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Abstract 

Background Machine‑learning‑based myocontrol of prosthetic devices suffers from a high rate of abandonment 
due to dissatisfaction with the training procedure and with the reliability of day‑to‑day control. Incremental myo‑
control is a promising approach as it allows on‑demand updating of the system, thus enforcing continuous interac‑
tion with the user. Nevertheless, a long‑term study assessing the efficacy of incremental myocontrol is still missing, 
partially due to the lack of an adequate tool to do so. In this work we close this gap and report about a person with 
upper‑limb absence who learned to control a dexterous hand prosthesis using incremental myocontrol through a 
novel functional assessment protocol called SATMC (Simultaneous Assessment and Training of Myoelectric Control).

Methods The participant was fitted with a custom‑made prosthetic setup with a controller based on Ridge Regression 
with Random Fourier Features (RR‑RFF), a non‑linear, incremental machine learning method, used to build and progres‑
sively update the myocontrol system. During a 13‑month user study, the participant performed increasingly complex 
daily‑living tasks, requiring fine bimanual coordination and manipulation with a multi‑fingered hand prosthesis, in 
a realistic laboratory setup. The SATMC was used both to compose the tasks and continually assess the participant’s 
progress. Patient satisfaction was measured using Visual Analog Scales.

Results Over the course of the study, the participant progressively improved his performance both objectively, e.g., 
the time required to complete each task became shorter, and subjectively, meaning that his satisfaction improved. 
The SATMC actively supported the improvement of the participant by progressively increasing the difficulty of the 
tasks in a structured way. In combination with the incremental RR‑RFF allowing for small adjustments when required, 
the participant was capable of reliably using four actions of the prosthetic hand to perform all required tasks at the 
end of the study.

Conclusions Incremental myocontrol enabled an upper‑limb amputee to reliably control a dexterous hand prosthe‑
sis while providing a subjectively satisfactory experience. The SATMC can be an effective tool to this aim.
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Background
In our world tailored to interact using one’s hands peo-
ple with upper limb absence use prosthetic limbs to 
overcome resulting challenges. Upper-limb prostheses 
have seen major technological advances in the last dec-
ade. Multi-articulated prosthetic hands with individual 
finger actuation are becoming more present and can be 
combined with (multi-articulated) actuated prosthetic 
wrists [1].

These technological advancements are accompanied 
by novel developments in myocontrol, which is the con-
trol of (prosthetic) devices using muscle signals, most 
commonly based on electromyography (EMG). These 
developments are manifold and include the distinction 
of up to 11 intended actions, such as power grasp, point-
ing index or wrist flexion, with a success rate above 94% 
[2], the usage of high-density sensor matrices for con-
trol of up to 4 degrees of freedom (DOFs) of a robotic 
arm [3] or for decoding spike trains [4, 5], feature extrac-
tion based on deep learning  [6] or the usage of differ-
ent sensor modalities, such as forcemyography  [7–10], 
ultrasound  [11, 12] or electrical impedance tomogra-
phy [13, 14]. Yet, the clinical standard since decades is a 
two-electrode control that uses a EMG-based switching 
command to cycle through the DOFs of the prosthetic 
setup [15]. Although many approaches, such as the ones 
mentioned in this paragraph, provide promising results, 
only few that are based on machine learning (ML) have 
reached the users [16, 17].

The process from initial algorithm development to 
applying the algorithm in daily living prosthesis use faces 
a number of challenges. An early involvement of the user 
is essential, since findings offline (without the user in the 
loop) do not translate to the online application (with the 
user in the loop) [18]. Hence, online testing with the user 
performing goal-reaching tasks has become the standard 
in evaluating the performance of a novel method [8, 19–
22]. Moreover, the introduction of ML-based methods 
adds a further processing step to myocontrol. Instead of 
directly using sensor readings as control for prostheses, 
these signals are first processed and interpreted before 
they can be converted into control signals of the hand. 
This introduces a further layer of complexity for the user. 
Although measures have been taken to make this layer 
as intuitive and easy-to-use as possible  [23, 24], studies 
have shown that ML-based methods require an extended 
training and learning phase  [25, 26], which users can 
experience as exhaustive, potentially leading to abandon-
ment  [27–29]. A further aspect that is challenging for 
ML-based myocontrollers is the limb-position effect  [30, 
31]. It describes the issue that the measured EMG 
depends on the specific body posture, potentially lead-
ing to the myocontroller detecting another action then 

intended. Particularly ML-based myocontrollers suffer 
from this effect as already minor changes in the muscle 
configuration can have a significant influence on the rec-
ognition of an action [31].

Incrementality can be a solution to deal with these 
issues. Incremental ML methods allow the user to update 
or add new information to the training data, instead of 
retraining completely anew. This reduces calibration time 
significantly. Small and/or regular updates to an ML-
based myocontroller in positions where it is required 
have been shown to improve performance of a myocon-
troller [25, 32–34].

However, existing validated assessment tools don’t 
explicitly take incrementality into account and are not 
tailored for use with ML-based myocontrollers. A recent 
overview has been provided by Kyberd [35].

We have taken inspiration from a number of validated 
assessment tools and developed the Simultaneous Assess-
ment and Training of Myoelectric Control (SATMC) pro-
cedure. It can deal with incrementality and the specifics 
of novel myocontrol methods, allows the user to gradu-
ally improve and at the same time continuously assesses 
the myocontrol system. We have published a preliminary 
description and evaluation previously [36].

In this work we performed a long-term study involving 
one transradial amputee fitted with a multi-articulated 
prosthetic hand and a custom-built socket controlled by 
an incremental myocontroller based on Ridge Regression 
with Random Fourier Features (RR-RFF) [7, 8, 25, 32, 33]. 
Using the SATMC procedure allowed the participant to 
train how to use the incremental myocontroller, while 
simultaneously assessing the performance of the user in 
daily-living tasks. The goal of this study was to show that 
an incremental training protocol can be used to train a 
user to learn a complex myocontroller while at the same 
time assess the improvement of the user.

Methods
User study
After being thoroughly informed about the content and 
risks of the study, the participant (P) signed an informed 
consent form and agreed to participate. This study was 
formally approved by the host institution’s internal com-
mittee for data protection (ASDA 14/05 TOP 6.5 on 
02.09.2014) and it followed the guidelines of the World 
Medical Association’s declaration of Helsinki. The male 
participant was 35 years old at the start of the study. 
He had undergone a traumatic transradial amputation 
of his left arm 11 years prior to the study. He routinely 
used a Variplus hand (Otto Bock GmbH) with a stand-
ard two-sensor control for opening and closing of the 
hand. He had neither experience with multi-articulated 
prosthetic hands nor with ML-based myocontrol. For the 
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participation he received financial compensation for the 
cost of the commute and his time.

During the experiment two experimenters were pre-
sent at all times. One person was the operator, who was 
concerned with supervising the myocontrol including 
updates, monitoring of the signals and assuring the cor-
rect completion of the protocol. A second person had a 
purely observational role making notes regarding the 
behaviour and manner of task execution.

The user study is based on Single-Case Experimen-
tal Design (SCED)  [37–39], which provides guidelines 
for performing structured experiments involving only 
a small number of participants. Although less common 
in the field of prosthetics, a number of studies following 
these guidelines have been performed  [40–43]. SCED-
based studies can provide a high level of evidence, if car-
ried out correctly [38].

Prosthetic hardware
For the purpose of this study P was fitted with a custom-
made prosthetic socket that could house eight myoelectric 
sensors. The design and the fitting were done by a certi-
fied prosthetist of Pohlig GmbH in Traunstein, Bavaria, 
Germany (part of Otto Bock GmbH). For the setup in this 
study eight 13E200=50 MyoBock sensors were used  [44]. 
This is a larger number than the two-sensor arrangement 
of direct control, but eight sensors have already been suc-
cessfully used in daily living as part of commercially availa-
ble solutions [16, 17]. The electrodes were placed uniformly 
distributed around the circumference of the proximal 
forearm using snap-on domes. The most proximal snap-
ons were placed 6cm from the medial epicondyle. The 
inter-dome distance spans 1.5cm. With this arrangement 
the electrodes cover the majority of the forearm muscles. 
These were embedded in the inner silicone layer of the 

design, while the outer layer was manufactured out of car-
bon fibre, see Fig.  1. Using custom-made electronics, the 
sensors were connected to the aforementioned snap-on 
domes. The communication between the sensors and the 
desktop computer used for computation was wired in the 
beginning of the experiment and wireless from session 24 
onwards. The hardware was not optimised to fit in the con-
fined space of the prosthetic socket. Hence, P was required 
to carry a small backpack with battery-powered electronics 
for reading the sensors and transmitting these readings to 
the desktop machine (Fig. 1, left-hand side). There was no 
additional weight on the prosthesis impacting the perfor-
mance besides the socket and the prosthetic hand, which 
was an i-LIMB Revolution (Össur hf). The i-LIMB Revolu-
tion is capable of individual finger flexion for all five fingers 
and additionally thumb abduction.

Incremental myocontrol algorithm
The basis of RR-RFF is Ridge Regression, which is linear 
regression with a regularisation parameter,

The terms in Eq. (1) represent the predicted values ŷ , the 
regression weights W  , the input x , as well as the regulari-
sation hyperparameter � and the identity matrix I . X and 
Y  are the collection of all data used for training and the 
associated target values, respectively.

RR-RFF is an extension of Ridge Regression, where the 
input x is projected into a higher-dimensional space using 
a finite-dimensional approximation of a Gaussian Kernel,

(1)ŷ = Wx with W = (XTX + �I)−1XTY .

(2)φ = φ(x) =
√

2 cos(�x + β),

(3)� = φ(X) = 2/D cos(X�T
+ B),

Fig. 1 Prosthetic setup in our study; On the left: Participant P wearing custom‑build hardware consisting of a small backpack housing hardware for 
data acquisition and wireless communication and a battery. On the right: Custom‑build socket with eight snap‑on electrodes uniformly distributed 
around the circumference of the stump. The prosthetic hand was the i‑LIMB Revolution (Össur hf )
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with

where σ 2 is a hyperparameter and represents the vari-
ance of the Gaussian Kernel. This mapping φ : R

d
→ R

D 
transforms the d-dimensional input space into a 
D-dimensional feature space. D is a further hyperparam-
eter of the algorithm. Applying this transformation to 
Eq. (1) results in the final expression of RR-RFF,

This non-linear mapping allows the algorithm to ade-
quately fit data, where a linear mapping would not be 
sufficient. A detailed description of the underlying prop-
erties will not be covered here as previous publications 
already have done so [32, 45, 46].

An arbitrary number of electrodes can serve as input 
to the algorithm. The eight sensors used in this study are 
non-invasive and provide an already pre-filtered surface 
EMG (sEMG) signal, which is amplified, bandpass-fil-
tered, and rectified onboard [44]. This signal was sampled 
at 100  Hz and further low-pass filtered with a  1st order 
Butterworth filter with a cut-off frequency of 1 Hz. The 
resulting feature was the envelope of the sEMG signal 
and comprised the input to the RR-RFF-based myocon-
troller. The predicted output ŷ of Eq.  (6) was the indi-
vidual DOFs of the prosthetic hand. These were the 
flexion of each of the five fingers plus the abduction of 
the thumb. By controlling each finger different actions 
can be composed, e.g. power grasp.

Furthermore, a number of features of RR-RFF were 
relevant in the context of this user study. First, based on 
previous studies, hyperparameters and modifications 
have been identified that allow for a fast and incremental 
update of the algorithm [32]. This feature is particularly 
relevant when dealing with the limb position effect. Due 
to incremental learning in positions, where the control 
becomes unstable, additional repetitions can be gath-
ered, the algorithm can be updated and the execution can 
continue after a few seconds. Furthermore, the RR-RFF-
based myocontroller predicts the individual DOFs of the 
prosthetic hand, e.g. index flexion, instead of action as 
a whole, e.g. power grasp. This feature allowed us to use 
incrementality for action training. That is, a new action 
that is added to an existing action set is represented by 
an additional configuration of the individual DOFs of 
the prosthetic limb and therefore does not require a fur-
ther DOF in the vector of the target values ŷ . This fea-
ture allows the user to start with a minimal functional 
training and perform updates only when required and, 

(4)� ∼ N (0, σ 2),

(5)β , B ∼ U(−π ,π),

(6)ŷ = Wφwith W = (�T�+ �I)−1�TY .

therefore, reduces the initial calibration time of the myo-
controller. An initial training can consist of only rest and 
power grasp and in a later update additional actions can 
be added, e.g. precision grasp.

Second, collection of training data is only done on the 
sustained part of action execution. This is the static part 
of the feature-data, when the user maintains an action 
with an approximately constant force. Often ramped 
training data is collected for regression-based algo-
rithms  [47–49]. This refers to the onset (and offset) of 
the feature-data, when transitioning from resting to an 
action. While there are benefits of using the dynamic 
part of the contraction  [31], some users are not capable 
to follow a ramped signal closely [32, 50]. To avoid poorly 
labelled data, only the sustained part of an action is taken 
into account, which can be maintained for a few seconds. 
This has the added benefit that a screen displaying the 
visual stimulus is not required simplifying updates in 
positions and during tasks, where no screen is visible.

Third, the myocontroller is capable of progressive for-
getting. Under the assumption that updates are required 
once a given situation has changed and/or the partici-
pant expresses different/improved sEMG signals, older 
training data becomes obsolete. The behaviour is that of 
a ring buffer, where the addition of an entry beyond the 
size of the buffer leads to the removal of the first/oldest 
entry. Since the training of the myocontrol is based on 
repetitions of actions, the size was set to five repetitions 
per action. This means that up to the fifth repetition the 
repetitions are added to the training data and therefore 
increasing the amount of training data. With the addition 
of the sixth repetition the chronologically first repetition 
will be removed. Therefore, after adding the fifth repeti-
tion to the training data the amount of data remains con-
stant. This process applies to each action trained.

Simultaneous assessment and training of myoelectric 
control (SATMC)
Based on the issues described in “Background” we for-
mulated four aspects (A1–A4) that we deem important 
in the design of an assessment and training tool for ML-
based myocontrol: repeatability and increasing diffi-
culty (A1), postural variation during tasks (A2), multiple 
actions per task (A3), and a short familiarisation time for 
the rater (A4).

Among validated assessment tools none satisfies all 
four of these aspects. Exemplary from the most common 
tests for prosthetic control we evaluate the Assessment 
of Capacity for Myoelectric Control (ACMC)  [51], the 
Southampton Hand Assessment Procedure (SHAP)  [52], 
and the Clothespin Relocation Test (CRT) [53] consider-
ing the aspects A1–A4.
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The ACMC is an observational assessment tool for 
prosthetic usage that can be performed in the home of a 
user or a room specifically designed to provide a house-
hold environment. Being able to observe a user in an 
environment as close as possible to daily living provides 
highly relevant insights in the validity of a given pros-
thetic system. As the tasks can be any activity of daily-liv-
ing aspects A2 and A3 can easily be fulfilled. However, no 
specific guidelines provide structure to task repetition or 
increase of task difficulty (A1). Furthermore, professional 
training is required to draw proper conclusions purely 
from observations, making the ACMC less accessible 
(A4). Its current version is not tailored to multi-articu-
lated prostheses [35].

The SHAP on the other hand is a test that can be 
administered with minimal training of the experi-
menter (A4) and only requires a suitcase of objects for 
its execution. The SHAP is a collection of tasks that are 
abstractions of activities of daily living (ADLs). They are 
performed in a seated position at a table and evaluated 
using an easy-to-use measure, the time to finish a task. 
The seated position only allows for limited assessment 
of issues arising from the limb position effect and there-
fore does not fulfil A2. The tasks have different levels of 
difficulty, however the limited options to vary tasks do 
not allow for a structured approach to increase difficulty 
(A1). Furthermore, the SHAP is comprised of unilateral 
tasks, which are all based on grasping actions (A3).

A good example of a test targeted at multi-articu-
lated prostheses and complex tasks is the CRT. This test 
requires simultaneous activation of a prosthetic wrist 
and hand and thereby satisfies A3. As the name suggests 
clothespins need to be relocated from a horizontal bar 
to a vertical one, which in this case requires a rotation of 
the clothespins while maintaining a firm grip. Since the 
CRT consists of one task only, it offers rather little vari-
ability in its execution and difficulty (A1), but it contains 
postural variation (A2). Furthermore, only once a user is 
proficient in the use of their prosthesis the CRT can offer 
insight in the user’s capabilities. As no dedicated training 
of the experimenter is required A4 is satisfied.

The SATMC combines the advantages of the afore-
mentioned assessment tools with added focus on aspects 
A1–A4. The following paragraphs describe how these 
aspects are implemented in the SATMC. They describe 
the guidelines, the implementation of structured tasks 
and a customised experimental setup.

Guidelines
An essential feature of the SATMC is a progressive 
increase in difficulty at a speed adaptable to the capa-
bilities of the user (A1). This increase is two-fold. On the 
one hand each task has different levels of difficulty and 

on the other hand within the protocol we employ a step-
wise increase in control complexity. The latter is real-
ised by increasing the number of actions to control. In 
the beginning only two actions are available to the user. 
Starting with an action very commonly used, e.g. a hand 
close gesture/power grasp and a hand open / rest gesture. 
This initial action set already provides the functionality of 
common gripper prostheses.

The SATMC is organised in sessions and phases. A ses-
sion is a collection of tasks administered as a closed unit. 
Per visit only one session is performed. A phase is charac-
terised by multiple sessions with a specific action set and 
therefore spans multiple visits of the participant. Moving 
from one phase to another represents an increase in con-
troller complexity as another action is added to the cur-
rent action set.

In a session the user performs three repetitions of a 
set of five tasks. Each task has five variations of increas-
ing difficulty, which are designed to fulfil aspects A2 and 
A3. Further details regarding tasks can be found in Para-
graph “Tasks”. After a set of five tasks, the user is asked 
to self-evaluate their performance. For this purpose, we 
use a visual analogue scale (VAS), on which better or 
easier performance is rated higher. These self-evaluations 
determine the degree of difficulty for the next task varia-
tions. Based on an equal split of the scale, an evaluation 
of VAS 0–3.3 results in a repetition of the previous level 
of difficulty, while an evaluation of VAS 3.4–6.6 leads to 
an increase by one step and an evaluation of VAS 6.7–
10 leads to an increase by two steps. These evaluations 
determine the next five variants of the tasks. Following 
their execution, this second set of task variants is evalu-
ated determining the third and last five variants of the 
tasks. They are performed and evaluated, which then 
concludes one session with a total of 15 task executions. 
It is possible that in case of low VAS ratings a variant of 
a task is repeated three times within one session. Once a 
user becomes proficient in the performance with a given 
set of actions, a new phase of the study can be started. 
Two consecutive sessions, in which the self-assessment of 
all 15 tasks is in the range VAS 6.6–10 determines this 
point and a new action can be added to the existing set. 
Since the set of actions has been expanded the tasks have 
to be updated as well to ensure the usage of all available 
actions. An exemplary graphical representation of this 
process is given in Fig. 2.

Additionally to the self-assessment by the user, an easy-
to-use measure has been chosen to assess the tasks in 
order to only require little to no training of the experi-
menter (A4). For this purpose, the task completion time 
(TCT) was selected. It has been shown that timing tasks 
is a key parameter for prosthetic use [54]. It is important 
to note that a focus was put on continuing a task rather 
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than ending it prematurely due to erroneous behaviour. 
In case an object e.g. is dropped, rather than ending a task 
and counting this task as failed the user is encouraged 
to pick the object up again and continue with the task. 
This becomes particularly relevant in  situations where 
the control algorithm reaches its limits, e.g. postures in 
which no training was performed. In these situations, 
where an execution is not possible due to poor perfor-
mance of the myocontroller and retraining is required, 
the additional time spent on retraining is part of the task 
execution time and contributes to the overall evaluation. 
Therefore, algorithms that allow for a quick recalibration 
or even incremental learning will have shorter task dura-
tions in difficult situations.

Moreover, in order to reduce the burden on the user, 
they should be informed that the tasks are being timed, 
but they are not required to perform the tasks as fast as 
possible. The ADL-like tasks are not of a competitive 
nature. A fundamental principle in SATMC is repetition 
and improvement over time. The latter should still be 
evident in case the tasks are not executed as quickly as 
possible.

As it was mentioned in “User study” the SATMC fol-
lows SCED. Two central aspects are direct replication 
and the introduction of a baseline. The different phases of 
the SATMC correspond to direct replication, where each 
phase is a different condition the ML-based myocon-
troller is assessed in. To ensure a baseline throughout the 

administration of the SATMC one of the five tasks should 
be kept unchanged.

Following these guidelines, users can train their capa-
bilities and the experimenter can assess the performance 
of user, prosthesis and myocontrol algorithm. The end 
of an experimental study can either be reached once this 
performance reaches its limits or by personal preference 
of the participant.

Tasks
Task design is influenced by aspects A1–A3 defined in 
“Simultaneous assessment and training of myoelectric 
control (SATMC)”. They mutual influence one another, 
as changes in posture (A2) and changes in the number of 
actions per task (A3) impact the difficulty of a task (A1). 
Height and rotational distance play an important role 
for grasp stability, i.e. at what height an object needs to 
be manipulated or over what height difference an object 
needs to be moved, and the extent of rotation required 
at the wrist. Furthermore, larger planar distances require 
for longer periods of stable grasping, which in turn make 
a task more difficult. These three distance measures (pla-
nar, vertical and angular) have been quantified as null, 
short, middle and long in order to compare different lev-
els of task difficulty. Additionally, introducing subtasks in 
a given task is a further option to increase difficulty.

We have developed five variations for each task to 
reflect increasing levels of difficulty. These variations are 

Fig. 2 Diagram of the SATMC: Each bifurcation indicates the onset of a new phase, where an action is added to the existing ones and the tasks are 
updated. Sessions are visualised by rows spanning a set of actions of the same colour. Balloons tasks and task variations list exemplary tasks with 
exemplary task variations for a given session. Furthermore, balloon sample session gives a short overview of the process in an example session, 
where the tasks in the first column are executed, evaluated in column two and updated accordingly. The update is based on the VAS evaluation, see 
balloon task updates. This process is then repeated until 15 tasks have been performed and evaluated. ti,j represent variation j of task i. ak is action k 
and lm is landmark m in the study setup
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indicated in the task number, e.g. t2,3 , which represents 
the third variation of task number 2. A list of tasks that 
we have developed according to the aforementioned con-
siderations can be found in Table  1. The values of the 
three different distance measures per task variation can 
also be found in Table 1. This list of tasks is not exhaus-
tive and not all tasks are required for the execution of the 
SATMC. Further tasks can be added keeping the afore-
mentioned criteria in mind. In Table 1 tasks 10–12 have 
been omitted, since they were not used in the present 
user study. The tasks for each phase are selected by the 
person administering the SATMC. The set of five tasks 
should require all actions that have been trained so far, 
but not more, and should not be changed during a phase.

In the task descriptions in Table 1 several abbreviations 
are used. The landmarks ln can be found in the next para-
graph describing the setup. The actions that are involved 
in each task are abbreviated by an and correspond to 

(a1)  power grasp,
(a2)  precision grasp,
(a3)  pointing gesture,
(a4)  preshaping for flat grasp (thumbs up), and
(a5)  flat grasp.

Setup
An overview of an instance of a setup with landmarks 
ln indicated as numbers n can be found in Fig. 3. These 
landmarks can be described as follows: 

(l1)  on the rectangular table, straight in front of the 
participant

(l2)  on the rectangular table, half a meter laterally 
towards the intact hand.

(l3)  on the corner of the rectangular table.
(l4)  on the round table.
(l5)  on the ground, one side of the round table.
(l6)  on the ground, other side of the round table 

(wastebasket).
(l7)  on the shelf, lower level ( ∼ 0.20  m above the 

ground).
(l8)  on the shelf, middle level ( ∼ 1.00  m above the 

ground).
(l9)  on the shelf, top level ( ∼ 1.80 m above the ground).

 The participant is seated in front of l1 at the beginning 
of a task. Based on these landmarks we approximated 
the difficulty in terms of planar and vertical distance, 
see Table 1. For example, picking up an object at l1 and 

releasing it at l2 is easier than picking it up at l1 and bring-
ing it to l9.

Each task requires some objects to manipulate or move 
around. A set of objects required for the tasks in Table 1 
can be found in Fig. 4.

Analysis
Additionally to the primary measures TCT and VAS, we 
recorded sEMG-data for the entire duration of the exper-
iment and logged each algorithm update with sEMG-data 
and timing for further evaluation.

Training data can be evaluated using common meas-
ures of data properties, e.g. the Separability Index (SI) 
and the Repeatability Index (RI) [21, 55, 56]. SI is a meas-
ure of cluster separation, where the distance between 
cluster centroids is weighted with the spread of the 
clusters.

with n representing the number of actions, µi the cen-
troid of action i, µci the centroid of the most conflicting 
action for action i and S =

Si+Sci
2  with Si and Sci repre-

senting the covariance of the aforementioned two corre-
sponding actions.

RI usually compares the feature-data collected during 
training with the feature-data from the testing phase. 
Since the execution of the tasks in the SATMC is rather 
free, there is no ground truth in the testing phase that can 
be used for this comparison. As an alternative, we com-
pare the repetitions of an action that are used to train the 
myocontrol, which in turn provides information on the 
data consistency between repetitions. The RI is a meas-
ure of difference between these repetitions per action, i.e. 
a distance measure of the repetition centroid weighted 
with the spread of the repetitions.

with n representing the number of actions, ri the number 
of repetitions for action i, µi,j/k the centroid of repetitions 

j/k of action i, and S =
Si,j+Si,k

2  with Si,j and Si,k represent-
ing the covariance of two different repetitions of action i. 
The measures SI and RI were calculated only using train-
ing data.

Throughout the study sEMG-data was gathered dur-
ing task execution together with the parameters and 
hyperparameters of the RR-RFF-based algorithm. Since 

(7)SI =
1

n

n
∑

i=1

(

1

2

√

(µi − µci)
TS−1(µi − µci)

)

,

(8)

RI =
1

n

n
∑

i=1

1
(

ri
2

)

ri
∑

j = 1
k = 1
j �= k

(

1

2

√

(

µi,j − µi,k

)T
S−1

(

µi,j − µi,k

)

)

,
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Table 1 Description of tasks

Action(s) Distance

Task # Involved Planar Vertical Angular Description

t1,0 (a1) Short Null Null Pick up a bottle at l1 ; release it at l3.

t1,1 (a1) Middle Short Null Pick up a bottle at l1 ; release it at l4.

t1,2 (a1) Long Middle Null Pick up a bottle at l1 ; release it at l9.

t1,3 (a1) Short Null Middle Pick up a bottle at l1 ; pour water from it in a mug at l2 ; release it at l1.

t1,4 (a1) Middle Middle Middle Pick up a bottle at l9 ; pour water from it in a mug at l4 ; release it at l9.

t2,0 (a1) Short Null Null Pick up a jar at l1 ; open it (unscrew the cap); release it at l3.

t2,1 (a1) Short Null Middle Pick up a jar at l1 ; open it; pour ball at l2 ; release it at l2.

t2,2 (a1) Middle Middle Middle Pick up a jar at l1 ; open it; pour ball at l2 ; release it at l6.

t2,3 (a1) Long Middle Middle Pick up a jar at l8 ; open it; pour ball at l2 ; release it at l6.

t2,4 (a1) Long Long Middle Pick up a jar at l9 ; open it; pour ball at l2 ; release it at l6.

t3,0 (a1) Short Null Null Pick up a basket at l1 ; release it at l3.

t3,1 (a1) Middle Null Null Pick up a basket at l1 ; release it at l4.

t3,2 (a1) Middle Middle Null Pick up a basket at l5 ; release it at l4.

t3,3 (a1) Middle Middle Null Pick up a basket at l5 ; release it at l2 ; take out object to l1.

t3,4 (a1) Middle Long Null Pick up a basket at l5 ; release it at l2 ; take out object to l9
t4,0 (a1) Short Null Null Pick up salami at l1 ; bring it to chopping board at l2 ; slice it with knife.

t4,1 (a1) Middle Null Null Pick up salami at l3 ; bring it to chopping board at l2 ; slice it with knife.

t4,2 (a1) Middle Null Null Pick up salami at l4 ; bring it to chopping board at l2 ; slice it with knife.

t4,3 (a1) Long Middle Null Pick up salami at l9 ; bring it to chopping board at l2 ; slice it with knife.

t4,4 (a1) Long Middle Null Pick up cutting board at l8 ; bring it to l2 ; pick up salami at l9 ; bring it to chopping board at l2 ; slice it 
with knife.

t5,0 (a1) Short Null Null Pick up duster and dustpan at l1 ; sweep the dust from the table at l2.

t5,1 (a1) Middle Null Null Pick up duster and dustpan at l1 ; sweep the dust from the table at l4.

t5,2 (a1) Long Null Null Pick up duster and dustpan at l1 ; sweep the dust from the table at l4 ; chuck the dust out in a waste‑
basket at l6.

t5,3 (a1) Long Middle Null Pick up duster and dustpan at l7 ; sweep the dust from the table at l4 ; chuck the dust out in a waste‑
basket at l6.

t5,4 (a1) Long Middle Null Pick up duster and dustpan at l7 ; sweep dust from the table at l4 ; chuck dust in wastebasket at l6 ; 
bring duster and dustpan back at l7.

t6,0 (a2) Short Null Null Pick up DLR cube at l1 ; stack it on another DLR cube at l2.

t6,1 (a2) Middle Null Null Pick up DLR cube at l1 ; stack it on another DLR cube at l4.

t6,2 (a2) Long Long Null Pick up DLR cube at l7 ; another at l9 ; stack it on another DLR cube at l2.

t6,3 (a2) Middle Null Null Pick up a checker at l1 ; stack it on another checker at l4.

t6,4 (a2) Long Long Null Pick up a checker at l7 ; another at l9 ; stack it on another checker at l2.

t7,0 (a2) Null Null Null Fold towel at l2.

t7,1 (a2 , a1) Short Null Null Get towel at l3 ; Fold towel at l2.

t7,2 (a2 , a1) Middle Middle Null Get towel at l3 ; Fold towel at l2 ; return to l9.

t7,3 (a2 , a1) Middle Long Null Get towel at l4 ; Fold towel at l2 ; return to l9.

t7,4 NA

t8,0 (a2) Null Null Null Pull the handle up to zip the jacket at l2.

t8,1 (a2) Middle Null Null Get jacket from l8 ; place it at l1 ; Pull the handle up to zip the jacket at l1.

t8,2 (a2) Null Null Null Wear a jacket with a zipper; pick up the zipper’s handle; pull the handle up to zip the jacket.

t8,3 (a2) Middle Null Null Pick up jacket at l1 ; Put jacket on; pick up the zipper’s handle; pull the handle up to zip the jacket.

t8,4 (a2) Middle Null Null Unzip jacket at l1 ; Pick up jacket at l1 ; Put jacket on; pick up the zipper’s handle; pull the handle up to 
zip the jacket.

t9,0 (a3) Middle Short Null Turn on the lights.

t9,1 (a3 , a1) Long Middle Short Turn on the lights, grasp jar at l9 , put it back at l2 , turn the light off.

t9,2 (a3) Null Null Null Dial a number at l1 (vertical key).

t9,3 (a3) Short Null Middle Dial a number at l1 (horizontal key).



Page 9 of 20Nowak et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:39  

the myocontroller is based on Ridge Regression, the least-
squares formulation in Eq.  (1) can be interpreted from 
a Bayesian perspective  [57, 58]. Based on a new sample 
of data xn+1 , we can not only predict a single value ŷn+1 , 

but also get information about the uncertainty of the pre-
dicted value. For this purpose, the predictive distribution is 
required

with data representing all samples xi and labels yi used 
for the calculation of the ML model. For Ridge Regres-
sion a closed form for the predictive distribution can be 
found. It follows a normal distribution with mean µn+1 
and variance σ 2

n+1

with

(9)f (ŷn+1|xn+1, data),

(10)f (ŷn+1|xn+1, data) ∼ N (µn+1, σ
2
n+1),

(11)µn+1 =

(

XTX +
b

a
I

)

−1

XTYxn+1,

Table 1 (continued)

Action(s) Distance

Task # Involved Planar Vertical Angular Description

t9,4 (a3 , a1) Short Null Middle Dial a number at l1 (horizontal key); pick up handle; put it back down.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
t13,0 (a3) Short Null Null Roll small ball from l1 to l2.

t13,1 (a3 , a1) Middle Null Null Roll small ball from l3 to l2 , grasp it and put it at l8.

t13,2 (a3 , a1) Short Middle Null Roll small ball from l9 towards you, let it fall, grasp it with the intact hand

t13,3 (a3 , a1) Middle Middle Null Roll small ball from l5 towards you, grasp it and put it in wastebasket at l6
t13,4 NA

an correspond to actions: ( a1 ) power grasp, ( a2 ) precision grasp, ( a3 ) pointing gesture, ( a4 ) preshaping for flat grasp (thumbs up), and ( a5 ) flat grasp; ln corresponds 
to landmarks described in Sect. “Setup” and can be seen in Fig. 3. Distance cut-offs are based on the setup and DOF usage. planar: short—only on rectangular table, 
middle—between rectangular table and round table or between shelf and round table, long—beyond that; vertical: short—between rectangular table and round 
table, middle – involving one level on the shelf, long—involving two levels on the shelf; angular: short— involving some rotation at the wrist level, middle – involving 
up to 90◦ rotation at the wrist level (supination or pronation), long—involving up to 90◦ rotation at the wrist level (supination and pronation). Note that tasks 10–12 
are not presented since they were not used in this study

Fig. 3 Overview of the setup used in the SATMC; a sketch on the left and the implementation in our laboratory on the right. Numbers in the setup 
indicate landmarks ln , which are used in task descriptions

Fig. 4 Objects used in the user study; from left to right: duster and 
dust pan, phone, basket, bowl with knife, bottle with “fluid”, jar with 
ball, shirt to fold, mug, and Jenga tower
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For a full derivation of µn+1 and σ 2
n+1 we refer the inter-

ested reader to Bolstad and Curran [57].
From Eq. (11) we can see that the mean is equal to the 

predicted value from Eq.  (1). The variance σ 2
n+1 allows 

us to evaluate the uncertainty of a predicted value, 
where high values represent high uncertainty and low 
values low uncertainty. Therefore, we can assess given 
the data, whether an action has been predicted with a 
high or a low confidence.

Results
Our participant was followed for 13 months, dur-
ing which P performed 31 sessions. The sessions took 
place once per week or every two weeks and lasted 
between 30 min and 2 h. A longer gap of three months 
occurred between sessions 22 and 23. Over these 31 
sessions we attempted four different phases (character-
ised by an increase in number of actions), of which one 
was unsuccessful (precision grasp). As a baseline a task 
was needed that was not too complex but useful and 
it needed to fit the possibilities provided after initial 
action training. To this end, we selected task t2,0 from 
Table  1 as a baseline measure. Furthermore, in order 
to compare the incremental ML-based myocontrol to 
the standard two-sensor myocontrol a second baseline 
measure was introduced. This was a single session (ses-
sion 20) where P used his own prosthesis, which is con-
trolled in this manner.

As a further note, at the beginning of each new ses-
sion the ML model from the previous session was 
reloaded. The training data was only updated, when it 
was required and either asked for by the participant 
or initiated by the experimenters. This is based on our 
idea of incrementality, where only minimal initial ML 
training is performed and changes or uncertainties are 
dealt with by deliberate updates.

(12)σ 2
n+1 =

1

a
+ xTn+1(aX

TX + bI)−1xn+1.
Protocol overview
Figure  5 shows the process of the SATMC indicating 
each session and all actions that were attempted during 
the different phases. In session 7 the precision grasp was 
introduced, while from session 11 onwards said action 
was no longer part of the action set. P encountered diffi-
culties with distinguishing the power grasp and precision 
grasp reliably. This became evident to the experimenters 
in terms of heavy jitter and instability in the myocontrol. 
Therefore, it was decided to consider this phase (phase 2) 
failed and P switched to a different grasp that was consid-
ered to be more likely to create a distinguishable action 
set, i.e. pointing index (phase 2’).

After reaching the end of phase  2’ P performed the 
second baseline in session 20 by using his own prosthe-
sis, a myoelectric gripper. The tasks performed therein, 
were the ones from phase  2’. This session is highlighted 
in orange.

Timing evaluation
TCT was measured from the beginning of a task to its 
end, including potential missteps and / or updates to the 
controller. A summary of the TCT across the full user 
study can be found in Fig.  6. We can see an improve-
ment within phases. Particularly, phases 2’ and 3 show a 
reduction in baseline TCT from session to session until 
reaching a plateau, see Fig. 6b. For phase 1 the trend for 
baseline TCT is slightly positive. Taking the plateau area 
of phase  2’ into account these values seem to be on a 
similar level. As phase 2 has only one measurement, no 
trends can be seen. However, the single value is higher 
than in phases  1 and 2’, which could indicate issues in 
task performance.

The TCT boxplots in Fig.  6a are in line with what 
is shown in Fig.  6b. Earlier sessions of phase  1 and 3 
seem to have higher TCT values and a higher variance, 
which then drops towards the end of the phases. The 
trend seems to be less prominent in phase 2’, yet earlier 

Fig. 5 Overview of all sessions and phases present in the user study. Colours indicate different phases. In session 20, highlighted in orange, P 
performed tasks from the SATMC with his own prosthesis using direct two‑electrode control
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sessions seem to have slightly higher values. Phase  2 
again has only one measure, which is on a similar yet 
slightly higher level than the initial values of phase  2’ 
taking into account the outlines of the boxplot.

Additionally, we can see from the plots in Fig. 6 that 
the TCT with the incremental myocontroller is on 
a comparable level with P using his own prosthesis. 
The comparison should be drawn to phase  2’, since it 
involves the same tasks.

VAS self‑assessment
The self-assessment using a VAS followed a similar 
behaviour as TCT, see Fig.  7. Here the satisfaction 
was lower in the earlier parts of a phase than towards 
the end. This is particularly evident in phase  1 and 
3. Phase  2’ contained a session that was particularly 
unsatisfying to P in the baseline task, see session 16 in 
Fig. 7b. Considering Fig. 7a, it seems that only this par-
ticular task was unsatisfying, since the remaining ones 

Fig. 6 Primary assessment measure TCT with boxplot over all tasks per session and baseline values for task t2,0

Fig. 7 Self‑assessment measure VAS with boxplot per session and baseline values for task t2,0
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were evaluated similarly to the previous and following 
sessions and the VAS value for the baseline task was 
considered an outlier in the boxplot.

In general, the VAS assessment tended to be rather 
positive with 89% of its values above 7.5 and a median 
of 9.3. Notable exceptions were the very early sessions 
of phase  1. The VAS values varied heavily within one 
session. Starting with session 5 the self-assessment 
became more consistent with higher values.

All individual VAS self-assessments can be found in 
Table 2.

Updates
The number of updates per session can be found in Fig. 8. 
It depicts how many of those updates were required 

during the performance of a task and what action was 
updated.

In phase  1 regular updates were required, which indi-
cates a level of uncertainty in a situation where only resting 
pose and power grasp were required. The introduction of a 
further action in phase 2 increased the number of updates 
required even further. This shows the difficulty in finding a 
stable control for the action set of resting post, power grasp 
and precision grasp. Eventually, this phase was aborted 
and after the changes to the action set, a functional train-
ing data set could be found within one session. After 24 
updates in session 11 only very few additional updates 
were required throughout the rest of phase  2’. Notable 
exception here is session  24 where a retraining with 15 
updates occurred. Due to an error of the experimenter a 
full retraining was initiated, which would not have been 
required. Phase  3, where the pre-lateral grasp was intro-
duced, provides a further indication of confidence in the 
navigation of the novel myocontroller. Only five repetitions 
of the newly added action were required to successfully 
perform tasks. Compared to phases 1 and 2 the number of 
additional updates was rather low.

Furthermore, we would like to point out that due to the 
myocontrollers capability to forget obsolete training data, 
the amount of training data used per action was almost 
constant throughout the user study. The limit for repeti-
tions per action was set to 5. For phases 1, 2 and 2′ this 
level was already reached in the first session of a new 
phase, while for phase 3 this level was reached in the sec-
ond session of the phase.

EMG‑data measures
Figure  9 shows the evolution of SI and RI over the 
course of the entire study. Different phases have been 

Fig. 8 Updates of the myocontrol per session. Each symbol 
represents one update of an action. The shape indicates the 
respective action, the colour during which phase the update was 
performed and white or black outlines indicate, whether the update 
was performed during a task or in between tasks, respectively

Fig. 9 SI and RI after every update to the myocontroller. Coloured lines indicate the changes within one phase. Multiple updates per session were 
possible resulting in multiple points per session. Not every session required updates, which led to gaps in the visualisation
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colour-coded and the individual values of a phase were 
connected with a line to better visualise the changes 
within each phase. For several sessions more than one 
value is reported. Every time a model update had been 
performed, SI and RI were re-evaluated. In case there 
were several updates per session, all values are reported.

As we have mentioned in “Incremental myocontrol 
algorithm”, for our controller we implemented progres-
sive forgetting. Obsolete repetitions of an action were 
discarded and therefore both SI and RI should converge 
to an optimal value for the user without the influence of 
obsolete data. As both SI and RI are measures of distance, 
SI should increase, signifying better separability between 
actions and RI should decrease, signifying higher repeat-
ability and consistency in controlling one’s muscles.

In phases 1 and 2 both SI and RI did not seem to follow 
a clear trend. Phase 1 ended with positive developments 
from a theoretical point of view, i.e. a large increase in SI 
and considerable drop in RI. Phase 2 started with a high 
separability, dropped significantly and then remained at 
rather low values. RI started low, increased and expressed 
a varying behaviour that did not resemble a clear trend. 
The initial decrease of SI and increase of RI were theoret-
ically negative developments. Phase 2’ started with both 
high SI and RI and then dropped within the first session. 
In the development of the RI a trend towards higher val-
ues became evident. For the SI we can see a plateau area 
followed by a large jump, after which a trend to lower 
values can be seen. This trend continued throughout 
phase 3 for both SI and RI.

Furthermore, we have calculated the predictive distri-
bution for each data sample in each task of our study. Fig-
ure  10 shows the mean variance of the predictive 
distribution  σ 2

pred for each task in chronological order. 
Different phases of the experiment have been highlighted 
with different colours.

Phase  1 started with higher variance until task  37 in 
session 5, where a large drop can be seen. Thereafter the 
remaining tasks of phase 1 were performed with very low 
σ 2
pred indicating high consistency in the expressed control 

signals by P. After the transition to phase  2 the highest 
σ 2
pred-values in the entire study can be seen. Neither a 

drop nor a considerable decrease was evident within this 
phase. The values represent a high level of uncertainty in 
P’s control and eventually this phase was considered 
failed. The change in the action set that came with 
phase  2’ led to decreased, yet still rather high values of 
σ 2
pred . These remained consistent until task 143 in session 

18, where a second considerable drop can be noticed. 
After the second drop there were no higher values for the 
rest of the study. This is even true after introducing a fur-
ther action in phase 3.

Discussion
Using an incremental myocontroller and the SATMC 
P was able to learn to reliably control four actions per-
formed by a multi-articulated hand prosthesis in daily-
living tasks. At the same time, the SATMC showed its 
capabilities to monitor P’s progress and to assess the 
performance of user and myocontroller. We were able to 
observe improvement within phases, improvement over 
the full study, identify failed phases, show the benefit of 
incremental myocontrol, and show comparable perfor-
mance to using standard two-sensor control.

For both primary measures, TCT and VAS, we can see 
a positive development within phases. These trends can 
be seen particularly in the baseline task. The improve-
ment within phases can also be seen in the predictive 
variance σ 2

pred . Here, phases  1  and  2’ are of particular 
interest as in both cases a substantial drop can be seen. 
These measures indicate that the beginning of a phase 
required more effort and learning from P and within a 
few sessions improvement could be observed. Interest-
ingly, the improvement in session 5 of phase  1 can be 
seen in both VAS and σ 2

pred . The VAS self-assessment 
until session 4 showed considerable variance indicating a 

Fig. 10 Variance of the predictive distribution σ 2
pred averaged per 

task. Colour‑coding indicates the phase of the experiment. The top 
plot has been cropped to better visualise the low end of the scale
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Table 2 Self‑assessment of all tasks using a VAS

Session Task VAS Task VAS Task VAS

2 t1,0 9.4 t1,2 7.9 t1,4 2.9
t2,0 9.2 t2,2 5.7 t2,3 3.0
t3,0 5.0 t3,1 9.0 t3,3 3.3
t4,0 9.4 t4,2 9.2 t4,4 6.8
t5,0 1.0 t5,0 5.0 t5,1 7.9

3 t1,0 9.2 t1,2 5.9
t2,0 9.2 t2,2 3.9
t3,0 9.3 t3,2 9.6
t4,0 5.0 t4,1 5.0
t5,0 9.2 t5,2 NaN

4 t1,0 8.7 t1,2 5.0 t1,3 0.5
t2,0 8.5 t2,2 8.9 t2,4 0.5
t3,0 7.7 t3,2 8.5 t3,4 NaN
t4,0 4.8 t4,1 5.4 t4,2 NaN
t5,0 8.3 t5,2 7.0 t5,4 NaN

5 t1,0 7.7 t1,2 8.3 t1,4 9.1
t2,0 9.2 t2,2 9.6 t2,4 9.5
t3,0 9.2 t3,2 9.6 t3,4 9.4
t4,0 9.2 t4,2 8.1 t4,4 9.2
t5,0 9.1 t5,2 9.5 t5,4 9.2

6 t1,0 9.3 t1,2 9.5 t1,4 9.4
t2,0 9.3 t2,2 9.5 t2,4 9.4
t3,0 8.1 t3,2 9.5 t3,4 9.3
t4,0 8.9 t4,2 9.3 t4,4 8.5
t5,0 9.3 t5,2 9.2 t5,4 9.5

8 t4,5 7.9 t4,2 9.2
t2,0 7.9 t2,2 8.0
t6,0 9.6 t6,2 9.4
t7,0 9.6 t7,2 9.4
t8,0 7.8 t8,1 4.7

10 t4,0 8.3 t4,2 6.1
t2,0 4.9 t2,1 9.3
t6,0 8.9 t6,2 9.1
t7,0 8.9 t7,2 8.0
t5,0 8.9 t5,2 9.3

12 t9,0 9.1 t9,0 9.2
t9,1 7.7 t9,1 8.4
t9,2 9.4 t9,2 9.0
t9,3 9.6 t9,3 9.3
t9,1 8.9 t9,4 7.8
t9,4 7.2

13 t2,0 7.6 t2,1 9.1 t2,3 7.9
t4,0 9.5 t4,2 9.3 t4,4 9.5
t5,0 9.4 t5,2 9.2 t5,4 9.4
t9,0 9.5 t9,2 8.2 t9,4 8.4
t13,0 9.5 t13,2 9.2 t13,3 9.4

14 t2,0 8.4 t2,2 9.5 t2,4 8.6
t4,0 9.5 t4,2 9.6 t4,4 9.8
t5,0 9.5 t5,2 9.4 t5,4 9.7
t9,0 9.5 t9,2 9.5 t9,4 9.7
t13,0 9.5 t13,2 9.5 t13,3 9.6

15 t2,0 8.3 t2,2 7.8 t2,3 7.6
t4,0 9.3 t4,2 9.3 t4,4 9.4
t5,0 9.2 t5,2 9.2 t5,4 9.5
t9,0 9.4 t9,2 9.3 t9,4 9.3
t13,0 9.5 t13,2 9.3 t13,3 9.5

16 t2,0 4.4 t2,2 NaN
t4,0 9.0 t4,2 NaN
t5,0 9.2
t9,0 9.0
t13,0 9.7

...
...

...
...

...
...

...

Session Task VAS Task VAS Task VAS

...
...

...
...

...
...

...
17 t2,0 8.0 t2,2 5.2 t2,3 3.5

t4,0 9.6 t4,2 8.9 t4,4 9.7
t5,0 9.3 t5,2 8.8 t5,4 9.6
t9,0 8.0 t9,2 8.8 t9,4 9.7
t13,0 9.6 t13,2 8.8 t13,3 9.7

18 t2,0 9.5 t2,2 9.5 t2,4 9.5
t4,0 9.6 t4,2 9.5 t4,4 9.7
t5,0 9.6 t5,2 9.6 t5,4 9.6
t9,0 8.6 t9,2 8.4 t9,4 8.7
t13,0 9.6 t13,2 9.6 t13,3 9.6

19 t2,0 9.4 t2,2 9.6 t2,4 9.5
t4,0 9.5 t4,2 9.7 t4,4 9.5
t5,0 9.5 t5,2 9.6 t5,4 9.5
t9,0 8.8 t9,2 9.0 t9,4 8.8
t13,0 9.7 t13,2 9.6 t13,3 9.6

20 t2,0 8.9 t2,2 7.6 t2,4 8.0
t4,0 9.5 t4,2 9.6 t4,4 9.5
t5,0 9.4 t5,2 9.6 t5,4 9.3
t9,0 9.5 t9,2 9.5 t9,4 8.4
t13,0 9.5 t13,2 9.5 t13,3 9.5

23 t2,0 2.1
t4,0 2.2
t5,0 4.2
t9,0 2.1
t13,0 9.1

24 t2,0 8.5 t2,4 9.4
t4,0 9.0 t4,4 8.9
t5,0 9.5 t5,4 9.4
t9,0 7.8 t9,4 9.4
t13,0 9.7 t13,3 9.6

25 t2,0 8.5 t2,2 9.0 t2,4 8.4
t4,0 8.7 t4,2 8.1 t4,4 8.3
t5,0 9.4 t5,2 9.4 t5,4 9.1
t9,0 5.4 t9,1 6.3 t9,2 9.0
t13,0 6.6 t13,1 7.4 t13,2 9.0

26 t2,0 7.7 t2,2 8.6 t2,4 7.6
t4,0 7.5 t4,2 7.6 t4,4 8.6
t5,0 8.1 t5,2 9.4 t5,4 8.9
t9,0 8.1 t9,2 8.5 t9,4 8.5
t13,0 7.2 t13,2 9.4 t13,3 9.6

27 t2,0 9.4 t2,2 9.6 t2,4 9.6
t4,0 8.7 t4,2 8.8 t4,4 9.4
t5,0 9.5 t5,2 9.1 t5,4 9.3
t9,0 9.0 t9,2 9.5 t9,4 8.8
t13,0 9.7 t13,2 9.5 t13,3 8.2

28 t2,0 9.4 t2,2 9.3 t2,4 9.5
t4,0 9.4 t4,2 9.0 t4,4 9.4
t5,0 9.0 t5,2 9.6 t5,4 9.4
t9,0 8.4 t9,2 9.5 t9,4 9.4
t13,0 9.5 t13,2 9.4 t13,3 9.4

29 t2,0 9.4 t2,2 9.5 t2,4 9.5
t4,0 8.8 t4,2 9.5 t4,4 9.6
t5,0 9.5 t5,2 9.5 t5,4 9.5
t9,0 9.4 t9,2 9.4 t9,4 9.0
t13,0 9.3 t13,2 9.4 t13,3 9.5

30 t2,0 9.4 t2,2 9.6 t2,4 9.6
t4,0 9.4 t4,2 9.5 t4,4 9.6
t5,0 9.4 t5,2 9.6 t5,4 9.6
t9,0 8.8 t9,2 9.5 t9,4 9.5
t13,0 9.5 t13,2 9.5 t13,3 9.6

31 t2,0 9.6 t2,2 9.6 t2,4 7.7
t4,0 9.6 t4,2 9.6 t4,4 9.4
t5,0 9.4 t5,2 9.6 t5,4 9.5
t9,0 9.5 t9,2 9.6 t9,4 9.5
t13,0 7.9 t13,2 9.4 t13,3 9.5

VAS values are colour-coded between black VAS = 0 (poor evaluation) and white for VAS = 10 (good evaluation); the colour in the session column indicates the 
phase
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varying level of satisfaction with the performance. High 
σ 2
pred-values indicate uncertainty in the myocontrol, as 

well. With the update in session 5 σ 2
pred and the variance 

of the VAS self-assessment both decreased. The average 
VAS for session 5 was very high, which indicated satisfac-
tion and low σ 2

pred indicated high certainty in the usage of 
the myocontrol. This suggests that with the update in ses-
sion 5 a suitable training dataset had been found and the 
lack of further updates indicated a stable and reliable 
myocontrol. This initial period of the study could have 
been an explorative period for P. Since P is a user of a 
prosthesis with direct control, switching to ML-based 
myocontrol could have initially required a high effort. 
Note that from the outset the myocontroller of the exper-
iment was different from the myocontroller P used in his 
daily life.

The following phase 2 showed that an increase in myo-
controller complexity required further training. However, 
the choice of action proved to be too demanding and a 
switch in the action set was required to continue with the 
user study.

Phase 2’ started similarly to phase 1. Decrease in TCT 
and increase in VAS values in the first sessions indicated 
improvement in the beginning, although with lower vari-
ance in the self-assessment as in phase 1. A further mile-
stone marks session  18: after task 143 there was a 
substantial second drop in the variance of the predictive 
distribution σ 2

pred . Both instances where σ 2
pred dropped 

considerably and remained low for a certain period 
exhibited a considerable increase in SI, as well. The RI on 
the other hand dropped with the first σ 2

pred-drop and 
remained on a similar level with the second one. For SI, 
these are the two largest changes in the entire user study 
and seem to align very well with good performance. 
However, the remaining trend of SI towards lower values 
following the increase does not support the claim of cor-
relation between good performance and a high SI [55, 59, 
60]. The very last model used in the study even had a 
lower SI than the value before the drop in σ 2

pred . Although 
non-conclusive, these findings are in line with what has 
been reported in literature regarding SI and RI and other 
offline measures [18, 20, 21].

Since after the second σ 2
pred-drop, there were no tasks 

with high values for σ 2
pred for the rest of the study, this 

could indicate the beginning of another period for P. It 
could be argued that at this point P became proficient in 
the usage of ML-based myocontrol and an understanding 
of the myocontroller was established. The addition of a 
further action in phase  3 did not lead to uncertainty in 
the usage of the myocontroller. Yet P needed to adapt to 
the new myocontroller, which is apparent from the 

improvements in baseline TCT and baseline VAS, see 
Figs. 6b and 7b.

These two jumps could indicate three different periods 
in the improvement over the course of the study. First a 
familiarisation period, followed by a learning period and 
ending with a proficient adaptation period.

Two further points support the notion of reaching a 
proficient state. First, the performance in the second 
baseline measure, session  20 with P’s own prosthesis, is 
on a comparable level as the ML-based myocontroller. 
Under the assumption that P is proficient with his own 
prosthesis he could have reached a certain level of profi-
ciency with the ML-based myocontroller as well. Switch-
ing from a familiar control modality to a more complex, 
yet more capable one can initially result in a reduced per-
formance  [40]. Even after 7 training sessions it was 
reported that people achieved better results with their 
own prothesis than with ML-based ones [26]. Second, the 
erroneously performed retraining in session  24 did not 
appear to have an impact on the performance, i.e. TCT, 
VAS or σ 2

pred . One could argue that P’s performance 
didn’t originate from accidentally good data, but that P 
learned to consistently produce good signals to pilot the 
prosthesis and myocontroller.

Incrementality
Incrementality played a key role in learning to use the 
myocontroller and in dealing with challenging situations.

There was no need for a separate training of sEMG-sig-
nals focused on separateness and repeatability, a process 
that commonly is required in learning to use a ML-based 
prosthesis. Exemplary duration of this process is 7–10 h 
over 5–7 session [26, 28]. The exact values vary consider-
ably based on the individual person. Taken the two mile-
stones of P in session 5 (after 1 month) and 18 (around 
the 7th month) into account, the training time can be 
considered longer. However, prosthesis fitting and train-
ing is most important in the first six months after ampu-
tation  [61]. The fact that from the first session training 
involved functional tasks while wearing a prosthesis, 
could support prosthetist acceptance.

During P’s training, an update consisted of 2.7 rep-
etitions on average, which includes the instances of full 
retraining. A full retraining would consist of five repeti-
tions per action. In phase 1 this would be 10 repetitions 
and 20 repetitions in phase 3. This results in a consider-
able amount of time saved on individual updates when 
using an incremental myocontrol algorithm. Further-
more, updates were often asked for by P to make a cer-
tain action more stable or improve the performance in a 
specific situation. In our opinion, the threshold for issu-
ing a small update is lower than issuing a full retraining. 
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This could lead to faster learning and a better adaptation, 
and thus faster improvement in performance.

The combination of training only on the sustained part 
of an action and incremental updates further helped in 
dealing with the limb position effect. Instead of initially 
training in multiple positions to cover all required pos-
tural variations, updates could be issued in challenging 
positions only when required. Training on the sustained 
part of an action does not require the participant to fol-
low a specific trajectory, however, an action has to be 
maintained at a strong but comfortable level of force. 
This allowed P to maintain exactly in the pose, where the 
myocontroller reached its limits, and update the train-
ing data with highly specific information to improve the 
myocontroller.

The capability of the RR-RFF-based myocontroller to 
add actions incrementally, reduced the calibration effort 
for P additionally. This effect became relevant at a later 
point in the user study, when P transitioned from phase 2’ 
to phase 3. Instead of requiring a full retraining only the 
new action had to be updated and P could continue with 
performing tasks.

A further testament to the robustness of the RR-RFF-
based myocontroller is the fact that over the course of 
the study there were several instances where P did not 
require any update over several sessions. Hence, for mul-
tiple visits involving donning and doffing of the prosthe-
sis no changes to the myocontroller were required and 
all tasks could be performed satisfactorily. In addition 
to that we want to highlight that no initial training after 
donning the prosthesis was issued at the beginning of a 
session.

SATMC protocol
ML-based myocontrollers are intuitive in terms of the 
type of sEMG-signals that are required for training the 
algorithm. However, learning to pilot such a myocon-
troller reliably has proven to be challenging, lengthy, and 
not necessarily intuitive for many users. The SATMC 
appears to be a promising tool for assessing ML-based 
myocontrollers and training users in their usage. Sup-
ported by the structured multi-phased approach a grad-
ual improvement was possible for P. Due to the usage 
of tasks of different levels of complexity, training was 
possible at a level comfortable for the participant. In 
“Simultaneous assessment and training of myoelectric 
control (SATMC)” we have formulated four aspects that 
should be fulfilled for an adequate assessment and train-
ing of ML-based myocontrol. These were repeatability 
and increasing difficulty (A1), postural variation during 
tasks (A2), multiple actions per task (A3), and a short 
familiarisation time for the rater (A4). In the user study 
P attempted scenarios with different levels of difficulty. 

Expressing a level of satisfaction through the VAS assess-
ment confirms that A1 was successfully implemented. A 
number of tasks involved larger distances that needed 
to be covered, i.e. wrist rotation and height differences. 
These variations adequately cover the postural variation 
required in A2. Changes between different grasps were 
part of several of the tasks, which satisfied A3. Regard-
ing A4, easy to acquire measures, i.e. VAS and TCT, 
have been introduced, which simplified the tasks of the 
experimenter. However, a number of errors occurred on 
the side of the experimenter, where instructions were 
not given correctly. As the SATMC has grown to cover 
as many relevant features as possible, the complexity of 
performing a study using the protocol increased over 
its development. Here, we believe that the initial level 
of simplicity intended for the SATMC has not been fully 
reached.

During the user study and in its evaluations two poten-
tial improvements to the SATMC have been identified. 
First, as stated in “User study” no initial training in a ses-
sion was required, since the model from the previous 
session could be reloaded and reused directly. This ben-
eficial feature is not reflected in any measure besides the 
number of updates. A solution could be adding to the 15 
tasks an initial calibration stage that is timed and in case 
no initial training is required set to 0s.

Second, since phase 2 was considered failed, a measure 
to determine at what point a phase can be considered 
failed could be useful. One option could be based on the 
VAS evaluation of the user. However, the evaluation of 
sessions 8 and 10 in phase 2 was overly positive1. A sec-
ond option could be a threshold on the variance of the 
predictive distribution σ 2

pred . The highest values of σ 2
pred 

were measured in phase 2. This is only feasible, if the ML 
method allows for the calculation of the predictive distri-
bution. Another option could be to use the number of 
updates required during a session. The failed phase con-
tained the session with the highest number of updates in 
the entire study. A threshold on the number of updates 
could help identify failed phases.

With the structure and repetition that the SATMC 
introduces, we also introduce the risk of learning spe-
cific tasks rather than acquiring general motor skills. At 
the beginning of a phase five tasks are chosen by the per-
son administering the SATMC and in each session the 
participant starts with the basic variants of these tasks. 
However, the fact that at the beginning of phase 2’ P only 
required a few repetitions to learn a new action com-
pared to many repetitions in all previous phases, could 

1 For session  8 VAS evaluations by P are available, but no TCT values, see 
Figs. 6a and 7a. Unfortunately, the data was lost.
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indicate motor skill acquisition rather than task-specific 
learning, see Fig. 8. On the other hand, we also introduce 
variability with the SATMC. Depending on the skill of the 
participant different variants of these tasks are executed 
throughout a phase. Earlier session will likely involve 
easier task variants, while the last session will involve the 
most difficult ones. This variance potentially affects our 
primary measure TCT. Considering Fig. 6, we can see ini-
tially large values of TCT for phases 2’ and 3 followed by 
a plateau area. The low variance in the plateau area could 
indicate that influence of the task variants is small.

With these improvements we see a high potential of 
the SATMC to be applied in clinical use. Since training 
and assessment are both part of the SATMC training the 
participant to produce good sEMG-signals and func-
tional assessment of prosthesis both occur at the same 
time. The user would start earlier with performing tasks 
with their prosthesis, which could have beneficial effects 
on motivation and acceptance. Furthermore, a number 
of steps in the SATMC can be automated as they follow 
strict guidelines, see “Guidelines”. This would reduce the 
burden on the person administering the SATMC and 
therefore increase the clinical applicability. In addition, 
the SATMC is not restricted to training the use of hand 
prostheses but can also be used to train more proximal 
prosthesis joints.

Limitations
During the analysis of the results we were able to identify 
some limitations of the user study with P. In 
phases  2’  and  3 the SI exhibited a trend towards values 
indicating poorer training data quality, yet the participant 
improved and was more satisfied. As SI and RI are pure 
offline measures and TCT and VAS are online measures 
(with the user in the loop), a mismatch between them is a 
common phenomenon. A further possible explanation 
could be the way training data was gathered. The user is 
encouraged to update the myocontroller, when instabili-
ties occur in the control. These instabilities could origi-
nate from changes in the muscle and limb orientation, i.e. 
limb position effect. An update will therefore contain 
data that is rather different from what was present in the 
training data before the update. This could lead to an 
increase in RI, since the update is labelled with the action 
that was updated without taking specific information of 
the position into account. A larger spread of the action 
cluster (containing all repetitions) would be the result 
and hence potentially lead to a lower SI. In general, a 
higher level of repeatability, as in being able to precisely 
reproduce a muscle signal, is a desirable feature. How-
ever, based on the training protocol RI and SI could 
potentially reflect a different measure than the intended 
separability and repeatability. On the other hand, both 

drops in the values of the variance of the predictive dis-
tribution σ 2

pred coincided with an increase in SI as one 
would expect.

Furthermore, we have identified some general improve-
ments for the SATMC. A comparison to different vali-
dated assessment method, such as the ones described in 
In “Simultaneous assessment and training of myoelectric 
control (SATMC)”, would have strengthened the results 
of this user study. The administration of validated assess-
ment tools at regular intervals of the user study, e.g. at 
the beginning and end of a phase, would have provided 
further insights in the validity of the SATMC. We see 
such an addition as useful for future studies based on the 
SATMC.

Additionally, some unfortunate mistakes by the 
experimenter were made during the user study. For 
one, phase  2’ was continued longer than it should have 
been. In sessions 13 and 15 the VAS scores were evalu-
ated wrongly, which led to single-step increases in task 
variants instead of two-step increases. A correct decision 
in either of these sessions would have led to an earlier 
successful conclusion of phase  2’. Additionally, experi-
menter errors occurred in session 24, session 27 and the 
session thereafter: the experimenter gave instructions 
regarding the wrong phase. While the instructions were 
instances of phase 2’, they should have been instances of 
phase  3 according to the SATMC guidelines. Although 
unfortunate, in our opinion additional repetitions of a 
phase should not severely impact the overall conclu-
sions drawn from this study. We believe that all errors 
regarding wrong VAS evaluation or wrong phase selec-
tion could be avoided by automating the SATMC. This 
could be achieved in form of a specific software that pro-
vides directions based the data acquired. This would also 
be a step towards aspect A4, defined in the beginning of 
“Simultaneous assessment and training of myoelectric 
control (SATMC)”. On the other hand, the unnecessary 
full retraining that occurred, which we considered an 
error, would not profit from this measure, since no strict 
guidelines were designed regarding updates. The user or 
the experimenter decide whether they are required.

Another limiting factor in this user study is the 
involvement of only one participant. To minimise 
the impact of this factor, we have used SCED in the 
design of the SATMC and the user study. SCED pro-
vides guidelines for performing structured experiments 
involving only a small number of participants. Meth-
ods such as direct replication and the introduction of 
a baseline, help in lowering the impact of a low number 
of participants. We have implemented these two meth-
ods by incrementally changing the set of actions and by 
choosing a specific task that remains unchanged for the 
entire user study.
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Finally, in its current form the tasks incorporated in the 
SATMC are not validated. The current paper describes a 
first proposal to train and assess myoelectric control. Fur-
ther development of the SATMC protocol might require 
validation studies. For example, a Rasch analysis could 
verify that the task variants are indeed increasing in dif-
ficulty. Additionally, a validation study should include 
investigations how the outcome measures TCT and VAS 
are affected by the variance within a phase due to poten-
tially different task variants between sessions.

Conclusion
By the end of the user study P was able to achieve propor-
tional myocontrol of four actions with a multi-articulated 
prosthetic hand using the incremental RR-RFF-based 
myocontroller. He was naive to such a control modality 
at the beginning of the study. Supported by the directions 
realised in the simultaneous training and assessment of 
the SATMC he succeeded in reaching a dexterous myo-
control in ADL-like tasks. The incrementality in both the 
myocontroller and the SATMC allowed P to progress at a 
level comfortable for him.

As the SATMC can be applied independent of the 
myocontroller, the protocol can be used in future stud-
ies to train a user in ML-based myocontrol and assess 
novel myocontrol approaches. This in turn will provide 
more validity to the SATMC and lead to results allowing 
for comparisons between ML-based myocontrollers.
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