole is pretty straightforward and is associated with low computational
effort. Imagine a smart contract, that would store a whole Provenance document. As stated
earlier, storing the data on-chain is pretty inefficient, so that approach might only be suitable
for little graphs. The element-wise storage and retrieval of documents involve computational
effort. Before storing a document, single identities or subgraphs need to be revealed and stored
individually, together with their relationships, to make it possible to combine them later again.
When considering on-chain storage, data storage can be more efficient, since components that
are used among multiple documents can be reused, instead of stored in every single document.
Also uploading tiny bits of data to multiple smart contracts, instead of storing everything in one,
might be less sensitive to failure during the upload. However, when considering off-chain storage,
a lot of references and hashes need to be stored to utilize the benefits of element-wise storage.

24

Document-based | Element-based

Computational Effort - +
On-Chain Storage Cost | ++ +
Off-Chain Storage Cost | -- -
Off-Chain Diff X v

Tamper Risk - --

Table 5: Comparison of Storage Methods: Document-based and Element-based

This multiplies the number of stored hashes by the number of separated elements. Therefore,
while element-wise storage can reduce the Blockchains data load compared to document-wise
storage in an on-chain scenario, it is the opposite when storing data off-chain. When tampering
happens off-chain, element-wise storage is able to provide a diff from the previous version, by
identifying which element has been modified. This is not possible for off-chain document stor-
age. Additionally, the risk of tampering is slightly higher in document-wise storage, because only
one hash needs to be cracked. Storing data element-wise creates multiple hashes. This makes it
difficult to change the content of a document in a meaningful way.

25

5 Requirement Engineering

In order to lead the development project to success, the research institute’s involvement in the
project is crucial to ensure that the new blockchain-based system meets the specific needs of
their application area. In order to determine these needs, we employed the systematic approach
from Pohl and Rupp [73] to requirement engineering.

According to Pohl and Rupp a requirement can be described as a "necessary need of a stake-
holder” [74], a ”capability or property that a system must fulfil” [74] or a ”documented rep-
resentation of a need, capability or property” [74]. Requirements engineering is a systematic
and disciplined approach to specifying and managing requirements with the goal of understand-
ing stakeholder wants and needs and minimizing the risk of delivering a system that does not
meet those wants and needs. According to Pohl and Rupp [75] three types of requirements are
typically distinguished:

1. Functional Requirements concerning the results or behaviors that shall be provided by
a function of the system.

2. Quality Requirements refer to a quality characteristic that is not covered by functional
requirements. They are often related to functional requirements and can specify them
further. Examples are requirements that refer to the Performance, safety, reliability, or
usability of a system.

3. Constraints restrict the solution space beyond what is necessary to meet the functional
requirements and the quality requirements. They can refer both to the system under
consideration (e.g. ” The system should be realized by blockchain”) and to the development
process of the system (e.g. ”The system should be finished until June 2025”).

Following Rupp’s approach, the first step of Requirements Engineering is the elicitation of re-
quirements. There are various strategies to elicit Requirements. Section 5.1 will present our
approach and give a comprehensive summary of the results. The second step is the documen-
tation of requirements. Therefore section 5.2 document the wealth of information into well
structured requirements. According to Rupp there are two more phases: Validation and Man-
aging. The third phase of validation was ensured by coordinating the process of identifying and
documenting requirements with stakeholders. After Requirements have been formulated, they
were presented to stakeholders and discussed. The management of the requirements has played
a subordinate role, as the project had only one processor and thus the requirements did not
have to be shared.

5.1 Elicitation of Requirements

We used stakeholders as our main source to elicit requirements, because stakeholders have a
vested interest in the project and are directly impacted by the system or process being developed.
By using stakeholders as a resource, we can gain insights into their needs, goals, and expectations,
which are critical to developing a system that meets their requirements. As a technique to gather
requirements, we decided to conduct an interview, because compared to a questionnaire, it allows
us to ask specific follow-up questions in case of ambiguities or previously unknown topics. When
conducting an interview, it must be taken into account that basic factors, i.e. features that have
already been fulfilled by a previous system, are taken for granted by stakeholders. To counteract

26

ID | Aspect Question
Q1 | Purpose What is the purpose of the blockchain-based system that you want
P to build?
sers o are the intended users of the system and what are their roles?
Q2| U Wh the intended f th t d what their roles?
Q3 | Data What data does the system need to store and manage, and what
are the security and privacy requirements for this data?
. ow will users interact wi e system and what actions are ex-
Q4 | Interactions H ill int t with the syst d what acti
pected to take place?
- What is the expected scalability of the system in terms of the
5 | Scalabilit ,
Q calabltty number of users, number of actions, and data storage?
. Are there any existing systems or processes in place that the
6 | Int t . . .
Q ntegration blockchain-based system needs to integrate with?
erformance an at are the performance and availability requirements for the
Q7 Perf d | What th f d ilabilit i ts for th
Availability system?
Q8 | Success Criteria What are the success criteria for the project and how will they be
measured?
Q9 Regulatory and | Are there any regulatory or compliance requirements that the sys-
Compliance tem needs to meet?

Table 6: List of Interview Questions

this shortcoming of interviews, we included questions regarding the previous system and the
current storage. From previous communication, we had some information about the project,
that we used to estimate the scope of the desired system and prepare the interview.

Interview Preparation

The scope of the system is to design and build a blockchain-based system that stores provenance
data on the blockchain. The stakeholder is a research institute, that put us in contact with one
experienced researcher, whose directly involved into the application area of the new system.
As part of our preparation for the requirement elicitation process, we developed a set of ques-
tions to guide our interview. When determining the categories for requirement elicitation, it is
important to ensure that they cover all aspects of the system that are relevant to the stakehold-
ers. We have identified nine categories in Table 6 by drawing on our experience and knowledge of
system design and requirements engineering. To facilitate comprehensive and detailed responses
during the interview, each category has a specific open-ended question. The categories address
a broad range of topics essential for any software system, such as system goals and objectives,
user needs, data management, user-system interaction, system scalability and integration, per-
formance and availability requirements, project success criteria, and regulatory or compliance
requirements. Our categories align with established principles and practices in the requirements
engineering and system design field. For example, the IEEE 830 standard [76] for software
requirements specification recommends functional requirements, performance requirements, de-
sign constraints, and external interfaces. Additionally, our categories align with the widely used
Volere Requirements Specification Template [77], which includes stakeholders, project drivers,
functional requirements, non-functional requirements, constraints, and acceptance criteria.

Interview Conduction

The interview was conducted as a video-interview and has been split in two sessions. The conver-
sation was recorded by mutual consent and transcribed later. We begin the interview by asking
the first question about the purpose of the blockchain-based system. This opening question
aimed to gain a first impression about the initial situation, the environment and the contribu-

27

tion that stakeholders expect from the system. The stakeholder mentioned in his response that
the system should be realised as part of the VPH process. In order to gain deeper insights into
the process environment, we followed up with asking, what the VPH process is and inquired
about the process steps and their content.

After that we moved on with Q2, which aimed to identify the different types of users that interact
with the system and their roles. The expected users reveals who needs access to the system and
help to design access control policies.

Question 3 addressed, What data needs to be stored and managed and how the security and
privacy requirements for this data looks like. The types of data that the system has to store affect
the design of smart contract attributes and optionally functions, to obtain those from an input.
The data’s security and privacy requirements can be tackled by the choice of the blockchain
platform, since it determines how accessible the data is to public and the decision about which
data is stored on the chain.

The fourth question aimed to learn how users should interact with the system. The answer helps
to design the functionalities of smart contracts and the user interface, which they are called
from.

Q5. asked for the number of users, transactions and data storage. The three parameters specify
the required scalability of the blockchain system. The expected number of users affects the size
of the blockchain network and can help to determine wether creating a new network is eglible.
The required scalability for transactions and data storage will affect the choice of consensus
mechanisms.

The sixt question aimed to learn whether there are any existing systems or processes in place
that the blockchain-based system should be embedded into. This would affect the interfaces the
systems need to provide and which data it can expect and deliver in order to interact with its
environment.

Question 7 asked for the performance and availability requirements. The desired Performance is
crucial for the design of the network architecture, since it depends on the size of the network and
the consensus mechanism. While estimating the estimated lifespan of the network infrastructure,
the availability must be taken into consideration.

In Q8. we inquired about the success criteria and how it will be measured. Defining success
criteria and how they will be measured is important for determining the value of the project
and ensuring that it meets the goals and objectives of the research institute.

The last question Q9. aimed to learn about regulatory or compliance requirements that the
system has to meet. Regulatory and compliance requirements can have a significant impact on
the design of the blockchain system, including the choice of consensus algorithm, data storage,
and security measures. Knowing these requirements will help ensure that the system meets all
necessary standards and regulations

Interview Results

The interview revealed that the goal of the project is to create a blockchain-based system to track
the VPH-process. VPH stands for Virtual Product House (VPH) and is a Integration and Test
Centre for Virtual Certification of aircraft components [78]. Developing an aircraft component
is relatively expensive and when a production team realizes that a component doesn’t meet the
requirements, it has to repeat the whole designing, building and test process. The development
effort is associated with high costs that can turn out as a barrier that prevent future innovations.
To give an example, if a company thinks that introducing a new component could result in a 2%
fuel saving, but they must produce it to confirm, the potential financial risk may be deemed too
great, leading them to opt out of pursuing the idea. To reduce costs and risks in the production
of aircraft components, VPH aims to digitalize the aircraft component manufacturing process.
The process is shown in Figure 6. It consists of four phases, which are Digital Design, Virtual
Manufacturing, Simulated Testing and Certification. The initial three phases takes place inside

28

// h

Digital Design ——> Virtual Manufactoring —— Simulated Tests ——

A

Figure 6: VPH Process

File Edit Search Run Window Help
ri- 810 4~ i@ 2
[Project Explorer 52 9 % 7 = 0| MDOVLAWE £3 4 FINISHED MDO_V1.2_2013-10-21 =0
B guo Project i Palette b
MDO_V1.0.wf =
[MDO_V1 1.wf ly Select
MDO_V1.2.wf fe—r 4 Draw Connection
MDO_V1 3.wf Merger Mass Input Wing P Open Connection Editor
MDO_V14.wf
A (> Deta Flow
& Execution @
X Excel
0, Seript
i S VU Ry A e v
Control Optimizer Wing AeroCluster - Simple Wrepper
— (> Studies
T (& Under Test
& Cluster
ar 1 | # Design of Experiments
as &]
Converger Mesh Extract (&> User Integrated Tools
A Mass
Wing
[& Workflow List &3 » @ @ ~ O||[B Log | & Network View | = Properties | [E] Workflow Console | & Workflow Data Browser | L& Optimizer 22 =0
jlae St Property Value MDO_V1.2_2013-10-21
MDO_VL3 2013-10-21 1., FINISHED showlegend false 097 e
MDO_V1.3 2013-10-21 1. CANCELED showTitle 1rue 096 - “~_
MDO_V11_2013-10-211... FINISHED title MDO_V1.2 2013-10-21.... - ™~
V12 - 094 -
MDO_V13_2013-10-21 1... RUNNING traces Trace [2] — ~ \
MDO_V1.2.2013-10-21 1. FINISHED XAxes X [1] '_’5,“:91 ™
MDO_vL0 2013-10-21 1. PAUSED Yhxes Yhuis (1] 09 - \
088
S ARG LARSA AAS AR ASEAS LA Mannd MARSA MR SRS AR RRASE AAROA RnAS RS A M ARBSA Janng AR Anandanaba AR Bt
005 01 015 02z 025 03 035 04 045 05 055 06 065 07 075 08 085 09 095 1 105 11 118
« » x
+ || Diagram | Data

Figure 7: Graphical User Interface of RCE. Source: [81]

a open-source software called RCE (Remote Component Environment) and it will be our main
objective to assist in the certification process by documenting these steps thoroughly. Before
heading there, lets have a look at RCE first.

RCE

RCE is a ”distributed, workflow-driven integration environment. It is used by engineers and
scientists to analyze, optimize, and design complex systems” [79] and was published by the
German Center of Aerospace [80]. To improve the readers understanding, Figure 7 shows the
Graphical User Interface of RCE that Engineers interact with. On the left side we see the project
Explorer on the top and a list of Workflows on the bottom. The right side shows an editor
palette on the top. The remaining space at the bottom shows the properties of the currently
selected component. In the center we can see a workflow called MIDO_V1._4. A workflow is
made up of components, which are represented as squares and can either be user-integrated
tools or multi-purpose functionalities provided by RCE. These components can be coupled by
building connections between them, which allows a sender component to transmit data to one
or multiple receiver components inside the same workflow. The illustrated Workflow starts with
an Input Wing, which sends data to the Wing. From the Wing data gets transmitted to an
Optimizer, which invokes a loop. A loop is executed multiple times until the driver component,
here the Optimizer, finishes it based on some certain criteria. After pressing the Run Button,
the Workflow starts its execution. RCE Workflows can get much more complex than in this
example. However, for our purpose its sufficient to keep a basic understanding of RCE, without
diving to deep into the details.

29

; ; R
1 e

e : I b

+ 5_}, Desig..ments Preparing

Desig...ments [Preparing

] g 4 g
Analysis Simulation Analysis Simulation
(a) Pre-Execution Workflow (b) Post-Execution Workflow

1x a
<‘>
18x a X
Provenance
RCE Folder
(c) Overview of exported Files (d) Structure of a Components JSON-File

Figure 8: Generation of Provenance Data from RCE

Use-Case, Goals and Users

Engineers exploits the variety of tools inside RCE to compose workflows that model the entire
VPH-process. As shown in Figure 9 the process begins with the Digital Design, where an engineer
build and store a digital prototype of an aircraft component. During the Virtual Manufacturing,
that takes place afterwards, different operations like simulating carbon fibres, infusion with
synthetic resin and curing taking place. If standards are violated by deformation of components,
it is possible to return to the design process at low cost. If all requirements are met, the process
continue with the third Phase. During Simulated Testing components are runs through finite
element simulation. If the tests fail, its easy to return to the Digital Design again. Otherwise
the last phase is reached. In Certification the tests and simulation results have to be verified
by a responsible authority. Since the authority decides on the approval of the component and
a defective component poses a high risk to flight safety and human life, it is essential that
the inspection is carried out conscientiously and that the entire development process has been
documented in a comprehensible manner. To create a documentation system which accomplish
this task, is the overall project goal. Therefore the intended users of the system are engineers
of a research institute and the authorities that are responsible for certification. The number of
expected users is between 5-20 for the research institute and between 1-10 for the authority. It
must be possible to add new users flexibly. It is desired that the engineers, who work on the
VPH-process can store their results on the documentation system. When the engineer find a
design configuration that pass the virtual manufacturing and the simulated testing, he will send
a certification request to the certifier. The certifier should be able to check these work results
from the documentation system.

30

Data

Lets have a closer look at how the work result, i.e. the data looks like. The first three phases
inside the Remote Component Environment are Workflows, which are stored as a RCE internal
file format on the engineer’s local system. Having a copy of this file allows a certifier to open
and execute the whole workflow on their local system if they installed RCE. However, to ensure
traceable documentation, it is desirable to determine whether the workflow has been documented
in the system and which employee produced it at what time. This can be achieved by exploiting
the RCE-Provenance-Plugin. To understand how the Plugin works and what data it delivers,
we take a look at an example. Figure 8 shows the Process of when and how Provenance Data is
generated. In 8a we can see an example workflow in RCE. It comprises 5 components, with one
input and one loop around the Design Experiments component. After executing the workflow,
we can see the result in 8b. The small number in the top right corner of each component indicates
how often a component has been run through the workflow. Summed up we had 18 component
runs in total. This number indicates how many Provenance Documents are exported. When we
look at 8, we can see the 19 files got exported from RCE. These are 1 JSON file for the whole
workflow and 18 JSON files for each component run. The JSON files are stored automatically
in a folder on the local filesystem, where the instance of RCE was running. Each file contains
provenance information about the run of a component or the whole workflow. To understand
the structure of the Documents we can have a look at 8d. Each document starts with a bundle
node, that contains an ID of this run. Under the ID we can find the Provenance information
encoded according to the W3C PROV Standard. The diagram is only intended to provide an
overview, but it is worth mentioning that the produced documents usually contain all types and
relationships of PROV that are presented in Chapter 2. A complete Provenance Document for
a WorkflowNode is shown in Appendix C.

5.2 Documentation of Requirements

By employing survey techniques, the previous section gathered a large amount of information
about the use case and the requirements of the system. In order to structure the wealth of
information, natural language and model-based representation methods can be used, each with
their respective advantages and disadvantages [73]. Natural language allows the expression of
all types of requirements without the need to learn a notation, however it can be ambiguous or
misleading. On the other hand, model-based representations permit the isolated examination of
a system from different perspectives and avoid misunderstandings, but they require the learning
of at least one and sometimes even several notation forms. In order to take advantage of the
benefits of both approaches, Pohl and Rupp [75] suggest using hybrid forms, where one or more
models are combined with natural language requirements. Figure 9 shows a hybrid model for the
underlying use-case, using BPMN [82] notation to visualize the use-case and Rupp’s sentence
template [74] to describe the requirements by natural language. The requirements were derived
by reviewing the notes taken during the interview and highlighting key points related to the
system’s goals, user needs, and other categories we specified in Table 6.

5.2.1 Functional and Quality Requirements

As a result of requirements eliciting, we have learned that the stakeholders’ requirement is a
documentation platform. The platform is connected to two parties: The research institute, which
drives the development of aircraft components, and the authority, which is responsible for the
certification of aircraft components. The processes within and between both parties, the research
institute and the certifying authority, have been described in the previous section and are sum-
marized in the hybrid model, shown in Figure 9. To support the documentation process, the
documentation platform shall provide engineers with the ability to upload W3C PROV docu-

31

ments, keep record of the uploaded documents and provide certifiers with the ability to check,
whether a document has been uploaded, as noted in F1 - F3 of Figure 9. The engineers, that
are involved in the manufacturing are not fixed. The same goes for the staff of the certification
authority. In order to be able to react flexibly to changes in staffing situations, it is the fourth
functional requirement to enable both institutions to create new user accounts. Moving on to
quality requirements, according to Q1 the system shall ensure that only valid W3C PROV-JSON
documents are uploaded. The documents of interest are provenance documents exported by the
RCE-Provenance-Plugin and have the PROV-JSON format by default. Besides that, there is
no external data that is intended to store, hence we believe it would improve data quality by
restricting the upload of unwanted file formats. It can happen by mistake that the wrong data
is selected and uploaded. Therefore, such a constraint is an additional protection mechanism for
the uploading engineer.

Requirement Q2 states that the system shall provide a user-friendly interface to interact with,
that does not require any knowledge of programming languages. Accessibility is important be-
cause the users have varying levels of technical expertise and the system should be straightfor-
ward to use for all of them.

Q3 focuses on the need for the system to capture and save metadata about the upload of data,
specifically the responsible engineer and timestamp. This information is critical for tracking
changes and identifying accountability for documents that have been uploaded. Having an un-
derstanding of who has been uploaded and when can be an important component of tracing the
development process for the certification authority.

The fourth quality requirement Q4 specifies that only authorized persons within the organiza-
tions shall be able to add data. Only members of the research institute shall be able to have
this permission, as they are the only party that creates workflows. In order to maintain system
reliability and trustworthiness, it is critical that no other person can upload data.

Q5 emphasizes the need to protect sensitive data and ensure that no private information or
provenance data becomes publicly accessible. It is a serious concern and also legally relevant
to protect employees’ identities. The system should not expose any personal data that could
identify the individual.

Q6 specifies the need for the system to ensure that stored data remains available for at least
80 years. Based on the interview, it appears that documents pertaining to the development
of approved aircraft components must be retained for this period of time. It highlights the
importance of longevity and long-term storage of the data, as it may need to be accessed and
referenced for many years to come.

5.2.2 Constraint: Why Blockchain?

Our system’s primary constraint is the use of blockchain, which brings up the inquiry of why
utilizing blockchain instead of a conventional database. We could trust our stakeholders, but in
our perception is vital to ask such questions because trends and buzzwords surrounding new
technologies can lead to unrealistic expectations and over-optimism among stakeholders. Often,
technology vendors and solution providers make promises of significant benefits, cost savings,
and growth, which may not necessarily align with the actual characteristics and requirements of
the system. Therefore, it is crucial to be cautious and critically evaluate whether a blockchain is
a right fit for a use case, to prevent unnecessary spending, disappointment, and wasted resources.
A good reason to use blockchain is the absence of trust between the parties involved. The
research institute and the certifying authority can be considered as counterparts. The certifier
is obliged to thoroughly check that the development process and the component itself meet
all requirements. Otherwise, the certifier can be held responsible later when certifying a faulty
component. Critically questioning and not trusting the work of the Institute is a part of his
responsibilities. The research institute on the other hand invests work, time and money in the
development of a component and has an economic interest in a fast and successful certification.

32

Every delay and problem costs money and submitting documents and waiting can be experienced
as bureaucratic. Additionally, there is generally a lot of mistrust regarding public administrations
in Germany. In a study conducted in the Summer of 2022 around 34% said that they do not trust
public administrations [83]. Public institutions are seen as disorganized, slow, and inefficient.
Therefore, problems and delays in certification can be blamed on internal work errors and lost
documents, instead of mistakes by the engineers themselves. A conventional database may not
be the optimal choice in this case as there is a risk of data tampering, loss, or manipulation,
which can lead to trust issues between the parties. In contrast, a blockchain-based solution with
immutable and secure data storage can establish trust and allow both parties to track and quote
uploaded data, making it more suitable for the creation and certification of aircraft components.
Immutability ensures that the data uploaded to the blockchain cannot be altered or tampered
with, providing an indisputable record of the work performed by the engineers. This is especially
important here, where the safety of the end-user depends on the quality and reliability of the
product. Furthermore, data sharing is necessary because the engineers of the research institute
need to share their work results with the certifying authority. This sharing of data ensures that
the certifying authority has access to all the information necessary to make an informed decision
about the quality of the aircraft components.

33

¥€

Virtual Simulated Cerfiication
Manufactoring @ success| Request
Ready for Component

production rejected

RCE
Workflow

Digital
Design

Start Design of an
Aircraft Component

PROV Documents

Storing Provenance
Information

Validation of PROV Documents Certification -)
Procedure

Documents

Validation Result

Blockchain

I\

F1. The system shall provide engineers with the ability Q1. The system shall ensure that only valid W3C PROV-JSON C1. The system should use a blockchain to
to upload PROV documents of nodes and workflows documents are uploaded ensure immutability of data

F2. The system shall be able to keep record which
documents has been uploaded

Q2. The system shall provide user's a Interface to interact,
that dont require knowledge of a programing language

F3. The system shall provide certifiers with the ability
to check, whether a workflow or node has been
uploaded

responsible engineer and timestamp are saved
Q4. The system shall ensure that only authorised persons

F4. The system shall provide the involved parties the
ability to create accounts for their users

within the organisations can add data
Q5. The system shall ensure that no sensitive data, i.e.

{Q3. The system shall ensure that for an upload, the }

private information about participants, organisations or
provenance data becomes publicly accessible

Q6. The system shall ensure that the stored data is available
for at least 80 years

Figure 9: Mixed Documentation Model: Use Case Diagram and Requirements

6 Concept

This chapter presents a concept for a blockchain-based documentation platform that aims to
provide tamper-resistant storage of PROV documents. It is intended to give a high-level overview
of the system and to discuss design decisions behind the platform, with a focus on the non-
technical aspects of the system.

The proposed architecture in section 6.1 introduces the components of the system and establishes
a connection between the requirements of the system and the proposed components that strive
to satisfy them. The following two sections, 6.2 and 6.3 provide an in-depth discussion of the
storage type for PROV documents revealed in the Systematic Literature Review (SLR) and the
blockchain technology most appropriate for the use cases based on the theoretical background.
Section 6.4 proposes a smart contract structure, which aims to design methods and variables
necessary, to ensure that the functional requirements are met. Afterward, section 6.5 proposes a
user-friendly GUI to facilitate easy interaction with the system. The permission management is
handled in section 6.6. Overall, this chapter provides a comprehensive blueprint for the develop-
ment of a blockchain-based documentation platform, with a focus on practical applications and
user experience.

6.1 Architecture

We designed the architecture of our blockchain-based system according to the ”form follows
function” principle. The components that we have chosen to include are intended to contribute
to meeting the requirements outlined in the previous chapter. In the following, we aim to give
an overview of the components, that are discussed in detail in the following sections and explain
how they are related to the requirements. The architecture is presented in Figure 10. To meet
the four functional requirements, we introduce a Smart Contract and a Graphical User Interface.
Smart Contracts are the common way to implement and deploy logic on the blockchain. After
deployment, the Smart Contract is stored as bytecode inside the Blockchain, which is distributed
across the network. To simplify the interaction with the blockchain and meet requirement Q2
we provide a Graphical User Interface. In order to interact with the contract and read its byte-
code from the chain, the GUI accesses the contract’s Application Binary Interface (ABI) code.
Uploading PROV documents (F1), providing the ability to check whether a workflow has been
uploaded (F3) and the ability to create accounts for users (F4), are functionalities included inside
the Smart Contract and the GUIL The document store lies inside the Smart Contract (F2), which
makes sure that the data is stored on the blockchain. To prevent duplicate, redundant storage
and preventing another attack vector, the GUI doesn’t maintain a data store and is mainly a
simple interface to interact with the contract and access its functions. Additionally, the GUI
implements the functionality to encode documents and check if they have the valid format (Q1).
We'll execute those steps in the GUI to reduce the computation that run on the blockchain.
Additionally its more convenient to implement more complex logic in the GUI, because it can
be implemented in a general-purpose programming language. Compared to domain-specific pro-
gramming languages like Solidity, GPL’s are more versatile and provide a collection of libraries
and packages that simplify the processing, validation and encoding of provenance data. Using
blockchain was a constraint of the system. Since blockchain stores the sender of a transaction and
the timestamp, it provides the information necessary to satisfy requirement Q3. To ensure that
only authorized persons within the organizations can add data (Q4), the smart contract func-

35

Blockchain

Smart Contract

| Check Document Registration Upload ‘
l Documents Store 9 Documents ‘

Smart Contract Access
T Permission

| Blockchain Access Layer |

Call view Function Build Transaction
Abicode

Graphical User Interface

Bytecode

Registration Check Page Upload
> Page Page

Document Encoding

Interaction

Clients

Blockchain Network

Credentials

Admins [«

A

Users

Figure 10: Architecture of the System

tions are secured by a role-based permission management system. The permission management
restricts uploading documents to the intended users. Users are authenticated by their credentials
on the network. Whenever a user wants to upload a document using the GUI, he has to pass the
private key that only the user itself knows. Additionally, to users, there are admins, that have
the right to register users and admins. Both organizations are issued one admin initially, who
holds the responsibility to manage the users of the organization. The permission management
is explained further in section 6.6. The requirement Q5, which is to ensure that no sensitive
data becomes publicly accessible, affects the decision of how PROV data can be stored on the
blockchain and is discussed in section 6.2. By relying on the blockchain authentication system,
which identifies users according to cryptographic keys, we avoid exposing personal identities
to the public. The only remaining requirement is that stored data should be available for at
least 80 years. While being persistently stored on the blockchain, we cannot guarantee that the
lifetime of the network will succeed 80 years. However, through the smart contract it’s possible
to extract data from the data store at any time, which can later be used to migrate the system
to another blockchain network.

6.2 Storage of PROV Documents

The Systematic Literature Review revealed different strategies to store W3C PROV Documents
on Blockchain. In the underlying use case, each workflow consists of multiple W3C PROV Doc-
uments, one for each component run, which will result in between 50 to 100 PROV Documents
for one workflow on average. The underlying documents can reach enormous sizes with a high

36

number of included entities, activities, agents, and relationships. As stated in the SLR, keep-
ing data off-chain and only storing its fingerprint on-chain is an efficient way to handle large
amounts of data. In our use case, .rce files are stored locally on the engineer’s systems. Engi-
neers keep track of their own rce files and when they finish a workflow, which they potentially
want to certify, they can upload the included provenance files to the system. The system shall
keep a tamper-proof record of the upload to ensure the traceability of the development process.
Since the certifier, who will verify the process later, will receive a copy of the original file, from
which he can reproduce the workflow and export included provenance files, it’s sufficient if the
system stores a fingerprint. When a certifier wants to check if a workflow has been uploaded,
the responsible person can upload the provenance records to the system, which calculates and
compares its hashes. Keeping only the fingerprint on-chain also avoids exposing the actual prove-
nance data to the public, which is in line with Requirement Q5. As a result, we decided to store
hashes of data on the Blockchain. The second dimension revealed in the SLR is if we would store
W3C-PROVs document or elementwise. We want to make use of the property, that each run of
a component produces a own provenance entry and store the hash of a workflow together with
each component run. This way we benefit from higher security and the ability to provide diffs.
The higher security is achieved by making it necessary for attackers, to hack multiple hashes. In
the case of SHA-256 it is believed to be almost impossible to modify a document in meaningful
way to achieve the same hash. This risk is decreasing further, when attackers would have to
crack between 50-100 hashes. Secondly, by storing the components runs to a workflow, in case
of tamper the system can tell exactly which components have been tampered, providing more
specific information about the abbreviation for certifiers. It is possible that two semanticly equal
provenance documents produce different hashes. This is the case when documents contain spe-
cial characters that have no effect on the actual PROV document, such as blank spaces or when
PROV elements inside the document are listened in a different order. To avoid these effects on
the hash, the PROV documents are canonicalized before hashing, as proposed in [62]. Since the
input provenance data is in PROV-JSOn format, we’ll use the JSON Canonicalization Scheme
[84]. JCS creates a uniform JSON representation by serialising primitive JSON data types and
sorting JSON object properties lexicographically, which allows to exchange JSON data ”as is”
[84].

6.3 Blockchain Technology

This section will discuss the selection of an appropriate type of Blockchain. After careful consid-
eration, we have identified the following options: forming a private Blockchain network, creating
a consortium Blockchain, joining a public network, or joining a consortium network. The up-
coming discussion will explore the uses of each option based on the properties of Blockchain
types that were identified in the theoretical background and captured in Table 1.

6.3.1 Discussion

Private Blockchains are widely utilized by businesses and organizations due to their high level of
scalability and privacy, which surpasses that of public Blockchains. Typically, private Blockchains
are used within a single organization. However, their centralized nature creates a single point of
failure that increases the risk of tampering. As we are seeking to develop a solution that involves
two organizations, consortium Blockchains become relevant. These types of Blockchains offer a
balance between the scalability and privacy of private Blockchains, while also reducing the risk
of a single point of failure.

Consortium Blockchains keep most advantages of private Blockchains, as high scalability and
privacy and bring a higher level of decentralization, so that they avoid a single point of failure.
The members of both parties could participate as nodes in the network. However, since both

37

parties have opposing interests and there is a lack of trust between them, there is a risk that one
party gathering their power to attack the network. To reduce the risk of attacks, its important
that none of the parties has the majority of power when it comes to achieving consensus. This
can be quite difficult in a 2-party network. In case of Proof of Work, it would be necessary to
limit the computational power of each party below 51%. That is only the case when both have
exactly 50% computational power, which is hard to guarantee, especially with the chance of
nodes going off- and online. Consortium’s usually utilizes concensus mechanisms like PBFT or
proof of authority. PBFT cant be a choice, because it fails when more then 1/3 of nodes are
fraudulent. In a PoA network it would be comparable easy to make sure, that the validators
are equaly distributed among the nodes in the network. This way it can be ensured, that none
of the parties have the majority of power over the concensus mechanism and tamper the chain.
However, it could still happen that both parties don’t agree on a state, e.g. when one party
blocks that valid transactions are added to the chain. Therefore we believe that its difficult to
construct a secure consortium, including only two opposing parties. Hence we consider to join
an existing network.

Public Blockchain are known for providing higher security with a much lower risk for data to
be tampered. They eliminate the need for a third party, since the immutability and traceability
of data can be trusted. On the other hand their low scalability and high transaction cost makes
them a burden to use. scalability was no specific requirement of the stakeholders, however it
can be a basic threshold feature. The high transaction cost and the volatility of transaction fees
lead to a incalculably risk of exploding cost. There might be several public Blockchains, that are
cheaper than the most famous ones, but believe they are more risky to disappear unexpectedly
or more vulnerable to attacks.

The advantages of Consortium Blockchains were stated earlier in this section. Creating a consor-
tium Blockchain was not favoured, because of the difficulty to achieve trust without a third party.
However, joining an existing consortium Blockchain that distribute validation power among mul-
tiple independent institutions can provide a balance of power and lower the risk, that a malicious
party takes over. Joining a consortium Blockchain can provide a significant amount of security
combined with the scalability and low cost of a private Blockchain. That only trusted members
can join the network and the level of decentralization lead to a lower risk of tamper and eliminate
the need for us to include a 3rd party. At this point, we do not want to endorse any particular
consortium Blockchain for participation. However, based on our the scientiftic focus of this use
case we believe that the Bloxberg Blockchain would be a good match.

6.3.2 Bloxberg Blockchain

The bloxberg Blockchain [85] operates as a consortium with a focus on facilitating scientific
collaboration, enabling research institutions to join and issue nodes to the organizations they
collaborate with. Currently, the consortium comprises of 42 independent institutions, each con-
tributing an authority node to validate transactions. We are of the opinion that the diversity of
reputable institutions provides a significant level of trust, which in turn enables the potential of
Blockchain technology to ensure immutability and traceability.

Offering a decentralized network to the global scientific community, the bloxberg infrastructure
is the first of its kind to be maintained on a truly global scale. It delivers autonomous and robust
services that transcend institutional boundaries, providing researchers with unprecedented access
to a decentralized scientific network

Bloxberg was established by the Max Planck Society and ten founding research organizations
in the February of 2019. It comprises organizations that possess in-depth knowledge of DLT
in scientific research and recognize the potential of a decentralized global scientific infrastruc-
ture for the scientific community worldwide. The bloxberg infrastructure is composed of two
primary components; the bloxberg technology, which includes nodes and smart contracts, and
the governance model that outlines the network’s rules. The infrastructure is built on top of a

38

permissioned Ethereum Blockchain. Ethereum is a good fit for our application, because of its
stability, which it has proven under a high number of nodes on the mainnet and its ability to
run smart contracts on the Ethereum Virtual Machine. Smart Contracts give us the flexibility
to implement programmable code that fullfil our functional and quality requirements.
Bloxberg uses the Authority Round (AuRa) algorithm [86], which is based on Proof of Authority
(PoA). Unlike Proof of Work (PoW), that require nodes to solve complex mathematical problems,
a PoA consensus algorithm utilizes a set of "authorities” (in bloxberg called Authority nodes)
that are explicitly permitted to create new blocks and secure the Blockchain. For a block to
become a permanent part of the record, the majority of the authorities must sign it. To do so,
first a leader is selected among the authority nodes. The leader is the only one that can issue a
block. It is selected by the following formula:

Leader = (uniztime / block creation time) mod Validators (6.1)

In Aura, two separate queues are maintained by the authorities; one for transactions (Q;) and
another for pending blocks (Qp). The leader proposes a new block during each step of the
consensus process, which includes a header containing the step number and the leader’s signature
of the block hash. The block is then broadcasted to the authorities for verification. Aura depends
critically on the time synchronization of the validators. The Bloxberg infrastructure consists of
Authority nodes and non-Authority nodes, with each member required to operate at least one
Authority node. The Authority nodes perform computational activities and validate and store
blocks and transactions of the distributed ledger, while the non-Authority nodes are responsible
for communicating with the network. To join the Bloxberg network, an applicant must fill out a
form on the official website, and the Iron Throne adds the applicant to the voting application. If
the voting is successful, the new member is accepted as an authority node. Bloxberg’s currency
is named bergs, which are provided without cost, making deploying and using smart contracts
entirely free.

6.3.3 Accessing the Network

Bloxberg allows to issue a limitless number of non-authoritive nodes. This nodes can participate
in the network without having the responsibility to validate transactions. This has the advantage,
that even when we the number of users from both institutions differ, it wont impact the power
balance in the network. In case bloxberg will be utilized, we issue one node to the research
center and one to the certification authority. Both institutions can, whenever they need access
for employees, request additional nodes from the Bloxberg Consortium. Admins can register
the new nodes to the system. With their private key, users can then interact with the network.
The registration of new users and the interaction with the network is simplified by providing a
graphical user interface, which is described in detail in section 7.2.

6.4 Smart Contracts

As a Ethereum-based Blockchain Network, Bloxberg supports the execution of smart-contracts in
the Ethereum Virtual Machine. To enable users to interact with the Blockchain in the desired way
and to satisfy the requirements, smart contracts will be employed in our concept. The structure
of the smart contract is organized in a way, that align with the goals of our requirements. Since
every component call can be considered a node in the workflow graph, we will stick to the terms
node and workflow.

In section 6.2, we mentioned to store the hashes of provenance documents on-chain. Hence, the
smart contract need to store workflow hashes and node hashes (component calls). Workflows
and nodes could be implemented as follows:

A Workflow will consists of two fields:

39

e Hash of the workflow
e List of included node indices

A Node consists of its hash. We will obtain multiple workflows and nodes, hence we can store
them in a list:

e List[Workflow] workflows
e List[String] nodes
The required functionalities of F1 - F3 can be implemented by the following methods:
e Methods to upload workflows and nodes
e Methods to check whether workflows and nodes are already stored on the chain

The simplest version to achieve the first functionality is by creating a Upload Workflow(string)
function, that takes the hash of a workflow as a parameter and adds it to the list of workflows.
Uploading nodes can be approached with a similar logic. However, as it is required to up-
load workflows alongside its nodes and we wanna reference the nodes inside a workflow object,
its more convenient to define one function: add_workflow_and nodes(string, List[string]),
that stores workflows and nodes at once.

Next the contract should provide the functionality to check, whether a workflow or a node has
been uploaded or not. Checking workflows and nodes individually can be achieved straightfor-
wardly by the methods:

e check Workflow(string) -> Bool
e check Nodes(List[string]) -> List[Bool]

To check for workflows, the first method takes a hash and returns true when the hash has been
uploaded or false if not. Similarly, check_Nodes takes a list of hashes and returns a same-sized
list of boolean values, that tells for each node, if it was uploaded. This way it is possible to check
individually for a workflow and a list of nodes if they got uploaded to the chain. However, yet
it is not possible to check if a list of nodes is completely representing a workflow and to which
workflow they belong. Hence we add a third function:

check_WorkflowAndNodes(string, List[string]) -> Tuple(List[bool], uint)

This function will take a string representing the workflows hash and a list of strings representing
the nodes hashes as parameter. It returns a list and an integer. The list has the same length as the
passed nodes and indicates for each, if its uploaded and assigned to the passed workflow. Hence it
tells the user, if the nodes have been uploaded together with the workflow. The unsigned integer
indicates the number of missing nodes, i.e. nodes that belong to the workflow, but haven’t been
passed. Overall the function reveals, if the passed nodes belong to the workflow and whether the
passed nodes cover all nodes of the workflow.

The methods to add PROV Documents and check if they exist expect hashed documents as
parameters. To this point we left the question out, how those hashes are obtained from PROV
documents. This task will be fulfilled by the GUI, which is going to be explained in the next
chapter.

6.5 Graphical User Interface

After conceptualizing basic attributes and functions one question to ask is, how users may
interact with the smart contract. To keep the user experience straightforward and simple, a

40

GUI-client will be provided. The client extends the functionalities of the smart contract and
helps the user to interact with the system without the need to write code. Additionally the GUI
performs some pre-checks before data is uploaded. While Blockchain can deliver tamper-resistant
and traceable storage, it cant determine whether uploaded data is valid. Therefore, data input
is prone to errors and can lead to the permanent storage of erroneous data. By checking input
operations before uplods are performed, we hope to improve the quality of stored data.

The GUI provides different panels. One panel is for the Upload of Provenance Documents. This
panel allows users of the research institute to select PROV-JSON from workflows and nodes
and upload them to the system. We restrict the selection to.json files, because thats the export-
format of the RCE-Plugin and expect the filenames to match the original Plugin export name
format. After selecting documents the interface performs a pre-check. During the pre-check the
system verifies, if the number of selected nodes matches the number of nodes specified in the
workflow document. This information can be achieved by counting the number of hadMembers
inside the workflows PROV Document. We distinguish workflows and nodes according to their
filenames. Only if the number matches, the user can click a upload button. After clicking the
upload button, the user is asked for his private key. The key wont be stored, to avoid the client
from storing sensitive information. After the user entered his key, the documents get converted
to PROV-XML, cancollized and hashed. The hash will then be broadcasted to the Blockchain
network, by building a transaction that pass the hashes to the upload_workflow function in the
Smart Contract.

Another panel allows to check if a document has been uploaded, hence establishing a connection
between the GUI and the check_nodes, check_workflow and check NodesAndWorkflow func-
tions of the Smart Contract. The User will have the option to select workflow and node files and
can check them seperately by clicking either the check workflow or check node button. Both of
the buttons will cancolize and hash the documents before calling the smart contracts, to ensure
that the processing procedure is the same as at the Upload Phase. The Check Workflow Button
will call the check workflow method and display the result to the user. If the check returns
true, i.e. if the workflow was stored on the Blockchain, the system will additionally provide
address of the uploading user and the transaction time. The functionality of the check node
button, depends on whether a workflow has been selected or not. When the check node button
is clicked and no workflow has been selected, the nodes are checked by making a call to the
check_nodes function. When the result is ready, a list of uploaded nodes is displayed alongside
with the information, if the node was found on the chain or not. The user can press a details
button, to show the upload time and address of the uploading user. If workflows and nodes has
been selected, a click on the check node button calls the check_NodesAndWorkflow of the Smart
Contract. This time, additionally to the information if the node has been uploaded, the user
recieves the information if a node is included in the workflow. Again the details button provides
uploader and upload time information for each entry.

The third Panel is the Registration Panel. The Registration Panel allows admins to add new
users and admins to the system. To add them they specify the private key of the candidate
and press the ”add user” or "add admin” button. To check whether the person who try to
register new users has the permission and is an admin, the user has to type in their private key.
The added users and admins are institution specific. Hence admins of the DLR register DLR
users and admins; CA admins register CA users and admins. The different roles and the rights
associated with them are discussed in more detail in the next section.

6.6 Permission Management

As a last component we enrich our system by a role-based access control system to provide
institutions and users with varying levels of access based on their responsibilities. The control
system will be directly integrated into the smart contract. This way user roles can be identified

41

by their address in the network and we avoid adding another authentification layer. We define
four roles: Creater, CreaterAdmin, Viewer and ViewerAdmin, where the first two are issued to
members of the DLR and the last two to members of the Certification Authority. Creaters are
provided with permission to write. Members of the DLR shall be able to upload their workflow
provenance exports to the documentation system and hence need the right to write data to the
contract. To implement this, Creaters have an exclusive right to the add_workflows function
and can call the check and get functions as well. CreaterAdmins inherits the Creater rights and
can additionally grant the Creater and CreaterAdmin role. CreaterAdmin and ViewerAdmins
are the roles, which are issued to the institutions initially, which allow them to manage and
register additional users to the system. Viewers and ViewerAdmins belong to the Certification
Authority, which needs to check if documents have been uploaded, but shouldn’t be able to add
elements to the contract. Hence they can call the check and get functions. The ViewerAdmin
works like the CreaterAdmin and allows the registration of new Viewers and ViewerAdmins.
We are aware of the fact, that data stored on the Blockchain can be accessed by public. Hence
the access control cant prevent data on the chain to be viewed. So it might be argued, that the
access control is useless for the function that don’t modify the contracts state, like the check
and get functions. Since we do not store any sensitive information on the chain, it would not
be harmful at all if someone else were to disclose data. However, we believe that by restricting
access to the smart contract functions, we are making it more difficult to interact with the
contract.

42

—_ =

e RNoNe JEN Ne]

7 Software Prototype

In this chapter, we will propose a software prototype that was developed to test the feasibility of
our concept. The prototype was designed and implemented with the goal of demonstrating the
architecture, key features, and functionality of the proposed solution. It consists of the imple-
mentation of a Smart Contract in section 7.1 and a Graphical User Interface in section 7.2. Both
implementations are explained by providing pieces of code. However, the full implementations
can be accessed in Listing 2 and 3 of the Appendix.

7.1 Smart Contract

Access Control

To control the access to our smart contract we used OpenZeppelins AccessControl [87]. Com-
pared to common alternatives like Ownable [88] and Whitelist [89], AccessControl is the only
contract that is capable of handling multiple roles and owners at a time. AccessControl is an
abstract class, that allows to grant and revoke roles flexibly. As the class-diagram in Figure
16 shows, AccessControl.sol inherits from IAccessControl, ERC165 and Context.sol. IAc—
cessControl is an Interface, that defines method signatures and events for setting, revoking
and getting roles. ERC165.s0l and Context.sol are abstract classes. The first one provides an
enhanced way of inter-contract communication, while the latter makes messages sender and data
accessible.

AccessControl.sol stores the current state of roles as a mapping, which is a datatype storing
key-value pairs, similar to a dictionary or a hashmap in Java and Python. Via the internal -
grantRole and _revokeRole methods, roles can set and revoked flexibly. The onlyRole modifier
can be added to functions, to restrict its execution to certain roles. Roles can be grant and
envoked by the defaultAdmin, which is initially set to the address who deploys the contract.

contract Prov is AccessControl {
bytes32 private constant CREATERROLE = keccak256 ("CREATER_ROLE");
bytes32 private constant VIEWERROLE = keccak256("VIEWER_ROLE");
bytes32 private constant CREATER.ADMIN_ROLE =
keccak256 (" CREATER_ADMIN _ROLE") ;
bytes32 private constant VIEWERADMIN ROLE = keccak256("VIEWER_ADMIN_ROLE");

Listing 7.1: Access Control related Attributes of the Contract

The Prov Contract inherits from AccessControl.sol. As shown in Line 7 - 11 of Listing 7.1,
Prov contract defines four roles: Creater, Viewer, CreaterAdmin and ViewerAdmin. As men-
tioned in section 6.6 of the concept, Creater roles correspond to the research institue and viewer
roles to the certification authority. Roles are identified by a 32 bytes identifier, which is gener-
ated by applying the keccak256 hash function to the role name. Roles can be granted by calling
the respective grant functions, defined in lines 29 - 53 of Listing 7.2. Each grant function is
restricted by an onlyRole modifier, which restricts the access to the function to a specific role.
The grantViewer and grantViewerAdmin functions are restricted to ViewerAdmins; grantCre-
ater and grantCreaterAdmin to CreaterAdmins. When a Account is granted ViewerAdmin or
CreaterAdmin rights, they receive the Viewer (Line 33) or Creater privillege (Line 40) aswell.

Initially one ViewerAdmin and one CreaterAdmin are assigned. This is realized by passing the
respective account addresses to the constructor defined in line 22. Storing documents, realized by

43

the add_workflow_and nodes method in 7.6 is restricted to the role Creater. All other functions
are restricted to members of the four roles, which is checked by the hasAccess method defined
in line 55.

constructor (address creater_admin, address viewer_admin) AccessControl() {
_grantRole (CREATER ADMIN.ROLE, creater_admin);
_grantRole (CREATER.ROLE, creater_admin);
_grantRole (VIEWER.ADMIN.ROLE, viewer_admin);
_grantRole (VIEWERROLE, viewer_admin);

}

function grantViewerAdminRole (
address account

) public onlyRole (VIEWER ADMIN.ROLE) {
_grantRole (VIEWER.ADMIN.ROLE, account);
_grantRole (VIEWERROLE, account);

}

function grantCreaterAdminRole (
address account

) public onlyRole (CREATER ADMIN.ROLE) {
_grantRole (CREATER-ADMIN_ROLE, account) ;
_grantRole (CREATER ROLE, account);

}

function grantViewerRole (
address account
) public onlyRole (VIEWER ADMIN.ROLE) {
_grantRole (VIEWERROLE, account);
}

function grantCreaterRole (
address account
) public onlyRole (CREATER ADMIN.ROLE) {
_grantRole (CREATER ROLE, account);
}

function hasAccess() internal view returns (bool) {
return (hasRole (CREATER ADMIN. ROLE, msg.sender) ||
hasRole (CREATER ROLE, msg.sender) ||
hasRole (VIEWER ROLE, msg.sender) ||
hasRole (VIEWER.ADMIN_ROLE, msg.sender)) ;

Listing 7.2: Methods for granting Roles

Storing Data

Workflows and nodes are stored as attributes of the Contract as shown in Listing 7.3. Nodes
are encoded as a list of strings, where each string stores the hash of a node. The workflow
struct consists of a workflows hash and a list of nodes. The list of nodes holds the index of each
node, that belongs to the workflow. By storing the index, the respective nodes can be accessed
efficiently without the need of additional identifiers.

struct Workflow {
string hash;
uint256 [] nodes;

//arrays for list of workflows and nodes
Workflow [] private workflows;
string [] private nodes;

Listing 7.3: Definition of Workflow and Node contract attributes

44

151
152
153
154
155

157
158
159
160
161
162
163
164

The add_workflow_and nodes method in 7.6 provides the functionality to store provenance
documents. The parameters are a string including the workflows hash and a list of strings
containing hashes of associated nodes. The onlyRole modifier in Line 147 restricts the access
to the function to Creaters. The logic is straightforward. The function iterates over the list of
nodes hashes (Line 151). Each nodes hash is pushed to the contracts list of nodes (Line 152)
and its index is stored in a temporal node list (Line 153). After iterating over all nodes, a
workflow object, containing the hashed workflow and the node list, is pushed to the contracts
list of workflows.

add_workflow_and_nodes (
string memory hashed_workflow ,
string [] memory hashed_nodes
) public onlyRole (CREATERROLE) {
uint256 node_id = nodes.length;
uint256 [] memory node_list = new uint256 [] (hashed_nodes.length);

for (uint i = 0; i < hashed_nodes.length; i++) {
nodes .push(hashed_nodes[i]) ;
node_list [i] = node-id;
node_id++;

workflows . push(Workflow (hashed _workflow , node_list));

Listing 7.4: Definition of add_workflow_and nodes function

Checking for PROV-Documents

The second desired functionality is to check whether a document has been uploaded to the
blockchain. For this purpose, Listing 7.5 defines check_workflow (Line 72) and check nodes (Line
85), which examines whether a workflow or a list of nodes is stored on the chain. Both methods
are view methods, hence they don’t modify the contracts state. The check_workflow function
expects a hashed workflow document as a string and returns a boolean. The method checks
iteratively in lines 74 - 81, whether the string is stored in the contracts workflow array. Strings
in solidity are like a bytes array, so comparing them directly would iterate over the arrays.
Therefore we use abi.encodePacket to transform them into comparable raw bytes before. If the
string is found, true is returned, otherwise false.

The check_nodes in Line 85 method expects a list of hashed nodes as an array of strings. In
contrast to check_workflows, the check_nodes functions returns a list of booleans. Each boolean
entry indicates if a node was stored on the chain or not. Therefore line 89 initialize result, which
is an empty boolean array with the same length as the parameters node list. Between line 90 -
100 a nested loop is performed, that checks for each node of the nodes list, if its stored on the
blockchain. If a nodes hash was found on the chain, its respective entry in the result list is true,
else its false.

function check_workflow (string memory prov) public view returns (bool) {
require (hasAccess (), "Access Denied");
for (uint i = 0; i < workflows.length; i++) {
if (
keccak256 (abi.encodePacked (workflows[i].hash)) =
keccak256 (abi.encodePacked (prov))

) o

return true;
}
}

return false;

}

function check_nodes(

45

string [] memory node_list
) public view returns (bool[] memory) {
require (hasAccess (), "Access Denied");
bool[] memory result = new bool[](node_list.length);
for (uint i = 0; i < node_list.length; i++4) {
result [i] = false;
for (uint j = 0; j < nodes.length; j++) {
if (
keccak256 (abi.encodePacked (nodes[j])) =
keccak256 (abi.encodePacked (node_list [i]))
) A
result [i] = true;
break;
}
}
}
return result;
}

Listing 7.5: Definition of check_workflow and check nodes functions

But how to check nodes and workflows at the same time? This purpose is fulfilled by the check_-
workflow_and_nodes function in Listing 7.6. Unsurprisingly its a view function, that don’t modify
the state of the contract. The method takes the hashes of a workflow and of a list of nodes as
input. It returns a boolean array and an uint256. The boolean array indicates for each node
if it’s assigned to the workflow, i.e. if it’s stored in the workflows node list. The uint256 is
the difference between actual and provided nodes of the workflow, telling how many nodes the
workflow contains, that haven’t been upload. To say it straight the method provides information
about, which nodes are included in the workflow and how many nodes are missing.

To achieve this, in line 109 we check if the workflow is stored on the blockchain. Instead of check_-
workflow, which was defined earlier, we use the private helper function find_workflow, because
we’ll gonna need the index of the workflow later. If the workflow isnt stored on the blockchain,
the method returns a list containing false for all nodes and 0 (Line 115). Otherwise we proceed
with checking, which nodes are included in the workflow. For that line 120 extracts the nodes of
the workflow. Line 121 initialize found_nodes, that counts how many nodes were found, allowing
us to calculate the missing ones later. Between Line 122 - 133 a nested loop checks for each
passed node, if its contained in the workflows nodes list. If so, its entry in the node_check result
array is set to true and the found_node counter is incremented (Line 129 131). The last line
returns the result array and the number of missing elements.

function check_workflow_and_nodes (
string memory hashed_workflow ,
string [] memory hashed_nodes
) public view returns (bool[] memory, uint256) {
require (hasAccess (), "Access Denied");
int index = find_workflow (hashed_workflow) ;
bool [] memory node_check_result = new bool[](hashed_nodes.length);

// workflow not existing
if (index = —1) {
return (node_check_result, wf_nodes.length);

}
uint u-index = uint256 (index);
uint256 [|] memory wf_nodes = workflows [u-index].nodes;

uint256 found_nodes = 0;
for (uint i = 0; i < hashed_-nodes.length; i++) {
for (uint j = 0; j < wf_nodes.length; j++) {
if (
keccak256 (abi.encodePacked (hashed_-nodes[i])) =
keccak256 (abi.encodePacked (nodes|[wf_nodes[j]]))
) {
node_check_result[i] = true;
found_nodes++;

46

OO~ WN

break;

}

return (node_check_result, wf_.nodes.length — found_nodes);

}

function find_workflow (string memory prov) private view returns (int) {
require (hasAccess (), "Access Denied");
for (uint i = 0; i < workflows.length; i++) {
if (
keccak256 (abi.encodePacked (workflows [i].hash)) =
keccak256 (abi.encodePacked (prov))

) |

}
}

return —1;

return int(i);

)

Listing 7.6: Definition of check_workflow_and nodes function

Interacting with the contract

To illustrate how we the interaction with the contract works, Listing 4 give an example. We will
skip the deployment of the contract, because its covered in detail during the Test and Analysis
in section 8.1. For now, its sufficient to know, that the smart contract has been deployed and
is stored in a variable called deployed_prov_contract. The variables dlr_admin_adress and
viewer_admin_address contains accounts, that have been initially assigned as createrAdmin and
viewer Admin, respectively.

The first line shows a call to the get_nodes function, that results in an ” Access Denied” Error. All
function of the contract are permissioned to the roles, we defined earlier. Hence we need to call
the function from one of those. Line 4 repeats the call, passing the dlr admin address to ”from”
entry of the transaction dictionary. This address got assigned as CreaterAdmin and hence is
authorized to call that function. Therefore Line 4 returns [], which is the expected output,
since the nodes list was initialized empty. Line 7 calls the add_workflow_and nodes function
with random strings as workflow and nodes. When calling the get_nodes function in line 10,
the output is still an empty list. The workflows and nodes haven’t been added, because its not
possible to tamper the state of contract without performing a transaction. A transaction have
to be signed by a private key, which makes it more secure compared to a function call. While
it might be possible to obtain someones public key to call a function without authorization, to
modify the state the private key is necessary. Line 13 - 20 includes the function call into a new
transaction. After singning, sending and recieving the transaction recipe, Line 23 calls get_nodes
again. This time, the output in line 24 shows the nodes passed to the add function.

deployed_prov_contract.functions.get_nodes().call()
Access Denied error
deployed_prov_contract.functions.get_nodes().call({ 'from': dlr_admin_adress})
outputs: []
deployed_prov_contract.functions.add_workflow_and_nodes('5', ['6','7','8'])
.call({'from': dlr_admin_adress})
deployed_prov_contract.functions.get_nodes().call({'from': dlr_admin_adress})
outputs: []
transaction = deployed_prov_contract.functions.add_workflow_and_nodes('5', ['6','7T", '8«

‘1)
.buildTransaction({”chainld”: chain_id,

?from” : dlr_admin_adress,

47

”gasPrice”: w3.eth.gas_price,
“nonce”: dlr_nonce})
sign_store_contact = w3.eth.account.sign_transaction(

transaction, private_key—=dlr_admin_private_key

)

send_store_contact = w3.eth.send_raw_transaction(sign_store_contact.rawTransaction)
transaction_receipt = w3.eth.wait_for_transaction_receipt(send_store_contact)
deployed_prov_contract.functions.get_nodes().call({'from': dlr_admin_adress})

outputs: ['6', 'T', '8']

Listing 7.7: Interaction with the Contract

7.2 Graphical User Interface

We provide a GUI to simplify the interaction of users with the blockchain. The GUI consists of
an Upload Page, where users can upload documents to the chain, a Verfication Page, where users
can check if a document has been uploaded and an Admin Page, where Admins can grant User
or Admin rights to other accounts. The prototype includes a complete GUI for the upload page
that can already functionally communicate with the blockchain. The feasibility was assessed
through the development of the Upload Page, while the verification and admin pages may be
implemented at a later time

Upload Page

Figure 11 shows a prototype of the Upload Page. The initial View after opening the Upload
Page is displayed in Figure 11a. The Check Files button is gray until the user selected files
to upload. The user can select files by clicking the white folder button right above the Check
Files button. Once a file was selected, it is added to the file list if it is a .json file and if its not
already in the list. This logic is handled by the select_files method defined between lines 144
- 176 of UploadPage.py in Appendix D. The file list can be cleared by the remove button in
the top left corner. Figure 11b shows the Interface after selecting documents and clicking the
check files button. We selected one workflow, that consists of seventeen components, but only
selected fifteen of those. Hence the check fails and opens a popup that directs the user about
the missing documents. Clicking the button calls the check_files method defined in lines 183 -
231 of Appendix D. This function checks whether:

e exactly one workflow is provided
e number of provided nodes matches number of nodes in the workflow
e files are named like a workflow or node exported by the rce2prov plugin.

After providing all 17 nodes together with the workflow, the check displays a popup including
a success message, as shown in Figure 11c. After a positive check, the check Files button is
substituted by an upload button. Whenever the file list is changed, the user is required to check
the files again, before the interface allows to upload files. By pressing upload the checked files
can be uploaded to the chain. As shown in Figure 11d, therefore the user is required to insert
his private key. If the private key is valid and permissioned to upload the file, the documents get
hashed and uploaded to the chain. This is handled by the upload_files function in Listing 7.8.
After recieving the private key (line 2) and initalizing variables for workflow and nodes (line 3),
it simply iterates over the files, which are stored inside the itemlist (line 4). Since itemlist only
store the ids, and not the paths of the files, line 5 obtains the paths. Line 6 opens a file reader and
pass it to the jcs.canonicalize method in line 7. This method calls the JSON Canonicalization
Scheme [84], that performs three tasks:

e Serialization of primitive JSON data types

48

OO W

e Lexicographic sorting of JSON Object properties
e JSON Array data is also subject to canonicalization [84].

After obtain its canonicalized version, line 8 calculate the documents hash by using the SHA256-
method. Depending on whether its a workflow or a node, the hash is stored inside the workflow
variable or appended to the node list. After iterating over all files, line 14 makes a call to
Web3Provider.upload _nodes_and_workflows function. This function is a class-method defined in
Webprovider.py in Appendix D. It basically creates a transaction including a call to the add_-
workflow_and_nodes function, as we seen earlier in Listing 4. To upload workflows and nodes to
the blockchain, line 14 passes the private_key, the workflow and nodes to the method. Depending
on whether the transaction was accepted by the blockchain, the user either receive a success-
message (line 18) or an error (line 16). In any case, the file list is cleared afterwards (line 20).

def upload_files(self):
private_key = simpledialog.askstring(title="Key”, prompt="Insert Private Key”)
workflow, nodes = 77, []
for item_id in self.itemlist:

path = self.canvas.itemcget(item_id, "text”)
file_reader = open(path)
json_file = jcs.canonicalize(json.load(file_reader), utf8=False)

hash = sha256(json_file.encode(”utf—8”)).hexdigest ()
if "runWorkflow” in path and ”Node” not in path:
workflow = hash
else:
nodes . append (hash)
try:
Web3Provider .upload_nodes_and_workflows (private_key, workflow, nodes)
except Exception as e:
showerror (” Error!” | e)
else:

showinfo (” Upload successful!”

, 7Done! Documents uploaded succesfully.”)

self.clear_files ()

Listing 7.8: Definition of upload_files method

49

Figure 11: Upload Page of Graphical User Interface (GUI)

¢ Docu Sphere -

SPHERE

Upload Documents

Input Directory

(a) Initial Upload Page
e Docu Sphere .

SPHERE

Upload Documents
Input Directory

‘runWorkflow0_json
unWorkflowNode0_json
unWorkflowNode1_json

f Check succesful

o Check successful, Files can be uploaded.

rur .
runWorkflowNode11
unWorkflowNode12
unWorkflowNode

unWorkflowNode14
unWorkflowNode15
unWorkflowNode16

Check Files

(c) Successful Check Case

@ Docu Sphere -

SPHERE

Upload Documents

Input Directory

-/Users/Steven/testfiles/runWorkflow0 json
Steven/testfiles/runWorkflowNode0_json

Mumber of selected Modes is not maching number of nodes

in the provided workflow

J/Users/Steve stfiles/runWorkflowNode9.json
sers/Stevel 3 inWorkflowNode10.json

sers/Steven/testfiles/runWorkflowNode14 json
C:/Users/Steven/testiiles/runWorkflowNode15 json

Check Files

(b) Failed Check Case

Docu Sphere -

SPHERE

Upload Documents
Input Directory

9]

-/Users/Steven/testfiles/runWorkflow0 json
unWorkflowNode0 json

o0 Q

o

unWorkflowNode
unWorkflowNode8

ooQ

unWorkflowNode10 json
unWorkflowNode11 json
unWorkflowNode12.
unWorkflowNode1
unWorkflowNode1
unWorkflowNode1
unWorkflowhode16_json
s/runWorkflowNode17_json

ooQeQ

000

Upload

(d) Upload View

50

8 Tests and Analysis

8.1 Environment

Ganache

We use Ganache to set up a Blockchain Testbed. Using Ganache we can build an Ethereum
Blockchain to develop, deploy and test our smart contract in a local and safe environment.
Ganache brings an Ul that simplifies setting up the blockchain and tracking its state. After
creating a workspace, the User Interface looks as shown in Figure 12. The header allows switching
between six pages: Accounts, Blocks, Transactions, Contracts, Events, and Logs. Initially, the
account page is active. It shows a list of accounts, containing their public address, balance,
transaction count, and index. Each account is initialized with 100 ether. The Block page shows
mined blocks and allows checking each header, contained transactions, and gas. The other pages
display executed transactions, deployed contracts, triggered events, and server logs.
{g) ACCOUNTS

GAS LIMIT HARDFORK NETWORK ID RPC SERVER MINING STATUS WORKSPACE

CURRENT BLOCK GAS PRICE
0 20000000000 6721975 MUIRGLACIER 5777 HTTP://127.0.0.1:7545 AUTOMINING TRUFFLE-SHUFFLE

MNEMONIC HD PATH
candy maple cake sugar pudding cream honey rich smooth crumble sweet treat m/44" /60" /0" /8/account_index

ADDRESS BALANCE TXCOUNT INDEX
0x627306090abaB3A6e1400e9345bC60c78a8BEf57 100.80 ETH 0 0 &
ADDRESS BALANCE TXCOUNT INDEX
0xf17f52151EbEF6C7334FADO8OC5704D77216b732 100,00 ETH 0 1 &
ADDRESS BALANCE TXCOUNT INDEX
0xC5fdf4076b8F3A5357c5E395ab970B5B54098Fef 160.00 ETH] 2 &
ADDRESS BALANCE TXCOUNT INDEX &
0x821aEa%9a577a9b44299B9c15¢c88cf3087F3b5544 160.00 ETH 0 3

ADDRESS BALANCE TXCOUNT INDEX &
0x0d1d4e623D10F9FBASDb95830F7d3839406C6AF2 100.60 ETH 0 4

ADDRESS BALANCE TXCOUNT INDEX
0x2932b7A2355D6fecc4b5c0B6BD44cC31df247a2e 100.00 ETH] 5 &

Figure 12: Ganache User Interface. Source: [90]

To execute the tests in an independent environment and to provide all steps from the beginning,
we use Ganache to initialize a local blockchain including 6 accounts. Table 7 shows a list of
the account addresses and the roles we intend to set them to. Address 1 will be used to deploy
the smart contract to the blockchain. Accounts 2 and 3 are assigned to CreaterAdmin and
ViewerAdmin roles and are intended to be issued to the research institute and the certification
authority, respectively. Accounts 4 - 6 are not assigned any role and will be used to test the
assignment of roles later. The contract address in the last line is obtained after deploying the
smart contract, which is explained later in this section.

o1

Account_ID Address Role

1 0x1a3f71Eef963bC2Be646feb318bFEd5a07993016 -
0x0Ad802eF9c327d7c6A742b118Ced23DF20eDCbFf CreaterAdmin, Creater
0xf075bbAED18B752d076£6D16£f75a9c9CBcCbOb25 ViewerAdmin, Viewer
0x6A3Fd877d4688bA35dCc7D134956C1D2075133e1 -
0xf4A68d730B37925e04efe3D64cFcfDa7ae3A60b3 -
0x17035CEC72£39¢c1£8694EBAF2307769637BES536e -
- 0x9835781C0£5dc776FOEB439fFOEfCB999662B935 Contract

Sy T W N

Table 7: Ganache Test Environment Accounts

Brownie

Before a contract can be deployed to the blockchain network, it has to be compiled. Ethereum
relies on the Ethereum Virtual Machine (EVM), which executes bytecode. Therefore, Smart
contract code written in high-level languages must be compiled into EVM bytecode before it
can be executed. We use Brownie to compile the Smart Contract. Brownie is a Python-based
development and package managing tool for smart contracts. Without Brownie, it can be chal-
lenging to import external libraries into a Solidity Smart Contract. Brownie simplifies installing
and importing packages into Solidity Smart Contracts, by providing a Package Manager. Ad-
ditionally, Brownie supports the organization and deployment of projects. We use Brownie to
keep a clean, reproducible environment. To do so, we started with creating an empty brownie
environment in an empty directory using brownie init. Brownie created multiple folders, in-
cluding a contract directory, which we pasted the contract file prov.sol in. Then we installed
the required package: brownie pm install OpenZeppelin/openzeppelin-contracts@4.8.2
installed the current version of Openzeppelins open access library. In the environment’s main
directory, we inserted the default configuration file [91] and made some modifications. We set
the compiler version to 0.8.0 and under dependencies we added -OpenZeppelin/openzeppelin-—
contracts@4.8.2. The prov.sol contract was compiled by running brownie compile, which
creates a prov.json in the environments build/contracts subdirectory.

Deployment of Smart Contract

To deploy the contract on the Blockchain we use the Web3 Library. Web3 [92] is a Python library
for interacting with Ethereum. We installed the Web3 package inside an Anaconda Environment,
running with Python version 3.7. Listing 8.1 shows the Python script we run to deploy the Prov
Contract to the blockchain. Before deploying the contract, line 4 read in the contracts build
created earlier by Brownie. Line 8 and 10 extracts its abi- and bytecode and store it inside
separate variables. Line 12 establishes the connection to the local blockchain we created. In
Line 14 we assign the Chain ID, which is necessary to build a transaction later. In Line 17,
we use the contracts abi- and bytecode to create a w3.eth.contract object. Line 20 specifies the
account, that will send the transaction to deploy the contract, by its address. As nonce, line 21
uses the transaction count of that account. When deploying the smart contract, the constructor
of the Prov contract is called. The constructor expects two addresses to initialize an admin of
the research institute and certification authority. We take the account addresses 2 and 3 from
Ganache and assign them as admin addresses in lines 23 and 24. Then we create a transaction
object between lines 27 and 34. For that, line 27 calls the constructor of the prov_contract
object and pass the two admin addresses to it. The constructor call is packed inside a new
transaction, that is built in line 28. We pass the chain_id, the gas price, the sender address,
and the nonce to the buildTransaction method. Line 38 signs the transaction using account
1’s private key and line 40 sends the transaction as bytecodes to the blockchain. After the
transaction is finished, we can obtain a transaction receipt. The transaction receipt includes the

52

OO~ Uk WN

transaction hash and the transaction address, which we’ll need to interact with the contract.
Line 46 creates a contract object from the contract address and the abi code. The contract
object can be used to interact with the contract, i.e. call its functions.

import json
from web3 import Web3

with open(”ProvProject/build/contracts/Prov.json”, "r”) as file:
compiled_sol = json.load(file)

get bytecode

bytecode = compiled_sol[”bytecode”]
get abi

abi = compiled_sol[”abi”]

For connecting to ganache
w3 = Web3(Web3.HTTPProvider (”http://127.0.0.1:7545” , request_kwargs={'timeout': 600}))
chain_id = 1337

Create the contract in Python
prov_contract = w3.eth.contract(abi=abi, bytecode=bytecode)

Get the number of transactions

deyployer_address = "0x1a3f71Eef963bC2Be646feb318bFEd5a07993016”
deployer_private_key = 77

nonce = w3.eth.getTransactionCount (deyploying_address)

dlr_admin_adress = ”"0x0Ad802eF9¢327d7c6A742b118Ced23DF20eDCbF{”
ca_admin_adress = "0xf075bbAED18B752d076f6D16f75a9c9CBcCb0b25”

build transaction
transaction = prov_contract.constructor(dlr_admin_adress,ca_admin_adress)
.buildTransaction(
?chainld”: chain_id,
7gasPrice”: w3.eth.gas_price,
"from”: deyployer_address,
”nonce” : nonce,

}

Sign the transaction

sign_transaction = w3.eth.account.sign_transaction(transaction, private_key=¢«
deployer_private_key)

Send the transaction

transaction_hash = w3.eth.send_raw_transaction(sign_transaction.rawTransaction)

Wait for the transaction to be mined, and get the transaction receipt

transaction_receipt = w3.eth.wait_for_transaction_receipt(transaction_hash)

print (£”Done! Contract deployed to {transaction_receipt.contractAddress}”)

Done! Contract deployed to 0x9835781C0f5dc776F0EB439fF9EfCB999662B935

deployed_prov_contract = w3.eth.contract(address=transaction_receipt.contractAddress, <+
abi=abi)

Listing 8.1: Deployment of Smart Contract

Figure 13 shows the block list after deploying the contract. In addition to the genesis block,
a second block has been added to the blockchain. The block contains one transaction of type
CONTRACT CREATION. The from address corresponds to the deploying address in Table 7. Instead
of ”To”, a contract creation contains a ”Created Contract Address” field, indicating the address
to which the contract has been deployed. We’ll use this blockchain state to test the functional
and quality requirements in the following sections.

93

BLOCK MINED ON GAS USED
1 2023-04-05 19:09:33 1657835

BLOCK MINED ON hS USED
0 2023-04-05 19:08:54 0

(a) List of Blocks

GAS USED GAS LIMIT MINED ON BLOCK HASH

1657835 6721975 2023-04-05 19:09:33 0x968h79ecfc5d56a327437ccc2c54ff51153d445b6586006e1ch9441c9d537d6b
0x8383ffd6c824e5f82¢c3¢c5364b135¢95011242ad702ffc3de830a9b08c4c8d5fd

FROM ADDRESS CREATED CONTRACT ADDRESS GAS USED VALUE
0x1a3f71Eef963bC2Be646feb318bFEd5a07993016 0x9835781C0f5dc776FOEB439fFIEFCBI99662B935 1657835]

(b) Block 1: Header and Body

Figure 13: Blockchain after Smart Contract Deployment

8.2 Functional Requirements

F1

As F1 stated, the developed system shall allow engineers to upload PROV-JSON documents of
workflows and nodes. To show that the requirement is satisfied, we’ll upload a workflow consist-
ing of eighteen nodes using the proposed Upload Page and account 2, which holds the proposed
Creater role for engineers. The workflow file is named runWorkflow0 and can be accessed to-
gether with the node files from runWorkflowNodeO to runWorkflowNodel7 in the Workflow1
directory accessible under: [93]. The uploading process went as covered earlier in Figure 11. A
popup message displaying Upload successful indicated, when the process was finished.

Using Ganache we examined the third block, that has been added to the blockchain. Figure 14
shows the content of the block. The transaction in the block body is a contract call. The from
address belongs to Account 2, which was used to upload the document.

F2

The second requirement is, that the system shall be able to keep record of which documents
have been uploaded. To demonstrate that the system is capable of storing multiple workflows,
we added another workflow containing two nodes, which can be accessed in the Workflow2 folder
under: [93]. The script is responsible for loading, canonicalizing, and hashing the documents is
shown in Listing 5 of Appendix E. The deployed_prov_contract variable storing the smart
contract has been defined in Listing 8.1.

To show that the system keeps record of uploaded documents, we call the get_nodes and get_-
workflows functions in Listing 8.2. The output of get_workflow starting from line 3 shows, that
both workflows are stored in the contracts workflow variable. Each workflow contains its hash
and a list of included nodes. The get_nodes function contains 20 elements, as line 9 indicates.
Each of them contains a hash, which is shown for the first element in line 8.

GAS USED GAS LIMIT MINED ON BLOCK HASH
1663137 6721975 2023-04-05 19:13:09 0xb0e3737cB8e5317dc5dflaeae685502f4b54acebbcd6513ec36cf72db12df19fb

TX HASH

CONTRACT CALL]
0xe39b645e74bd11d66e7582a50e06b7ad75ea0473897e2ac110a6dcOe2894fa3d res

FROM ADDRESS TO CONTRACT ADDRESS GAS USED VALUE
0x0Ad802eF9C327d7c6A742b118Ced23DF20eDChF f 0x9835781COf5dc776FOEB439fFIEFCBI99I662BI3S 1663137 o

Figure 14: Header and Body of Block 2

54

ID | Description Line
1 | check_workflow with a stored workflow 1
2 | check_workflow with a random string 4
3 | check nodes with stored nodes and random string 7
4 check_workflow_and nodes with stored workflow and all nodes belonging to 10
the workflow
5 check workflow_and nodes with stored workflow, all nodes belonging to the 13
workflow and random string
6 check workflow_and nodes with stored workflow, a node belonging to the 16
workflow and random string
7 check workflow_and nodes with stored workflow and nodes belonging to an- 20
other workflow
Table 8: Evaluation Scenarios for Check Functions
1 |deployed_prov_contract.functions.get_workflows ().call({”from”: ca_admin_adress})
§ outputs: [('fda4b58bb405600041522c87aecal333ee72d8840¢c¢3062ccfd84acecc892f004f ",
4|0, 1, 2,3, 4,5,6,7 8 9,10, 11, 12, 13, 14, 15, 16, 17]),
5| ('5e566c2f44ba7db8e384f1d269244874eabladldlead59519f0b35dda9595d02 ',
6 [[18, 19])]
8 |len(deployed_prov_contract.functions.get_nodes().call({”from”: ca_admin_adress}))
9 |# outputs: 20
10
11 |deployed_prov_contract.functions.get_nodes().call({”from”: ca_admin_adress})[0]
12 |# outputs: ac254608fce6471abfd63e2719abd72ae0088f3f30b74c941b8e76d62836a572
Listing 8.2: Obtaining stored Workflows and Nodes
F3
The third requirement is, that the system shall provide certifiers with the ability to check,
whether a workflow or node has been uploaded. The Methods to achieve this functionality have
been proposed in section 7.1. We provide individual methods to check whether a workflow or a
node has been uploaded, or if a workflow has been uploaded together with nodes. To showcase
this functionality, we run each method with positive and negative samples, i.e. strings containing
document hashes we uploaded and some containing random content.
Table 8 contains all cases we evaluate. Next to the ID we describe each test case. When speaking
of a stored workflow or node, we refer to workflows or nodes that we uploaded before and
that hence are stored in the contract. The last column includes the line in Listing 8.3, that
runs the test case. All runs were successful and provided the expected results. As Listing 8.3
shows, the first 3 cases returned True for stored data and False for random strings. To remind
quickly, the check_workflow function returns one bool for each provided node, indicating if it
is included in the workflow and the number of missing nodes. Test case 4 in line 10 passes the
workflow alongside all included nodes. Hence for each node true is returned and the number of
missing nodes is zero. Adding a RandomString in line 13 adds one ”False” to the list. Leaving
one included node out, increases the number of missing nodes to 1. For the last test case, we
obtained the workflow, we uploaded initially when testing F1, in line 19. Then we passed the
workflow together with two nodes, that are included in another workflow. The result indicates
the expected: Both nodes do not belong to the workflow and 18 nodes are missing.
1 |deployed_prov_contract.functions.check_workflow(wf_hash).call({”from”: ca_admin_adress<>

)

2 |# outputs: True

95

UL WN -

© 0o

deployed_prov_contract.functions.check_workflow(”RandomString”).call({"from”: «
ca_admin_adress })
outputs: False

deployed_prov_contract.functions.check_nodes ([nl_hash,n2_hash, ”"randomString”]) .call({"<+
from”: ca_admin_adress})

outputs: [True, True, False]

deployed_prov_contract.functions.check_workflow_and_nodes(wf_hash, [nl_hash, n2_hash]) .«
call({”from”: ca_admin_adress})

outputs: [[True, True], 0]

deployed_prov_contract.functions.check_workflow_and_nodes(wf_hash, [nl_hash, n2_hash, 7«
RandomString”]) .call({”from”: ca_admin_adress})

outputs: [[True, True, False], 0]

deployed_prov_contract.functions.check_workflow_and_nodes(wf_hash, [nl_hash, 7+«
RandomString”]) .call({”from”: ca_admin_adress})

outputs: [[True, False], 1]

wf_0_hash = deployed_prov_contract.functions.get_workflows ().call({”’from”: <«
ca_admin_adress}) [0][0]

deployed_prov_contract.functions.check_workflow_and_nodes(wf_O_hash, [nl_hash, n2_hash«
]) .call({”from”: ca_admin_adress})
outputs: [[False, False], 18]

Listing 8.3: Testing Check Functions of the Smart Contract

F4

The fourth and last functional requirement is, that the system shall provide the involved parties
with the ability to create accounts for their users. We gonna show how each party can assign
accounts to their members. After obtaining an address of the network from the network provider,
the administrator of each party can assign the new account as a user or admin. Listing 8.4
shows this with the empty Accounts 4 and 5, defined earlier in Table 7. First lines 2 and 3
initialize the roles, with their keccak256 hash values. This is because, we wanna check before
and after the assignment, if the accounts are assigned to the Creater and ViewerRole. Inside the
Smart Contract the roles are identified by their keccak256 hashes, hence when using the hasRole
function, we need to pass the roles hash as an identifier.

Line 6 and 9 show, that accounts 4 and 5 initially dont have the Creater and viewer Roles. Hence
they are not allowed to send Contract Call transactions to the smart contract, which is shown
later in Q1. The CreaterAdmin Account (Line 13-19) and the ViewerAdmin Account (22-28)
are granting Creater and Viewer roles respectively, by calling the defined grantRole functions.
In Line 30 and 33 accounts 4 and 5 are identified as Creater and Viewer and hence belong to
the four roles that are permissioned to interact with the smart contract.

initializing roles hashes
CREATER_ROLE = ”1ac401dd2c6f22b9676f8528d637846252ce7c4e00341d11c712¢c96f29bc47b3”
VIEWER_ROLE = ”4e8c8e€9ca39468bb90c81b80f979119441019fdac7cbbbd930e0a604£f8777d1d”

Check if Account 4 and 5 have CreaterRole and ViewerRole
deployed_prov_contract.functions.hasRole (CREATER_ROLE,” 0«
x6A3Fd877d4688bA35dCc7D134956C1D2075133e1”) . call ()

outputs: False

deployed_prov_contract.functions.hasRole(VIEWER_ROLE,” 0«
x17035CEC72f39c1f8694EBdF2307769637BE536e”) . call ()
outputs: False

Assinging Account 4 to CreaterRole
transaction = deployed_prov_contract.functions.grantCREATERRole (70«
x6A3Fd877d4688bA35dCc7D134956C1D2075133e¢1”) . buildTransaction ({” chainld”: chain_id, «

o6

”from”: dlr_admin_adress, ”gasPrice”: w3.eth.gas_price, "nonce”: w3.eth.+>
getTransactionCount (dlr_admin_adress) })

sign_store_contact = w3.eth.account.sign_transaction(
transaction, private_key—=dlr_admin_private_key

)

send_store_contact = w3.eth.send_raw_transaction(sign_store_contact.rawTransaction)
transaction_receipt = w3.eth.wait_for_transaction_receipt(send_store_contact)

Assinging Account 4 to ViewerRole

transaction = deployed_prov_contract.functions.grantViewerRole ("0«
x17035CECT72£39c1f8694EBdF2307769637BE536e”) .buildTransaction ({” chainld”: chain_id, «
?from”: ca_admin_adress, ”gasPrice”: w3.eth.gas_price, ”nonce”: w3.eth.+>
getTransactionCount (ca_admin_adress)})

sign_store_contact = w3.eth.account.sign_transaction(

transaction, private_key=ca_admin_private_key

)

send_store_contact = w3.eth.send_raw_transaction(sign_store_contact.rawTransaction)
transaction_receipt = w3.eth.wait_for_transaction_receipt(send_store_contact)

deployed_prov_contract.functions.hasRole(CREATER_ROLE,” 0«
x6A3Fd877d4688bA35dCc7D134956C1D2075133el”) . call ()
outputs: True

deployed_prov_contract.functions.hasRole(VIEWER_ROLE,” 0«
x17035CEC72{39¢1f8694EBdF2307769637TBE536¢e”) . call ()
outputs: True

Listing 8.4: Add Users to both Parties

8.3 Quality Requirements

Q1

Moving on to quality requirements, Q1 ensures that only valid W3C PROV-JSON documents
are uploaded. The graphical user interface limits the selection of documents to files with the
.json format. During the pre-check, which is invoked by clicking the check files button, each file
is checked, whether it contains a valid W3C PROV document.

To show that, we generated five random JSON files using a generator [94]. The files are included
in the testfiles directory in: [93]. To check, whether the system can detect the files, we selected
each of them individually and pressed the check files button. The check failed for each file and
displayed the error message shown in Figure 15. Using the GUI it was not possible, to upload
random documents.

However, permissioned users may use their private key to send transactions to the smart contract,
avoiding the GUI. This way it is possible, to add any string to the contracts data store. While
this issue is out of the scope of this thesis, we refer to it as future work, that has to be done. We
believe that the risk of invalid modification is rather small. The sender of a transaction account
is known, so the uploader of provenance data can be identified. If the uploader is asked for a
document during certification, he would have to prove a document that produces the exact hash
value. If this is an invalid provenance document, his upload would be detected.

Ci/Users/Steven/testfiles/randomlsonFiles/randomlsonFiled,js
on is not a valid provenance document

oK

Figure 15: Error Message: Invalid PROV Documents

o7

— =

HF OO Utk W -

O UL W N

Q2

The system provides users a Graphical User Interface to interact with, which doesn’t require
knowledge of a programming language. More details about the GUI are given in section 7.2.

Q3

The system shall ensure that for an upload, an identifier of the responsible engineer and a
timestamp are saved. In Blockchain timestamps are stored in the block header, when a block
is added to the chain. The timestamp differs slightly from the transaction time, as adding a
block takes some time depending on the consensus mechanism. As we aim to use a consortium
with PoA, the deviation can be expected between a few seconds and minutes. The uploaders
address is stored in the transaction. How both information can be revealed, is shown by the
find uploader_and time_of _workflow function in Listing 8.5. The method takes a workflows
hash as input and returns the uploader’s address and timestamp.

The general strategy is to iterate over all blocks of the chain to obtain the transactions it includes.
Then the passed parameters of each transaction are retrieved and decoded using the contracts
abi. By decoding the parameters, we can retrieve the exact input of a function call. Then we check
if the hashed workflow is included inside the decoded function hashed workflow parameter.
If it is, we store the transaction’s sender and the timestamp of the block. The functions logic is
transferable to find nodes instead of workflows aswell. It is intended to integrate the functionality
of delivering sender and timestamps into the Check Page of the GUI.

def find_uploader_and_time_of_workflow(hashed_workflow):

sender ,timestamp = —1,—1
for i in range(2, w3.eth.blockNumber+1):
transactions = w3.eth.get_block(i).transactions

for tx_hash in transactions:
inp = w3.eth.get_transaction(tx_hash).input
decoded_inp = deployed_prov_contract.decode_function_input(inp)[1]
if (decoded_inp.get(”hashed_-workflow”)=—hashed_workflow):
sender = w3.eth.get_transaction(tx_hash)['from']
timestamp = w3.eth.getBlock(i).timestamp
return sender, timestamp

Listing 8.5: Determination of a Documents Uploader and Time

Q4

The system shall ensure that only authorized persons within the organizations can upload data.
So far we granted Accounts 2 and 4 the necessary rights to upload data. To check if the Access
Permission works, we test to call the upload function from Accounts 3, 5 and 6. As parameter
we passed wfl hash and nl_hash defined in Listing 5. The script defined in Listing 8.3 has been
run three times, one time for each address and key. Each run produced an error message for
missing permission, as shown in line 6. Contracts that are not issued with the Creater right are
not capable of adding documents to the system.

deployed_prov_contract.functions.add_workflow_and_nodes(wf_hash, [nl_hash]).«+
buildTransaction({” chainld”: chain_id, ”from”: address, ”gasPrice”: w3.eth.+
gas_price, "mnonce”: w3.eth.getTransactionCount (address)})

sign_store_contact = wS.eth.account.sign_transaction(

transaction, private_key=key

)

outputs: execution reverted: VM Exception while processing transaction: revert <
AccessControl: account 0xf4a68d730b37925e04efe3d64cfcfda7ae3a60b3 is missing role 0+
x1ac401dd2c6f22b9676£f8528d637846252ce7c4e00341d11c712c96f29bc47b3 }. The account

o8

Q5

The system shall ensure that no sensitive data, i.e. private information about participants,
organizations or provenance data becomes publicly accessible. To evaluate this requirement let’s
first take a step back and consider which data is accessible. All methods are restricted to the
defined roles. To call a view function, which doesn’t modify the contracts state, no transaction
is necessary. Hence knowing the public key of an account, that is issued with the necessary
permission, is sufficient. Since all blocks and transactions can be accessed by the members of
the consortium, it’s possible that public addresses get exposed. Additionally, since the contract
is open source other participants can obtain its abi to decompile the inputs of transactions.
Overall there is a high chance, that third parties who want to obtain the data we store on the
blockchain are successful with it.

To prevent sensitive data from being exposed, the proposed system dont store any sensitive
information. The provenance documents are hashed before being uploaded. For each workflow
and node we store its SHA-256 hash. From that hash its not possible, to obtain the actual
provenance document. The actual data is safe. Also we dont store any personal information,
that might expose a users identitiy. The role-based permission system works completely with
addresses. The only information third parties can obtain, is the users public address. Which
user is issued which address, i.e. the mapping of address to user identity, is handled by the users
organization, i.e. its admin.

Q6

The last quality requirement is Q6, that mention that the stored data shall be available for
at least 80 years after its upload. Although we consider blockchain as a reliable, persistent and
tamper-resistant data store, there’s no guarantee about how long the blockchain will run. In case
the blockchain is inevitably discontinued, it is possible to export all stored data by calling the
respective view functions. By iterating over the blocks additionally, information can be obtain as
needed. Due to the flexibility of the system, its possible to substitute the discontinuing blockchain
by another one. The proposed system can be connected to any Ethereum-based blockchain.

99

9 Conclusion

This thesis pursued two objectives. The first goal was to identify the current state of research
regarding the storage of Provenance data using Blockchain technology. To achieve this, a System-
atic Literature Review of existing works was conducted, which revealed a high number of recent
publications, indicating significant interest in utilizing Blockchain technology for tamper-proof
and trustworthy storage of Provenance data. The review provided a comprehensive overview
of the state of research in Blockchain-based Provenance storage and discusses the benefits and
challenges associated with different storage strategies. The storage types identified through the
SLR were also utilized as the basis for developing a proprietary system, which leads to the second
aim of the work. The second goal of the thesis was to design and implement a Blockchain-based
Provenance Tracking System for the manufacturing of virtual aircraft components. The systems
requirements were gathered using a systematic requirement engineering approach, which involved
conducting interviews with stakeholders. These elicited requirements were used to develop a con-
ceptual design that aimed to meet the needs of the stakeholders. A practical implementation
was provided, that involved the development of smart contracts and a graphical user interface,
which enables users to interact with the system. In the evaluation stage, it was shown that
the proposed system met all the requirements. The proposed system effectively achieves a bal-
ance between ensuring tamper-resistant and traceable storage of pertinent data on a transparent
Blockchain while also safeguarding the privacy of users and documents. This is achieved through
the storage of the Provenance document’s fingerprints and leveraging the authentication system
of the Blockchain.

Overall, the thesis addresses the intersection of Provenance and Blockchain technology and of-
fers two significant contributions. The first contribution involves identifying and analyzing the
existing literature in the field of Provenance and Blockchain. The second contribution demon-
strates how Blockchain technology can be used to implement a system for certifying aircraft
components. By combining these two contributions, this study offers valuable insights into the
potential applications of Blockchain technology for the storage of Provenance data and beyond.
We hope the findings of this study provide a valuable resource for researchers and industry pro-
fessionals seeking to leverage Blockchain technology for Provenance tracking and certification
purposes.

While the thesis demonstrates how Blockchain technology can be leveraged for Provenance track-
ing and certification purposes, there are some limitations to its implementation that need to be
taken into account. One limitation of the proposed implementation is, that it cannot protect
the smart contracts data store from unintended inputs, that are uploaded without using the
GUIL. The risk of authenticated users connecting directly to the Blockchain using their key and
uploading arbitrary data remains unresolved. This shortcoming could be addressed by moving
the pre-checks of documents directly on the chain, which can be investigated in further works.
Another limitation of this study is the limited scope of the implementation. The thesis focuses on
designing and implementing a Blockchain-based Provenance tracking system for aircraft manu-
facturing. While this is a valuable contribution to the field, the scope is relatively narrow and
may not be applicable to other industries or use cases. Additionally, while the proposed system
might be useful for the specific use case, there may be significant differences in the requirements
and implementation details for other use cases inside the same industry. Furthermore, while
conducting a requirement-based evaluation, the thesis lacks a comprehensive evaluation of the
system’s performance and effectiveness, which leaves the possibility of unanticipated limitations
open. The presented GUI was also not tested for its usability, which would be essential in the

60

context of future work to enable its user-friendly use. Lastly, the Systematic Literature Review
conducted was limited to a few attributes due to the limitation of a master’s thesis. Future re-
views could include which factors motivate the authors to adopt Blockchain technology. This can
help to understand which features make Blockchain a popular technology for storing Provenance.
The theoretical foundation has shown that Blockchain technology is still evolving, and the ab-
sence of established practices necessitates experimentation, evaluation, and possible rejection
of approaches. The thesis aimed to contribute to the current understanding of Blockchain and
Provenance, and it is anticipated that forthcoming advancements in Blockchain, such as DAG-
based frameworks, may further enhance the storage of Provenance information.

61

Statement of Authorship

Hiermit erkléare ich, dass ich die vorliegende Bachelorarbeit selbststiandig und aufischlielich
unter Verwendung der angegebenen Literatur und Hilfsmittel angefertigt habe.

Die aus fremden Quellen direkt oder indirekt iibernommenen Stellen sind als solche kenn-tlich
gemacht.

Die Arbeit wurde bisher in gleicher oder &hnlicher Form weder einer anderen Priifungsbehorde
vorgelegt oder noch anderweitig veroffentlicht.

Name: Kocadag Vorname: Steven
Geburtsdatum: 27.05.1994 Matrikelnummer: 211218

S](&c&w/a? 14.04.2023

Unterschrift Datum

62

Appendices

A. PROV-DM Types and Relations

Type or Relation Name

Representation in the PROV-N notation

Entity entity(id, [attrl=vall, ...])

Activity activity(id, st, et, [attrl=vall, ...])
Generation wasGeneratedBy (id;e,a,t,attrs)

Usage used(id;a,e,t,attrs)

Communication wasInformedBy (id;a2,al,attrs)

Start wasStartedBy(id;a2,e,al,t,attrs)

End wasEndedBy(id;a2,e,al,t,attrs)
Invalidation waslnvalidatedBy (id;e,a,t,attrs)
Derivation wasDerivedFrom(id; e2, el, a, g2, ul, attrs)
Revision ... prov:type='prov:Revision’ ...
Quotation ... prov:type=’'prov:Quotation’ ...
Primary Source ... prov:type="prov:PrimarySource’ ...
Agent agent(id, [attrl=vall, ...])
Attribution wasAttributed To(id;e,ag,attr)
Association wasAssociatedWith(id;a,ag,pl,attrs)
Delegation actedOnBehalfOf(id;ag2,agl,a,attrs)
Plan ...prov:type="prov:Plan’ ...

Person ...prov:type='prov:Person’ ...
Organization ...prov:type="prov:Organization’ ...
SoftwareAgent ... prov:type="prov:SoftwareAgent’ ...
Influence wasInfluencedBy (id;e2,el,attrs)

Bundle constructor
Bundle type

bundle id description_1 ... description_.n endBundle
...prov:type='prov:Bundle’ ...

Alternate alternateOf(alt1, alt2)

Specialization specializationOf(infra, supra)

Collection ... prov:type="prov:Collection’ ...
EmptyCollection ... prov:type="prov:EmptyCollection’ ...
Membership hadMember(c,e)

Table 9: PROV-DM Types and Relations. Own Representation based on: [7]

B. Collection of Studies

Ref | Author Title In

[95] | Amin et al. A Step toward Next-Generation Advancements in the In- | 0
ternet of Things Technologies

[96] | Boland et al. Modeling and contextualizing claims 0

63

[66] | Bose et al. BLINKER: A Blockchain-Enabled Framework for Soft- | 1
ware Provenance

[71] | Coelho et al. Integrating blockchain for data sharing and collaboration | 1
support in scientific ecosystem platform

[72] | Coelho et al. A Blockchain-Based Architecture for Trust in Collabora- | 0
tive Scientific Experimentation

[53] | Dang and Duong An effective and elastic blockchain-based provenance pre- | 1
serving solution for the open data

[52] | Dang and Anh A Pragmatic Blockchain Based Solution forManaging | 1
Provenance and Characteristics in the Open Data Con-
text

[54] | Demichev et al. Business Process Engineering for Data Storing and Pro- | 1
cessing in a Collaborative Distributed Environment

[58] | Fadhel et al. Towards a semantic modelling for threat analysis of IoT | 1
applications: A case study on transactive energy

[97] | Geng et al. Novel blockchain transaction provenance model with | 0
graph attention mechanism

[98] | Gouru and Vadla- | DistProv-Data Provenance in Distributed Cloud for Se- | 0

mani cure Transfer of Digital Assets

[99] | Hasan et al. Hybrid Blockchain Architecture for Cloud Manufacturing- | 0
as-a-service (CMaaS) Platforms

[56] Hogan and Helfert | Transparent cloud privacy: Data provenance expression in | 1
blockchain

[57] | Ioini and Pahl Trustworthy orchestration of container based edge com- | 1
puting using permissioned blockchain

[100] | Isaac Abiodun et | Data provenance for cloud forensic investigations, secu- | 0

al. rity, challenges, solutions and future perspectives

[101] | Kaaniche et al. Prov-Trust: Towards a trustworthysgx-based data prove- | 0
nance system

[102] | Kak et al. Privacy improvement architecture for IoT 0

[55] | Kirstein A decentralized provenance network for linked open data | 1

[103] | Komamizu et al. Analyzing Japanese law history through modeling multi- | 0
versioned entity

[63] | Lautert et al. A fog architecture for privacy-preserving data provenance | 1
using blockchains

[104] | Li et al. Blockchain technology for vector geographic provenance | 0
information organization and verification

[29] | Liang et al. ProvChain: A Blockchain-Based Data Provenance Archi- | 1
tecture in Cloud Environment

[105] | Linoy et al. EtherProv: Provenance-Aware Detection, Analysis, and | 0
Mitigation of Ethereum Smart Contract Security Issues

[62] | Margheri et al. Decentralised provenance for healthcare data 1

[60] | Markovic et al. Recording Provenance of Food Delivery Using IoT, Se- | 1
mantics and Business Blockchain Networks

[59] | Markovic et al. Integrating Internet of Things, Provenance, and | 1
Blockchain to Enhance Trust in Last Mile Food
Deliveries

[69] | Ramachandran SmartProvenance: A Distributed, Blockchain Based Dat- | 1

and Kantarcioglu

aProvenance System

64

[64] | Sigwart et al.

A secure and extensible blockchain-based data provenance
framework for the Internet of Things

[61] | Song et al.

An Improved Data Provenance Framework Integrating
Blockchain and PROV Model

[67] | Sun et al.

BSTProv: Blockchain-Based Secure and Trustworthy
Data Provenance Sharing

[70] | Tunstad et al.

HyperProv: Decentralized resilient data provenance at the
edge with blockchains

[106] | Zayas et al.

An Integrated Blockchain Approach for Provenance of Ro-
torcraft Maintenance Data

[107] | Zhang and Mao

Blockchain-based decentralized data provenance method

[108] | Zhang et al.

Trusted Query Method for Data Provenance Based on
Blockchain

[65] | Zhang et al.

Research on Consistency Tracing Technology of Dispatch-
ing Control Model Data based on Blockchain

C. PROV Document of a Workflow

1]
2 ”bundle”: {
3 "rceld:abbc7097—ff9a—4817—afb57—£d7d286a56c7”: {
4 ”?agent”: {
5 "rceId:RCE”: {
6 ”prov:type”:
7 7$”: ”software”
8 ”type”: ”prov:QUALIFIED_NAME”
9 }
10 ”version” :
11 ”$”: ”10.2.1’7’
12 ?type”: "xsd:string”
13 }
14 }7
15 "rceld:Steven”:
16 ”prov:type”:
17 77$77: ” user777
18 7type”: "prov:QUALIFIED_NAME”
19 ,
20 ?username” : {
21 ”?$”: ”Human—readable name of user not supplied”,
22 ?type”: ”xsd:string”
23 }
24 }
25 b
26 Pactivity”: {
27 "rceld:al4cc9d9—b54e—4bae—abfa—2af271c15c7c”: {
28 ?prov:startTime”: ”2023—03—01T18:58:44.2104+03:00”
29 ”label”: {
30 ”?$”: ”runWorkflowNode”,
31 ?type”: ”xsd:string”
52 b
33 ”prov:endTime”: ”2023—03—01T18:58:44.264403:00”
34 b,
35 var:activity_ID_runTool”: {
36 "label”: {
37 ”?$”: "runTool”,
38 "type”: "xsd:string”
39 }
40 }
a1 b
42 ?prefix”: {
43 ”xsd”: 7http://www.w3.org/2001/XMLSchema#”,
44 "pre_0”: "rce2prov”,

65

45 ”default”: ”rce2prov”,

46 "var”: ”http://openprovenance.org/var#’,

47 "prov”: "http://www.w3.org/ns/prov#’,

48 "rceld”: ”https://namespace.dlr.de/prov/rce#’

49 }7

50 ?wasStartedBy”: {

51 7 _:wSB247: {

52 "prov:trigger”: "rceId:RCE”,

53 "prov:activity”: ”var:activity_ID_runTool”

54 }

55 }

56 ”?wasDerivedFrom”: {

57 ”_:wDF39”: {

58 ?prov:generatedEntity”: ”var:entity_ID_outputVersion”,

59 "prov:usedEntity”: "rceld:5edd9fd5—9d7f —4814—-90f4—e9ad99a7b591”
60 }

61 ”_:wDF38”7: {

62 "prov:generatedEntity”: ”var:entity_ID_outputVersion”,

63 ?prov:usedEntity”: ”rceld:£f84881laa—3967—4135—8beb—197c3273e60Db”
64 +

65 }7

66 Pused” : {

67 7 _:u109”: {

68 ?prov:entity”: "rceld:e430a509—£919—4bfO0—abcf—6b7fe234302b”,
69 ?prov:role”: {

70 ”$”: "placeholderAssignment”,

71 ”type”: "prov:QUALIFIED_NAME”

72 }7

73 "prov:activity”: "rceld:al4cc9d9—bb54e—4bae—abfa—2af271c15c7c”
74 3

75 7 _iut11”: {

76 "prov:entity”: ”rceld:f84881laa—3967—4135—8beb—197c3273e60b”,
7 ?prov:activity”: "rceld:al4cc9d9—bb4e—4bae—abfa—2af271c15c7c”
78 }

79 }7

80 ”hadMember” : {

81 7 _:hM1057: {

82 prov:entity”: |

83 ?var:entity_ID_outputVersion”

84])

85 ?prov:collection”: "rceld:b6aa9a2b—1442—441e—b8el —6958affd3c02”
86 ,

87 ”_:hM103”: {

88 prov:entity”: |

89 ?rceld:f84881aa—3967—4135—8beb—197c3273e60b”

90 1,

91 ?prov:collection”: "rceld:93541678 —ddal—4ea7—83d6—£fb36c7850e89”
92 ,

93 7 _:hM1047: {

94 prov:entity”: |

95 "rceld:5edd9fd5—9d7f —4814—90f4—e9ad99a7b591”

96 5

97 ?prov:collection”: "rceId:93541678 —ddal—4ea7—83d6—fb36c7850e89”
98 }

99 }

100 ”wasGeneratedBy”: {

101 ”?_:wGB109”: {

102 ?prov:entity”: ”var:entity_ID_outputVersion”,

103 "prov:activity”: "rceld:al4cc9d9—-bb54e —4bae—abfa—2af271c15c7c”
104 ,

105 7 _:wGB108” : {

106 ?prov:entity”: "rceld:b6aa9a2b—1442—441e—b8el —-6958affd3c02”,
107 ?prov:activity”: "rceld:al4cc9d9—bb4e—4bae—abfa—2af271c15c7c”
108 b,

109 7 _:wGB110”: {

110 ?prov:entity”: ”var:bundle_ID_runToolBundle”,

111 ?prov:activity”: "rceld:ald4cc9d9—bb4e—4bae—abfa—2af271c15c7c”
112 }

113 1,

114 ”actedOnBehalf0f”: {

115 ? _:a0B0257: {

116 ”prov:responsible”: ”rceld:Steven”,

117 "prov:delegate”: "rceld:RCE”

66

118 }

119 },

120 ?wasInformedBy”: {

121 7 _:Infméd2”: {

122 ?prov:informed”: "rceld:al4cc9d9—bb4e—4bae—abfa—2af271c15c7c”,

123 "prov:informant”: ”var:activity_ID_runTool”

124 }

125 I

126 ?wasAssociatedWith”: {

127 7 _:wAW26”: {

128 "prov:agent”: "rceld:RCE”,

129 ?prov:activity”: "rceld:ald4cc9d9—bb4e—4bae—abfa—2af271c15c7c”

130 }

131 },

132 ?wasAttributedTo”: {

133 7 _:wAT617: {

134 ?prov:entity”: ”var:bundle_ID_runToolBundle”,

135 "prov:agent”: "rceld:RCE”

136 }

137 1,

138 Pentity”: {

139 "rceld:d39f72a6—1a74—48e0—a0be—9b4d857fcaald”: {

140 ?prov:location”: {

141 7$”: ”\”Default instance started by \”Steven\” on STB—NB23\” [151«
dcce9b3c3d405£47686e55e98fe74:0]”,

142 ?type”: "xsd:string”

143 ¥,

144 "name” : {

145 ”7$”: "Design of Experiments”,

146 ?type”: ”xsd:string”

147 ,

148 ”executionInformation”:

149 ”?$”: ”NodeConfiguration(\”{}\”)”,

150 "type”: "xsd:string”

151

152 },

153 "rceld:T7773c180—b567 —4850—8dbc—a2f255237b49”: {

154 ”datatype”: {

155 ”?$”: ”Float”,

156 ?type”: ”xsd:string”

157 b,

158 "handling”: {

159 ”?$”: ”somehandling”,

160 ?type”: "xsd:string”

161 },

162 7label”: {

163 ” $” : ” input ” s

164 "type”: "xsd:string”

165

166 bh

167 ”?specializationOf”: {

168 ?_:s099”: {

169 ?prov:specificEntity”: "rceld:f84881aa—3967—-4135—8beb—197c3273e60b” ,

170 "prov:generalEntity”: "rceld:fe3b0194-7f02—44fb—aa35—1le7eaf8519ec”

171 ,

172 7 _:s0100”: {

173 ?prov:specificEntity”: "rceld:£84881aa—3967—-4135—8beb—197c3273e60b” ,

174 ”prov:generalEntity”: "rceld:7773c180—b567 —4850—8dbc—a2f255237b49”

175 }

176 }

177 }

178

179 }

Listing 1: PROV Document of a Workflow

67

D. Implementation

D.1 Smart Contract

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

import "OpenZeppelin/openzeppelin-contracts@4.8.2/contracts/access/AccessControl.sol";

contract Prov is AccessControl {

OO WN

bytes32 private constant CREATER.ROLE = keccak256 ("CREATER_ROLE");
bytes32 private constant VIEWERROLE = keccak256("VIEWER_ROLE");
bytes32 private constant CREATER_ADMIN ROLE =
keccak256 ("CREATER_ADMIN_ROLE");
bytes32 private constant VIEWERADMIN ROLE = keccak256("VIEWER_ADMIN_ROLE");

struct Workflow {
string hash;
uint256 [] nodes;

//arrays for list of prov graphs
Workflow [] private workflows;
string [] private nodes;

constructor (address creater_admin , address viewer_admin) AccessControl() {
_grantRole (CREATER_ADMIN_ROLE, creater_admin);
_grantRole (CREATER.ROLE, creater_admin);
_grantRole (VIEWER.ADMIN.ROLE, viewer_admin);
_grantRole (VIEWERROLE, viewer_admin);

}

function grantViewerAdminRole (
address account

) public onlyRole (VIEWER ADMIN.ROLE) {
_grantRole (VIEWER.ADMIN.ROLE, account);
_grantRole (VIEWERROLE, account);

}

function grantCreaterAdminRole (
address account

) public onlyRole (CREATER ADMIN.ROLE) {
_grantRole (CREATER_ADMIN_ROLE, account) ;
_grantRole (CREATER.ROLE, account);

}

function grantViewerRole (
address account
) public onlyRole (VIEWER ADMIN.ROLE) {
_grantRole (VIEWERROLE, account);
}

function grantCreaterRole (
address account
) public onlyRole (CREATER. ADMIN.ROLE) {
_grantRole (CREATER ROLE, account);
}

function hasAccess() internal view returns (bool) {
return (hasRole (CREATER ADMIN ROLE, msg.sender) ||
hasRole (CREATERROLE, msg.sender) ||
hasRole (VIEWERROLE, msg.sender) ||
hasRole (VIEWER_ADMIN_ROLE, msg.sender)) ;

}

function get_workflows (
require (hasAccess ()
return workflows;

) public view returns (Workflow [] memory) {
, "Access Denied");

}

function get_-nodes() public view returns (string][] memory) {

68

require (hasAccess (), "Access Denied");
return nodes;
}
function check_workflow (string memory prov) public view returns (bool) {

require (hasAccess (), "Access Denied");
for (uint i = 0; i < workflows.length; i++4) {
if (
keccak256 (abi.encodePacked (workflows[i].hash)) =
keccak256 (abi.encodePacked (prov))

) A
}
}

return false;

return true;

}

function check_nodes(

string [] memory node_list
) public view returns (bool[] memory) {
require (hasAccess (), "Access Denied");
bool [] memory result = new bool[](node_list.length);
for (uint i = 0; i < node_list.length; i++) {
result [i] = false;

for (uint j = 0; j < nodes.length; j++) {
if (
keccak256 (abi.encodePacked (nodes[j])) =
keccak256 (abi.encodePacked (node_list [i]))
) |
result [1] = true;
break;

}
}
return result;

}

function check_workflow_and_nodes (
string memory hashed_workflow ,
string [] memory hashed_nodes
) public view returns (bool[] memory, uint256) {
require (hasAccess (), "Access Denied");
int index = find_workflow (hashed_workflow) ;
bool [] memory node_check_result = new bool[](hashed_nodes.length);

// workflow not existing
if (index = —1) {
return (node_check_result, 0);

}
uint u_-index = uint256 (index);
uint256 [|] memory wf_nodes = workflows [u-index].nodes;

uint256 found_nodes = 0;
for (uint i = 0; i < hashed_nodes.length; i++) {
for (uint j = 0; j < wf_nodes.length; j++) {
if (
keccak256 (abi.encodePacked (hashed_nodes[i])) =
i

keccak256 (abi.encodePacked (nodes|[wf_nodes[j]]))
) |
node_check_result[i] = true;
found_nodes++;
break;
}
}
}
return (node_check_result, wf_.nodes.length — found_nodes);
}
function find_workflow (string memory prov) private view returns (int) {
require (hasAccess (), "Access Denied");

for (uint i = 0; i < workflows.length; i++) {

69

if (
keccak256 (abi.encodePacked (workflows[i].hash)) =
keccak256 (abi.encodePacked (prov))

) A
}
}

return —1;

return int(i);

}

function add_workflow_and_nodes (
string memory hashed_workflow ,
string [] memory hashed_nodes
) public onlyRole (CREATERROLE) {
uint256 node_id = nodes.length;
uint256 [] memory node_list = new uint256 [](hashed_nodes.length);

for (uint i = 0; i < hashed_nodes.length; i++) {
nodes.push(hashed_nodes[i]) ;
node_list [i] = node_id;
node_id++;

workflows . push(Workflow (hashed_workflow , node_list));

Listing 2: Smart Contract prov.sol

D.2 Class Diagram of Smart Contract

70

OO~ WN

<<Interface>>
TAccessControl
IAccessControl.sol

<<Abstract=>
Context <<Abstract>>
Context.sol ERC165
= ERCI65.501

Internal:
_msgSender(): address
_msgData(): bytes

Public
supportsinterface(interfaceld: bytes4): bool

External:
hasRole(role: bytes32, account: address): bool
getRoleAdmin(role: bytes32): bytes32
grantRole(role: bytes32, account: address)
revokeRole(role: bytes32, account: address)
renounceRole(role: bytes32, account: address)
Public:

<event>> RoleGranted(role: bytes32, account: address, sender: address)
<<event>> RoleRevokedirole: bytes32. account: address, sender: address)

<<event>> RoleAdminChanged(role: bytes32, previousAdminRole: bytes32, newAdminRole: bytes32)

ol Prov

<<Abstract>>
AccessControl
AccessControl.sol

ProvContract.sol

Private:
CREATER ROLE: bytes32

Private:

_roles: mapping(bytes32=>RoleData)
Public:

DEFAULT ADMIN ROLE: bytes32

VIEWER_ROLE: bytes32
CREATER_ADMIN ROLE: bytes32
VIEWER_ADMIN ROLE: bytes32
workflows: Workflow(]

nodes: string[]

Internal:
_checkRole(role: bytes32)
_checkRole(role: bytes32, account: address)
_setupRole(role: bytes32, account: address)
_setRoleAdmin(role: bytes32, adminRole: bytes32)
_grantRole(role: bytes32, account: address)
_revokeRole(role: bytes32, account: address)
Public:
<<modifier>> onlyRole(role: bytes32)
supportsinterface(interfaceld: bytes4): bool
hasRole(role: bytes32, account: address): bool
getRoleAdmin(role: bytes32): bytes32

renounceRole(role: bytes32, account: address)

grantRole(role: bytes32, account: address) <<onlyRole>>
revokeRole(role: bytes32, account: address) <<onlyRole=>

Private:
find workflow(prov: string): int

Internal:
hasAccess(): bool

Public:
constructor(creater_admin: address, viewer_admin: address)
grantViewerAdminRole(account: address) <<onlyRole>>
grantCREATER AdminRole(account: address) <<onlyRole=>
grantViewerRole(account: address) <<onlyRole>:
grantCREATERRole(account: address) <<onlyRole>>
get_workflows(): Workflow([]
get_nodes(): string[]
check_workflow(prov: string): bool
check nodes(node_list: string[]): bool[]

<<Struct>>
RoleData
AccessControl.sol

members: mapping(address==>bool)
adminRole: bytes32

add_workflow_and_nodes(hashed workflow: string, hashed nodes: string[]) <<onlyRole=>

check_workflow_and_nodes(hashed_workflow: string, hashed_nodes: string[]): (bool[]. uint256)

f

<<Struct=>
Workflow
ProvContract.sol

hash: string
nodes: uint256[]

Figure 16: Class Diagram of the Smart Contract prov.sol

D.3 GUI Upload Page

from pathlib import Path
from prov.model import ProvDocument
import lxml.etree as ET
from dotenv import load_dotenv
import jcs
from hashlib import sha256
from tkinter
Explicit imports to
from tkinter import (
Tk,
Canvas ,
Entry,
Text ,
Button,
PhotoImage,
filedialog,
simpledialog,

import x*
satisfy Flake8

)

from tkinter.messagebox import showerror,

import json
from Web3Provider

OUTPUT_PATH = Path(__file__).parent
ASSETS_PATH = OUTPUT_PATH / Path(

r”C:\ Users\Steven\Google Drive\Meine Ablage\Masterarbeit\Code\tkinter\build\assets\«+

frame0Q”

import Web3Provider

showinfo

71

def relative_to_assets(path: str) —> Path:
return ASSETS_PATH / Path(path)

class UploadPage (Tk):

def

__init__(self, xargs, *xkwargs):
Tk.__init__(self)
self.title(”Docu Sphere”)

self .geometry (”450x600”)
self.configure (bg="+#202020")

self.itemlist = []

self.canvas = Canvas(
self ,
bg="#202020",
height =600,
width=450,
bd=0,
highlightthickness=0,
relief="ridge” ,

)

self.canvas.place (x:O7 y=0)

self.canvas.create_text (
225.0,
75.0,
anchor="center” ,
text="Upload Documents” ,
fill="#FFFFFF” |
font=("Helvetica”, 14, ”bold”),

)

self .button_image_5 = Photolmage (file=relative_to_assets(”button_5.png”))
self .button_1 = Button(

self .canvas,

image—self.button_image_5,

borderwidth=0,

highlightthickness=0,

command=self.check_files,

relief="flat”,
)

self .button_1["state”] = ”disabled”
self .button_1.place(x=16.0, y=176.0, width=414.0, height=47.0)

self .entry_image_1 = PhotoImage(file=relative_to_assets(”entry_-1.png”))
entry_bg_1 = self.canvas.create_image(210.0, 138.0, image=self.entry_image_1)
self .entry_1 = Entry(bd=0, bg="#2D2D2D” , fg="#000716" , highlightthickness=0)
self .entry_1.place(x=37.0, y=118.0, width=346.0, height=38.0)

self.image_image_1 = PhotoImage(file=relative_to_assets(”image_-1.png”))
image_1 = self.canvas.create_image(224.5, 137.5, image=self.image_image_1)
self .button_image_2 = PhotoImage(file=relative_to_assets(”button_2.png”))

self .button_2 = Button(
image=self.button_image_2,
borderwidth=0,
highlightthickness=0,
command=self .select_files,
relief=""flat” ,

)

self .button_2.place(
x=402.0, y=130.39999389648438, width=16.0, height=15.20001220703125
)

self.canvas.create_text (
25.0,

72

def

def

98.0,

anchor="nw" ,

text="Input Directory”,
fil1="4#FFFFFF” |

font=("Roboto Medium”, 14 x —1),

)

self.image_image_2 = PhotoImage(file=relative_to_assets(”image_2.png”))
image_2 = self.canvas.create_image(225.0, 37.0, image=self.image_image_2)
self .button_image_3 = Photolmage(file=relative_to_assets(”clear.png”))

self .button_3 = Button(
image=self.button_image_3,
borderwidth=0,
highlightthickness=0,
command=self.clear_files,
relief="flat”,

self.button_3.place(x=20.0, y=21.0, width=30.0, height=30.0)

self .button_image_4 = Photolmage(file=relative_to_assets(”button_4.png”))
self .button_4 = Button(

image=self.button_image_4,

borderwidth=0,

highlightthickness=0,

command=lambda: print(”button_-4 clicked”),

relief="flat”,
)

self .button_4.place(x=400.0, y=21.0, width=30.0, height=30.0)
self .resizable(False, False)

clear_files(self):

for item_id in self.itemlist:
self .canvas.delete(item_id)

self.itemlist = []

self .button_image_1 = Photolmage(file=relative_to_assets(”button_5.png”))
self .button_1.configure (image=self.button_image_1, command=self.upload_files)
self.button_1.place(x=16.0, y=176.0, width=414.0, height=47.0)

self .button_1["state”] = ”disabled”

select_files(self):
filez = filedialog.askopenfilenames (parent=self, title="Choose a file”)

pad = len(self.itemlist) x 20.0
for file in list (filez):

if file is stored already, skip it
if self.is_file_already_in_itemlist(file):

continue

check if file is json

if file[—4:] != ”json”:
showerror (title="Error”, message=f"{file} is not a valid json file”)
continue

self .button_1.place(x=16.0, y=196.0 + pad, width=414.0, height=47.0)

self.itemlist.append (
self.canvas.create_text (
25.0,
176.0 + pad,
anchor="nw” ,
text=file ,
£i11="#FFFFFF” ,
font=("Roboto Medium”, 14 % —1),
)
)
pad += 20.0

if len(self.itemlist) > O:
self .button_1.config(image=self.button_image_5, command=self.check_files)

73

def

def

def

self .button_1["state”] = ”normal’

is_file_already_in_itemlist(self, file):
for id in self.itemlist:
if self.canvas.itemcget(id, "text”) = file:
return True
return False

check_files(self):
components_in_workflow = 0
uploaded_components = 0
for file in self.itemlist:
path = self.canvas.itemcget(file , "text”)
try:
json = ProvDocument.deserialize (source=path, format="json”)
except:
showerror (
title="error”,
message=f” {path} is not a valid provenance document”,

)

return

xml = json.serialize (format="xml”)
root = ET.fromstring(xml.encode(” utf—8”))

check if number of components in workflow is equal to number of uploaded <>
nodes
if "runWorkflow” in path and ”Node” not in path:
file is a workflow
if components_in_workflow != O0:
showerror (
title="error”,
message="Dont upload more then one workflow at the same time!”
)
return
for element in root.getchildren() [0].getchildren():
if "hadMember” in element.tag:
components_in_workflow 4= 1
elif "runWorkflowNode” in path:
file is a node
uploaded_components 4= 1

else:
showerror (
title="error” ,
message=f” {path} is not named like a workflow or node”,

)

if components_in_workflow — O:
showerror (title="error”, message="No workflow was selected”)
elif components_in_workflow — uploaded_components:

showinfo (
title="Check succesful”,
message="Check successful. Files can be uploaded.”,
)
self .button_image_1 = PhotoImage(file=relative_to_assets(”button_-1.png”))
self .button_1.configure
image=self .button_image_1, command=self.upload_files
)

else:
showerror (
title="error”,
message="Number of selected Nodes is not maching number of nodes in the<+
provided workflow” ,

)

upload_files(self):

private_key = simpledialog.askstring(title="Key”, prompt="Insert Private Key”)
workflow, nodes = 77, []

for item_id in self.itemlist:

path = self.canvas.itemcget(item_id, ”text”)
file_reader = open(path)
json_file = jcs.canonicalize(json.load(file_reader), utf8=False)

74

OO~ ULk W+

hash = sha256(json_file.encode(”utf—8”)).hexdigest ()
if "runWorkflow” in path and ”Node” not in path:
workflow = hash
else:
nodes . append (hash)
try:
Web3Provider .upload_nodes_and_workflows (private_key, workflow, nodes)
except Exception as e:
showerror (" Error!”, e)
else:
showinfo (7" Upload successful!”, ”Done! Documents uploaded succesfully.”)

self.clear_files ()

if __name__ =— 7 __main__":

new = UploadPage ()
new.mainloop ()

Listing 3: Upload Page of GUI UploadPage.py

D.4 WebProvider

import json

from web3 import Web3

from dotenv import load_dotenv
import os

class Web3Provider (object):
load_dotenv ()
transaction_address = os.environ.get(”contract_address”)
abi_path = os.environ.get(”path_to_abi”)

w3 = Web3(
Web3.HTTPProvider (”http://127.0.0.1:7545” | request_kwargs={"timeout”: 600})
)

chain_id = 1337
with open(abi_path, "r”) as file:
compiled_sol = json.load(file)

get abi
abi = compiled_sol[”abi”]
deployed_prov_contract = w3.eth.contract(address=transaction_address, abi=abi)
@classmethod
def upload_nodes_and_workflows(cls, private_key, workflow, nodes=[]):
address = cls.w3.eth.account.privateKeyToAccount (private_key).address
nonce = cls.w3.eth.getTransactionCount (address)
transaction = cls.deployed_prov_contract.functions.add_workflow_and_node(

workflow, nodes
) .buildTransaction(
”chainld”: cls.chain_id,
?from” : address,
”gasPrice”: cls.w3.eth.gas_price,
”nonce” : nonce,
sign_store_contact = cls.w3.eth.account.sign_transaction(
transaction, private_key—=private_key

print (” Deploying Contract!”)

Send the transaction

send_store_contact = cls.w3.eth.send_raw_transaction(
sign_store_contact.rawTransaction

print (” Waiting for transaction to finish ...”)
transaction_receipt = cls.w3.eth.wait_for_transaction_receipt(

75

OO~ WN

send_store_contact

)
print (transaction_receipt)
print (£”Done! Contract deployed to {transaction_receipt.contractAddress}”)

Listing 4: Webprovider Class WebProvider.py

E. Evaluation

import jcs

from hashlib import sha256

loading workflows and nodes provenance documents
w_file = open('testfiles /runWorkflow6.json')
nl_file = open('testfiles/runWorkflowNodel25. json ")
n2_file = open('testfiles /runWorkflowNodel26. json ')

canonicalizing documents

wf = jcs.canonicalize(json.load(w_file), utf8=False)
nl = jcs.canonicalize(json.load(nl_file), utf8=False)
n2 = jcs.canonicalize(json.load(n2_file), utf8=False)

hashing documents

wf_hash = sha256 (wf.encode(”utf—8”)).hexdigest ()
nl_hash = sha256(nl.encode(”utf—8”)).hexdigest ()
n2_hash = sha256(n2.encode(”utf—8”)).hexdigest ()

transaction = deployed_prov_contract.functions.add_workflow_and_nodes(wf_hash, [nl_hash<
, n2_hash]) .buildTransaction({”chainld”: chain_id, ”from”: dlr_admin_adress, 7+
gasPrice”: w3.eth.gas_price, ”"nonce”’: w3.eth.getTransactionCount(dlr_admin_adress)+
sign_store_contact = w3.eth.account.sign_transaction(

transaction, private_key=dlr_admin_private_key

)

send_store_contact = w3.eth.send_raw_transaction(sign_store_contact.rawTransaction)
transaction_receipt = w3.eth.wait_for_transaction_receipt(send_store_contact)

Listing 5: Upload of Nodes and Workflows

76

LL

F. Data Extraction Table

Authors Year Goal Area Blockchain Provenance Provenance Data Generation Blockchain Storage
Standard
Dang and Anh | 2020 | Track Data Open Data | Hyperledger | W3C PROV 1. Tool receives a Data is stored in 5 Smart Contracts:
Provenance Fabric synchronization request from Resources, Datasets, User, Portal, and
Open Data Platform, when Provenance, which combine the other
user changes data 4 elements to actual Provenance
2. Received context changes of | information.
the Objects properties result
in provenance data
Bose et al 2019 | Capture, Software Ethereum SWProcess Review Data is converted to 1. Storing critical PROV Data and the
store, Provenance | (TestRPC) Specification SWProcess Hash in Blockchain
explore and (Prov for 2. Storing full PROV Data in Off-Chain
analyze Software DB
provenance Development) 3. Suggestion: Cryptographic
data immutable distributed databases such
as IPFS
Sun et al 2022 | Sharing of Provenance | Ethereum W3C PROV 1 PROV graph is partitioned into
Provenance several subgraphs (BFS-based
Data Provenance Graph Partition)
2. Subgraphs are encrypted and
uploaded onto the chain
3. users can then obtain a subset of
provenance subgraphs and compose
them into a new graph
Margheri et. al | 2020 | Track Data Healthcare | Hyperledger | W3C PROV Health Documents are Key value pairs:
Provenance Fabric considered as Entities of PROV | <h(doc), Prov(doc)>,

document:

- Non-CDA’s are one PROV; -
CDA'’s are getting split section
wise into multiple PROVs

Where h is signature (hash) and Prov
is in PROV format

- Hash is calculated by
Canonicalization

- Whenever a Patients doc is modified,
a new provenance tuple is stored

3L

- When Doc is a CDA, each section is
stored and linked to master doc

Zhang et al 2021 | Dispatching Power grids | Hyperledger | Modified 3 Smart Contracts
and control Fabric PROV for 1. Data access: Put, Delete, Update
of Power-Grid and Query. Before/After each
Provenance Operation Data Logging contract gets
Data triggered
2. Data Logging: Create Provenance
chain based on activity (init, delete,
update, query). Each chain represents
change of data
3. Data Provenance: Access data
operation log and create a complete
provenance chain.
Kirstein 2019 | Defining Linked W3C Prov
requirement | Open Data
for a system
that track
and store
provenance
data
Lautert et al 2020 | Track data Fog Tendermint | W3C Prov Fog Architecture: Multiple Fogs own a
provenance | Computing private Blockchain each, that store
Provenance. When it’s time to disclose
the data it is shared with clouds global
blockchain
Sigwart et al 2020 | Generic Internet of Data 1. storage layer: low-level
Framework Things (loT) Provenance representation and storage of
to track model for loT provenance data (o create, retrieve,
provenance (olufowobi et update and
al) delete)

6.

2. generic provenance layer: general-
purpose provenance functionality

3. specific provenance layer: fine-tune
the framework to requirements of
specific use-case

Dang und 2021 | Keep track of | Open Data | Hyperledger | W3C PROV 1. Tool receives a URL + Checksum of dataset is stored in

Duong data changes Fabric synchronization request from | Blockchain
and share Open Data Platform, when
them with data is changed
the open 2. Received context changes of
data the Objects properties result
platform in provenance data

Demichev 2021 | Decentralize | Business Hyperledger | Adapted W3C Key value pairs of assets (e.g. Files),
d Data Process Fabric Prov: e.g. file-name, storageld, ownerlD,
Management | Engineering {Asset (entity); creationDate etc..

System Operation/Tra

(PROVHL) nsaction
(Activity);
Participant
(Agent)}

Tunstadtetal | 2019 | general Provenance | Hyperledger | Open On-Chain: checksum, editors,
framework Fabric Provenance operations, data ownership, and data
for tracking Model pointers
data
provenance Off-Chain: Actual data
(HyperPROV)

Coelho et al 2021 | capture, Collaborati | Hyperledger | ProvONE Off-Chain: The RESTful APl web
store, ve Fabric (PROV for service, the
analysis of Research scientiftic Client, Wrapper, and Data layers
provenance workflows)

related data

On-Chain: Chaincode

08

Markovic etal | 2020 | Monitor and | Food Hyperledger | PROV-related Participants involved in
Track Food Deliveries Fabric ontology EP- preparing/delivering food, assets (the
Provenance PLAN (PROV food) and transactions (delivery of
extension for assets) are stored on Blockchain.
linking Plans)
Prov Graph is exported as text and
stored in Transaction attribute
(complianceReport)
Liang et al 2017 | Tracking of Cloud Data | Tierion API DataRecord DataRecord is published to Blockchain
Cloud on Bitcoin with according to Chainpoint standard,
Operations DateTime, which combine the hashes of the
while Username, DataRecord Elements to a Merkle Tree
enhancing Filename,
privacy and AffectedUser
availability and Action,
(ProvChain) e.g. File
Creation, File
Modification,
File Copy
Markovic et al | 2019 | Managing Food Hyperledger | FS-PROV (Food PROV Data is stored in Smart
and Delivery Fabric Safety) Contracts;
Reasoning Smart Contract functions are exposed
about via a RESTful API
provenance
compliance
records
Fadhel et al 2019 | model loT Security | Hyperledger | PROV-N Store Documents in HF Keystore (key-
Attacks Fabric Modification value pairs)
towards loT
Devices
Hogan and 2019 | Can Provenance W3C PROV Mapping of PROV Components to
Helfert Distributed Blockchain Elements

Ledger

18

Technology
apply the
core primary
PROV

attributes
Ramachandran | 2018 | collection Knowledge | Ethereum Open Document Tracker, that log change
und and Manageme Provenance event data and store included OPM
Kantarcioglu verification nt Model (OPM) dataina DB
of data
provenance Triplet of
agents,
artifacts, and
process, e.g.
(user, file: old
version, file:
new version,
process used
for
modifications).
loni und Pahl 2018 | track Edge Hyperledger Relevant components get Prov Components are stored as
identities Computing | Fabric mapped to W3C Prov classes in Smart Contracts
and Elements
provenance - Assets (Data, Sensors,
of Devices) are considered as
orchestratio Entites
n decisions - Actions like node joining,
of a business identity check, record
network provenance are Activitys

- Initiators of Activites or
Owners of Entities are the
Agents

4]

Prov is automatically
generated, which is shown for
for DataAsset

Hash of newly generated
DataAsset is used to construct
a DataAsset Object, which is
linked to old DataAsset by
derivedFrom attribute.

Song et al

2020

Tracking and
sharing of
Provenance
Data

Data
Provenance

W3C Prov
Standard

- Prov related data like person's
identity signature, the time and type
of operation are stored in the body of
the blockchain

- When prov data is changed, the
digested hash in the header should
change too, which make tamper-
detection easy

References

1]

[2]

[15]

Manav Gupta. Blockchain for dummies. John Wiley & Sons, Inc., Hoboken, NJ, 2nd ibm
limited edition edition, 2018. ISBN 978-1-119-54593-4. OCLC: 1066258248.

PROV-Overview. An Overview of the PROV Family of Documents. Project report, April
2013. URL https://eprints.soton.ac.uk/356854/.

W3C. World Wide Web Consortium (W3C). https://www.w3.org/. [Accessed 10-Apr-
2023)].

Oxford English Dictionary. Definition of Provenance. https://www.oxfordlearnersdictio
naries.com/definition/english /provenance?q=provenance. [Accessed 11-Apr-2023].

Jeff Jarvis. The Importance of Provenance, Jun 2010. URL https://buzzmachine.com/20
10/06/27 /the-importance-of-provenance/.

Luc Moreau, Juliana Freire, Joe Futrelle, Robert E. McGrath, Jim Myers, and Patrick
Paulson. The Open Provenance Model: An Overview. In Juliana Freire, David Koop, and

Luc Moreau, editors, Provenance and Annotation of Data and Processes, pages 323-326,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-89965-5.

Luc Moreau and Paolo Missier. PROV-DM: The PROV Data Model. URL https://www.
w3.org/TR/2013/REC-prov-dm-20130430/.

Satya Sahoo Timothy Lebo and Deborah McGuinness. PROV-O: The PROV Ontology,
2013. URL https://www.w3.org/TR/2013/REC-prov-0-20130430/.

Luc Moreau and Paolo Missier. PROV-N: The Provenance Notation, 2013. URL https:
//www.w3.org/TR/2013/REC-prov-n-20130430/.

Amir Sezavar Keshavarz Danius T. Michaelides Huanjia Yang Trung Dong Huynh, Michael
0. Jewell and Luc Moreau. The PROV-JSON Serialization, 2013. URL https://www.w3
.org/Submission/prov-json/.

Stian Soiland-Reyes. W3C PROV Data Model.svg - Wikimedia Commons. https://comm
ons.wikimedia.org/wiki/File:W3C_PROV _Data_Model.svg. [Accessed 11-Apr-2023].

Stuart Haber and W. Scott Stornetta. How to time-stamp a digital document. Journal of
Cryptology, 3(2):99-111, January 1991. doi: 10.1007/bf00196791. URL https://doi.org/
10.1007/bf00196791.

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. May 2009. URL
http://www.bitcoin.org/bitcoin.pdf.

Liang Cai, Qilei Li, and Xiubo Liang. Advanced Blockchain Technology: Frameworks and
Enterprise-Level Practices. Springer Nature Singapore, Singapore, 2022. ISBN 978-981-
19359-5-4 978-981-19359-6-1. doi: 10.1007/978-981-19-3596-1. URL https://link.springe
r.com/10.1007/978-981-19-3596- 1.

Nil Kalyani. Phases of Evolution of Blockchain. https://www.geeksforgeeks.org/phases-o
f-evolution-of-blockchain/, 2022. [Accessed 13-Apr-2023].

83

https://eprints.soton.ac.uk/356854/
https://www.w3.org/
https://www.oxfordlearnersdictionaries.com/definition/english/provenance?q=provenance
https://www.oxfordlearnersdictionaries.com/definition/english/provenance?q=provenance
https://buzzmachine.com/2010/06/27/the-importance-of-provenance/
https://buzzmachine.com/2010/06/27/the-importance-of-provenance/
https://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://www.w3.org/TR/2013/REC-prov-o-20130430/
https://www.w3.org/TR/2013/REC-prov-n-20130430/
https://www.w3.org/TR/2013/REC-prov-n-20130430/
https://www.w3.org/Submission/prov-json/
https://www.w3.org/Submission/prov-json/
https://commons.wikimedia.org/wiki/File:W3C_PROV_Data_Model.svg
https://commons.wikimedia.org/wiki/File:W3C_PROV_Data_Model.svg
https://doi.org/10.1007/bf00196791
https://doi.org/10.1007/bf00196791
http://www.bitcoin.org/bitcoin.pdf
https://link.springer.com/10.1007/978-981-19-3596-1
https://link.springer.com/10.1007/978-981-19-3596-1
https://www.geeksforgeeks.org/phases-of-evolution-of-blockchain/
https://www.geeksforgeeks.org/phases-of-evolution-of-blockchain/

[16]

[19]

[20]

[21]

[22]

23]
[24]

[29]

Pratyusa Mukherjee and Chittaranjan Pradhan. Blockchain 1.0 to Blockchain 4.0—The
Evolutionary Transformation of Blockchain Technology. In Sandeep Kumar Panda,
Ajay Kumar Jena, Santosh Kumar Swain, and Suresh Chandra Satapathy, editors,
Blockchain Technology: Applications and Challenges, volume 203, pages 29-49. Springer
International Publishing, Cham, 2021. ISBN 978-3-030-69394-7 978-3-030-69395-4. doi:
10.1007/978-3-030-69395-4_3. URL https://link.springer.com/10.1007/978-3-030-69395
-4_3. Series Title: Intelligent Systems Reference Library.

Usman W. Chohan. The double spending problem and cryptocurrencies. SSRN FElectronic
Journal, 2017. doi: 10.2139/ssrn.3090174. URL https://doi.org/10.2139/ssrn.3090174.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382-401, jul 1982. ISSN 0164-0925. doi: 10.1145/
357172.357176. URL https://doi.org/10.1145/357172.357176.

Billy Markus and Jackson Palmer. Dogechain Whitepaper, 2013. URL https://dogechai
n.dog/DogechainWP.pdf.

Charlie Lee. Litecoin (LTC) Whitepaper, Nov 2011. URL https://cryptoverze.com/liteco
in-whitepaper/.

Nicolas van Saberhagen. Monero Whitepaper, 2014. URL https://github.com/monero-p
roject /research-lab/blob/master/whitepaper /whitepaper.pdf.

Vitalik Buterin. Ethereum WhitePaper: A Next Generation Smart Contract & Decentral-
ized Application Platform. 2013. URL https://github.com/ethereum/wiki/wiki/White-P
aper.

Serguei Popov. The Tangle. IOTA. Whitepaper, 1(3):30, 2018.

Colin LeMahieu. Nano: A feeless distributed cryptocurrency network. Nano [Online
resource]. URL: https://nano. org/en/whitepaper (date of access: 24.03. 2018), 4, 2018.

Qin Wang, Jiangshan Yu, Shiping Chen, and Yang Xiang. Sok: Diving into dag-based
blockchain systems, 2020. URL https://arxiv.org/abs/2012.06128.

Stefan Schmidt, Marten Jung, Thomas Schmidt, Ingo Sterzinger, Gilinter Schmidt, Moritz
Gomm, Klaus Tschirschke, Tapio Reisinger, Fabian Schlarb, Daniel Benkenstein, et al.
Unibright-the unified framework for blockchain based business integration. White paper,
April, 2018.

Avadesian Xu Thomas Pang Tim Yang Maolin Zheng Luke Zeng, Shawn Xin. Seele.
https://seele.pro/, 2019. [Accessed 09-Apr-2023].

Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang. An
Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. In 2017
IEEE International Congress on Big Data (BigData Congress), pages 557-564, Honolulu,
HI, USA, June 2017. IEEE. ISBN 978-1-5386-1996-4. doi: 10.1109/BigDataCongress.20
17.85. URL http://ieeexplore.ieee.org/document,/8029379/.

Ying-Chang Liang. Blockchain for Dynamic Spectrum Management. In Dynamic Spectrum
Management, pages 121-146. Springer Singapore, Singapore, 2020. ISBN 9789811507755
9789811507762. doi: 10.1007/978-981-15-0776-2_5. URL http://link.springer.com/10.100
7/978-981-15-0776-2_5. Series Title: Signals and Communication Technology.

84

https://link.springer.com/10.1007/978-3-030-69395-4_3
https://link.springer.com/10.1007/978-3-030-69395-4_3
https://doi.org/10.2139/ssrn.3090174
https://doi.org/10.1145/357172.357176
https://dogechain.dog/DogechainWP.pdf
https://dogechain.dog/DogechainWP.pdf
https://cryptoverze.com/litecoin-whitepaper/
https://cryptoverze.com/litecoin-whitepaper/
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://arxiv.org/abs/2012.06128
https://seele.pro/
http://ieeexplore.ieee.org/document/8029379/
http://link.springer.com/10.1007/978-981-15-0776-2_5
http://link.springer.com/10.1007/978-981-15-0776-2_5

[30]

[31]

[32]

[34]

[35]

[36]

[37]

[38]

[39]

[42]

Imran Bashir. Mastering blockchain: a deep dive into distributed ledgers, consensus pro-
tocols, smart contracts, DApps, cryptocurrencies, Ethereum, and more. Expert insight.
Packt, Birmingham Mumbai, third edition edition, 2020. ISBN 978-1-83921-319-9.

Melanie Mitchell. Why Al is harder than we think. In Proceedings of the Genetic and
Evolutionary Computation Conference. ACM, June 2021. doi: 10.1145/3449639.3465421.
URL https://doi.org/10.1145/3449639.3465421.

Ragib Hasan, Joseph Tucek, Paul Stanton, William Yurcik, Larry Brumbaugh, Jeff
Rosendale, and Roelof Boonstra. The techniques and challenges of immutable storage with
applications in multimedia. pages 41-52, San Jose, CA, January 2005. doi: 10.1117/12.5
88103. URL http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=858272.

Elizabeth Haubert, Joseph Tucek, Larry Brumbaugh, and William Yurcik. Tamper-
resistant storage techniques for multimedia systems. pages 30-40, San Jose, CA, January
2005. doi: 10.1117/12.588020. URL http://proceedings.spiedigitallibrary.org/proceeding.
aspxarticleid=858271.

John P Conley et al. Encryption, Hashing, PPK, and Blockchain: A Simple Introduction.
Vanderbilt University, Department of Economics, 2019.

Wahome Macharia. Cryptographic Hash Functions. 05 2021. URL https://www.research
gate.net/publication/351837904_Cryptographic_Hash_Functions.

Rohit Verma and Aman Kumar Sharma. Cryptography: Avalanche effect of AES and RSA.
International Journal of Scientific and Research Publications (IJSRP), 10(4):p10013, April
2020. doi: 10.29322/ijsrp.10.04.2020.p10013. URL https://doi.org/10.29322 /ijsrp.10.04.2
020.p10013.

Wouter Penard and Tim van Werkhoven. On the secure hash algorithm family. Cryptog-
raphy in context, pages 1-18, 2008.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1-32, 2014.

Ali Sunyaev. Distributed ledger technology. In Internet Computing, pages 265—-299.
Springer International Publishing, 2020. doi: 10.1007/978-3-030-34957-8_9. URL
https://doi.org/10.1007/978-3-030-34957-8_9.

Types of blockchain: Public, private, or something in between: Foley amp; lardner llp.
URL https://www.foley.com/en/insights/publications/2021 /08 /types-of-blockchain-pub
lic-private-between.

Aras Bozkurt and Hasan Ucar. Blockchain technology as a bridging infrastructure among
formal, non-formal, and informal learning processes. In Blockchain Technology Applications
in Education, pages 1-15. IGI Global, 2020. doi: 10.4018/978-1-5225-9478-9.ch001. URL
https://doi.org/10.4018/978-1-5225-9478-9.ch001.

Gleidson Sobreira Leite, Adriano Bessa Albuquerque, and Placido Rogerio Pinheiro. Pro-
cess automation and blockchain in intelligence and investigation units: An approach.
Applied Sciences, 10(11):3677, May 2020. doi: 10.3390/app10113677. URL https:
//doi.org/10.3390/app10113677.

Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang.
Blockchain challenges and opportunities: A survey. International Journal of Web and
Grid Services, 14:352, 10 2018. doi: 10.1504/IJWGS.2018.095647.

85

https://doi.org/10.1145/3449639.3465421
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=858272
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=858271
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=858271
https://www.researchgate.net/publication/351837904_Cryptographic_Hash_Functions
https://www.researchgate.net/publication/351837904_Cryptographic_Hash_Functions
https://doi.org/10.29322/ijsrp.10.04.2020.p10013
https://doi.org/10.29322/ijsrp.10.04.2020.p10013
https://doi.org/10.1007/978-3-030-34957-8_9
https://www.foley.com/en/insights/publications/2021/08/types-of-blockchain-public-private-between
https://www.foley.com/en/insights/publications/2021/08/types-of-blockchain-public-private-between
https://doi.org/10.4018/978-1-5225-9478-9.ch001
https://doi.org/10.3390/app10113677
https://doi.org/10.3390/app10113677

[44]

[45]

[46]

[52]

[53]

[54]

Andreas M. Antonopoulos. Mastering Bitcoin: Programming the Open Blockchain.
O’Reilly Media, Inc., 2nd edition, 2017. ISBN 1491954388.

Jimi S. Blockchain explained: how a 51blog.goodaudience.com. https://blog.goodaudience.
com/what-is-a-51-attack-or-double-spend-attack-aal08db63474. [Accessed 09-Apr-2023].

P. Rajitha Nair and D. Ramya Dorai. Evaluation of Performance and Security of Proof
of Work and Proof of Stake using Blockchain. In 2021 Third International Conference
on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), pages
279-283, Tirunelveli, India, February 2021. IEEE. ISBN 978-1-66541-960-4. doi: 10.1109/
ICICV50876.2021.9388487. URL https://ieeexplore.ieee.org/document /9388487 /.

Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. Blockchain technology overview.
Technical report, oct 2018. URL https://doi.org/10.6028%2Fnist.ir.8202.

Solidity. Layout of a solidity source file, 2023. URL https://docs.soliditylang.org/en/v0.
6.8/layout-of-source-files.html.

Solidity. First application, 2023. URL https://solidity-by-example.org/first-app/.

Corwin Smith. Transactions — ethereum.org — ethereum.org. https://ethereum.org/en/
developers/docs/transactions/. [Accessed 12-Apr-2023].

Barbara Ann Kitchenham and Stuart Charters. Guidelines for performing systematic liter-
ature reviews in software engineering. Technical Report EBSE 2007-001, Keele University
and Durham University Joint Report, 07 2007. URL https://www.elsevier.com/__data/pr
omis_misc/525444systematicreviewsguide.pdf.

Tran Khanh Dang and Thu Duong Anh. A Pragmatic Blockchain Based Solution for
Managing Provenance and Characteristics in the Open Data Context. In Tran Khanh
Dang, Josef Kiing, Makoto Takizawa, and Tai M. Chung, editors, Future Data and Security
Engineering, volume 12466, pages 221-242. Springer International Publishing, Cham, 2020.
ISBN 978-3-030-63923-5 978-3-030-63924-2. doi: 10.1007/978-3-030-63924-2_13. URL
https://link.springer.com/10.1007/978-3-030-63924-2_13. Series Title: Lecture Notes in
Computer Science.

T.K. Dang and T.A. Duong. An effective and elastic blockchain-based provenance pre-
serving solution for the open data. International Journal of Web Information Systems, 17
(5):480-515, 2021. doi: 10.1108/IJWIS-03-2021-0029. URL https://www.scopus.com /inw
ard /record.uri?eid=2-s2.0-85108595981&doi=10.1108 %2fIJWIS-03-2021-0029& partnerl
D=40&md5=93aa7dd534ee37139c9e4ff15a482c7c.

A. Demichev, A. Kryukov, and N. Prikhod’ko. Business Process Engineering for Data
Storing and Processing in a Collaborative Distributed Environment Based on Provenance
Metadata, Smart Contracts and Blockchain Technology. Journal of Grid Computing, 19
(1), 2021. doi: 10.1007/s10723-021-09544-4. URL https://www.scopus.com/inward/reco
rd.uri?eid=2-s2.0-85100231592&doi=10.1007%2fs10723-021-09544-4&partnerID=40&md
5=7Tb54f4c37b83305dd467e6b511e4fc05.

F. Kirstein. A decentralized provenance network for linked open data. volume 2548, pages
104-115, 2019. URL https://www.scopus.com/inward /record.uri?eid=2-s2.0-850815514
11&partnerID=40&md5=f42a3ab59a0b883122a49018ccf0dc77.

G. Hogan and M. Helfert. Transparent cloud privacy: Data provenance expression in
blockchain. pages 430-436, 2019. doi: 10.5220/0007733404300436. URL https://www.sc
opus.com/inward /record.uri?eid=2-s2.0-85067421602& doi=10.5220%2f000773340430043
6&partnerID=40&md5=e3699248d3a464aaeclf16b77a212e707.

86

https://blog.goodaudience.com/what-is-a-51-attack-or-double-spend-attack-aa108db63474
https://blog.goodaudience.com/what-is-a-51-attack-or-double-spend-attack-aa108db63474
https://ieeexplore.ieee.org/document/9388487/
https://doi.org/10.6028%2Fnist.ir.8202
https://docs.soliditylang.org/en/v0.6.8/layout-of-source-files.html
https://docs.soliditylang.org/en/v0.6.8/layout-of-source-files.html
https://solidity-by-example.org/first-app/
https://ethereum.org/en/developers/docs/transactions/
https://ethereum.org/en/developers/docs/transactions/
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://link.springer.com/10.1007/978-3-030-63924-2_13
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108595981&doi=10.1108%2fIJWIS-03-2021-0029&partnerID=40&md5=93aa7dd534ee37139c9e4ff15a482c7c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108595981&doi=10.1108%2fIJWIS-03-2021-0029&partnerID=40&md5=93aa7dd534ee37139c9e4ff15a482c7c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108595981&doi=10.1108%2fIJWIS-03-2021-0029&partnerID=40&md5=93aa7dd534ee37139c9e4ff15a482c7c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100231592&doi=10.1007%2fs10723-021-09544-4&partnerID=40&md5=7b54f4c37b83305dd467e6b511e4fc05
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100231592&doi=10.1007%2fs10723-021-09544-4&partnerID=40&md5=7b54f4c37b83305dd467e6b511e4fc05
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100231592&doi=10.1007%2fs10723-021-09544-4&partnerID=40&md5=7b54f4c37b83305dd467e6b511e4fc05
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081551411&partnerID=40&md5=f42a3ab59a0b883122a49018ccf0dc77
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081551411&partnerID=40&md5=f42a3ab59a0b883122a49018ccf0dc77
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067421602&doi=10.5220%2f0007733404300436&partnerID=40&md5=e3699248d3a464aae1f16b77a212e707
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067421602&doi=10.5220%2f0007733404300436&partnerID=40&md5=e3699248d3a464aae1f16b77a212e707
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067421602&doi=10.5220%2f0007733404300436&partnerID=40&md5=e3699248d3a464aae1f16b77a212e707

[57]

[59]

[61]

[63]

N.E. Ioini and C. Pahl. Trustworthy orchestration of container based edge computing
using permissioned blockchain. pages 147-154, 2018. doi: 10.1109/ToTSMS.2018.8554470.
URL https://www.scopus.com/inward /record.uri?eid=2-s2.0-85055940674&doi=10.1109
%2fIoTSMS.2018.8554470& partnerlD=40&md5=30613{6e2ce675a5ca3b8a9d21efb65c.

N. Fadhel, F. Lombardi, L. Aniello, A. Margheri, and V. Sassone. Towards a semantic
modelling for threat analysis of IoT applications: A case study on transactive energy.
volume 2019, 2019. doi: 10.1049/cp.2019.0147. URL https://www.scopus.com/inward /re
cord.uri?eid=2-52.0-85081958560&doi=10.1049%2fcp.2019.0147&partnerID=40&md5=6
¢7a5ba6971229612b354d0e7cbdc677. Issue: CP756.

M. Markovic, P. Edwards, and N. Jacobs. Recording Provenance of Food Delivery Using
IoT, Semantics and Business Blockchain Networks. pages 116-118, 2019. doi: 10.1109/I0
TSMS48152.2019.8939250. URL https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85077958179&d0i=10.1109%2{IOTSMS48152.2019.8939250& partnerID=40&md5=c9f
457atb985c0e9678e22d9c45H8eb43.

M. Markovic, N. Jacobs, K. Dryja, P. Edwards, and N.J.C. Strachan. Integrating Internet
of Things, Provenance, and Blockchain to Enhance Trust in Last Mile Food Deliveries.
Frontiers in Sustainable Food Systems, 4, 2020. doi: 10.3389/fsufs.2020.563424. URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097092142& doi=10.3389%2ffs
ufs.2020.563424& partner D=40&md5=6ce8b9287e5c02c095063bddc351327d.

Zhang Song, Li Yang, Li Gaoyang, Yu Han, Hao Baozhong, Song Jinwei, and Fan Jingang.
An Improved Data Provenance Framework Integrating Blockchain and PROV Model. In
2020 International Conference on Computer Science and Management Technology (ICC-
SMT), pages 323-327, Shanghai, China, November 2020. IEEE. ISBN 978-1-72818-668-9.
doi: 10.1109/ICCSMT51754.2020.00073. URL https://ieeexplore.ieee.org/document /944
3825/.

Andrea Margheri, Massimiliano Masi, Abdallah Miladi, Vladimiro Sassone, and Jason
Rosenzweig. Decentralised provenance for healthcare data. International Journal of Med-
ical Informatics, 141:104197, September 2020. ISSN 13865056. doi: 10.1016/j.ijjmedinf.2
020.104197. URL https://linkinghub.elsevier.com /retrieve/pii/S1386505619312031.

F. Lautert, D.F. Pigatto, and L. Gomes. A fog architecture for privacy-preserving data
provenance using blockchains. volume 2020-July, 2020. doi: 10.1109/ISCC50000.2020.921
9724. URL https://www.scopus.com/inward /record.uri?eid=2-s2.0-85094103918& doi=1
0.1109%2fISCC50000.2020.9219724& partnerID=40&md5=a8033b5d770c0e89ade36e2c4
772604c.

M. Sigwart, M. Borkowski, M. Peise, S. Schulte, and S. Tai. A secure and extensible
blockchain-based data provenance framework for the Internet of Things. Personal and
Ubiquitous Computing, 2020. doi: 10.1007/s00779-020-01417-z. URL https://www.scop
us.com/inward /record.uri?eid=2-52.0-85086591225&doi=10.1007%2{s00779-020-01417-z
&partnerID=40&md5=38ba363caddeb05a2e693f2dd186b6ch.

Zhoujie Zhang, Can Cui, Lei Tao, Jiaqi Wang, Dapeng Li, Shuzhou Wu, Qiong Feng,
Qingbo Yang, Jian Chen, Jie Zhang, Peng Zhang, and Zhijun Zhang. Research on Con-
sistency Tracing Technology of Dispatching Control Model Data based on Blockchain.
In 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control
Conference (IAEAC), pages 234-239, Chongqging, China, March 2021. IEEE. ISBN 978-
1-72818-028-1. doi: 10.1109/TAEAC50856.2021.9390682. URL https://ieecexplore.ieee.or
g/document /9390682, .

87

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055940674&doi=10.1109%2fIoTSMS.2018.8554470&partnerID=40&md5=30613f6e2ce675a5ca3b8a9d21efb65c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055940674&doi=10.1109%2fIoTSMS.2018.8554470&partnerID=40&md5=30613f6e2ce675a5ca3b8a9d21efb65c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081958560&doi=10.1049%2fcp.2019.0147&partnerID=40&md5=6c7a5ba6971229612b354d0e7cbdc677
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081958560&doi=10.1049%2fcp.2019.0147&partnerID=40&md5=6c7a5ba6971229612b354d0e7cbdc677
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081958560&doi=10.1049%2fcp.2019.0147&partnerID=40&md5=6c7a5ba6971229612b354d0e7cbdc677
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077958179&doi=10.1109%2fIOTSMS48152.2019.8939250&partnerID=40&md5=c9f457afb985c0e9678e22d9c458eb43
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077958179&doi=10.1109%2fIOTSMS48152.2019.8939250&partnerID=40&md5=c9f457afb985c0e9678e22d9c458eb43
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077958179&doi=10.1109%2fIOTSMS48152.2019.8939250&partnerID=40&md5=c9f457afb985c0e9678e22d9c458eb43
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097092142&doi=10.3389%2ffsufs.2020.563424&partnerID=40&md5=6ce8b9287e5c02c095063bddc351327d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097092142&doi=10.3389%2ffsufs.2020.563424&partnerID=40&md5=6ce8b9287e5c02c095063bddc351327d
https://ieeexplore.ieee.org/document/9443825/
https://ieeexplore.ieee.org/document/9443825/
https://linkinghub.elsevier.com/retrieve/pii/S1386505619312031
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094103918&doi=10.1109%2fISCC50000.2020.9219724&partnerID=40&md5=a8033b5d770c0e89a4e36e2c4772604c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094103918&doi=10.1109%2fISCC50000.2020.9219724&partnerID=40&md5=a8033b5d770c0e89a4e36e2c4772604c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094103918&doi=10.1109%2fISCC50000.2020.9219724&partnerID=40&md5=a8033b5d770c0e89a4e36e2c4772604c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086591225&doi=10.1007%2fs00779-020-01417-z&partnerID=40&md5=38ba363caddeb05a2e693f2dd186b6cb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086591225&doi=10.1007%2fs00779-020-01417-z&partnerID=40&md5=38ba363caddeb05a2e693f2dd186b6cb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086591225&doi=10.1007%2fs00779-020-01417-z&partnerID=40&md5=38ba363caddeb05a2e693f2dd186b6cb
https://ieeexplore.ieee.org/document/9390682/
https://ieeexplore.ieee.org/document/9390682/

[66]

[68]

[69]

[71]

[72]

R.P. Jagadeesh Chandra Bose, Kanchanjot Kaur Phokela, Vikrant Kaulgud, and San-
jay Podder. BLINKER: A Blockchain-Enabled Framework for Software Provenance. In
2019 26th Asia-Pacific Software Engineering Conference (APSEC), pages 1-8, Putrajaya,
Malaysia, December 2019. IEEE. ISBN 978-1-72814-648-5. doi: 10.1109/APSEC48747.2
019.00010. URL https://ieeexplore.ieee.org/document /8945702 .

Lian-Shan Sun, Xue Bai, Chao Zhang, Yang Li, Yong-Bin Zhang, and Wen-Qiang Guo.
BSTProv: Blockchain-Based Secure and Trustworthy Data Provenance Sharing. Electron-
ics, 11(9):1489, May 2022. ISSN 2079-9292. doi: 10.3390/electronics11091489. URL
https://www.mdpi.com/2079-9292/11/9/1489.

Xueping Liang, Sachin Shetty, Deepak Tosh, Charles Kamhoua, Kevin Kwiat, and Laurent
Njilla. ProvChain: A Blockchain-Based Data Provenance Architecture in Cloud Environ-
ment with Enhanced Privacy and Availability. In 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages 468-477, Madrid,
Spain, May 2017. IEEE. ISBN 978-1-5090-6611-7. doi: 10.1109/CCGRID.2017.8. URL
http://ieeexplore.ieee.org/document /7973733/.

Aravind Ramachandran and Murat Kantarcioglu. SmartProvenance: A Distributed,
Blockchain Based DataProvenance System. In Proceedings of the Eighth ACM Con-
ference on Data and Application Security and Privacy, pages 3542, Tempe AZ USA,
March 2018. ACM. ISBN 978-1-4503-5632-9. doi: 10.1145/3176258.3176333. URL
https://dl.acm.org/doi/10.1145/3176258.3176333.

P. Tunstad, A.M. Khan, and P.H. Ha. HyperProv: Decentralized resilient data provenance
at the edge with blockchains. pages 3-4, 2019. doi: 10.1145/3366627.3368105. URL
https://www.scopus.com/inward /record.uri?eid=2-s2.0-85078900202&doi=10.1145%2f3
366627.3368105& partnerID=40&md5=7820c2cd27faa8035909a0e4b888d116.

R. Coelho, R. Braga, J.M.N. David, M. Dantas, V. Stroele, and F. Campos. Integrating
blockchain for data sharing and collaboration support in scientific ecosystem platform.
volume 2020-January, pages 264273, 2021. doi: 10.24251/HICSS.2021.031. URL https:
//www.scopus.com/inward /record.uri?eid=2-52.0-85108325612&partnerID=40&md5=4b
62e8ca837adcedc936ch6a2a8691e0.

R. Coelho, R. Braga, J.M.N. David, V. Stroele, F. Campos, and M. Dantas. A Blockchain-
Based Architecture for Trust in Collaborative Scientific Experimentation. Journal of Grid
Computing, 20(4), 2022. doi: 10.1007/s10723-022-09626-x. URL https://www.scopus.c
om/inward /record.uri?eid=2-s2.0-85139762810&d0oi=10.1007%2£s10723-022-09626-x&p
artnerID=40&md5=e8f8b3013b128486da2c¢5694695c441a.

Klaus Pohl and Chris Rupp. Basiswissen Requirements Engineering: Aus- und Weit-
erbildung nach IREB-Standard zum Certified Professional for Requirements Engineering
Foundation Level. dpunkt.verlag, Heidelberg, 5., iiberarbeitete und aktualisierte auflage
edition, 2021. ISBN 978-3-86490-814-9.

Klaus Pohl and Chris Rupp. Requirements engineering fundamentals: a study guide for the
certified professional for requirements engineering exam, foundation level, IREB compliant.
Rocky Nook, Santa Barbara, CA, second edition edition, 2015. ISBN 978-1-937538-77-4.

Sophisten and Christine Rupp. Requirements-Engineering: Die kleine RE-Fibel. Hanser,
Carl, Miinchen, 2015. ISBN 978-3-446-44450-8.

IEEE Computer Society. IEEE Recommended Practice for Software Requirements Speci-
fications. IEEE Std 830-1998, pages 1-40, 1998. doi: 10.1109/TEEESTD.1998.88286.

88

https://ieeexplore.ieee.org/document/8945702/
https://www.mdpi.com/2079-9292/11/9/1489
http://ieeexplore.ieee.org/document/7973733/
https://dl.acm.org/doi/10.1145/3176258.3176333
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078900202&doi=10.1145%2f3366627.3368105&partnerID=40&md5=7820c2cd27faa8035909a0e4b888d116
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078900202&doi=10.1145%2f3366627.3368105&partnerID=40&md5=7820c2cd27faa8035909a0e4b888d116
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108325612&partnerID=40&md5=4b62e8ca837adcedc936cb6a2a8691e0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108325612&partnerID=40&md5=4b62e8ca837adcedc936cb6a2a8691e0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108325612&partnerID=40&md5=4b62e8ca837adcedc936cb6a2a8691e0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139762810&doi=10.1007%2fs10723-022-09626-x&partnerID=40&md5=e8f8b3013b128486da2c5694695c441a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139762810&doi=10.1007%2fs10723-022-09626-x&partnerID=40&md5=e8f8b3013b128486da2c5694695c441a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85139762810&doi=10.1007%2fs10723-022-09626-x&partnerID=40&md5=e8f8b3013b128486da2c5694695c441a

[77]

(78]

[83]

[84]

[85]

[36]

[87]

(3]

[39]

[90]

[91]

[92]

[93]

[94]

James Robertson and Suzanne Robertson. Volere. Requirements Specification Templates,
2000.

R. W. Hollmann, A. Schéifer, O. Bertram, and M. Rédel. Virtual testing of multifunctional
moveable actuation systems. CEAS Aeronautical Journal, 13(4):979-988, October 2022.
ISSN 1869-5582, 1869-5590. doi: 10.1007/s13272-022-00602-5. URL https://link.springe
r.com/10.1007/s13272-022-00602-5.

Deutsches Zentrum fiir Luft-und Raumfahrt e.V. (DLR). RCE Environment. https:
//github.com/rcenvironment /rce, 2023. [Accessed 24-Feb-2023].

Deutsches Zentrum fiir Luft-und Raumfahrt e.V. (DLR). RCE Environment. Official
Website, 2023. URL https://rcenvironment.de/.

Deutsches Zentrum fiir Luft-und Raumfahrt e.V. (DLR). RCE Environment Screenshots.
https://rcenvironment.de/pages/screenshots.html, 2023. [Accessed 13-Apr-2023].

Mark von Rosing, Stephen White, Fred Cummins, and Henk de Man. Business Process
Model and Notation—BPMN. In The Complete Business Process Handbook, pages 433—
457. Elsevier, 2015. ISBN 978-0-12-799959-3. doi: 10.1016/B978-0-12-799959-3.00021-5.
URL https://linkinghub.elsevier.com /retrieve/pii/B9780127999593000215.

Statista. Vertrauen in die offentliche Verwaltung in Deutschland 2022 — Statista —
de.statista.com. https://de.statista.com/statistik /daten/studie/795828 /umfrage/umfrag
e-in-deutschland-zum-vertrauen-in-die-oeffentliche-verwaltung/. [Accessed 13-Apr-2023].

Cyberphone. JSON-Canonicalization Scheme (JCS), 2019. URL https://github.com/cyb
erphone/json-canonicalization.

Friederike Kleinfercher, Sandra Vengadasalam, and James Lawton. Bloxberg - The
Blockchain for Science. Whitepaper 2.0. Technical report, Bloxberg, 01 2022.

OpenEthereum. Authority Round (Aura) Documentation. https://openethereum.github.
io/Aura.html. [Accessed 13-Apr-2023].

OpenZeppelin. AccessControl.sol. https://github.com/OpenZeppelin/openzeppelin-contr
acts/blob/master/contracts/access/AccessControl.sol, 2023. [Accessed 12-Apr-2023].

OpenZeppelin. Ownable.sol. https://github.com/OpenZeppelin/openzeppelin-contracts
/blob/release-v2.5.0/contracts/ownership/Ownable.sol, 2023. [Accessed 12-Apr-2023].

TechHQ. Whitelist.sol. https://github.com/HQ20/contracts/blob/v0.0.2/contracts/acce
ss/Whitelist.sol, 2023. [Accessed 12-Apr-2023].

TruffleSuite. Ethereum Workspace Overview. https://trufflesuite.com/docs/ganache/con
cepts/ethereum-workspace/overview/. [Accessed 13-Apr-2023].

Brownie. The Configuration File. URL https://eth-brownie.readthedocs.io/en/stable/co
nfig.html.

Web3.py. Documentation. https://web3py.readthedocs.io/en/stable/, 2023. [Accessed
13-Apr-2023].

Steven Kocadag. Evaluation Testfiles. https://drive.google.com/drive/folders/1pWvaS9
T-yxnp8cXsUjbMy39GdmCIkDnw?usp=share_link, 2023. [Accessed 13-Apr-2023].

ExtendsClass. Random JSON Data Generator. https://extendsclass.com/json-generator
html, 2020. [Accessed 13-Apr-2023].

89

https://link.springer.com/10.1007/s13272-022-00602-5
https://link.springer.com/10.1007/s13272-022-00602-5
https://github.com/rcenvironment/rce
https://github.com/rcenvironment/rce
https://rcenvironment.de/
https://rcenvironment.de/pages/screenshots.html
https://linkinghub.elsevier.com/retrieve/pii/B9780127999593000215
https://de.statista.com/statistik/daten/studie/795828/umfrage/umfrage-in-deutschland-zum-vertrauen-in-die-oeffentliche-verwaltung/
https://de.statista.com/statistik/daten/studie/795828/umfrage/umfrage-in-deutschland-zum-vertrauen-in-die-oeffentliche-verwaltung/
https://github.com/cyberphone/json-canonicalization
https://github.com/cyberphone/json-canonicalization
https://openethereum.github.io/Aura.html
https://openethereum.github.io/Aura.html
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v2.5.0/contracts/ownership/Ownable.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol
https://github.com/HQ20/contracts/blob/v0.0.2/contracts/access/Whitelist.sol
https://trufflesuite.com/docs/ganache/concepts/ethereum-workspace/overview/
https://trufflesuite.com/docs/ganache/concepts/ethereum-workspace/overview/
https://eth-brownie.readthedocs.io/en/stable/config.html
https://eth-brownie.readthedocs.io/en/stable/config.html
https://web3py.readthedocs.io/en/stable/
https://drive.google.com/drive/folders/1pWvaS9T-yxnp8cXsUjbMy39GdmC9kDnw?usp=share_link
https://drive.google.com/drive/folders/1pWvaS9T-yxnp8cXsUjbMy39GdmC9kDnw?usp=share_link
https://extendsclass.com/json-generator.html
https://extendsclass.com/json-generator.html

[95]

[97]

[100]

[101]

[102]

[103]

[104]

F. Amin, R. Abbasi, A. Mateen, M. Ali Abid, and S. Khan. A Step toward Next-Generation
Advancements in the Internet of Things Technologies. Sensors, 22(20), 2022. doi: 10.339
0/s22208072. URL https://www.scopus.com/inward /record.uri?eid=2-52.0-85140651210
&d0i=10.3390%2£s22208072& partnerID=40&md5=b16034f306ecc37293falclef100c7e5.

K. Boland, P. Fafalios, A. Tchechmedjiev, K. Todorov, and S. Dietze. Modeling and
contextualizing claims. volume 2599, 2019. URL https://www.scopus.com/inward /reco
rd.uri?eid=2-s2.0-85093850014& partnerID=40&md5=d0674c42db2a5fbedef89a760d48da
94.

Zhigiang Geng, Yuan Cao, Jun Li, and Yongming Han. Novel blockchain transaction
provenance model with graph attention mechanism. FEzxpert Systems with Applications,
209:118411, December 2022. ISSN 0957-4174. doi: 10.1016/j.eswa.2022.118411. URL
https://www.sciencedirect.com/science/article/pii/S0957417422015172.

N. Gouru and N. Vadlamani. DistProv-Data Provenance in Distributed Cloud for Secure
Transfer of Digital Assets with Ethereum Blockchain using ZKP. International Journal of
Open Source Software and Processes, 10(3):1-18, 2019. doi: 10.4018/IJOSSP.2019070101.
URL https://www.scopus.com/inward /record.uri?eid=2-s2.0-85072635165&d0i=10.4018
%2f1JOSSP.2019070101&partnerID=40&md5=5b8b5e672884802¢eaba33c65b978beba.

Mahmud Hasan, Kemafor Ogan, and Binil Starly. Hybrid Blockchain Architecture for
Cloud Manufacturing-as-a-service (CMaaS) Platforms with Improved Data Storage and
Transaction Efficiency. 49th SME North American Manufacturing Research Conference
(NAMRC 49, 2021), 53:594-605, January 2021. ISSN 2351-9789. doi: 10.1016/j.promfg.2
021.06.060. URL https://www.sciencedirect.com/science/article/pii/S2351978921000706.

Oludare Isaac Abiodun, Moatsum Alawida, Abiodun Esther Omolara, and Abdulatif Al-
abdulatif. Data provenance for cloud forensic investigations, security, challenges, solutions
and future perspectives: A survey. Journal of King Saud University - Computer and In-
formation Sciences, October 2022. ISSN 1319-1578. doi: 10.1016/j.jksuci.2022.10.018.
URL https://www.sciencedirect.com/science/article/pii/S131915782200369X.

N. Kaaniche, S. Belguith, M. Laurent, A. Gehani, and G. Russello. Prov-Trust: Towards
a trustworthy sgx-based data provenance system. volume 3, pages 225-237, 2020. doi:
10.5220/0009889302250237. URL https://www.scopus.com/inward /record.uri?eid=2-s2.
0-85111138820&doi=10.5220%20009889302250237& partnerID=40& md5=4{223efed3ebe
c4e32f0645d28e6490f.

E. Kak, R. Orji, J. Pry, K. Sofranko, R.K. Lomotey, and R. Deters. Privacy improvement
architecture for IoT. pages 148-155, 2018. doi: 10.1109/ICIOT.2018.00028. URL
https://www.scopus.com/inward /record.uri?eid=2-52.0-85055619938&doi=10.1109%2fI
CIOT.2018.00028&partnerID=40&md5=b80d7c2aa5adbel19df06fda98aebf3d3.

T. Komamizu, Y. Uchida, Y. Ogawa, and K. Toyama. Analyzing Japanese law history
through modeling multi-versioned entity. volume 2599, 2019. URL https://www.scopus.c
om/inward /record.uri?eid=2-52.0-85093833630& partnerID=40&md5=d9139{630fe8fb2f
b510b2fcda6fef66.

H. Li, P. Yue, L. Jiang, M. Zhang, and Z. Liang. Blockchain technology for vector geo-
graphic provenance information organization and verification. Cehui Xuebao/Acta Geo-
daetica et Cartographica Sinica, 50(6):823-832, 2021. doi: 10.11947/j.AGCS.2021.20200
168. URL https://www.scopus.com/inward /record.uri?eid=2-s2.0-85109074412&doi=10.
11947%2£j.AGCS.2021.20200168& partnerID=40&md5=9db70528b49b7a6bb31a8341b30b
a9ad.

90

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140651210&doi=10.3390%2fs22208072&partnerID=40&md5=b16034f306ecc37293fa1c1ef100c7e5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140651210&doi=10.3390%2fs22208072&partnerID=40&md5=b16034f306ecc37293fa1c1ef100c7e5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093850014&partnerID=40&md5=d0674c42db2a5fbedef89a760d48da94
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093850014&partnerID=40&md5=d0674c42db2a5fbedef89a760d48da94
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093850014&partnerID=40&md5=d0674c42db2a5fbedef89a760d48da94
https://www.sciencedirect.com/science/article/pii/S0957417422015172
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072635165&doi=10.4018%2fIJOSSP.2019070101&partnerID=40&md5=5b8b5e672884802ea6a33c65b978beba
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072635165&doi=10.4018%2fIJOSSP.2019070101&partnerID=40&md5=5b8b5e672884802ea6a33c65b978beba
https://www.sciencedirect.com/science/article/pii/S2351978921000706
https://www.sciencedirect.com/science/article/pii/S131915782200369X
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111138820&doi=10.5220%2f0009889302250237&partnerID=40&md5=4f223efed3ebec4e32f0645d28e6490f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111138820&doi=10.5220%2f0009889302250237&partnerID=40&md5=4f223efed3ebec4e32f0645d28e6490f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111138820&doi=10.5220%2f0009889302250237&partnerID=40&md5=4f223efed3ebec4e32f0645d28e6490f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055619938&doi=10.1109%2fICIOT.2018.00028&partnerID=40&md5=b80d7c2aa5a4be19df06fda98aebf3d3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055619938&doi=10.1109%2fICIOT.2018.00028&partnerID=40&md5=b80d7c2aa5a4be19df06fda98aebf3d3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093833630&partnerID=40&md5=d9139f630fe8fb2fb510b2fcda6fef66
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093833630&partnerID=40&md5=d9139f630fe8fb2fb510b2fcda6fef66
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093833630&partnerID=40&md5=d9139f630fe8fb2fb510b2fcda6fef66
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109074412&doi=10.11947%2fj.AGCS.2021.20200168&partnerID=40&md5=9db70528b49b7a6bb31a8341b30ba9ad
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109074412&doi=10.11947%2fj.AGCS.2021.20200168&partnerID=40&md5=9db70528b49b7a6bb31a8341b30ba9ad
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109074412&doi=10.11947%2fj.AGCS.2021.20200168&partnerID=40&md5=9db70528b49b7a6bb31a8341b30ba9ad

[105]

[106]

[107]

[108]

Shlomi Linoy, Suprio Ray, and Natalia Stakhanova. EtherProv: Provenance-Aware Detec-
tion, Analysis, and Mitigation of Ethereum Smart Contract Security Issues. In 2021 IEEE
International Conference on Blockchain (Blockchain), pages 1-10, Melbourne, Australia,
December 2021. IEEE. ISBN 978-1-66541-760-0. doi: 10.1109/Blockchain53845.2021.000
14. URL https://ieeexplore.ieee.org/document /9680507 /.

J.R. Zayas, E. O’Neill, M.A. Seale, A. Ruvinsky, and O. Eslinger. An Integrated Blockchain
Approach for Provenance of Rotorcraft Maintenance Data. 2020. doi: 10.1109/AERO47
225.2020.9172700. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-8509254
8167&doi=10.1109%2fAER047225.2020.9172700& partnerID=40&md5=a6082d23e228c
deaa237404664cch4a?2.

G. Zhang and Y. Mao. Blockchain-based decentralized data provenance method. Nanjing
Youdian Dazue Xuebao (Ziran Kexue Ban)/Journal of Nanjing University of Posts and
Telecommunications (Natural Science), 39(2):91-98, 2019. doi: 10.14132/j.cnki.1673-543
9.2019.02.014. URL https://www.scopus.com/inward /record.uri?eid=2-s2.0-85068585930
&doi=10.14132%2fj.cnki.1673-5439.2019.02.014& partnerID=40&md5=2e70c2e67c62b1a
45db81068b383bd1d.

X. Zhang, J. Feng, Z. Yin, and J. Lin. Trusted Query Method for Data Provenance Based
on Blockchain. Yingyong Kezue Xuebao/Journal of Applied Sciences, 39(1):42-54, 2021.
doi: 10.3969/j.iss1n.0255-8297.2021.01.004. URL https://www.scopus.com/inward /record
uri?eid=2-52.0-85101347011&doi=10.3969%2fj.issn.0255-8297.2021.01.004& partnerID=
40&mdH=daef31£345b13cf391d0eacalec74753.

91

https://ieeexplore.ieee.org/document/9680507/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092548167&doi=10.1109%2fAERO47225.2020.9172700&partnerID=40&md5=a6082d23e228cdeaa237404664cc54a2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092548167&doi=10.1109%2fAERO47225.2020.9172700&partnerID=40&md5=a6082d23e228cdeaa237404664cc54a2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092548167&doi=10.1109%2fAERO47225.2020.9172700&partnerID=40&md5=a6082d23e228cdeaa237404664cc54a2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068585930&doi=10.14132%2fj.cnki.1673-5439.2019.02.014&partnerID=40&md5=2e70c2e67c62b1a45db81068b383bd1d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068585930&doi=10.14132%2fj.cnki.1673-5439.2019.02.014&partnerID=40&md5=2e70c2e67c62b1a45db81068b383bd1d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068585930&doi=10.14132%2fj.cnki.1673-5439.2019.02.014&partnerID=40&md5=2e70c2e67c62b1a45db81068b383bd1d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101347011&doi=10.3969%2fj.issn.0255-8297.2021.01.004&partnerID=40&md5=daef31f345b13cf391d0eaea8ec74753
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101347011&doi=10.3969%2fj.issn.0255-8297.2021.01.004&partnerID=40&md5=daef31f345b13cf391d0eaea8ec74753
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101347011&doi=10.3969%2fj.issn.0255-8297.2021.01.004&partnerID=40&md5=daef31f345b13cf391d0eaea8ec74753

List of Figures

O = W N

- o

10

12
13
14
15

16

PROV-DM Overview of Core Types and Relations. Sources: [7] [11]. 4
Phases of Evolution of Blockchain. Source: [15] 7
Sequence of Blocks of a Blockchain. Source: [29] L. 10
Public, Private and Hybrid Blockchains. Source: [40] 11
Smart Contract of a Counter Application counter.sol. Source: [49] 17
VPH Process 29
Graphical User Interface of RCE. Source: [81] 29
Mixed Documentation Model: Use Case Diagram and Requirements 34
Architecture of the Systemo o 36
Ganache User Interface. Source: [90] 51
Blockchain after Smart Contract Deployment 54
Header and Body of Block 2. oo 54
Error Message: Invalid PROV Documents 57
Class Diagram of the Smart Contract prov.sol 71

92

List of Tables

Comparison between Public, Hybrid and Private Blockchains. Own representation

based on: [41] [29] [43] [42] 13
Search Results of Queries among Databases 19
Overview of PROV Storage Strategies 23
Comparison of Storage Methods: On-Chain vs Off-Chain 24
Comparison of Storage Methods: Document-based and Element-based 25
List of Interview Questions 27
Ganache Test Environment Accounts L. 52
Evaluation Scenarios for Check Functions 55
PROV-DM Types and Relations. Own Representation based on: [7]. 63

93

List of Listings

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

8.1
8.2
8.3
8.4

QU = W DN =

Access Control related Attributes of the Contract 43
Methods for granting Roles o o 44
Definition of Workflow and Node contract attributes 44
Definition of add_workflow_and nodes function 45
Definition of check workflow and check nodes functions 45
Definition of check_workflow_and nodes function 46
Interaction with the Contract 47
Definition of upload files method, 49
Deployment of Smart Contract 53
Obtaining stored Workflows and Nodes 55
Testing Check Functions of the Smart Contract 55
Add Users to both Parties 56
Determination of a Documents Uploader and Time 58
PROV Document of a Workflow 65
Smart Contract prov.sol 68
Upload Page of GUI UploadPage.py o v v v v v v v i et o 71
Webprovider Class WebProvider.py v v v v v v .. 75
Upload of Nodes and Workflows 76

94

	1 Introduction
	1.1 Motivation & Problem Statement
	1.2 Goals
	1.3 Structure

	2 Provenance
	2.1 Definition
	2.2 PROV Standard & Data Model

	3 Blockchain
	3.1 Development History
	3.2 Features of Blockchain
	3.3 Architecture
	3.4 Types of Blockchain Networks
	3.5 Consensus Mechanisms
	3.6 Transactions

	4 Systematic Literature Review
	4.1 Search Strategy
	4.2 Study Selection Criteria
	4.3 Data Extraction
	4.4 Synthesis
	4.5 Comparison of Storage Strategies

	5 Requirement Engineering
	5.1 Elicitation of Requirements
	5.2 Documentation of Requirements

	6 Concept
	6.1 Architecture
	6.2 Storage of PROV Documents
	6.3 Blockchain Technology
	6.4 Smart Contracts
	6.5 Graphical User Interface
	6.6 Permission Management

	7 Software Prototype
	7.1 Smart Contract
	7.2 Graphical User Interface

	8 Tests and Analysis
	8.1 Environment
	8.2 Functional Requirements
	8.3 Quality Requirements

	9 Conclusion
	Statement of Authorship
	Appendices
	A. PROV-DM Types and Relations
	B. Collection of Studies
	C. PROV Document of a Workflow
	D. Implementation
	E. Evaluation
	F. Data Extraction Table

	References
	List of Figures
	List of Tables
	List of Listings

