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Abstract

Coherent azimuth ambiguities in interferometric synthetic aperture radar (InSAR) can be a major
systematic error source if accompanied by a low suppression capability. They induce biases in the
interferometric phase, which limits the achievable performance and hence, degrades the viability of
remote sensing data for scientific usage.
This work derives, evaluates and compares algorithms to remove the effect of coherent azimuth

ambiguities on 2- and 3-channel along-track interferometry (ATI). The interferometric performance is
evaluated under the assumption of identically independently distributed data, which is simulated using
a simplified one-dimensional (azimuth) InSAR channel model with coherent ambiguities. This linear
time-invariant InSAR channel is further described analytically to ease the development of removal
algorithms.

The InSAR channel configuration bases on the future Earth Explorer 10 “Harmony” mission, which
exhibits a low azimuth ambiguity suppression capability. The mission goal is to observe ocean and
sea surface currents to refine global Earth system models. To simulate ocean and sea surface scenes, a
frozen multiplicative noise model is used, where parameters of interest are described from empirical
data in different sea states.
One investigated algorithm on interferogram level (2 channels) minimizes the mean square error

(MSE) of the interferometric estimate by means of a linear function of interferometric looks on the
scene. The work derives this linear estimator from the previously found analytical channel model.
It achieves removal of the effect of coherent azimuth ambiguities at a slight degradation of overall
interferometric performance.

It is further compared, which improvement of the Cramér-Rao bound (CRB) is made by an additional
third channel. Using this third channel, the suppression capability of two well-known algorithms
from harmonic analysis are evaluated. Both algorithms — minimum variance distortionless response
(MVDR), also known as Capon’s beamformer, and multiple signal classification (MUSIC) — achieve
suppression of the effect of coherent ambiguities, but, residual biases pose a limit on the minimum
achievable performance.



Zusammenfassung

Kohärente Ambiguitäten in Azimuth-Richtung können dominante Fehlerquellen in interferometri-
schem Synthetic Aperture Radar (InSAR) sein, falls das System keine ausreichend gute Unterdrückung
dieser Ambiguitäten aufweist. Sie erzeugen einen systematischen Fehler in der gemessenen interfero-
metrischen Phase, wodurch sich die erzielbare Performance des Systems und die Brauchbarkeit der
Messungen für wissenschaftliche Zwecke verringert.
Diese Arbeit entwirft, bewertet und vergleicht Algorithmen zur Entfernung des Effekts von kohä-

renten Azimuth Ambiguitäten für along-track interferometrische (ATI) Systeme mit zwei und drei
Kanälen. Die Bewertung erfolgt mit gleich verteilten, interferometrischen Daten eines vereinfachten
Systemmodells. Zur Entwicklung der Algorithmen wird dieses lineare zeitinvariante Modell analytisch
beschrieben.
Das zugrundeliegende Modell repräsentiert die zukünftige Earth Explorer 10 “Harmony” Mission,

welche eine ungenügende Unterdrückung von Azimuth Ambiguitäten bietet. Mit dieser Mission
sollen Ozean- und Meeresströmungen für die Verbesserung von Erdsystemmodellen gemessen werden.
Die Ozean- und Meeresoberflächen werden mit einem eingefrorenen multiplikativen Rauschmodell
simuliert, wobei die zu observierenden Parameter aus empirischen Daten stammen.
Ein entworfener Algorithmus entfernt Azimuth Ambiguitäten auf Interferogram-Ebene, durch

Kombinierung von Interferogrammen unter Minimierung des mittleren quadratischen Fehlers. Dies
entfernt Ambiguitäten bei leichter Verschlechterung der gesamten interferometrischen Performance.
Weiterhin wird untersucht, welche Verbesserung der Cramér-Rao Bound (CRB) ein dritter Kanal

gegenüber zwei Kanälen bringt. Mehrere Kanäle ermöglichen den Einsatz von minimum variance
distortionless response (MVDR) und multiple signal classification (MUSIC) zur Schätzung der inter-
ferometrischen Phase und Entfernung von Bias durch kohärente Ambiguitäten. Die Algorithmen
erzielen eine Unterdrückung des Effekts, aber ein restlicher Bias limitiert die erreichbare minimale
Performance.



1 Introduction

The hydrosphere of the Earth is a highly dynamic global system which works as heat reservoir for solar
energy and as source of atmospheric moisture [Cra11, p. 1]. Each mechanism of storing, conveying and
releasing energy needs to be fully understood to determine the overall influence on Earth’s weather
and climate [Doh10; Cra11]. Oceanographic and hydrological research depends on the observation,
measurement and quantification of local phenomenons in the hydrosphere to refine global Earth
system models and reduce their projection uncertainties [Rom20, p. 29].
With Seasat in 1978, the first space-borne mission dedicated to remote sensing of Earth’s oceans

was realized [Cra11; Pae20]. It carried a synthetic aperture radar (SAR), whose capabilities allowed
to observe surfaces of large and remote areas — such as oceans — with only minor weather and sun
depending limitations [Cra11, pp. 3–46]. Following missions continued to explore different techniques
of SAR remote sensing. A few relevant for the purpose of this work are the shuttle radar topography
mission (SRTM), which realized the first single-pass interferometric measurements from space, and
the twin satellite formation of the TerraSAR-X add-on for digital elevation measurement (TanDEM-X)
mission with, among others, an along-track interferometry (ATI) mode [Pae20]. First interferometric
measurements where performed simply by comparing a time series of images from the same area
[Bam98]. Single-pass interferometry gives the opportunity to measure surface deformations from the
two-dimensional SAR images within one pass over the interrogated area, which mitigates inevitable
atmospheric influences from ionosphere and troposphere during repeated passes [Que86]. For sensing
the surface deformation of fast motions, i.e. ocean currents and waves, a very short interval between
images is required [Pae20]. The single-pass ATI mode of TanDEM-X was the first space-borne mission
to operate at very short time intervals, which allows the observation of such highly-dynamic motions
via interferometry [Gol87; Pae20]. From the acquired measurement data by TanDEM-X it was shown,
that ATI is the most accurate technique in comparison with Doppler centroid anomaly (DCA) and
dual receive antenna (DRA) [Rom14; Lóp21].
Harmony — the future Earth Explorer 10 mission — will increase the capabilities of a Sentinel-1

satellite by formation flights as depicted schematically in Fig. 1.1 [Rom20]. During the mission, two
identical and passive Harmony satellites will accompany the active Sentinel-1, forming a bistatic
setup. The total mission phase divides into a stereo and an across-track phase. Only the stereo phase
is further considered, because ATI will be performed during this phase to retrieve two-dimensional
ocean and sea motion. The separation of Sentinel-1 and one Harmony satellite is designed such that
the sensitivity to surface deformations using data from all three satellites is equal in north-south and
east-west direction. The mission goal is to observe air-sea interactions, cyclones and ocean processes,
from ocean surface motion measurements with an overall maximum estimation error of 20 cm/s [Rom20,
p. 39]. For comparison, Sentinel-1 achieves an accuracy of 29 cm/s [ESA17].

Current evolution of future satellite SARmissions tends towards more, cheaper and smaller satellites
[Pae20, pp. 13–23]. Their goals is to incorporate faster revisit times, more look angles and larger time
series in one pass [Pae20]. Although, the Harmony satellites are not “so small”, but they still share
similar features of small satellites: Firstly, a formation flight that provides bistatic measurement data,
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Fig. 1.1: Two passive Harmony satellites in stereo (left) and across-track (right) flight formation with an ac-
tive Sentinel-1 satellite to observe small-scale motion and deformation of the Earth’s surface, reprinted with
permission: Harmony Mission Advisory Group, 2021.

secondly, a shrinking of antenna sizes, that results from a trade-off between ATI sensitivity, space
limitations and mechanical feasibility [Rom20, p. 50]. Each Harmony satellite will carry three antennas,
where data acquired by all three antennas may be used for performing ATI. The current antenna
designs are smaller, i.e., compared to the antenna on Sentinel-1, which has a length in azimuth of about12m and the largest antenna on Harmony is designed to have a length in azimuth of about 4m [Rom20,
pp. 57–59]. The antenna however, is a vital part of a SAR system, because its antenna pattern works
as an anti-aliasing filter of Doppler frequencies [Li83]. It was shown, aliases — also called azimuth
ambiguities — will bias the measurements if they are coherent [Vil12]. Coherent azimuth ambiguities
behave just as the true not-aliased data, resulting in an unwanted focusing and correlation between
images and finally a systematic error. The coherent condition for ambiguities holds in the case of the
Harmony mission and the effect of biasing by those aliases must be considered [Zon22]. To achieve
the required accuracy for scientific usage of the measurements, the effect of those biases must be
mitigated [Zon22]. Unlike random errors from non-coherent thermal noise, biases can not be reduced
by performing averaging, i.e. multi-look processing or boxcar-averaging [Por76; Tou94]. Hence, other
algorithms are necessary to remove the systematic error and to fulfill the scientific requirements of
the Harmony mission.

The main goal of this thesis is the development and evaluation of algorithms to remove the effect of
biases by coherent azimuth ambiguities for ATI systems. However, the algorithms are not constrained
to solely ATI systems. A use-case of those algorithms is the Harmony mission [Rom20], which
defines the overall SAR geometry and system parameters used during this work. The mission will not
only provide a single interferogram (2 channels), but up to three independent channels. Prospective
algorithms must be phase-preserving and may leverage multiple channels, but only three channels
are relevant for performance assessment. As part of the Phase-0/A system study of the mission, the
analysis and verification of the developed algorithms contributes to the assessment of interferometric
performance of the whole system.
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Within this work, only the stripmap SAR scanning mode with fixed antenna pointing direction
is considered. However, the Harmony mission requires algorithms to work also on other scanning
modes, especially those, which enable wider swaths as ScanSAR or terrain observation by progressive
scans (TOPS) [Rom20]. During the work, those modes are referenced but not explained in detail.
Further readings on SAR scanning modes may be found in the literature [Cum05; De 06].

1.1 Review of Literature on Azimuth Ambiguity Suppression and Removal

Azimuth ambiguities — or in general ambiguities — have been perceived much consideration with
respect to image quality, i.e. increased noise level or “ghosts signatures” of strong targets [Bay75; Li83;
Ran87; Mor93]. I.e., ship detection must deal with ghosts, which are clearly visible on the low scattering
sea clutter. Ghost suppression algorithms usually benefit from the point-like highly reflective metallic
structures on ships [Vel14], which are not applicable to ocean and sea surface scattering measurements.

Minimizing the noise level contribution of incoherent azimuth ambiguities is usually considered in
the system design process [Wol17]. The Harmony mission faces several constraints, i.e. pulse repetition
frequency (PRF), transmit antenna size and antenna pattern shape or orbit height, which are defined
by the Sentinel-1 satellite [Rom20]. Furthermore, such system design approaches are only reducing
the effect of biases, but are not completely removing them. Note, the different usage of suppression and
removal in the scope of this work, where the former describes a reduction and the latter a complete
removal of coherent ambiguity biases.

Phase preserving algorithms may use a transfer function to suppress the effect of ambiguities. For
instance, a de-convolving transfer function may be applied [Mor93]. This processing scheme requires
the ambiguous frequencies to be correlated with the main signal frequencies, which is only fulfilled for
point-like scatterers. The algorithm fails for fully developed speckle, observed usually on oceans, seas
and lakes, because there exists no inter-frequency correlation that can be leveraged [Mor93; Mon05].

A different approach for distributed targets and scenes evaluates the eigenvalue spectrum entropy
in the Doppler spectrum to identify and mask Doppler frequencies, that are predominantly disturbed
by ambiguities [Liu19]. By neglecting such frequencies, the power of ambiguities is reduced, but
also useful energy from the true signal is discarded. One could have leveraged this power to improve
measurement accuracy. A similar technique uses an adaptiveWiener filter to de-emphasize frequencies
containing high aliased power [Mon05]. Both algorithms minimize the ambiguous energy within the
image, but this still yields biases in presence of coherent azimuth ambiguities, because ambiguities
have neither been de-correlated nor biases have been considered in the algorithm formulation.
The first algorithm to consider and remove biases is the infinite impulse response (IIR) equalizer,

which is also the first algorithm to be applied on interferogram level [Lóp19a]. Biases can on average
be removed by recursively subtracting weighted and shifted versions of the interferogram from itself.
In simplified terms, the weights are complex factors that denote the ratio of ambiguity to main signal
in the interferogram [Lóp19a]. If those weights are not precisely known, then residual biases will
remain. It is shown in this work, that these weights are varying over the imaged swath. Hence, the
algorithm needs to estimate the weights as well [Lóp19a]. The shifts of ambiguities are a well-known
value [Ran87], but introduce further dependencies on the algorithm. To remove biases completely, it is
required that ambiguities andmain signal have identical interferometric properties, i.e. expected values.
However, the imaged scene is highly-dynamic and the interferometric signature changes over time.
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The scene might be accelerating during overflight, i.e. inherent orbital movement of particles in waves1
[Has85] or air-sea interactions [Has85; War13]. Additional changes of interferometric properties occur
inherently, because of breaking waves or a generally finite coherence time. Coherence time is defined
from the width of auto-correlation function of the scattered signal over time and is limited due to the
random-like movement of capillary waves on the surface [Car94]. Capillary waves introduce surface
roughness, which form a main contribution to the radar scattering coefficient [Has85; War13]. Beyond
coherence time of the surface, the scattering contribution has changed significantly and identical
interferometric properties may not be assumed. Measurements at L-band (1248.75MHz) showed a
coherence time of 60ms to 210ms for ocean and sea surfaces [Car94; She93]. The IIR equalizer requires
the interferometric scene to be stable and coherent also beyond one synthetic aperture time of 158ms,
because ambiguities are delayed due to the physical shifts of each ambiguity. The delay per ambiguity
in the Harmony mission is 678ms, which exceeds those common coherence times. The effect of scene
dynamics was not yet analyzed, because it requires real data to show the effect [Lóp19a]. In this work,
possible algorithms are restricted to data measured in one synthetic aperture time and information
form the ambiguous positions are neglect. The influence of scene dynamics are hereby reduced to an
unavoidable minimum.

1.2 Outline

This work starts with reviewing the imaging theory of SAR in Chapter 2, which leads to a simulation
model for one-dimensional bistatic interferometric data with coherent ambiguities. Furthermore,
expressions for the system sensitivity with respect to surface velocities and for the ratio of coherent
ambiguity to signal on interferogram level are derived. The simulation model and the interferometric
metrics form the basis of the following chapters.

The Chapter 3 describes the applied method for evaluation of the interferometric performance using
the simulation model from Chapter 2 and prior assumptions on the quantities to be measured. It
concludes by analyzing and verifying the simulation model with respect to the theoretical effect of
coherent azimuth ambiguities.
In Chapter 4 and 5, different algorithms on interferogram level (2 channels) and with multiple

channels (> 2) are derived, respectively. The algorithm performance is analyzed and compared to the
IIR equalizer as well as the unbiased optimum lower estimation bound, called Cramér-Rao bound (CRB).
This requires knowledge of the CRB for multi-channel interferometry, which is analytically derived
beforehand from a multi-variate circular complex Gaussian data model. The algorithms are applied to
simulated data using the model from Chapter 2.
The closing Chapter 6 compares the results obtained for each algorithm from Chapter 4 and 5.

Finally, a conclusion is drawn and an outlook on future research and development steps is given.

1 A helpful visualization of orbital particle motion in waves might be found online:
https://rwu.pressbooks.pub/webboceanography/chapter/10-1-wave-basics/

https://rwu.pressbooks.pub/webboceanography/chapter/10-1-wave-basics/


2 Theory of SAR and Interferometry

SAR is a coherent radar system, that leverages the Doppler effect and high bandwidth pulses to
obtain reflectivity and distance information from large areas with a high resolution [Cum05]. An
exemplary drawing of a simplified rectilinear SAR acquisition geometry shows Fig. 2.1. A space- or
aircraft is moving along its track in 𝑥-direction, therefore called along-track or azimuth coordinate,
and interrogates the scene using high bandwidth pulses and its broadside looking antenna. The range
or cross-track direction 𝑅 denotes the distance from antenna to scene. The received high bandwidth
pulses are compressed to achieve high resolution in the range direction. Additionally, the recorded
coherent (compressed) pulses might be focused in azimuth or along-track direction to form a large
synthetic aperture and achieve high resolution in the second image dimension as well. A more
detailed introduction to the concepts of compression, focusing and high resolution may be found in
the literature [Cum05, pp. 113–155][Tom78; Bam98].
This chapter summarizes the basics required to simulate a simple one-dimensional azimuth SAR

channel. The simple model is then adapted to describe multi-channel bistatic SAR systems and acqui-
sition of interferometric data. It also introduces the sensitivity of ATI with respect to surface motion.
Each section depends on the acquisition geometry and satellite design, which is now introduced.

2.1 Simplified Rectilinear Geometry of Harmony Mission

ATI is performed on data acquired with Harmony satellites in stereo configuration with a Sentinel-1
[Tor17] satellite [Lóp19b], visualized in Fig. 1.1. This work focuses on one bistatic configuration,
i.e. Sentinel-1 and Harmony in aft position as schematically depicted in Fig. 2.1. The separation of
Sentinel-1 and each Harmony satellite denotes 𝑥0, and is in the order of 350 km [Rom20, p. 34]. A
rectilinear geometry is used to simplify the modeling procedures, but actually, the satellites will orbit
in a height of about 700 km above nadir around Earth.
The actual curved geometry makes simulation of SAR data for evaluation of the interferometric

performance unnecessarily complicated and is therefore neglected. The same holds for Earth’s cur-
vature and rotation. A detailed description of the real geometry can be found in literature [Cum05,
pp. 120–129] [Tom78]. The rectilinear geometry infers that velocity of satellites 𝑣Sat and velocity of the
beam on ground 𝑣Gr are equal. In an orbital geometry, 𝑣Gr is smaller than 𝑣Sat, because the angular
velocity of the orbiting satellite is constant and the Earth’s radius is smaller than the orbit radius. This
has an influence on the observed Doppler shift in real scenarios [Cum05, p. 126]. Hence, all calculations
of Doppler shift within this work only hold for the presented rectilinear geometry.

The current satellite design of one of the Harmony companions proposes an antenna configuration as
shown in Fig. 2.2 [Rom20, p. 58]. It consists of two main antennas in fore and aft direction and a smaller
middle antenna. With all three antennas being smaller in azimuthal length than the transmitting
antenna on Sentinel-1. The figure further shows the phase centers of the antennas with their inter-
antenna spacing, called the physical along-track baseline 𝐵ATI,𝑖𝑗 .
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Fig. 2.1: Simplified SAR geometry for a point target as used in the Harmony mission. A local spherical coordinate
system (green) and a global cylindrical SAR coordinate system (blue) are used. The footprint on ground is only
given for antenna onboard of Sentinel-1.

The observed Doppler shift with fore and aft antenna for a point target

𝑓D,1(𝑡, 𝑥0) = −1𝜆 dd𝑡 (𝑟 ′(S) + 𝑟 ′(H)) (2.1)𝑓D,3(𝑡, 𝑥0 + 𝐵ATI,13) , (2.2)

where 𝑟 ′(S) and 𝑟 ′(H) denote distances between satellite phase centers and point target, is illustrated in
Fig. 2.3. The point target is maximally illuminated by Sentinel-1 at time 𝑡 = 0 s. Due to the squinted
observation from the Harmony satellite, this point target is perceived with a so called Doppler centroid𝑓DC,1 = 𝑓D,1(𝑡 = 0 s, 𝑥0) of 52.605 kHz, whereas the Doppler centroid for the monostatic SAR acquisition
of Sentinel-1 is 0Hz. Between the fore and aft channel there is a small delay in the Doppler frequency
history visible. This delay results from the physical separation of the antennas and determines the
sensitivity of the ATI system to surface motion.

2.2 Sensitivity of Along-Track Interferometry

The sensitivity of an interferometric system is a necessarymetric to relate the measured interferometric
phase to the observed physical quantity of surface displacement or motion. To avoid systematic errors
on inverting the interferometric phase, a detailed analysis of the sensitivity of the Harmony mission
in stereo formation is conducted. In ATI, the sensitivity depends on the time difference (baseline)
that separates two consecutive acquisitions [Gol87]. Given the Doppler history of both channels, i.e.
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Fig. 2.2: Schematic drawing of antenna configuration onboard of one of the Harmony satellites with measures.

in Fig. 2.3, one finds the delay as time difference between equal Doppler frequencies. One must use
equal Doppler frequencies to have a common spectral support for both acquisitions. Otherwise, the
acquired data for interferometric processing of distributed targets looses coherence and interferometric
performance, i.e., compare [Gat94]. Using a local linearization of the Doppler frequency history of the
second channel at the time of processed Doppler centroid 𝑡S, the time difference is approximately

𝛥𝑡 ≈ 𝛥𝑓D∂𝑓D,3(𝑡)∂𝑡 |||𝑡=𝑡S = 𝑓DC − 𝑓D,3(𝑡S)∂𝑓D,3(𝑡)∂𝑡 |||𝑡=𝑡S . (2.3)

With a difference in Doppler frequency𝛥𝑓D of −1.285Hz and aDoppler rate on channel 3 of −2212.01 Hz/s,
which is the sum of the Doppler rate by Sentinel-1 at 𝑡 = 0 s and by channel 3 at 𝑡 = −𝑥0/𝑣Sat taken
from Fig. 2.4, one may expect a delay of 580.92 µs. This time delay is less than the delay of 657.89 µs as
discussed in the literature [Gol87]. The loss of sensitivity by a factor of 0.883 occurs due to the highly
squinted bistatic geometry and is analyzed in this section.

The stereo Harmony setup measures the surface velocity with the fore and aft companion satellite
under different viewing angles, which allows to infer the two-dimensional component of the surface
velocity [Lóp19b]. This work considers only one companion satellite, i.e. trailing (aft) Harmony,
which measures the surface velocity projected into the plane spanned by Sentinel-1, Harmony and the
target using (short) ATI [Gol87]. ATI uses the phase difference of two temporally delayed complex SAR
images to find the displacement of scatterers during this time interval. The phase of each image sample
is given by the total propagation delay between transmitter and receiver and the phase of the target.
The phase of the target is common to both images and therefore removed during interferometric
combination [Bam98]. The propagation delay depends on the distance between Sentinel-1’s and
Harmony’s phase centers and the target𝑟(𝑥 ′, 𝑥, 𝑥0, 𝑅0) = 𝑟 ′(S) + 𝑟 ′(H) = √(𝑥 ′ − 𝑥)2 + 𝑅20 +√(𝑥0 − 𝑥 + 𝑥 ′)2 + 𝑅20 , (2.4)

where 𝑥 ′ is the position of a point scatterer, 𝑥 denotes the position of Sentinel-1 and 𝑅0 the distance
in range of the scatterer.
The projected surface velocity is split into two orthogonal components along azimuth and along

range to find the sensitivity per component and later for the total velocity vector. The analysis starts
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Fig. 2.3: Instantaneous Doppler frequency received at trailing Harmony satellite from point target, Sentinel-1
has shortest distance to point target at 𝑡S = 0.0 s, Harmony satellite has shortest distance to point target at𝑡H = 46.1 s, zero Doppler frequency is seen at (𝑡S + 𝑡H)/2 = 23.03 s. Harmony operates in a highly squinted
configuration, with a Doppler centroid of 52.605 kHz. Monostatic curve shows Doppler frequency as perceived
solely by Sentinel-1.
with the velocity component in range, where the range coordinate is defined by the global coordinate
system as shown in Fig. 2.1. For the first Harmony antenna, the distance to a point target positioned
at 𝑥 ′ = 0m is𝑟1(0, 𝑣Sat𝑡, 𝑥0, 𝑅0 + 𝑣r𝑡) , (2.5)

where 𝑣r denotes the radial velocity of the point target. The third antenna on Harmony, which forms
channel 3, has a distance𝑟3(0, 𝑣Sat𝑡, 𝑥0 + 𝐵ATI,13, 𝑅0 + 𝑣r𝑡) (2.6)

to the same point target. Image 1 is processed around the Doppler centroid received at 𝑡 = 0 s. Image 3
acquired on channel 3 is also processed around the Doppler centroid of image 1, such that both images
possess the same spectral bandwidth. The third channel receives the Doppler centroid of image 1 after
a time delay 𝛥𝑡

𝑓D(−𝑥0 + 𝐵ATI,132𝑣Sat + 𝛥𝑡, 𝑥0 + 𝐵ATI,13) = 𝑓DC,1 = 𝑓D(− 𝑥02𝑣Sat , 𝑥0) , (2.7)

which is solved numerically using the analytical expression for instantaneous Doppler frequency (2.36)
and the Newton-Raphson method. A large separation 𝑥0 causes different Doppler rates with respect
to transmission by Sentinel-1 and reception by Harmony. Fig. 2.4 illustrates the difference in Doppler
frequency 𝛥𝑓D, which must be overcome by the aft channel. Transmission contributes with 𝛥𝑓D,S to the
reduction of 𝛥𝑓D. This contribution is larger than the contribution from reception due to the different
Doppler rates, which yields a decrease of 𝛥𝑡 . This effect is later combined into a sensitivity loss factor.
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Fig. 2.4: Single way Doppler frequency rate and geometric interpretation of time delay between acquisitions and
the Doppler loss factor. For demonstrative purposes, a bistatic geometry with 𝑥0 = 350 km and 𝐵ATI = 100 km is
used.

The phase difference or interferometric phase of the point target between the images is then given
by the difference in electrical distance

𝛥𝜙 = 2𝜋𝜆 [𝑟3(𝑡 = 𝛥𝑡) − 𝑟1(𝑡 = 0)] = 2𝜋𝜆 [√𝑣2Sat𝛥𝑡2 + (𝑅0 + 𝑣r𝛥𝑡)2+ √(𝑥0 + 𝐵ATI,13 − 𝑣Sat𝛥𝑡)2 + (𝑅0 + 𝑣r𝛥𝑡)2 − 𝑅0 − √𝑥20 + 𝑅20] (2.8)

and the phase sensitivity∂𝛥𝜙∂𝑣r = 2𝜋𝜆 ( 𝛥𝑡(𝑅0 + 𝑟r𝛥𝑡)√𝑣2Sat𝛥𝑡2 + (𝑅0 + 𝑣r𝛥𝑡)2 + 𝛥𝑡(𝑅0 + 𝑟r𝛥𝑡)√(𝑥0 + 𝐵ATI,13 − 𝑣Sat𝛥𝑡)2 + (𝑅0 + 𝑣r𝛥𝑡)2) (2.9)

is approximately∂𝛥𝜙∂𝑣r ≈ 2𝜋𝜆 𝛥𝑡𝑅0( 1𝑅0 + 1√𝑥20 + 𝑅20) = 2𝜋𝜆 𝛥𝑡⎛⎜⎜⎝1 +
√ 𝑅20𝑥20 + 𝑅20 ⎞⎟⎟⎠ . (2.10)

One sees, that the well known sensitivity of an ATI system [Gol87; Wol17; Lóp19a]∂𝛥𝜙∂𝑣proj,surf = 2𝜋𝐵ATI,13𝜆 1𝑣Sat (2.11)

degrades for increasing separations 𝑥0 due to two factors. Firstly, a geometrical loss factor

𝐿g,r = 1 +√ 𝑅20𝑥20+𝑅202 , (2.12)



Theory of SAR and Interferometry 10

101 102 103 104
0

0.20.4
0.60.8
1

x0 in km

L g
R0 = 800 km, Lg,rR0 = 950 km, Lg,rR0 = 800 km, Lg,azR0 = 950 km, Lg,azR0 = 800 km, Lg,totR0 = 950 km, Lg,tot

(a) Geometrical loss factor 𝐿g

101 102 103 104
0

0.20.4
0.60.8
1

x0 in km

L d R0 = 780 kmR0 = 950 km

(b) Doppler frequency loss factor 𝐿d
Fig. 2.5: Sensitivity geometrical loss factor 𝐿g and Doppler frequency loss factor 𝐿d over Sentinel-1 and Harmony
separation for near and far ranges.

which is related to viewing angles of the Harmony satellite on the radial velocity component, depicted
in Fig. 2.5 (a). For very large separations 𝑥0, the sensitivity reduces to half of the maximum sensitivity,
where only the broadside looking Sentinel-1 [Tor17] has a contribution to radial sensitivity. Secondly,
a Doppler frequency related loss factor

𝐿d = 𝛥𝑡max{𝛥𝑡} = 𝛥𝑡𝐵ATI,132𝑣Sat , (2.13)

which relates to different Doppler rates per channel due to the highly squinted bistatic geometry. This
factor is shown in Fig. 2.5 (b).
The sensitivity for an azimuth velocity component is found similarly as done for the range com-

ponent. The azimuth velocity component induces a shift of the point target in azimuth, due to an
additional Doppler component from the target. This shift is small and is neglected, because the satel-
lite velocity is several magnitudes larger than the maximum expected surface velocity. The phase
difference shows a sensitivity with respect to an azimuth movement of the target 𝑥 = 𝑣az𝑡 , which is
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approximately∂𝛥𝜙∂𝑣az ≈ 2𝜋𝜆 𝛥𝑡√ 𝑥20𝑥20 + 𝑅20 = 2𝜋𝐵ATI,13𝜆 1𝑣Sat𝐿d𝐿g,az , (2.14)

where

𝐿g,az = 12√ 𝑥20𝑥20 + 𝑅20 . (2.15)

The sensitivity depends again on the same Doppler loss factor, which reduces the temporal delay
between the acquisitions on channel 1 and 3. However, the geometrical loss factor is different for the
azimuth velocity component, as depicted in Fig. 2.5 (a). An ATI system with a small separation of
transmitter and receiver, i.e. TanDEM-X mission, has no sensitivity to the parallel azimuth velocity
component. With the Harmony mission, a sensitivity in both azimuth and range velocity component is
achieved. Using a fore and aft companion satellite allows then the inversion of interferometric phases
to a two-dimensional velocity component. The maximum total sensitivity is defined by the magnitude
of the gradient of the phase difference with respect to the two orthogonal velocity components

𝑆ATI = 𝛥𝜙𝑣proj,surf =
√(∂𝛥𝜙∂𝑣r )2 +(∂𝛥𝜙∂𝑣az)2 = 2𝜋𝐵ATI,13𝜆 1𝑣Sat𝐿d𝐿g,tot , (2.16)

where

𝐿g,tot = √𝐿2g,r + 𝐿2g,az = √12 + 12√ 𝑅20𝑥20 + 𝑅20 . (2.17)

For the Harmony mission, a separation of Sentinel-1 and Harmony of about 350 km [Rom20; Lóp19b] is
desired, which yields negligible losses of total sensitivity 𝐿g,tot by the observation geometry as shown
in Fig. 2.5 (a). Hence, the interferometric signatures of surface velocities are not weakened by the
geometrical loss and may be neglected in the performance evaluation later on. A disadvantage is
the non-symmetrical sensitivity for azimuth and range components, which must be considered when
inverting the interferometric phases. This will not be further investigated.

Fig. 2.5 also shows the dependency of both loss factors for the near and far slant ranges 𝑅0, with the
Doppler frequency loss factor decreasing already for lower separations in the near range case. Highly
accurate ATI measurements need to consider this dependency.

A SAR system can not only observe and deal with isolated point-like scattering behavior as consid-
ered in the previous section, but its processing techniques make it suitable for complex and extensive
scenes. Nonetheless, the sensitivity analysis remains valid [Gol87].

2.3 Imaging with a Single SAR Channel

This section describes the well-known SAR imaging principle for a single channel. The description
is confined to only one line of data with constant range — a range line —, as it is implied in Fig. 2.1.
More channels are later added to perform interferometric measurements, where each channel acquires



Theory of SAR and Interferometry 12

data as described in this section. Firstly, the impulse response of a single point target observed with
mono- and bistatic channels is derived by describing the underlying physics of transmission, scattering
and receiving of electromagnetic waves. This response might be interpreted as an impulse response
function (IRF) for frozen or non-moving scenes [Has85; Bam98; Tom78] and it is interesting to know
its Fourier transform, which is derived afterwards. Then, the IRF is applied to distributed frozen ocean
scenes and a simulation procedure for raw SAR data is described. Following this, the noise contribution
on the raw data is quantified. Finally, the SAR image is generated by focusing the raw data.
During the whole work, imaging is done only in stripmap mode, where the pointing of antennas

remains fixed. Furthermore, a start-stop assumption is made and pulse travel times are neglected to
simplify the mathematical description [Cum05, pp. 167].

2.3.1 Monostatic Impulse Response Function

A SAR channel depends on a variety of system parameters, i.e. antenna size, center frequency 𝑓T of
transmission and transmitted power. Within this section, the channel is described using simplified
electromagnetic relations from antenna and wave propagation theory. During the derivation for a
monostatic channel, a distinction between the transmitting and receiving case is made to distinguish
their contributions, that allows an easier adaption to the bistatic channel later on.
In the Harmony mission case, only Sentinel-1 uses a monostatic SAR channel, see Fig. 2.1. The

antenna onboard of Sentinel-1 transmits a time harmonic electromagnetic wave (time conventionexp{−j2𝜋𝑓T𝑡} is used) in broadside direction towards the region of interest. The total electric field
strength in the far-field region of the antenna along an arbitrary unit vector is then given by [Bal16,
p. 773]

𝑬 = 𝒆E𝐸max𝐶Tx(𝜗, 𝜑)𝑟0 e−j𝑘0𝑟𝑟 ej𝜓Tx(𝜗,𝜑) , (2.18)

where 𝑘0 = 2𝜋/𝜆 = 2𝜋𝑓T/𝑐0 is the free space wavenumber and 𝑐0 the speed of light, ||𝐶Tx(𝜗, 𝜑)|| denotes
the transmitting antenna pattern and 𝜓Tx(𝜗, 𝜑) defines the phase variation of the electric field on a
sphere centered at the position of the transmitting antenna. By energy conservation, the maximum
electric field amplitude |𝐸max| at a radius of 𝑟0 is related to the radiated power

𝑃rad = 𝜋∫−𝜋
𝜋∫0 ||𝐸max𝐶Tx(𝜗, 𝜑)||2 𝑟202𝑍F0𝑟2 𝑟2 sin 𝜗 d𝜗 d𝜑 = 2𝜋 |𝐸max|2 𝑟20𝐷Tx𝑍F0 , (2.19)

using the antenna directivity 𝐷Tx = 4𝜋/∬ ||𝐶Tx(𝜗, 𝜑)||2 sin 𝜗 d𝜗 d𝜑 [Bal16, p. 47]. Using a normalized
wave amplitude 𝑎Tx = √2𝑃rad/𝜂Tx with unit [𝑎Tx] = √W to denote the transmitted electromagnetic
wave at the local antenna port, one finds the free space electric field

𝑬 = 𝑎Tx√𝐺Tx𝑍F04𝜋 ||𝐶Tx(𝜗, 𝜑)|| ej𝜓Tx(𝜗,𝜑) e−j𝑘0𝑟𝑟 𝒆E , (2.20)

where IEEE gain 𝐺Tx = 𝜂Tx𝐷Tx was introduced, depending on the local excitation.
A point target is located at coordinates (𝑟 ′, 𝜗 ′, 𝜑′)T, where (⋅)T denotes the matrix transpose, with

respect to the spherical coordinate system of the antenna (highlighted in green in Fig. 2.1). The
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electromagnetic wave is scattered from this point target towards a receiving antenna. In the monostatic
case, the scattered electric field at the position of the phase center of the antenna is

𝑬sc = 𝛤√4𝜋 ej𝜓Rx(𝜗 ′,𝜑′) e−j𝑘0𝑟 ′𝑟 ′ 𝒆sc‖𝑬‖ 𝑟 ′0 , (2.21)

where 𝛤 = √𝜎0ej𝜙PT denotes a complex reflection coefficientwhich is related to the scattering coefficient𝜎0 of the target via its backscattered power

𝑃sc = 𝜋∫−𝜋
𝜋∫0 ‖𝛤𝑬‖24𝜋 𝑟 ′022𝑍F0𝑟2 𝑟2 sin 𝜗 d𝜗 d𝜑 = 𝜎0‖𝑬‖2 𝑟 ′022𝑍F0 . (2.22)

The scattering coefficient — also called radar cross section (RCS) — relates scattered power 𝑃sc and
incident power density ‖𝑬‖2 /2𝑍F0, such that energy conservation between a target with physical
extension and the virtual point target holds [War13, p. 454].
Using the reciprocity theorem and the effective area 𝐴eff = 𝐺Rx||𝐶Rx(𝜗, 𝜑)||2 𝜆2/(4𝜋 ) of the receiving

antenna one finds the received normalized wave amplitude without polarization loss

𝑏Rx = √𝐴eff𝑍F0 𝒆sc ⋅ 𝑬sc = 𝑎Tx√𝐺Tx𝐺Rx||𝐶Tx(𝜗 ′, 𝜑′)𝐶Rx(𝜗 ′, 𝜑′)|| 𝜆√4𝜋3𝑟 ′2 𝛤ej[𝜓Tx(𝜗 ′,𝜑′)+𝜓Rx(𝜗 ′,𝜑′)]e−j2𝑘𝑟 ′ . (2.23)

For

𝑃Rx = 12 |𝑏Rx|2 = 𝑃Tx (√𝐺Tx𝐺Rx||𝐶Tx(𝜗 ′, 𝜑′)𝐶Rx(𝜗 ′, 𝜑′)||)2𝜆2(4𝜋 )3𝑟 ′4 𝜎0 , (2.24)

one finds the power relation as stated by the radar range equation.
Previous descriptions have been made with respect to a local antenna coordinate system. Now, a

change to a global coordinate system is conducted, which eases the description of the imaging process.
As the antenna moves together with the spacecraft, also the coordinates of the point targets change
depending on the position of the spacecraft. In the following, a global cylindrical coordinate system
(highlighted in blue in Fig. 2.1) is utilized. The position of the antenna is 𝒓 = (𝑅, 𝜑, 𝑥)T and the point
target is located at 𝒓′ = (𝑅′, 𝜑′, 𝑥 ′)T. Using this coordinate system, one finds a transformation𝑟 ′ = √𝑅′2 + (𝑥 ′ − 𝑥)2 (2.25)𝜗 ′ = 𝜋2 − arctan(𝑥 ′ − 𝑥𝑅′ ) (2.26)𝜑′ = 𝜑 (2.27)

depending on SAR coordinates range 𝑅 and azimuth 𝑥 . The elevation angle 𝜑 = 0 is measured from
the plane spanned by main lobe direction and track direction. The track direction is given by 𝜃 = 0.
The range line highlighted in Fig. 2.1 might have slant range distance 𝑅0 and 𝜑 = 0.

By inspecting the phase term exp{−j2𝑘0𝑟 ′} = exp{−j2𝜋𝑓T ⋅ 2𝑟 ′/𝑐0} in (2.23), the monostatic point
target response is delayed by 𝜏 = 2𝑟 ′/𝑐0 and weighted by a function

𝑤m(𝑅′, 𝑥 − 𝑥 ′, 𝜑′) = √𝑃Tx𝐺𝜆√4𝜋3(𝑅′2 + (𝑥 − 𝑥 ′)2) |||||𝐶(𝜋2 − arctan 𝑥 ′ − 𝑥𝑅′ , 𝜑′)|||||2 ej2𝜓 (𝜗 ′,𝜑′) . (2.28)
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The antenna pattern weighting for the slant range 𝑅0 using a rectangular aperture is [Bal16, p. 658]𝐶(𝜗 ′, 0) = sinc(𝐿𝜆 cos 𝜗 ′) ≈ sinc(𝐿𝜆 𝑥 ′ − 𝑥𝑅0 ) , (2.29)

where (2.26), sinc = sin(𝜋𝑥)/𝜋𝑥 , 𝑅0 ≫ 𝑥 ′ − 𝑥 and sin arctan 𝑦 ≈ 𝑦 for small arguments are applied and𝐿 denotes the transmitting and receiving antenna azimuthal length. A possible phase center variation
could be specified per sidelobe, to cover the most significant changes in phase center variation [Bal16,
pp. 773–774]. More accurate positioning of phase centers can be taken from high precision calibration
measurements [Gab14; Jäg14]. However, the phase term 𝜓 (𝜗 ′, 𝜑′) is not further required and will be
omitted.

The SAR system is not continuously transmitting an electromagnetic wave, but sampling the scene
with bandwidth-limited coherent pulses of shape 𝑠(𝑡). The pulse shape is not of relevance for the
considerations and assumed to be Dirac delta shaped. Coherent pulses are necessary to sample the
phase in (2.23) [Cum05, pp. 134–136]. The baseband pulse received after time 𝜏 isℎ(𝑅, 𝑥, 𝑅′, 𝑥 ′, 𝜑′) = 𝑤m(𝑅′, 𝑥 − 𝑥 ′, 𝜑′)ej2𝜓(𝜗 ′,𝜑′)e−j2𝑘𝑟 ′𝑠(𝑡 − 𝜏 ) (2.30)

and exclusively in global cylindrical coordinates

ℎ(𝑅, 𝑥, 𝒓′) = 𝑤m(𝑅′, 𝑥 − 𝑥 ′, 𝜑′)e−j2𝑘√𝑅′2+(𝑥−𝑥′)2𝑠(𝑐02 (𝑅 − 𝑟 ′))= 𝑤m(𝑅′, 𝑥 − 𝑥 ′, 𝜑′)e−j2𝑘√𝑅′2+(𝑥−𝑥′)2𝑠r(𝑅 − 𝑟 ′) . (2.31)

A proper description of range-related dependencies is not necessary to simulate azimuth ambiguities.
Hence, the steps of up/down-conversion, time delay, range compression and correction of range cell
migration (RCM) are not explained in detail, but can be found in the literature [Bam98; Tom78; Cum05].
Only the azimuth dependencies for a constant range distance are further modeled and investigated.

2.3.2 Bistatic Impulse Response Function

Fig. 2.3 also shows the bistatic instantaneous Doppler frequency, which varies significantly from the
monostatic instantaneous Doppler frequency, because the Harmony satellite observes the targets
under a high forward looking angle (squint). The position of a point target in a spherical coordinate
system attached to a phase center on the Harmony satellite is

𝒓′(H) = ⎛⎜⎜⎜⎝
𝑟 ′(H)𝜗 ′(H)𝜑′(H)

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√𝑅′2 + (𝑥 − 𝑥0 − 𝑥 ′)2⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜗sq + 𝜋2 − arctan( 𝑥′−𝑥+𝑥0𝑅′ ) for arctan( 𝑥′−𝑥+𝑥0𝑅′ ) ≥ 𝜗sq − 𝜋2𝜗sq + 3𝜋2 − arctan( 𝑥′−𝑥+𝑥0𝑅′ ) for arctan( 𝑥′−𝑥+𝑥0𝑅′ ) < 𝜗sq − 𝜋2

𝜑 + ⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for arctan( 𝑥′−𝑥+𝑥0𝑅′ ) ≥ 𝜗sq − 𝜋2𝜋 for arctan( 𝑥′−𝑥+𝑥0𝑅′ ) < 𝜗sq − 𝜋2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.32)

where 𝑥 still denotes the position of Sentinel-1. The main lobe direction of the antennas on Harmony
remains at 𝜗 ′ = 90°, which requires a rotation of the local spherical coordinate system by a squint angle
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𝜗sq. The SAR coordinates of the point target 𝒓′ = (𝑅′, 0, 𝑥 ′)T remain unchanged. Eqs. (2.25)–(2.27) may
be reused to describe the transmit case from Sentinel-1

𝒓′(S) = ⎛⎜⎜⎜⎝
𝑟 ′(S)𝜗 ′(S)𝜑′(S)

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
√𝑅′2 + (𝑥 − 𝑥 ′)2𝜋2 − arctan( 𝑥′−𝑥𝑅′ )𝜑

⎞⎟⎟⎟⎟⎠ . (2.33)

With this geometric description a simplified bistatic IRF for raw SAR data may be defined similarly to
(2.50)

ℎ̄b(𝑅′, 𝑥 − 𝑥 ′, 𝒓′) = 𝑤b(𝑅′, 𝑥 − 𝑥 ′, 𝜑′)e−j𝑘0(𝑟 ′(S)+𝑟 ′(H))𝑠r(𝑅 − 𝑟 ′(S) − 𝑟 ′(H)) , (2.34)

with the bistatic weighting function

𝑤b(𝑅′, 𝑥 − 𝑥 ′, 𝜑′) = √𝑃Tx𝜂S𝐷S𝜂H𝐷H𝜆√4𝜋3𝑟 ′(S)𝑟 ′(H) ||||𝐶S(𝜗 ′(S), 𝜑′(S))𝐶H(𝜗 ′(H), 𝜑′(H))||||⋅ exp{j(𝜓S(𝜗 ′(S), 𝜑′(S)) + 𝜓H(𝜗 ′(H), 𝜑′(H)))} . (2.35)

From the bistatic range history 𝑟 ′(S)+ 𝑟 ′(H), one can now derive the instantaneous Doppler frequency
as plotted in Fig. 2.3

𝑓D(𝑥 = 𝑣Sat𝑡, 𝑥 ′, 𝑥0) = −1𝜆 dd𝑡 (𝑟 ′(S) + 𝑟 ′(H))= −𝑣Sat𝜆 [(𝑣Sat𝑡 − 𝑥 ′)( 1𝑟 ′(S) + 1𝑟 ′(H)) + 𝑥02 ( 1𝑟 ′(S) − 1𝑟 ′(H))] . (2.36)

Fig. 2.3 shows, that the Doppler centroid is not within the range of the Nyquist frequency ±𝑓PRF/2.
Using a PRF 𝑓PRF of about 1.5 kHz, the main signal part is aliased due to sampling with the stable PRF.
The simulation is simplified by down-modulation of the IRF such that the Doppler centroid is within±𝑓PRF/2. This down-modulation circumvents unnecessary small sampling steps to compute the raw
SAR data, because only a limited bandwidth about the Doppler centroid 𝑓DC is of interest. Thereto, a
modulation frequency of 𝑙𝑓PRF is used, which preserves the alignment of the spectrum with respect to
the boundaries ±𝑓PRF/2. It is finally found the IRF for simulation of raw SAR dataℎ̃b(𝑅′, 𝑥 − 𝑥 ′, 𝒓′) = ℎ̄b(𝑅′, 𝑥 − 𝑥 ′, 𝒓′)e−j 2𝜋𝛥𝑥 𝑙𝑥 , (2.37)

where 𝑙 ∈ Nminimizes the difference of Doppler centroid 𝑓DC and a multiple of the sampling frequency||𝑓DC − 𝑙𝑓PRF||. The factor 𝑙 might be found by

𝑙 = ⌊ 𝑓DC𝑓PRF + 12⌋ = ⌊ 𝑣Sat𝜆𝑓PRF 𝑥0√𝑅′2 + 𝑥20 + 12⌋ = ⌊𝛥𝑥𝜆 𝑥0√𝑅′2 + 𝑥20 + 12⌋ , (2.38)

where 𝑓DC = 𝑓D(𝑡 = 𝑥 ′/𝑣Sat) using (2.36).
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Tominimize the effect of the phase of the IRF in the presence ofmisregistration on the interferometric
performance [Bar99; Sch00], the residual Doppler centroid ||𝑓DC − 𝑙𝑓PRF|| is set to zero by choosing an
appropriate separation 𝑥0. This removes the linear phase term due to non-baseband signals. In case
of the Harmony mission setup, this yields a separation of Sentinel-1 and Harmony of 348 km, for a
targeted separation of about 350 km.
Ambiguities are introduced by allowing the down-modulated IRF to span beyond the Nyquist

frequency ±𝑓PRF/2. With these results the raw SAR data received by Harmony can be simulated as in
the monostatic case before.

2.3.3 Spectrum of Impulse Response Functions

Later analysis and computations in Section 2.4 and Chapter 4 require the knowledge of the Fourier
transform of the IRF. A method for numerically calculating its spectrum based on the principle of
stationary phase (POSP) [Cum05, pp. 72–75] is applied in this section. More details on POSP may be
found in the literature [Won01, pp. 76–84].

Firstly, the IRF of the one-dimensional raw SAR data (2.37) with 𝑥 ′ = 0 is Fourier transformed with
respect to azimuth position 𝑥 to find its spectrum as function of wavenumber 𝑘

�̃�b(𝑅′, 𝑘, 𝜑′) = ∞∫−∞ ℎ̃b(𝑅′, 𝑥, 𝒓′)e−j𝑘𝑥 d𝑥 = ∞∫−∞ 𝑤b(𝑅′, 𝑥, 𝜑′)e−j𝑘0(𝑟 ′(S)+𝑟 ′(H))e−j 2𝜋𝛥𝑥 𝑙𝑥e−j𝑘𝑥 d𝑥
= ∞∫−∞ 𝑤b(𝑅′, 𝑥, 𝜑′)e−j𝜙(𝑅′,𝑥) d𝑥 , (2.39)

where the fast varying phase of the integrand is combined into𝜙(𝑅′, 𝑥) = 𝑘0(𝑟 ′(S) + 𝑟 ′(H)) + 2𝜋𝛥𝑥 𝑙𝑥 + 𝑘𝑥 . (2.40)

Throughout this work, capitalized functions denote the frequency domain representation of its low-
ercase equivalent. The magnitude weighting 𝑊b(𝑅′, 𝑥, 𝜑′) is only slowly varying compared to the
phase, hence the POSP [Cum05, p. 72] may be applied. The principle states, that only stationary points
of the phased𝜙(𝑅′, 𝑥)d𝑥 = 0 (2.41)

contribute to the integral. The first derivative of the phase term is found to bed𝜙(𝑅′, 𝑥)d𝑥 = 2𝜋𝛥𝑥 𝑙 + 𝑘 + d𝑘0d(𝑣Sat𝑡)(𝑟 ′(S) + 𝑟 ′(H)) = 2𝜋𝛥𝑥 𝑙 + 𝑘 − 2𝜋𝑣Sat 𝑓D( 𝑥𝑣Sat) . (2.42)

The function of Doppler frequency is only hardly invertible to find the position 𝑥 as a function of
Doppler frequency. On the other side, only low orders of ambiguities are of interest, because of their
dominant power. By applying a Taylor approximation to linearize the Doppler frequency around its
Doppler centroid

𝑓D(𝑥𝑣) ≈ 𝑓DC + (𝑥 + 𝑥0/2) 1𝑣Sat d𝑓D(𝑡)d𝑡 |||||𝑡=− 𝑥02 /𝑣Sat = 𝑓DC + (𝑥 + 𝑥0/2) 1𝑣Sat ̇𝑓D(𝑡)|||𝑡=− 𝑥02𝑣Sat , (2.43)
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the stationary points result from the local Doppler frequency rate ̇𝑓D(𝑡) by
𝑥(𝑘) = 2𝜋𝑙𝛥𝑥 + 𝑘 − 2𝜋𝑣Sat(𝑓DC + 𝑥02𝑣Sat ̇𝑓D(𝑡)|||𝑡=− 𝑥02𝑣Sat )2𝜋𝑣2Sat ̇𝑓D(𝑡)|||𝑡=− 𝑥02𝑣Sat

. (2.44)

Using these approximations, one finds the Fourier transform of the IRF approximately as [Won01;
Cum05]�̃�b(𝑅′, 𝑘, 𝜑′) ≈ ℎ̃b(𝑅′, (𝑥)(𝑘), 𝒓′) , (2.45)

where a constant multiplicative factor and an additive phase 𝜋/4 were neglected, compare [Cum05,
p. 72].

2.3.4 Imaging Distributed Scenes

So far, the azimuth IRF of a point target has been found. But, SAR remote sensing is used to image
complex scenes, e.g. Earth’s surface, which comprises different scattering behaviors than represented
by just a single point target. However, by assuming linearity, which requires no multiple scattering and
no attenuation (shadowing), the imaging process may be written as a two-dimensional convolution
[Bam98; Tom78; Cum05]𝑟(𝑥, 𝑅) = ∭ 𝑎(𝑅′, 𝑥 ′, 𝜑′)ℎ(𝑅, 𝑥, 𝑅′, 𝑥 ′, 𝜑′) d𝑉 ′ , (2.46)

using a generalized two-dimensional IRF ℎ(𝑅, 𝑥, 𝑅′, 𝑥 ′, 𝜑′), i.e. for mono- or bistatic channels. The
object function 𝑎(𝑅′, 𝑥 ′, 𝜑′) represents the imaged scene as seen by the SAR system, i.e. it can contain
information about partially shadowed points or multiple reflections [Bam98]. This integral bases on
Kirchhoff approximation or “physical optics”, which linearizes the calculation of scattered fields from
the incident field from complex and rough surfaces. The approximation is covered in the literature
and of no further importance for this work [War13, pp. 450–455].

The SAR system samples raw SAR data in both azimuth 𝑥 and range 𝑅 direction. Sampling in range
is not of interest for azimuth ambiguities, hence, the two-dimensional integral is now reduced to a
single range line at 𝑅′ = 𝑅0. Received raw SAR data 𝑟[𝑛, 𝑅0] is obtained every𝛥𝑥 = 𝑣Sat𝑓PRF , (2.47)

and the range line at 𝑅0 is set to be in main lobe direction 𝜑′ = 0
𝑟[𝑛, 𝑅0] = ∞∫−∞

+∞∫−∞
2𝜋∫0 𝑎(𝑅′, 𝑥 ′, 𝜑′)𝑅′ d𝜑′ℎ(𝑅0, 𝑥, 𝑅′, 𝑥 ′, 0) d𝑅′ d𝑥 ′|||||||𝑥=𝑛𝛥𝑥 . (2.48)

Because only a single range line is collected, the inherent RCM [Cum05, pp. 194–199] may be removed
from the simulated data by unifying the phase history in range, i.e. for the monostatic case2𝑘√𝑅′2 + (𝑥 − 𝑥 ′)2 ≈ 2𝑘(𝑅′ − 𝑅0 +√𝑅02 + (𝑥 − 𝑥 ′)2) , (2.49)
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and neglecting RCM 𝑅 − 𝑟 ′ ≈ 𝑅 − 𝑅0 of the received pulse envelope 𝑠(𝑡). This yields a simplified IRFℎ̄(𝑅0, 𝑥 − 𝑥 ′, 𝒓′) = 𝑊 (𝑅0, 𝑥 − 𝑥 ′, 𝜑′)e−j2𝑘√𝑅02+(𝑥−𝑥′)2𝑠r(𝑅 − 𝑅0) , (2.50)

which confines raw SAR data to one range line at 𝑅0. Although, RCM is present in real scenarios
and the IRF of focused aliases (azimuth ambiguities) might blur slightly, the acquired main signal and
ambiguities of distributed scenes are still coherent between channels [Zon22]. Neglecting the RCM to
simplify calculations does not worsen the simulated results compared to real scenarios.

The pulse waveform with a compressed pulse length 𝛥𝑅 allows to reduce the integration boundaries

𝑟[𝑛, 𝑅0] = ∞∫−∞
𝑅0+ 𝛥𝑅2∫𝑅0− 𝛥𝑅2

2𝜋∫0 𝑎(𝑅′, 𝑥 ′, 𝜑′)𝑅′ d𝜑′e−j2𝑘(𝑅′−𝑅0) d𝑅′ ℎ̄(𝑅, 𝑥 − 𝑥 ′, 𝑅0, 0) d𝑥 ′|||||||||𝑥=𝑛𝛥𝑥 , (2.51)

because only the scatterers within this boundary mainly contribute to the received data.
The contribution by the object function is collected into a function of complex reflection coefficients

𝛤 ′(𝑥 ′, 𝑅0) = 𝑅0+ 𝛥𝑅2∫𝑅0− 𝛥𝑅2
2𝜋∫0 𝑎(𝑅′, 𝑥 ′, 𝜑′)𝑅′ d𝜑′ e−j2𝑘(𝑅′−𝑅0) d𝑅 , (2.52)

which is imaged by the SAR system into the range line 𝑅0. For ocean and sea surfaces, this function is
randomly complex Gaussian distributed, because the overall scattered field is the result of scattering
at many randomly distributed capillary waves inside the resolution cell [War13; Has85]. The random
fluctuation of scattered power is also known as speckle effect [Bam98; Has85; Jus94]. The variance of
the complex Gaussian distribution𝛤 ′(𝑥 ′, 𝑅0) ∼ CN(0, 𝜎0 𝛥𝑅sin(𝜑inc)) (2.53)

accounts for scattering from a surface with surface scattering coefficient 𝜎0 and unit [𝜎0] = m2/m2. The
electromagnetic wave incides on the surface under an angle 𝜑inc with the normal of the horizontal
surface of the flattened Earth in Fig. 2.1. Note, pulse compression focuses the received energy of the un-
compressed pulse [Cum05, pp. 80–86], hence, the energy contribution is defined by the uncompressed
pulse length 𝛥𝑅 .

Using the randomly distributed function of complex reflection coefficients yields the multiplicative
noise model [Has85]. The model describes the scene in a frozen state. By “freezing” the position
of scatterers, the simulation model remains linear and computationally efficient with the use of
the discrete Fourier transform (DFT). The phase information from scatterer motion required for
interferometry is added in a start-stop-approximation into the reflectivity function and modeled in
Section 2.4.

The integration over target position 𝑥 ′ = 𝜅𝛥𝑥/𝜒
𝑟[𝑛, 𝑅] = ∞∫−∞ 𝛤 ′(𝑥 ′, 𝑅0) ℎ̄(𝑅, 𝑥, 𝑅0, 𝑥 ′, 0) d𝑥 ′|||||||𝑥=𝑛𝛥𝑥 (2.54)
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is now discretized and combined with sampling of the raw data 𝑥 = 𝑛𝛥𝑥 to

𝑟[𝑛, 𝑅] = ∞∑𝜅=−∞ ℎ̄(𝑅, 𝑅0, (𝑛 − 𝜅/𝜒 )𝛥𝑥, 0)𝛤(𝜅𝛥𝑥𝜒 , 𝑅0) , (2.55)

with an oversampling of the scene by 𝜒 samples. The function of reflection coefficients 𝛤 ′ and the
finite line element 𝛥𝑥/𝜒 are combined into a new reflection coefficient

𝛤 ∼ 𝑓 (𝛤 |𝜎0) = CN(0, 𝜎0𝛥𝑥𝜒 𝛥𝑅sin(𝜑inc)) . (2.56)

One sees, that the function of scattering coefficients has again a unit of [||𝛤 (𝑥, 𝑅0)||2] = m2.
The final one-dimensional raw SAR data model

𝑟[𝑛, 𝑅0] = ∞∑𝜅=−∞𝑊(𝑅0,(𝑛 − 𝜅𝜒)𝛥𝑥, 0)e−j2𝑘√𝑅02+(𝑛− 𝜅𝜒 )2𝛥𝑥2𝛤(𝜅𝛥𝑥𝜒 , 𝑅0) (2.57)

is used to simulate received raw SAR data. The model for bistatic raw data is derived equivalently.
Numerical calculation of this data is done by, firstly, convolving oversampled Gaussian distributed

scene data 𝛤 with the IRF of raw data ℎ̄ and, secondly, by picking only each 𝜒 -th sample as received
raw data sample. The convolution operation may also be implemented by using the DFT. Either
procedure requires sufficient zero-padding to the output memory array.

2.3.5 Receive Noise and Signal-to-Noise-Ratio

The signal-to-noise-ratio (SNR) of a SAR system depends mainly on the reflectivity of the observed
scene. For oceans and sea surfaces, only surface scattering is relevant. The received power while
sensing a cluttered homogeneous area with surface scattering coefficient 𝜎0 is approximately given
by [Cum05, p. 8]

𝑃Rx(𝜎0) = 𝑃Tx𝐺Tx𝐺Rx 𝜆2(4𝜋 )3𝑅04𝜎0𝐴 , (2.58)

where 𝐴 = 𝑅0𝜆𝛥𝑅/𝐿 sin(𝜑inc) is the illuminated area limited by beamwidth in azimuth and uncom-
pressed pulse duration in range. The equation neglects the damping due to the antenna pattern, which
results in a larger received power. This is corrected by using a factor

𝑝0,m =
𝜗3dB/2∫−𝜗3dB/2 ||𝐶(𝜗 + 𝜋/2, 0)||4 d𝜗

𝜗3dB/2∫−𝜗3dB/2 d𝜗 = 𝐿𝜆 𝜆/2𝐿∫−𝜆/2𝐿 sinc(𝐿𝜆 sin 𝜗)4 d𝜗
≈ 𝐿𝜆 1/2∫−1/2 𝜆𝐿 sinc(𝜈)4 d𝜈 ≈ 0.633 22 , (2.59)
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where sin 𝜗 ≈ 𝜗 was used, in the monostatic case or in the bistatic case if one large antenna with
azimuthal length 𝐿S determines the illuminated area

𝑝0,b =
𝜗3dB/2∫−𝜗3dB/2 ||𝐶(𝜗 + 𝜋/2, 0)||2 d𝜗

𝜗3dB/2∫−𝜗3dB/2 d𝜗 = 𝐿S𝜆 𝜆/2𝐿S∫−𝜆/2𝐿S sinc(𝐿S𝜆 sin 𝜗)2 d𝜗
≈ 𝐿S𝜆 1/2∫−1/2 𝜆𝐿S sinc(𝜈)2 d𝜈 ≈ 0.773 695 . (2.60)

The noise level of a SAR system is usually defined by relating to the (surface) scattering coefficient
that achieves equal signal and noise power or unit SNR [Cal14; Cum05]

𝑃N = 𝑃Rx(𝜎0 = 𝜎0NE) = 𝑝0𝑃Tx𝐺Tx𝐺Rx 𝜆3(4𝜋 )3𝑅0(𝑅02 + 𝑥20 ) 𝛥𝑅𝐿 sin(𝜑inc)𝜎0NE . (2.61)

The corresponding (surface) scattering coefficient 𝜎0NE is called noise equivalent sigma nought (NESN).
The noise contribution is assumed to be additive white complex Gaussian distributed with variance𝑃N, because its main contribution is thermal noise [Bam98; Cum05; Tom78; Cal14].

2.3.6 Image Formation by Focusing

The SAR image is produced by focusing the raw and noisy data [Cum05, pp. 243–245]. In the point
target case, the SAR system observes the Doppler history (2.45) during overflight. The spectrum or its
time domain representation is comparable to a frequency chirp or frequency modulated signal. Focus-
ing describes the technique of compressing this signal into a narrow pulse and might be performed in
the spectrum by simple multiplication with �̃� ∗b(𝑅′, 𝑘, 𝜑′), see [Cum05; Tom78].

However, the observed spectrum (2.45) is not bandwidth limited and gets aliased when sampled by
the SAR system. The aliased signal parts show a similar frequency chirp behavior compared to the
non-aliased part, compare Fig. 2.3. Due to this similar characteristics, the aliased signals are (partially)
matched to the focusing operator, which (partially) focuses them. These focused signal parts are called
the azimuth ambiguities.

The following section combines the results of previous sections into a mathematical description of
main and ambiguous signals for ATI with azimuth ambiguities, which are coherent between images.

2.4 Ambiguities in Along-Track Interferometry

Within this section, all previously introduced steps are combined to describe the complete interfero-
metric signal with coherent ambiguities. Based on this description, a “transfer function" between signal
and ambiguities is found, which finally leads to a complex azimuth-ambiguity-to-signal-ratio (CASR).
This value is required for formulating the removal algorithm in Chapter 4.
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Fig. 2.6: Bistatic perceived Doppler frequency by channel 1 and 2 for a point target. Colored grid lines show an
exemplary sampling with grids of channel 1 and 2 not being aligned and major grid illustrates every fifth pulse.
The physical baseline is 2.25 times the sampling step, and Doppler rate is assumed constant but different for
channel 1 and 2, resulting in 𝐵eff ≤ 12𝐵ATI, where 𝐵eff denotes the spatial shift within images for aligned grids.

2.4.1 Signal Block Diagram and Processing Steps

ATI requires at least two (bistatic) channels 1 and 2. The channels are arbitrarily denoted 1 and 2,
but may use different combinations from the available antenna configuration depicted in Fig.2.2. The
channels differ only in an along-track separation, which infers a time lag on channel 2 with respect to
channel 1. Movement of the scene causes a phase change of the scene between channel 1 and 2, which
is the new signal of interest and measured with ATI. The sampling is controlled by the Sentinel-1
satellite, whose transmitted pulses are simultaneously received by the antennas on Harmony, resulting
each in a bistatic SAR channel. Because the antennas are spatially separated, the sampling per channel
is not necessarily performed on the same grid, as depicted in Fig. 2.6. The received data is processed for
both channels at the same Doppler frequency, which results in an focused point as shown exemplarily
in Fig. 2.6.

2.4.2 Signal Description in Spectrum

The ATI signal model bases on the block diagram, as shown in Fig. 2.7. Its input is the proper complex
Gaussian reflectivity scene 𝛤1(𝑥) on channel 1 and 𝛤2(𝑥) on channel 2, as derived in Section 2.3.4. The
scenes differ due to motion of the surface and temporal de-correlation. However, the temporal delay
between channel 1 and 2 is below the usual coherence time of sea and ocean surfaces [Car94; She93],
which correlates the acquisitions. The sensing operation is denoted by two different transfer functions𝐻1(𝑘) and 𝐻2(𝑘) exp{j𝑘𝐵ATI/2}, and a sampling and digitization step, where amplitude quantization
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Fig. 2.7: Simplified signal processing and multiplicative noise simulation model for a bistatic ATI system.

is neglected. Those operations yield the received raw data per channel𝑅1(𝑘) = ∞∑𝑖=−∞ 𝛤1(𝑘 − 2𝜋𝑖𝛥𝑥 )𝐻1(𝑘 − 2𝜋𝑖𝛥𝑥 ) (2.62)

𝑅2(𝑘) = e−j𝑘𝐵ATI[𝛤2(𝑘)𝐻2(𝑘) ej𝑘 𝐵ATI2 ⊛ ej(𝑘)𝐵ATI ∞∑𝑖=−∞ δ(𝑘 − 2𝜋𝑖𝛥𝑥 )] (2.63)

= ∞∑𝑖=−∞ 𝛤2(𝑘 − 2𝜋𝑖𝛥𝑥 )𝐻2(𝑘 − 2𝜋𝑖𝛥𝑥 ) e−j(𝑘− 2𝜋𝑖𝛥𝑥 ) 𝐵ATI2 , (2.64)

where ⊛ denotes the convolution operator and channel 2 needs an additional delay by 𝐵ATI to align
the sampling grid with channel 1. The transfer functions for the sensing operation where derived in
Section 2.3.2 and Fourier transformed in Section 2.3.3. The noise processes 𝜇′1[𝑛] and 𝜇′2[𝑛] add to the
received signals and are parameterized according to Section 2.3.5. For further analytical calculations,
one assumes a noise free system, because the interest is only in describing the effect of aliasing of the
azimuth SAR signals on the interferogram.

In the next step, the raw data is focused at the Doppler centroid 𝑘DC of channel 1
𝑈1(𝑘) = 𝑅1(𝑘)𝐻m1(𝑘) = 𝑅1(𝑘) ∞∑𝑙=−∞𝑀1(𝑘 − 2𝜋𝑙𝛥𝑥 )Π(𝑘 − 𝑘DC − 2𝜋𝑙𝛥𝑥𝑘BW ) , (2.65)

where a bandwidth 𝑘BW = 2𝜋𝑓BW/𝑣Sat is processed and Π(⋅) is the rectangular function
Π(𝑘) = {1, if |𝑘| ≤ 120, if |𝑘| > 12 . (2.66)

Channel 2 is additionally co-registered with channel 1 by interpolation, which reduces to a fractional
shift [Cum05, pp. 51–58]𝑈2(𝑘) = 𝑅2(𝑘)𝐻m2(𝑘) (2.67)= 𝑅2(𝑘) ∞∑𝑙=−∞𝑀2(𝑘 − 2𝜋𝑙𝛥𝑥 ) ej(𝑘− 2𝜋𝛥𝑥 (𝑙+𝑙DC) 𝐵ATI2 ) Π(𝑘 − 𝑘DC − 2𝜋𝑙𝛥𝑥𝑘BW ) , (2.68)
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in the one-dimensional case. The fractional shift removes all linear phase slopes from the received
data 𝑈2(𝑘) = ∞∑𝑖=−∞ ∞∑𝑙=−∞(𝛤2𝐻2)(𝑘 − 2𝜋𝑖𝛥𝑥 ) ej 2𝜋𝛥𝑥 𝐵ATI2 (𝑖−𝑙−𝑙DC)𝑀2(𝑘 − 2𝜋𝑙𝛥𝑥 )Π(𝑘 − 𝑘DC − 2𝜋𝑙𝛥𝑥𝑘BW ) . (2.69)

The focusing kernels may be matched to the azimuth transfer function𝑀1(𝑘) = 𝐻 ∗1(𝑘) (2.70)𝑀2(𝑘) = 𝐻 ∗2(𝑘) , (2.71)

or phase only focusing with an additional windowing𝑊 (𝑘) of the maximum bandwidth 𝑘BW𝑀1(𝑘) = 𝐻 ∗1(𝑘)||𝐻1(𝑘)||𝑊 (𝑘) (2.72)

𝑀2(𝑘) = 𝐻 ∗2(𝑘)||𝐻2(𝑘)||𝑊 (𝑘) , (2.73)

where𝑊 (𝑘) = |𝑊 (𝑘)|, and 𝐻1(𝑘) and 𝐻2(𝑘) may be found as described in Section 2.3.3. The purpose of
window functions in this work is discussed later.

The samples of the images from channel 1 and 2 are interferometrically combined to form the
interferogram𝑣[𝑛] = 𝑢1[𝑛]𝑢∗2[𝑛] = 𝛥𝑥2𝜋 ∫ ∞

−∞ 𝑉 (𝑘) ej𝑘𝑛𝛥𝑥 d𝑘 = 𝛥𝑥2𝜋 ∫ 𝜋𝛥𝑥− 𝜋𝛥𝑥 (𝑈1(𝑘) ⊛ 𝑈 ∗2 (−𝑘)) ej𝑘𝑛𝛥𝑥 d𝑘 , (2.74)

where the discrete spectrum is reduced to only one period of the periodic spectras, since 𝐴(𝑘) =𝐴(𝑘−2𝜋𝑚/𝛥𝑥) holds for𝑈1(𝑘) and𝑈2(𝑘) and therefore also for 𝑉 (𝑘). The spectrum of the interferogram𝑉 (𝑘) = 𝑈1(𝑘) ⊛ 𝑈 ∗2 (−𝑘)= ∑𝑖1,𝑙1,𝑖2,𝑙2 ej 2𝜋𝛥𝑥 𝐵ATI2 (𝑙2−𝑖2+𝑙DC) ∞∫−∞ (𝛤1𝐻1)(𝑘′ − 2𝜋𝑖1𝛥𝑥 )𝑀1(𝑘′ − 2𝜋𝑙1𝛥𝑥 )Π(𝑘′ − 𝑘DC − 2𝜋𝑙1𝛥𝑥𝑘BW )
⋅ (𝛤 ∗2𝐻 ∗2)(𝑘′ − 𝑘 − 2𝜋𝑖2𝛥𝑥 )𝑀 ∗2(𝑘′ − 𝑘 − 2𝜋𝑙2𝛥𝑥 )Π(𝑘′ − 𝑘 − 𝑘DC − 2𝜋𝑙2𝛥𝑥𝑘BW ) d𝑘′ (2.75)

is found by convolution of the two image spectra, where the summation is abbreviated by∑𝑖1,𝑙1,𝑖2,𝑙2 ≡ ∞∑𝑖1=−∞ ∞∑𝑙1=−∞ ∞∑𝑖2=−∞ ∞∑𝑙2=−∞ . (2.76)

In a last step, the expected value of the interferogram samples is evaluated, to extract the interferometric
information from the correlation of the random processes 𝛤1 and 𝛤2. It is started by evaluating the
cross spectral density

𝑃S,𝑖1,𝑖2(𝑘, 𝑘′) = E[𝛤1(𝑘′ − 2𝜋𝑖1𝛥𝑥 )𝛤 ∗2(𝑘′ − 𝑘 − 2𝜋𝑖2𝛥𝑥 )] (2.77)

= ∞∫−∞
∞∫−∞ E[𝛤1(𝑥1)𝛤 ∗2(𝑥2)] e−j(𝑘′− 2𝜋𝑖1𝛥𝑥 )𝑥1 e−j(𝑘−𝑘′+ 2𝜋𝑖2𝛥𝑥 )𝑥2 d𝑥1 d𝑥2 , (2.78)
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where it is further assumed that the reflectivity scenes have a cross-correlation function [Has85;
Bam98]E[𝛤1(𝑥1)𝛤 ∗2(𝑥2)] = 𝜎0(𝑥1)||𝛾 (𝑥1)|| ej𝜙(𝑥1) δ(𝑥1 − 𝑥2) . (2.79)

Neighboring samples are not correlated due to random capillary waves on the sea surface with
wavelengths in the order of the electrical wavelength 𝜆 in C-band [Has85, p. 4660]. Because of the
short temporal separation between channel 1 and 2, one can assume, that the scene is perfectly
correlated, hence has a coherence||𝛾 (𝑥1)|| = 1 . (2.80)

The interferometric properties, where 𝜎0(𝑥1) is the scattering coefficient and 𝜙(𝑥1) is the phase differ-
ence due to movement of the scene, must not be wide-sense stationary. Otherwise, there is no effect
of bias by coherent ambiguities in the interferogram. Applying these assumptions, the cross spectral
density reduces to

𝑃S,𝑖1,𝑖2(𝑘, 𝑘′) = ∞∫−∞ 𝜎0(𝑥1) ej𝜙(𝑥1) e−j(𝑘+ 2𝜋𝛥𝑥 (𝑖2−𝑖1))𝑥1 d𝑥1 = 𝑃S(𝑘 + 2𝜋𝛥𝑥 (𝑖2 − 𝑖1)) . (2.81)

With use of the cross spectral density the expected interferometric samples are

E[𝑣[𝑛]] = 𝛥𝑥2𝜋 ∑𝑖1,𝑙1,𝑖2,𝑙2 ej 2𝜋𝛥𝑥 𝐵ATI2 (𝑙2−𝑖2+𝑙DC) 𝜋𝛥𝑥∫− 𝜋𝛥𝑥
𝑃S(𝑘 + 2𝜋𝛥𝑥 (𝑖2 − 𝑖1))

⋅ ∞∫−∞ 𝐻1(𝑘′ − 2𝜋𝑖1𝛥𝑥 )𝑀1(𝑘′ − 2𝜋𝑙1𝛥𝑥 )Π(𝑘′ − 𝑘DC − 2𝜋𝑙1𝛥𝑥𝑘BW )𝐻 ∗2(𝑘′ − 𝑘 − 2𝜋𝑖2𝛥𝑥 )
⋅𝑀 ∗2(𝑘′ − 𝑘 − 2𝜋𝑙2𝛥𝑥 )Π(𝑘′ − 𝑘 − 𝑘DC − 2𝜋𝑙2𝛥𝑥𝑘BW ) d𝑘′ ej𝑘𝑛𝛥𝑥 d𝑘 . (2.82)

Simplifying the formulation a last time, one finds for the expected interferometric sample value

E[𝑣[𝑛]] = 𝛥𝑥2𝜋 ∑𝑖1,𝑚1,𝑖2,𝑚2
𝜋𝛥𝑥∫− 𝜋𝛥𝑥
𝑃S(𝑘 + 2𝜋𝛥𝑥 (𝑖2 − 𝑖1))𝐹𝑖1,𝑖2,𝑚1,𝑚2(𝑘) ej𝑘𝑛𝛥𝑥 d𝑘 , (2.83)

where a “transfer function”

𝐹𝑖1,𝑖2,𝑚1,𝑚2(𝑘) = ⎛⎜⎜⎝𝐻1(𝑘− 2𝜋𝑖1𝛥𝑥 )𝑀1(𝑘− 2𝜋 (𝑖1+𝑚1)𝛥𝑥 )Π(𝑘−𝑘DC− 2𝜋 (𝑖1+𝑚1)𝛥𝑥𝑘BW )⎞⎟⎟⎠⊛ ⎛⎜⎜⎝𝐻 ∗2(−𝑘− 2𝜋𝑖2𝛥𝑥 )𝑀 ∗2(−𝑘− 2𝜋 (𝑖2+𝑚2)𝛥𝑥 )Π(−𝑘−𝑘DC− 2𝜋 (𝑖2+𝑚2)𝛥𝑥𝑘BW )⎞⎟⎟⎠ ej 2𝜋𝛥𝑥 𝐵ATI2 (𝑚2+𝑙DC) (2.84)

for the expected interferometric signal 𝑃S(𝑘) and the ambiguity indices𝑚1 = 𝑙1 − 𝑖1 𝑚2 = 𝑙2 − 𝑖2 (2.85)

are introduced.



Theory of SAR and Interferometry 25

2.4.3 Complex Azimuth Ambiguity-to-Signal-Ratio from Signal Description

Eq. (2.83) contains the full information on the ambiguous interferogram for a scene cross spectral
density

𝑃S(𝑘) = ∞∫−∞ 𝜎0(𝑥) ej𝜙(𝑥) e−j𝑘𝑥 d𝑥 , (2.86)

which is the Fourier transform of the interferometric properties along the azimuth direction 𝑥 . The
indices 𝑖1 and 𝑖2 in (2.83) describe the repetitiveness of the sampled spectrum. They are not of further
interest and arbitrarily set to zero, because only the ratio of ambiguous signal to useful signal shall
be investigated. Both, the ambiguous and useful signal, contain information on the scene 𝑃S(𝑘).
Although, each signal part is weighted with a different wavenumber (frequency)-dependent function𝐹0,0,𝑚,𝑚(𝑘). The ratio of an ambiguous wavenumber component with index 𝑚 to its corresponding
signal component

𝛼𝑚(𝑘) = 𝐹0,0,𝑚,𝑚(𝑘)𝐹0,0,0,0(𝑘)
= 𝐻1(𝑘)𝑀1(𝑘− 2𝜋𝑚𝛥𝑥 )Π( 𝑘−𝑘DC−2𝜋𝑚𝛥𝑥𝑘BW ) ⊛ 𝐻 ∗2(−𝑘)𝑀 ∗2(−𝑘− 2𝜋𝑚𝛥𝑥 )Π(−𝑘−𝑘DC−2𝜋𝑚𝛥𝑥𝑘BW ) ej 2𝜋𝑚𝛥𝑥 𝐵ATI2𝐻1(𝑘)𝑀1(𝑘) Π( 𝑘−𝑘DC𝑘BW ) ⊛ 𝐻 ∗2(−𝑘)𝑀 ∗2(−𝑘) Π(−𝑘−𝑘DC𝑘BW ) (2.87)

gives a wavenumber-dependent CASR, where the zero wavenumber component is

𝛼𝑚(0) = 𝛼𝑚 =
𝑘DC+ 2𝜋𝑚𝛥𝑥 + 𝑘BW2∫𝑘DC+ 2𝜋𝑚𝛥𝑥 − 𝑘BW2

𝐻1(𝑘′)𝑀1(𝑘′− 2𝜋𝑚𝛥𝑥 )𝐻 ∗2(𝑘′)𝑀 ∗2(𝑘′− 2𝜋𝑚𝛥𝑥 ) d𝑘′
𝑘DC+ 𝑘BW2∫𝑘DC− 𝑘BW2

𝐻1(𝑘′)𝑀1(𝑘′)𝐻 ∗2(𝑘′)𝑀 ∗2(𝑘′) d𝑘′ ej 2𝜋𝑚𝛥𝑥 𝐵ATI2 . (2.88)

One sees an equivalence between this zero wavenumber component and the definition of azimuth-
ambiguity-to-signal-ratio (AASR) for SAR images in the literature [Bay75; Li83]. The AASR is a ratio of
aliased energy to signal energy, which can be found by integrating the energy from a certain angular
portion of the antenna pattern. The equivalence with the introduced signal model holds only for
homogeneous scenes with a Dirac-shaped Fourier transform

𝑃S(𝑘) = ∞∫−∞ 𝜎0 ej𝜙 e−j𝑘𝑥 d𝑥 ∝ 𝜎0 ej𝜙 δ(𝑘) , (2.89)

because other wavenumber components experience a different ratio of ambiguous to signal magnitude,
as defined by (2.87). Fig. 2.8 (a)–(c) depicts SAR images of typical scattering from oceans, that show
a variation of scattering levels, called contrast [Vac92], and contradict a homogeneous assumption.
Besides a very clutter-like appearance, which originates from speckle and thermal noise (especially
in (a)) [Jus94], one can observe repetitive structures, which originate from modulation of the radar
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(a) Low wind sea (b) Wind waves (c) Pure ocean waves

Fig. 2.8: Sentinel-1 wave mode images of size of 20 km x 20 km and resolution of 5m x 5m showing exemplary
sea types and their reflectivity signatures [Wan19].

scattering coefficient by waves. The most interesting case might be wind waves in (b), where surface
wind acts on the sea surface and induces a modulation of the already wave-like scattering [Has85;
War13; Vac92]. The analytic wavenumber-dependence of (2.87) is subject to analysis on real data,
which is not covered within this work. Furthermore, it is assumed, as has been done throughout the
literature [Li83; Lóp19a; Vil12], that AASR or CASR is a constant wavenumber-independent value. This
assumption may be only valid for very narrow-banded cross spectral densities with slowly changing
interferometric properties from waves with long wavelengths.

Eqs. (2.87) and (2.88) show an additional interferometric phase offset 𝜙a,𝑚 = 2𝜋𝑚𝐵ATI/(2𝛥𝑥), which
adds and corrupts the interferometric phase per ambiguity. This phase offset is introduced due to the
relative shift of images from channel 1 and 2. Note, each aliased signal contribution experiences this
phase offset. Even the main signal of the Harmony mission, which has a Doppler centroid outside of±𝑓PRF/2 and becomes aliased during observation. The offset may only be mitigated if channel 1 and 2
are sampling equal Doppler frequencies from the same positions in space, which requires the so called
displaced phase center antenna (DPCA) condition [Dic91; Lig91]2𝜋𝑚𝛥𝑥 𝐵eff = 2𝜋𝑚𝑚′

⇔ 𝑓PRF𝑣Sat 𝐵eff = 𝑚′ , (2.90)

where 𝑚′ is the number of skipped pulses, to be fulfilled. This effect causes a loss of interferometric
performance, when the DPCA condition is not fulfilled as observed in simulations [Lóp21].

2.4.4 Effective Baseline

Note, the spatial shift of images generated from channel 2 with respect to channel 1 is now denoted
by an effective baseline𝐵eff = 𝛥𝑡𝑣Sat = 𝐵ATI2 𝐿d . (2.91)

As introduced in Section 2.2, there is a reduction of the time delay between acquisitions for highly
squinted bistatic setups. In the rectilinear geometry, there exists a proportionality between temporal
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Fig. 2.9: Relative spatial shift of image from channel 2 with respect to image from channel 1 over normalized
wavenumber.

delay and spatial shift with the satellite velocity being the proportionality constant [Cum05]. The
spatial shift also shows a reduction by 𝐿d as depicted in Fig. 2.9. The figure compares the spatial shift
of the imaging transfer functions with aligned grids 𝐻1(𝑘) and 𝐻2(𝑘) exp{−j𝑘𝐵ATI/2}, by means of a
group delay calculation of the relative shift between the imaging transfer functions. Additionally, one
observes by evaluating (2.87) or (2.88), that the Doppler loss factor also reduces the interferometric
phase offset to 𝜙a,𝑚 = 2𝜋𝑚𝐵eff/𝛥𝑥 .
From Fig. 2.9 one finds, the spatial shift is varying with wavenumber. If the main signal part is

perfectly co-registered, which means the spatial shift 𝐵eff is completely removed, then, the ambiguities
still posses an increasing misregistration with increasing ambiguity number. The misregistration
related to azimuth resolution induces a loss of coherence [Han01, p. 46]. However, this relative
misregistration is small for the first dominant ambiguities in the Harmony mission, because of an
azimuth resolution of 20m, which causes a negligible loss of coherence [Zon22].

The effective baseline is depending on range, because the Doppler loss factor is depending on range,
as shown in Section 2.2. This effects the signal processing of the raw SAR data, which has to consider
a range-dependent relative shift of the focused images. For instance, the co-registration or more
specifically the focusing kernels, must know and compensate the range-dependent shift of the images
generated from channel 1 and 2 during processing to avoid a loss of coherence [Han01, p. 46]. Another
example is to fulfill the DPCA condition (2.90), which has to consider the range-dependent loss factor𝐿d when designing the phase center separation 𝐵ATI. Though, the DPCA condition may not be fulfilled
over the whole swath, resulting in non-zero phase offsets per ambiguity 𝜙a,𝑚 and consequentially a
decreased coherence [Lóp21]. Furthermore, removal algorithms will become more complex, i.e. IIR
equalizer [Lóp19a], because the range-dependent additional interferometric phase offsets change over
the swath extend and must be known, calculated, estimated or calibrated.



3 Simulation of Interferometric Performance

Interferometric performance quantifies the capability of an interferometric system to perform accurate
measurements of the variable of interest. To evaluate this capability, one is interested in the distribution
of the phase error𝜙err = |||𝜙0 − 𝜙0||| (3.1)

as modulus deviation of the phase estimate 𝜙0 from its true value 𝜙0. The true value and the scene
follow prior distributions, which account for typical scene conditions to be observed by the Harmony
mission. ATI estimates interferometric phases as a measurement of surface velocity, which are related
by the ATI sensitivity (2.16). In this work, the error distribution𝐹 (𝛷) = Pr{𝜙err ≤ 𝛷} (3.2)

is evaluated under the influence of noise, coherent ambiguities and their suppression or removal by
algorithms. Other error sources, i.e. system and processing errors [Cum05; Wol17], are excluded.
The analytic method of finding the error distribution requires marginalization of the conditional

probability density function over prior distributions and a subsequent integration, which yields the
error distribution. The conditional probability density function describes all imaging and signal
processing steps and may not be found in a closed form. However, one can approximate the error
distribution by means of a Monte Carlo simulation, where the desired distribution is estimated from
discrete evaluations of the underlying mathematical model [Leh08, pp. 442–443]. For each evaluation,
input parameters are sampled from their prior distributions and the resulting phase error is deter-
mined using the model as derived in Chapter 2. Such a Monte Carlo simulation is asymptotically
efficient, meaning, that more evaluations achieve better accuracy [Leh08, pp. 442–443]. The simula-
tions conducted showed, that a number of 2048 evaluations are sufficient for the purpose of this work
and within reasonable computation effort. With 2048 evaluations, the Dvoretzky-Kiefer-Wolfowitz
inequality states, that the maximum modulus deviation of the simulated error distribution from the
true distribution is below 0.03 (3%) with a probability of 94.98% [Mas90]. Throughout this work,
characterization and comparisons of interferometric performance are made on basis of two quantiles
of the error distribution [Leh08]𝛷68.2% = {𝛷 ∈ R≥0 || 𝐹 (𝛷) = 0.682} (3.3)𝛷95.4% = {𝛷 ∈ R≥0 || 𝐹 (𝛷) = 0.954} , (3.4)

where R≥0 is the set of non-negative real numbers. These quantiles account for 68.2% and 95.4% of
the phase error. Note, that the quantiles correspond to the 1𝜎 and 2𝜎 values of the error distribution,
if 𝜙0 − 𝜙0 is zero-mean normally distributed. Note further, that those values quantify the error in
line-of-sight direction. The error on ground is found by inversion of the observation geometry using
both Harmony satellites. This procedure depends on the current position within the swath and will
only complicate the results. Hence, all performance analysis is done with respect to line-of-sight
direction.
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3.1 Monte Carlo Simulation Procedure

3.1.1 Model Setup

The simulation of interferometric performance uses the fact, that an ambiguity appears spatially
shifted from the main signal [Ran87], to divide the simulated range line in several non-overlapping
parts. Typical azimuth shifts for the Harmony mission are in the order of 3 km to 4 km for the first
ambiguity, depending on system parameters. Each part is assigned an interferometric property from a
set of 2𝑀 + 1 interferometric properties

s = ⎡⎢⎢⎢⎢⎢⎣
𝜎0−𝑀 ej𝜙−𝑀⋮𝜎00 ej𝜙0⋮𝜎0𝑀 ej𝜙𝑀

⎤⎥⎥⎥⎥⎥⎦
∈ C2𝑀+1×1 . (3.5)

The interferometric properties are assumed and modeled to be independent and identically distributed
over their corresponding part. Independent relates to cross-correlation between elements of s and is
assumed in order to evaluate the worst-case scenario. It only holds, if the displacement of ambiguities
is in the order of length of ocean waves. Identically follows from the fact, that the sea state is valid
over areas much larger than the displacement of ambiguities [War13, p. 20].

The analysis of system performance is confined to one part of this range line, with an extension in
azimuth of 1.2 km. This extent is used as reference product resolution in the Harmony mission case
[Rom20] and more stringent than analyzed for a similar study [Wol17].
The integer number 𝑀 denotes the highest considered ambiguity. In reality, 𝑀 takes a very large

number of ambiguities, which contribute to the measured data. The number is smaller than infinity,
due to the saturation of maximum Doppler frequency, compare Fig. 2.3. Additionally, the ambiguities
loose their coherent property with increasing number 𝑀 , because of increasing misregistration as
discussed in Section 2.4.4 [Zon22]. For interferometric performance evaluations, only the first three
ambiguities (𝑀 = 3) are considered, because the damping by the antenna pattern increases with larger
deviation from the main beam and the computation requirements are kept at a reasonable level.

To verify the implemented SAR data model, the simulated interferometric performance is compared
to an analytically derived reference performance. Under fully developed speckle by scattering from
rough surfaces [War13, pp. 24, 289, 442–443], the phase error shows an analytical phase bias [Zon22]

𝜙 bias | s = arg{1 + 𝑀∑𝑚=−𝑀,𝑚≠0 𝛼𝑚𝜎0𝑚𝜎00 ej(𝜙𝑚−𝜙0)} (3.6)

using the CASR (2.88), and a phase variance [Tou94]

𝜎2𝜙 | s = 1𝑁tot 1 −||𝛾 (s)||22||𝛾 (s)||2 , (3.7)

where 𝑁tot samples are averaged and |𝛾 (s)| is the normalized cross-correlation coefficient (coherence)
between the two channels. The expression for coherence is generalized from [Vil12] for arbitrary
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many ambiguities

||𝛾 (s)|| = 11 + 𝜎0NE𝑀∑𝑚=−𝑀 𝜎0𝑚|𝛼𝑚 |
1𝑀∑𝑚=−𝑀 𝜎0𝑚 |𝛼𝑚 |

√
( 𝑀∑𝑚=−𝑀 𝜎0𝑚𝛼𝑚 ej𝜙𝑚)( 𝑀∑𝑚=−𝑀 𝜎0𝑚𝛼 ∗𝑚 e−j𝜙𝑚) . (3.8)

Using the Monte Carlo simulation approach with 2048 evaluations, for each evaluation, firstly, s is
sampled from prior distributions described in the next section, then a phase error estimate is sampled
from a normal distribution [Tou94]𝜙0,ref − 𝜙0 ∼ N(𝜙 bias | s , 𝜎2𝜙 | s ) . (3.9)

From all 2048 phase error estimates, the 68.2%- and 95.4%-quantiles are calculated.
To conclude this section, an exemplary range line from the simulation model with only the first left

and right ambiguity in Fig. 3.1 is discussed. The figure shows also the expected values of interferometric
phase and coherence calculated from (3.6) and (3.8). In this example, the interferometric properties are
deliberately chosen such that the impact of coherent ambiguities and the additional interferometric
phase offset per ambiguity 𝜙a,𝑚, here 284.5°, are highlighted. For the middle and right part of the
range line, the interferometric phases of the main signal and the first left or right ambiguity are equal.
This generates no loss in coherence and does not increase phase noise, although the signal parts are
statistically independent. De-correlation in the right part occurs only due to constant additive thermal
noise and a lower surface scattering coefficient, which leads to a smaller SNR. Contrary is the left part
of the range line. The scattered power and the interferometric phase are identical to the right part.
Though, one observes a phase bias and loss of coherence, which results in larger phase noise, because
the interferometric phases of main and ambiguous signal are out of phase.

3.1.2 Prior Distributions

In this section, the prior distributions of surface scattering coefficient 𝜎0𝑚 and interferometric phase𝜙𝑚 are introduced.
Ocean or sea surfaces comprise of two different wave types, which influence the scattering behavior.

Capillary waves have rather small wavelength, much smaller than the size of a resolution cell for
the Harmony mission. The incident electromagnetic wave interferes with these capillary waves and
the resulting scattering coefficient becomes Gaussian distributed [Has85; War13]. On large scale
observation of the averaged received power over many resolution cells, one observes a modulation of
the surface scattering coefficient, which is induced by gravity waves. Their shape depends on wind
speed, which determines the swell height and sea state [War13]. The modulation of surface scattering
coefficient 𝜎0𝑚 by gravity waves is best described by a gamma distribution [War13]

𝜎0𝑚 ∼ 𝑓 (𝜎0𝑚) = 𝑏𝜈Γ(𝜈)𝜎0𝑚𝜈−1e−𝑏𝜎0𝑚 , (3.10)
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Fig. 3.1: Exemplary one-dimensional SAR interferogram (magnitude, phase and coherence) illustrating the effect
of the first left and right ambiguity on phase noise and coherence at a NESN of −20 dB.
with shape parameter 𝜌, rate parameter 𝑏 and Gamma function Γ(⋅) [Pap02]. The first two moments

E[𝜎0] = 𝜌𝑏 𝜌 = E[𝜎0]2Var[𝜎0] (3.11)

Var[𝜎0] = 𝜌𝑏2 𝑏 = E[𝜎0]Var[𝜎0] (3.12)

are sufficient to fully characterize the gamma distribution [Pap02].
The gamma distribution of surface scattering coefficient depends on radar parameters (frequency,

polarization, resolution, incidence angle), but also sea parameters (wind speed and direction, sea
roughness). The prior distribution used for the evaluation of interferometric performance is taken
from data measured by Sentinel-1. Tab. 3.1 shows the shape parameter and mean scattering coeffi-
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Tab. 3.1: Sea clutter gamma distribution parameters from Sentinel-1wavemode data for different wind conditions
and Douglas sea states, as defined in [War13, p. 20]

Douglas Wind speed Mean E[𝜎0] Shape 𝜈 Rate 𝑏 Variance Var[𝜎0]
sea state in m/s in dBm2/m2 in m2/m2 in dBm4/m42 3.78 −19.7 2.6094 243.50 −43.5655 10.53 −11.8 2.5829 39.093 −27.7216 15.23 −5.9 3.4591 13.459 −17.190

cient derived from the data. These parameters are sufficient for a complete characterization of the
underlying gamma distribution [Pap02]. Sentinel-1 data may best represent the expected surface
scattering coefficients, because Sentinel-1 is used as active satellite in the Harmony mission. The
angle-dependency of the scattering coefficient for the bistatic Harmony mission is neglected [War13].

The distribution of possible interferometric phases 𝜙𝑚 is defined by requirements of the Harmony
mission [Rom20]. A maximum of 90 cm/s must be observable. The observed interferometric phases are
assumed to be uniformly distributed𝜙𝑚 ∼ 𝑓 (𝜙𝑚) = U (−90 cm/s𝑆ATI , 90 cm/s𝑆ATI) , (3.13)

because there are no further restrictions.

3.2 Verification of the Simulation Model

In a first step, the uncorrected errors of simulated data are compared to theoretical errors to verify the
simulation of biases by coherent ambiguity. The simulation model is configured with the Harmony
parameter values given in Tab. A.1 in the Appendix. The curves in Fig. 3.2 show a good agreement
between simulated and analytically evaluated interferometric performance. One sees influences from
both, firstly, additive noise for low numbers of samples and secondly, coherent ambiguities for large
numbers of samples. The second observation that is made is, that for decreasing SNR — starting at
sea state 6 to sea state 5 and sea state 2 — more numbers of samples must be averaged to achieve
equal error quantiles. Therefore, the Harmony mission targets product resolutions between 1 km2 to25 km2 (104 to 25 ⋅ 104 samples) to achieve its observation accuracy requirements [Rom20]. Note, the
boundary of 20 cm/s is only given as a reference. The true maximum error is below 20 cm/s, because the
sensitivity reduces due to the projection of ground velocity into the line-of-sight plane.
In a second step, the sampling spacing is varied, which results in a not fulfilled DPCA condition.

Fig. 3.3 depicts the expected performance deviation for a non-fulfilled DPCA condition, i.e. due to
variation of the Doppler loss factor over the full swath. One sees, for a Doppler loss factor variation of−2.08% to 1.53% there is only negligible loss in interferometric performance, because the additional
interferometric phase offset caused by this variation is small compared to the support of the prior phase
distribution. The interferometric performance is mainly determined by this prior phase distribution.
Further analysis is only made for the mid range case, where the DPCA condition is fulfilled. Fig. 3.3
does not include the effect of the antenna pattern variation over the swath. The gain of the antenna
over elevation is reducing for near and far ranges [Bal16], which increases the NESN, due to a reduced
signal level. Additionally, the shape of the antenna pattern changes over elevation [Bal16]. Both effects
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Fig. 3.2: Analytical and simulated interferometric performance of ATI system without azimuth ambiguity
removal.
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Fig. 3.3: Interferometric performance of ATI system without azimuth ambiguity removal for different Doppler
loss factors, which correspond to expected losses in near range (NR), mid range (MR) and far range (FR) scenarios.
DPCA condition is only fulfilled in mid range case.

can be modeled as shown in Chapter 2 and the interferometric performance may be evaluated, but
they are not relevant when comparing different algorithms. This work skips a detailed analysis.

3.3 Model-Induced Biases without Coherent Ambiguities

Non-optimum processing, variation in Doppler rate per channel2 and residual misregistration causes
inherent residual biases in the simulation model. Also, the infinitely long IRF of the focused data
contributes to biases at the ambiguous positions. For this work, it is not of interest which effect is
limiting the simulated interferometric performance. But, it is of interest to quantify the model-induced
biases, which are not related to coherent ambiguities. Simulations without additive noise show, that the68.2%-quantile is limited to 0.0082° or 0.094 cm/s and the 95.4%-quantile is limited to 0.0258° or 0.296 cm/s.
Fig. 3.4 depicts the lower limits over number of samples down to which coherent ambiguity biases and
the corresponding removal algorithm can be simulated and evaluated.

2 Results in a non-flat (but linear) interferometric phase over the peak of the impulse response [Cum05, pp. 82–87, p. 110]
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Fig. 3.4: Simulated interferometric performance of ATI system when DPCA condition is fulfilled without noise
comparing the effect of azimuth ambiguities and model-induced biases.



4 Ambiguity Removal on Interferogram Level

In the following, a technique to remove azimuth ambiguities from the interferogram is introduced
and later verified using simulated data. The following description aims on the investigation of the
achievable performance of the technique. An implementation on real interferometric data must be
done outside the scope of this work.

4.1 Modulation of Ambiguous and Main Signal by Looks

Fig. 4.1 shows a usual SAR system design. To minimize the ambiguous energy one usually places a zero
of the antenna pattern such that it aligns with the Doppler centroid, i.e. Sentinel-1 [Tor17]. This might
also be achieved by means of digital beamforming, where several SAR channels are combined to place
a zero on receive. This technique and its application to SAR may be found in the literature [Kri03;
You03]. The Harmony mission setup bears the potentials of forming new useful channels by two
combinations, i.e. fore-middle or aft-middle. Interferograms might then be created from any original
or combined channel, i.e. (fore-middle)-to-aft. The further analyzed system assumes the antenna
pattern weighting as given in Fig. 4.1.

When applying a multi-look processing scheme in the frequency domain, the processed bandwidth
is commonly divided into looks with partially overlapping spectral support, as shown in Fig. 4.2 [Por76;
Moo79]. Besides a generation of partially independent images, multi-look processing modulates the
CASR over the looks, due to bandpass-filtering of the ambiguities by the window functions. Tab. 4.1
gives the numerically evaluatedmagnitude of the CASR for the first three ambiguities for the exemplary
antenna configuration in Fig. 4.1 and the Hamming window functions in Fig. 4.2.
The motion of the scene infers DCA, which results in a shift of the antenna pattern in Fig. 4.1

[Cum05, pp. 483–484]. This shift modifies the modulated CASR and will introduce estimation errors
if not considered. An approximate estimate of this shift is found from the biased velocity estimate
without coherent azimuth ambiguity removal. The remaining error on antenna pattern knowledge
due to biased shifts may be tolerated [Ric22].
For white scenes or at least constant spectral power density per ambiguity, windowing modulates

the power of main and ambiguous contribution according to the modulation of CASR, as shown in
Tab. 4.1. A white scene holds for fully developed speckle on ocean and sea surfaces [War13; Has85].
Otherwise, the scene itself will contribute with an unknown modulation and deteriorate the removal
capabilities of the technique. The known modulation of energies is further leveraged to estimate the
main signal.

4.2 Removing Modulated Ambiguities

Each window function is applied to both channels to generate looks before interferometric combination
according to the block diagram in Fig. 4.3. The pairs of generated looks form a time series of 𝐵
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Fig. 4.1: Exemplary spectral magnitude of signal and aliases of a SAR system.
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Fig. 4.2: Exemplary partially overlapping window functions with Hamming weighting for look generation over
the full processed bandwidth.

interferograms, where, by design of the window functions, all interferograms can achieve the same
sensitivity with respect to surface velocities. Under the assumption of a locally constant velocity —
due to low surface acceleration or short acquisition time of the total processed Doppler bandwidth 𝑘BW
— the interferograms may be weighted by 𝑡 (𝑏) and coherently summed to remove biases and average
speckle and non-coherent noise, while preserving the interferometric phase. The common multi-look
processing scheme sums the looks with almost equal weights t ≈ 1𝐵, accounting only for the loss of
SNR over the full processed Doppler bandwidth. This achieves optimum noise and speckle averaging
and minimizes the estimation error if no coherent ambiguity biases are present [Por76; Cum05]. For
high-performance missions or with worse CASR, the total estimation error of the interferometric
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Tab. 4.1:Modulation of the CASR for the exemplary SAR system in Fig. 4.1 and 20 looks generated fromHamming
window functions in Fig. 4.2

Window Magnitude of CASR in dB
function |𝛼3| |𝛼2| |𝛼1| |𝛼−1| |𝛼−2| |𝛼−3|
Flat −42.41 −27.19 −16.15 −16.19 −27.14 −42.41
Ham. look 1 −33.58 −20.31 −8.88 −14.92 −25.55 −33.58
Ham. look 2 −35.26 −21.67 −10.27 −15.51 −26.04 −35.26
Ham. look 3 −37.25 −23.27 −11.86 −16.25 −26.67 −37.25
Ham. look 4 −39.45 −25.04 −13.58 −17.10 −27.41 −39.45
Ham. look 5 −41.99 −27.07 −15.49 −18.11 −28.31 −41.99
Ham. look 6 −45.27 −29.63 −17.85 −19.43 −29.50 −45.27
Ham. look 7 −49.45 −32.79 −20.63 −21.05 −30.94 −49.45
Ham. look 8 −55.74 −37.20 −24.26 −23.20 −32.86 −55.75
Ham. look 9 −66.71 −45.37 −30.04 −26.45 −35.67 −66.71
Ham. look 10 −57.39 −47.51 −40.84 −32.01 −40.17 −57.39
Ham. look 11 −52.60 −39.18 −32.35 −41.12 −49.61 −52.60
Ham. look 12 −50.09 −35.08 −26.62 −30.38 −43.71 −50.09
Ham. look 13 −48.61 −32.45 −23.31 −24.46 −36.44 −48.61
Ham. look 14 −47.79 −30.63 −21.13 −20.78 −32.32 −47.79
Ham. look 15 −47.42 −29.25 −19.50 −17.97 −29.30 −47.42
Ham. look 16 −47.41 −28.12 −18.17 −15.60 −26.82 −47.42
Ham. look 17 −47.76 −27.25 −17.14 −13.67 −24.85 −47.76
Ham. look 18 −48.47 −26.54 −16.30 −11.95 −23.12 −48.47
Ham. look 19 −49.66 −25.94 −15.56 −10.31 −21.55 −49.66
Ham. look 20 −51.35 −25.48 −14.97 −8.96 −20.21 −51.35

phase due to both speckle and noise as well as biases must be minimized, which results in optimum
weights different from the commonly applied weights. In the following, the optimum weights that
achieve a minimum total error are derived from a simplified interferometric data model and a linear
minimum mean square error (LMMSE) technique.
The previous description may be realized in a simple way on stripmap scanned data, but does not

restrict to this mode. For burst-based scanning modes, i.e. ScanSAR or TOPS, there is also a weighting
in the spectrum due to the antenna pattern [Cum05; De 06]. However, the removal algorithm must
be adapted to fit to the scanning modes, i.e. removal must be specifically performed per burst and
may depend on azimuth position. For TOPS, the generation of the looks must be integrated into
the processing chain, when focusing is performed. Advantageously, the weighting by the antenna
pattern is equal for all targets, but shifted in the spectrum [De 06]. Hence, if the window functions
are correctly applied in the focusing step, the CASR becomes equal over the whole strip, as long as
the antenna pattern is not deformed by the steering operation. A disadvantage is the shrinking of
the antenna footprint due to active forward rotation of the steering, which corresponds to a virtually
larger antenna length in a corresponding stripmap mode [De 06]. This might have an impact on the
dynamic — difference in magnitude of largest to smallest CASR by modulation with windows — which
is required for the proposed algorithm to work.
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Fig. 4.3: Azimuth ambiguity removal with windowed interferograms, extends bistatic two-channel model in
Fig. 2.7.

4.2.1 Along-Track Interferometric Signals with Modulations

The present section describes the signal model for the derivation of the algorithm under the previously
made assumptions. Firstly, two SAR channels with a mutual along-track baseline are focused and the
second channel is co-registered to the first channel as shown in Fig. 4.3. The azimuth spectra of the
two images are separately weighted with different window functions𝑊 (𝑏)(𝑘). This produces a pair of
images associated to each window function, i.e.,

u(𝑏)[𝑛] = [𝑢(𝑏)1 [𝑛] + 𝜇(𝑏)1 [𝑛]𝑢(𝑏)2 [𝑛] + 𝜇(𝑏)2 [𝑛]] = 𝛽 (𝑏)1 𝑀∑𝑚=−𝑀[ 𝛼 (𝑏)1,𝑚𝛤 (𝑏)𝑚 [𝑛]𝛽 (𝑏)2 𝛼 (𝑏)2,𝑚𝛤 (𝑏)𝑚 [𝑛] e−j𝜙𝑚] + [𝜇(𝑏)1 [𝑛]𝜇(𝑏)2 [𝑛]] , (4.1)

where 𝜇1[𝑛] and 𝜇2[𝑛] represent the noise contribution of the additive noise 𝜇′1[𝑛] and 𝜇′2[𝑛] after SAR
processing, 𝑚 indexes the 2𝑀 + 1 different signal parts (with 𝑚 = 0 being the main signal and 𝑚 ≠ 0
being the ambiguities), 𝛤 (𝑏)𝑚 [𝑛] denotes the complex reflectivity of the scene, 𝜙𝑚 is the interferometric
phase, 𝛽 (𝑏)1 and 𝛽 (𝑏)2 are real-valued scaling factors and 𝛼 (𝑏)1,𝑚 and 𝛼 (𝑏)2,𝑚 are complex-valued factors such
that |𝛼 (𝑏)1,𝑚 |2 and |𝛼 (𝑏)2,𝑚 |2 are ambiguity-to-signal-ratios of the 𝑚-th ambiguity for window function 𝑏 in
images 1 and 2, respectively. How to find those scaling factors is summarized later in this section. Note,𝛼 (𝑏)1,𝑚 ⋅ 𝛼 (𝑏)2,𝑚∗ = 𝛼 (𝑏)𝑚 as defined in (2.88), represents the CASR for window function 𝑏 in the interferogram

𝑣(𝑏)[𝑛] = (𝑢(𝑏)1 [𝑛] + 𝜇(𝑏)1 [𝑛])(𝑢(𝑏)2 [𝑛] + 𝜇(𝑏)1 [𝑛])∗ . (4.2)

From this interferogram, 2𝑀 ambiguities with their modulated ambiguity signature 𝛼 (𝑏)𝑚 shall be
removed.

The scene signal is modeled as a zero-mean complex Gaussian process [War13, pp. 289–307], i.e.,𝛤 (𝑏)𝑚 [𝑛] ∼ CN (0, 𝜎0𝑚) , (4.3)
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with cross-correlationE[𝛤 (𝑏1)𝑚1 [𝑛1]𝛤 (𝑏2)𝑚2 ∗[𝑛2]] = 𝜎0𝑚1𝛿𝑚1𝑚2𝛿𝑏1𝑏2𝛿𝑛1𝑛2 (4.4)E[𝜇(𝑏1)𝑖 [𝑛1]𝜇(𝑏2)𝑗 ∗[𝑛2]] = 𝑃 (𝑏1)N𝑖 𝛿𝑖𝑗𝛿𝑏1𝑏2𝛿𝑛1𝑛2 , (4.5)

where the Kronecker delta 𝛿𝑖𝑗 was used. The first condition related to 𝑚1 and 𝑚2 applies in general
because of different spectral support of the ambiguities, that makes them uncorrelated [Has85]; the
second condition only holds if the windows do not share any common spectral support; the last
condition is true for white noise-like scenes and infinitely large processed Doppler bandwidth, that
results in a Dirac delta shaped azimuth auto-correlation. The same is later applied to the range auto-
correlation function as well. The two additive noise components are also zero mean proper complex
Gaussian distributed with variances 𝑃 (𝑏)N1 and 𝑃 (𝑏)N2 and identical assumptions on cross-correlation. The
third condition can not be fulfilled in general, because the Doppler bandwidth is always finite, which
results in a sinc-shaped auto-correlation function. But, those assumptions simplify the algorithm
formulation under negligible performance reduction, as shown later.
The algorithm combines samples from 𝐵 different interferograms. In general, the interferograms

may have different azimuth resolutions 𝛥𝑏 due to the windowing. For the sake of simplicity, an
equalization of the azimuth resolution by applying a boxcar pre-averaging of 𝑄(𝑏) samples per range
line is conducted.

Then, 𝑁 samples in range direction are stacked into an interferogram data vector

v (𝑏)[𝑛] = 1𝑄(𝑏) 𝑄(𝑏)∑𝑞=1
⎡⎢⎢⎢⎣
𝑣(𝑏)[𝑛 + 𝑞𝛥𝑏 , 1]⋮𝑣(𝑏)[𝑛 + 𝑞𝛥𝑏 , 𝑁 ]

⎤⎥⎥⎥⎦ ∈ C𝑁 ×1 , (4.6)

such that at most 𝑁tot = 𝑁 max{𝑄(1), 𝑄(2),… , 𝑄(𝐵)} samples are incorporated in the algorithm. Finally,
all 𝐵 interferogram data vectors are stacked to form the total interferogram vector

v [𝑛] = ⎡⎢⎢⎢⎣
v (1)[𝑛]⋮
v (𝐵)[𝑛]

⎤⎥⎥⎥⎦ ∈ C𝐵𝑁 ×1 . (4.7)

The expected interferometric dataE[v ||| 𝜎0, 𝜙] = As ∈ C𝐵𝑁 ×1 (4.8)

consists of the ambiguity matrix

A =
⎡⎢⎢⎢⎢⎢⎢⎣
𝛽(1)1 2𝛽(1)2 𝛼 (1)−𝑀 ⋯ 𝛽(1)1 2𝛽(1)2 ⋯ 𝛽(1)1 2𝛽(1)2 𝛼 (1)𝑀⋮ ⋮ ⋮
𝛽(𝐵)1 2𝛽(𝐵)2 𝛼 (𝐵)−𝑀 ⋯ 𝛽(𝐵)1 2𝛽(𝐵)2 ⋯ 𝛽(𝐵)1 2𝛽(𝐵)2 𝛼 (𝐵)𝑀

⎤⎥⎥⎥⎥⎥⎥⎦
⊗ 1𝑁 ∈ C𝐵𝑁 ×2𝑀+1 , (4.9)

where ⊗ denotes the Kronecker product, and the vector of interferometric properties (3.5). The am-
biguity matrix is composed of power factors and the CASR per interferogram. From s is only 𝜎00 ej𝜙0
of interest. The other parameters contain information about the interferometric parameters of all
ambiguities.
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4.2.2 Algorithm Formulation

The interferograms are combined in terms of a LMMSE estimator̂̃s = T̃ ṽ + m̃ ∈ C2(2𝑀+1)×1 , (4.10)

which minimizes the mean square error (MSE) [Wie49]

T̃ , m̃ = argmin
T̃ ,m̃ E[‖‖‖s̃ − T̃ ṽ − m̃

‖‖‖2] = argmin
T̃ ,m̃ E[‖‖‖s̃ − T̃ (Ãs̃ + ν̃) − m̃

‖‖‖2] , (4.11)

where augmented vectors, i.e.,

ã = [ aa∗] (4.12)

are introduced to consider the improper (non-circular) distribution of the complex interferogram.
Description and processing of such signals can be found in the literature [Sch10, pp. 31–40]. Within
the definition of the MSE, the interferometric data is split into its expected value and variations of
the data about its expected value due to thermal noise and speckle [Jus94]. All those variations are
combined into an additive pseudo noise vector

ν̃ = ṽ − Ãs̃ ∈ C2𝐵𝑁 ×1 . (4.13)

The estimator is then found to be

T̃ = C̃ s̃ s̃ Ã
H(ÃC̃ s̃ s̃ Ã

H + C̃ν̃ν̃)−1
(4.14)

m̃ = E[s̃] − T̃ Ã E[s̃] , (4.15)

where (⋅)H denotes the matrix conjugate transpose or Hermitian transpose, and

C̃ s̃ s̃ = E[(s̃ − E[s̃])(s̃ − E[s̃])H] ∈ C2(2𝑀+1)×2(2𝑀+1) (4.16)

is the covariance matrix for the vector of interferometric properties s̃ and

C̃ν̃ν̃ = E[ν̃ν̃H] = E[E[ν̃ν̃H | s̃]] ∈ C2𝐵𝑁 ×2𝐵𝑁 (4.17)

is the covariance matrix of the zero-mean pseudo noise vector ν̃ averaged over the prior distributions
of the interferometric parameters s̃ .

The covariance matrix C̃ s̃ s̃ depends on characteristics of the sea state, i.e. shown in Tab. 3.1, and is
found by calculating the second moments of the associated prior distributions

C̃ s̃ s̃ = ⎡⎢⎢⎢⎢⎣
E[|||𝜎0 ej𝜙 − E[𝜎0 ej𝜙]|||2] E[(𝜎0 ej𝜙 − E[𝜎0 ej𝜙])2]E[(𝜎0 ej𝜙 − E[𝜎0 ej𝜙])2]∗ E[|||𝜎0 ej𝜙 − E[𝜎0 ej𝜙]|||2]

⎤⎥⎥⎥⎥⎦ ⊗ I2𝑀+1 , (4.18)
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where E[|||𝜎0 ej𝜙 − E[𝜎0 ej𝜙]|||2] = Var[𝜎0] +(1 −|||E[ej𝜙]|||2)E[𝜎0]2 (4.19)

E[(𝜎0 ej𝜙 − E[𝜎0 ej𝜙])2] = Var[𝜎0] E[ej2𝜙] + (E[ej2𝜙] − E[ej𝜙]2)E[𝜎0]2 (4.20)

and I𝑁 is the 𝑁 × 𝑁 identity matrix. It is assumed, that all 2𝑀 + 1 interferometric properties are
identically independently distributed, following the same reasoning used in Chapter 3. A correlation
between scattering coefficient 𝜎0𝑚 and interferometric phase 𝜙𝑚 of ambiguity 𝑚, due to the orbital
motion of water particles because of swell [Has85], is neglected. This relation may later be leveraged
to ease the estimation.

The averaged covariance matrix of the pseudo noise vector is first divided into block sub-matrices

C̃ν̃ν̃ = [Cov[ννH] Cov[ννT]Cov[ννT]∗ Cov[ννH]∗] . (4.21)

To find the block sub-matrices, which requires the evaluation of the fourth moments of random
variables, i.e. 𝛤 (𝑏)𝑚 [𝑛], Iserli’s theorem is applied to reduce the total expectation into paired partitions
of expectations. A summary may be found in [Bau14, pp. 713–717], here, one usesE[𝑋1𝑋2𝑋3𝑋4] = E[𝑋1𝑋2] E[𝑋3𝑋4] + E[𝑋1𝑋3] E[𝑋2𝑋4] + E[𝑋1𝑋4] E[𝑋2𝑋3] (4.22)

and E[𝑋1𝑋2𝑋3] = 0 , (4.23)

where𝑋1 to𝑋4 are zero-mean complexGaussian randomvariables andmay have arbitrary conjugations,
i.e. 𝑋3 = 𝑋 ∗1 . After many algebraic reformulations and by using Iserli’s theorem and the assumptions
(4.4) and (4.5), one finds the sub-covariance matrices

Cov[ννH] =
⎛⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑀∑𝑖=−𝑀

⎡⎢⎢⎢⎢⎢⎣
𝑀∑𝑚=−𝑀 E[𝜎0𝑖 𝜎0𝑚]⎡⎢⎢⎢⎢⎣

𝛽 (1)1 4𝛽 (1)2 2𝑄(1) |||𝛼 (1)1,𝑖 |||2|||𝛼 (1)2,𝑚 |||2 ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝛽 (𝐵)1 4𝛽 (𝐵)2 2𝑄(𝐵) |||𝛼 (𝐵)1,𝑖 |||2|||𝛼 (𝐵)2,𝑚 |||2
⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎦

+ E[𝜎0𝑖 ]
⎡⎢⎢⎢⎢⎢⎣
𝛽 (1)1 2𝑄(1) (|||𝛼 (1)1,𝑖 |||2 𝑃 (1)N2 + 𝛽 (1)2 2|||𝛼 (1)2,𝑖 |||2 𝑃 (1)N1) ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝛽 (𝐵)1 2𝑄(𝐵) (|||𝛼 (𝐵)1,𝑖 |||2 𝑃 (𝐵)N2 + 𝛽 (𝐵)2 2|||𝛼 (𝐵)2,𝑚 |||2 𝑃 (𝐵)N1 )

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

+⎡⎢⎢⎢⎢⎣
𝑃 (1)N1𝑃 (1)N2𝑄(1) ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝑃 (𝐵)N1 𝑃 (𝐵)N2𝑄(𝐵)

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠
⊗ I𝑁 (4.24)
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and

Cov[ννT] = 𝑀∑𝑖=−𝑀 𝑀∑𝑚=−𝑀 E[𝜎0𝑖 𝜎0𝑚] E[ej(𝜙𝑖+𝜙𝑚)]⎡⎢⎢⎢⎢⎣
𝛽 (1)1 4𝛽 (1)2 2𝑄(1) 𝛼 (1)𝑖 𝛼 (1)𝑚 ⋯ 0⋮ ⋱ ⋮0 ⋯ 𝛽 (𝐵)1 4𝛽 (𝐵)2 2𝑄(𝐵) 𝛼 (𝐵)𝑖 𝛼 (𝐵)𝑚

⎤⎥⎥⎥⎥⎦ ⊗ I𝑁 . (4.25)

In a last step, the parameters of the augmented covariance matrix, i.e. power factors, CASR and noise
power must be found. They can be found from knowledge of the antenna pattern and system attitude
parameters and must be refined from calibration measurements on ground and during operation. The
following steps show, how they are found from antenna pattern and system attitude parameters, which
provides full knowledge of those parameters for simulation. The influence of calibration and therefore
not fully known parameters is neglected. The CASR was already derived in Section 2.4.3 and used in
the derivation of (4.24) and (4.25). Similarly, one finds the ambiguity-to-signal-ratios on image level

|||𝛼 (𝑏)𝑧,𝑚 |||2 =
𝑘DC+ 2𝜋𝑚𝛥𝑥 + 𝑘BW2∫𝑘DC+ 2𝜋𝑚𝛥𝑥 − 𝑘BW2

|||𝐻𝑧(𝑘′)𝑀 (𝑏)𝑧 (𝑘′− 2𝜋𝑚𝛥𝑥 )|||2 d𝑘′
𝑘DC+ 𝑘BW2∫𝑘DC− 𝑘BW2

|||𝐻𝑧(𝑘′)𝑀 (𝑏)𝑧 (𝑘′)|||2 d𝑘′ , (4.26)

with 𝑧 indexing the respective channel. The power factors 𝛽 (𝑏)1 denote the radiometric sensitivity of
the system for each interferogram, which may be related to the first window function 𝑏 = 1

𝛽 (1)1 2 = Var[𝑢(1)1 [𝑛] ||| 𝜎0]𝜎0∑∞𝑚=−∞|||𝛼 (1)1,𝑚 |||2 (4.27)

by

(𝛽 (𝑏)1𝛽 (1)1 )2 =
𝑘DC+ 2𝜋𝑚𝛥𝑥 + 𝑘BW2∫𝑘DC+ 2𝜋𝑚𝛥𝑥 − 𝑘BW2

|||𝐻1(𝑘′)𝑀 (𝑏)1 (𝑘′)|||2 d𝑘′
𝑘DC+ 𝑘BW2∫𝑘DC− 𝑘BW2

|||𝐻1(𝑘′)𝑀 (1)1 (𝑘′)|||2 d𝑘′ , (4.28)

if only the main signal is present. The power ratio between images 1 and 2 is found similarly

𝛽 (𝑏)2 =
𝑘DC+ 2𝜋𝑚𝛥𝑥 + 𝑘BW2∫𝑘DC+ 2𝜋𝑚𝛥𝑥 − 𝑘BW2

|||𝐻2(𝑘′)𝑀 (𝑏)2 (𝑘′)|||2 d𝑘′
𝑘DC+ 𝑘BW2∫𝑘DC− 𝑘BW2

|||𝐻1(𝑘′)𝑀 (𝑏)1 (𝑘′)|||2 d𝑘′ . (4.29)
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The noise power equals the imaged power of a scene with scattering coefficient 𝜎0NE for a reference
flat window 𝑏 = 1

𝑃 (1)N1 = Var[𝑢(1)1 [𝑛] ||| 𝜎0 = 𝜎0NE] = 𝛽 (1)1 2𝜎0NE ∞∑𝑚=−∞|||𝛼 (1)1,𝑚 |||2 (4.30)

and similarly for channel 2
𝑃 (1)N2 = Var[𝑢(1)2 [𝑛] ||| 𝜎0 = 𝜎0NE] = (𝛽 (1)1 𝛽 (1)2 )2𝜎0NE ∞∑𝑚=−∞|||𝛼 (1)2,𝑚 |||2 . (4.31)

If a different window function is used the noise power must be scaled by the ratio

𝑃 (𝑏)N𝑧𝑃 (1)N𝑧 =
𝑘DC+ 2𝜋𝑚𝛥𝑥 + 𝑘BW2∫𝑘DC+ 2𝜋𝑚𝛥𝑥 − 𝑘BW2

|||𝑀 (𝑏)𝑧 (𝑘′− 2𝜋𝑚𝛥𝑥 )|||2 d𝑘′
𝑘DC+ 𝑘BW2∫𝑘DC− 𝑘BW2

|||𝑀 (1)𝑧 (𝑘′)|||2 d𝑘′ , (4.32)

because the additive noise is assumed to be white.

4.3 Interferometric Performance of Coherent Ambiguity Removal

The evaluation of the interferometric performance bases on themodel configuration as given in Tab. A.1
in the Appendix, which yields the exemplary magnitude weighting as shown in Fig. 4.1.

4.3.1 Demonstration of LMMSE Look Combination

In this section, the improvement of interferometric performance by combining windowed interfero-
grams under a LMMSE condition is discussed. Fig. 4.4 shows the interferometric performance of all
single windowed interferograms and after combination using the LMMSE technique, as well as the
CRB (3.7) as a reference of optimum performance with completely removed biases.

The best performing single interferogram uses a window function (𝑏 = 10 or 𝑏 = 11) centered at the
Doppler centroid, where the best CASR is achieved as shown in Tab. 4.1. However, it does not process
the complete available bandwidth and has therefore less independent samples for noise averaging.
This results in a loss of interferometric performance by a factor of 3.75 at 100 samples compared to the
performance of the uncorrected interferogram. The uncorrected interferogram, which is generated
with a flat window function over the full processed Doppler bandwidth, achieves best results for low
numbers of samples, but has a worse CASR than the best performing windowed interferogram at large
numbers of samples.
The LMMSE technique combines the information from all windowed interferograms. For low

numbers of samples, the interferometric performance is equal to the performance of the uncorrected
interferogram. One finds by observing the weights t , that the LMMSE algorithm is only multi-look
processing the interferogram [Por76]. The biases by coherent ambiguities come into relevance for
larger numbers of samples, because random errors by noise are suppressed. One observes varying levels
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Fig. 4.4: Velocity estimation error for ocean in Douglas sea state 6 using interferograms with applied window
functions and the LMMSE combination of interferograms to multi-look and remove biases by ambiguities. The
CRB for the unbiased phase estimator is given as reference.

of biases in the single interferograms, due to the modulation of the CASR by the applied windows. The
LMMSE algorithm adapts the weights t , to trade-off systematic and random errors, such that the MSE
is minimal. The trade-off is experienced at a slight deterioration from the CRB above of 103 samples,
because the adaptation of weights t to remove biases occurs at the expense of less averaging of the
inherent noise.
At 990 000 samples, the effect of simulation model-induced biases is observable, compare Fig. 3.4.

An analysis of the algorithms beyond these numbers of samples is not possible.
From simulations with different overlapping and non-overlapping window functions, it is found,

that the CRB for low numbers of samples is achieved by non-overlapping window functions. Overlap-
ping window functions increase the interferometric phase error, because their samples are partially
correlated, which was not considered in the algorithm derivation. However, the simulations showed,
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Tab. 4.2: Improvement of interferometric performance related to the uncorrected interferogram by coherent
ambiguity removal algorithms on interferogram level for reference product resolution of Harmony 1.2 km×1.2 km
(15 000 samples)

Douglas IIR equalizer LMMSE augm. LMMSE
sea state 68.2% 95.4% 68.2% 95.4% 68.2% 95.4%6 4.05 5.53 3.22 4.37 2.97 3.695 2.34 2.62 2.04 2.36 1.91 1.972 1.14 1.17 1.07 1.10 1.16 1.19

that the trade-off may be reduced with overlapping window functions at larger numbers of averaging
samples. The choice of window functions is subject to detailed analysis, when implementing the
algorithm on real data.

4.3.2 Algorithm comparison

The prior information incorporated in the LMMSE algorithm achieves an advantage in the case of low
SNR (low sea state) and low numbers of samples. However, the interferometric phase error exceeds
the requirements and can not contribute to achieving this goal. Note, that the 20 cm/s are errors on
ground and the interferometric performance is with respect to line-of-sight direction. The Harmony
mission targets product resolutions between 1 km2 to 25 km2 (104 to 25 ⋅ 104 samples) to achieve the
scientific requirements [Rom20]. In this range, coherent azimuth ambiguities show a biasing effect
on interferometric performance. Both, the IIR equalizer and the presented LMMSE algorithm can
remove this effect. However, the CRB, representing the optimum (best achievable) performance, is not
achieved by any of both. The IIR algorithm scales the thermal noise by adding shifted versions of the
interferogram, resulting in a lower coherence and larger phase variance. One sees, that the LMMSE
algorithm can not achieve the performance of the IIR equalizer, especially in the case where biases are
dominant. I.e., in the highest simulated sea state 6 and 15 000 samples, the LMMSE algorithm needs
a factor of 1.61 times more samples to achieve the interferometric performance of the IIR equalizer.
For high sea states, compare Fig. 4.5 (a), the augmented LMMSE algorithm shows a small deviation
to the simpler LMMSE algorithm in the range of 900 to 66 000 samples. This may be a result of
the assumptions and simplifications made when developing the algorithms, whereby most of the
correlations between samples are neglected. One may use the LMMSE algorithm for these numbers
of samples and when the DPCA condition is fulfilled. For 990 000 samples and high sea states, the
model-induced biases impact the estimation for both the IIR equalizer and the LMMSE technique.
Tab. 4.2 summarizes the simulated interferometric performance improvement for the reference

product resolution, corresponding to 15 000 samples. In a sea state 6 case, the interferometric per-
formance of the (augmented) LMMSE is worse than the performance of the IIR equalizer, due to the
bias-variance trade-off. For the lowest simulated sea state 2, the performance is comparable or better,
because the effect of coherent ambiguities is not the dominating error source and only random errors
must be minimized. To achieve a similar performance improvement in sea states 2 and 5 compared to
sea state 6 at reference product resolution, there are 603 891 and 65 920 samples required, respectively.
This improvement may be realized for sea state 5, but for sea state 2, more samples are needed, than
offered by the available product resolution range of the Harmony mission.
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(c) Douglas sea state 2: Wind speed of 3.78 m/s, E[𝜎0] = −19.7 dB
Fig. 4.5: Interferometric performance of ATI system with azimuth ambiguity removal by LMMSE combination
of looks over number of averaged samples and a noise level of 𝜎0NE = −20.5 dB.
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Fig. 4.6 shows results for a 97.5% and 75.0% fulfilled DPCA condition. The augmented LMMSE
algorithm is least impacted by a not fulfilled DPCA condition. The algorithm leverages the non-circular
property of the interferometric data samples to separate ambiguous and main signal components.
Especially in the 75% case, the probability distributions of the main part and the two first ambiguities
are maximally separated due to the ±90° additional interferometric phase offset per ambiguity. The
loss of coherence due to coherent ambiguities [Vil12], which is observable for the IIR equalizer and
the unbiased CRB, is circumvented by the augmented LMMSE algorithm. The simulation shows, that
it achieves better interferometric performance than the IIR equalizer, although it has to trade off bias
and variance.

The overall degradation of the CRB with deviation from the DPCA condition validates the assump-
tion from Section 2.4.3 and observations [Lóp21], that the interferometric phase bias should be zero to
minimize the loss of coherence and improve the interferometric performance. However, the DPCA
condition may not always be fulfilled, i.e. over the full swath. In those cases, the augmented LMMSE
algorithm should be utilized.

The sensitivity of IIR equalizer and (augmented) LMMSE algorithms concerning calibration errors
of baseline and antenna pattern is analyzed in an associated paper [Ric22]. The results are not stated
again, but considered for drawing conclusions at the end of this work.
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(b) Douglas sea state 6: Wind speed of 15.23 m/s, E[𝜎0] = −5.9 dB and 75.0% of DPCA condition fulfilled

Fig. 4.6: Interferometric performance of ATI system over number of averaged samples and a noise level of𝜎0NE = −20.5 dB with not fulfilled DPCA condition.



5 Multi-Channel Estimation

TheHarmony satellites will carry three antennas with independent hardware, hence three channels can
be formed, which feature mutual along-track baselines, compare Fig. 2.2. A pair of images generated
from those channels can be interferometrically processed and ambiguities removed as described in
the previous chapter. Since the Harmony mission shall perform highly accurate measurements of
scientific parameters, a goal is to increase interferometric performance with all observed data. In
this chapter, the improvement made with multi-channel measurements is theoretically analyzed and
algorithms for ambiguity removal based on harmonic analysis are described and evaluated. Of course,
one could implement algorithms that are based on minimizing the MSE as done for two channels.
But, any algorithm using the scheme from Chapter 4 requires accurate knowledge of each modulated
CASR. This chapter focuses on techniques, i.e. similar to a Fourier transform, that can estimate
the main signal component without depending on this knowledge. Such techniques are already
applied in tomographic processing to separate different scattering phase center positions, i.e. multiple
signal classification (MUSIC) and minimum variance distortionless response (MVDR) [Fre10], and are
analyzed with respect to their ambiguity removal capabilities.

5.1 Optimum Estimation Performance of Multi-Channel Acquisitions

Before introducing the algorithms, the optimum performance for estimating interferometric phases
from multi-channel acquisitions (> 2 channels) is of interest. In this section, an equation for the
unbiased3 CRB using 𝑍 channels as shown in Fig. 5.1 is derived. With this result, the expected
reduction of the CRB using multiple channels is given in general and discussed with respect to the
Harmony mission.

5.1.1 General Expression of Optimum Estimation Performance

Multi-channel acquisitions of fully developed speckle of ocean and sea surfaces yields jointly complex
Gaussian distributed images u with probability density function [War13, pp. 289–307] [Has85]𝑓 (u[𝑛] || 𝑣r) = 1𝜋 det(C(𝑣r)) e−uH[𝑛]C−1(𝑣r)u[𝑛] , (5.1)

where 𝑣r is the constant radial velocity of the scene and u[𝑛] being samples from the 𝑍 focused and
co-registered images and det(C(𝑣r)) is the determinant of the covariance matrix

C(𝑣r) = E[u[𝑛]uH[𝑛]] = ⎡⎢⎢⎢⎢⎣
𝜎21 𝛾12𝜎1𝜎2 … 𝛾1𝑍𝜎1𝜎𝑍𝛾 ∗12𝜎1𝜎2 𝜎22 … 𝛾2𝑍𝜎2𝜎𝑍⋮ ⋮ ⋱ ⋮𝛾 ∗1𝑍𝜎1𝜎𝑍 𝛾 ∗2𝑍𝜎2𝜎𝑍 … 𝜎2𝑍

⎤⎥⎥⎥⎥⎦ , (5.2)

3 In this context, unbiased refers to an underlying signal model without the presence of coherent ambiguities
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Fig. 5.1: Interferometric phase estimation and ambiguity removal from multi-channel acquisitions.

where 𝜎2𝑧 denotes the power of channel 𝑧. The cross-correlation coefficients between arbitrary ATI
channels 𝑖 and 𝑗 are of the form [Gol87]𝛾𝑖𝑗 = ||𝛾𝑖𝑗 || ej 2𝜋𝜆 𝐵ATI,𝑖𝑗𝐿d𝐿g,tot 𝑣r𝑣Sat , (5.3)

using the previously derived sensitivity (2.16) and assuming the loss factors to be independent of the
channels. In a last step, all interferometric phases are referenced to the most sensitive interferometric
measurement 𝑖 = 1, 𝑗 = 𝑍 , which yields

𝛾𝑖𝑗 = ||𝛾𝑖𝑗 || ej 𝐵ATI,𝑖𝑗𝐵ATI,1𝑍 𝜙 = ||𝛾𝑖𝑗 || ej𝑏𝑖𝑗𝜙 , (5.4)

where the interferometric phase 𝜙 = 2𝜋𝜆 𝐵ATI,1𝑍𝐿d𝐿g,tot 𝑣r𝑣Sat was introduced and relative baselines 𝑏𝑖𝑗
are depicted in Fig. 2.2 for 𝑍 = 3. The estimation variance of the interferometric phase 𝜙 from 𝑁
independent samples is lower bounded by the CRB [Leh08, pp. 504–505]

𝜎2CRB,𝑍 = 1𝑁 𝐼 (𝑍 )F (𝜙) , (5.5)

with the Fisher Information being [Leh08, pp. 484–487]

𝐼 (𝑍 )F (𝜙) = −E[∂2 ln 𝑓 (u[𝑛] || 𝜙)∂𝜙2 ] . (5.6)

The double derivative in the Fisher Information evaluates to∂2 ln 𝑓 (u[𝑛] || 𝜙)∂𝜙2 = ∂2∂𝜙2(− ln det(C) − uH[𝑛]C−1u[𝑛])= − ∂∂𝜙 1det(C) ∂ det(C)∂𝜙 − uH[𝑛]∂2C−1∂𝜙2 u[𝑛]
= − tr{C−1 ∂2C∂𝜙2 } − tr{∂C−1∂𝜙 ∂C∂𝜙 } − uH[𝑛]∂2C−1∂𝜙2 u[𝑛] , (5.7)
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where the trace operator tr{⋅} and the identities [Dhr13, pp. 149–170]∂ det(C)∂𝜙 = det(C) tr{C−1 ∂C∂𝜙 }
(5.8)∂2 det(C)∂𝜙2 = det(C)[tr{C−1 ∂2C∂𝜙2 } + tr{C−1 ∂C∂𝜙 }2 − tr{∂C−1∂𝜙 ∂C∂𝜙 }] (5.9)∂C−1∂𝜙 = −C−1 ∂C∂𝜙 C−1 (5.10)

have been used. After applying the expectation operator

E[∂2 ln 𝑓 (u[𝑛] || 𝜙)∂𝜙2 ] = − tr{C−1 ∂2C∂𝜙2 } − tr{∂C−1∂𝜙 ∂C∂𝜙 } − E[tr{∂2C−1(𝜙)∂𝜙2 u[𝑛]uH[𝑛]}]
= − tr{C−1 ∂2C∂𝜙2 + ∂C−1∂𝜙 ∂C∂𝜙 + ∂2C−1∂𝜙2 C

}
(5.11)

and using the third identity to reformulate the double derivative of the inverse covariance matrix, one
finds the Fisher Information for 𝑍 channels as

𝐼 (𝑍 )F (𝜙) = tr{C−1 ∂2C∂𝜙2 + ∂C−1∂𝜙 ∂C∂𝜙 } − tr{∂C−1∂𝜙 ∂C∂𝜙 + ∂∂𝜙(dCd𝜙 C−1)}
(5.12)

= − tr{∂C−1∂𝜙 ∂C∂𝜙 } = tr{C−1 ∂C∂𝜙 C−1 ∂C∂𝜙 } . (5.13)

The former expression is used for analytical derivation of the CRB for 2 and 3 channels and the latter
is better suited for numerical calculations.

5.1.2 Optimum Bounds of 2- and 3-Channel Interferometry

The CRB for 2-channel interferometry is well known [Tou94], but can also be easily derived using
the multi-channel covariance matrix (5.2) and the first expression of the Fisher Information (5.13).
Applying this procedure yields the same result as given in the literature [Tou94] and what was used
before in (3.7)

𝜎2CRB,2 = 12𝑁 1 −||𝛾13||2||𝛾13||2 . (5.14)

The analytical expression of the CRB for 3-channel interferometry is similarly found from (5.2) and
(5.13), where the inverse of the covariance matrix is calculated using Cramer’s rule. After many
reformulations, one finds its CRB

𝜎2CRB,3 = 12𝑁 1 −||𝛾12||2 −||𝛾23||2 −||𝛾13||2 + 2Re {𝛾12𝛾23𝛾 ∗13}𝑏212||𝛾12||2 + 𝑏223||𝛾23||2 +||𝛾13||2 − 2(𝑏12 + 𝑏23 − 𝑏12𝑏23)Re {𝛾12𝛾23𝛾 ∗13} . (5.15)

Fig. 5.2 shows the improvement in terms of relative reduction of the CRB when introducing a
third middle channel. The middle channel does not improve the estimation variance in highest
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Fig. 5.2: Improvement of Fisher Information with middle channel compared to only the outermost channels
over position of the middle antenna 𝑏23 = 1 − 𝑏12 and coherence, assuming equal coherence between channels||𝛾 || = ||𝛾12|| = ||𝛾23|| = ||𝛾13||.
coherence regions and a symmetric positioning 𝑏12 = 0.5. An improvement is observable for decreasing
coherence up to a maximum of 2.0, in cases with no coherence and a fully asymmetrical middle antenna
positioning (𝑏12 = 0 or 𝑏12 = 1). From mechanical and structural limitations, the middle antenna that
generates this channel, may only be located in a close to symmetrical position. Hence, the improvement
in CRB may be negligible. However, all three channels can be used to suppress or completely remove
azimuth ambiguities. This capability is analyzed in the following section.

5.2 Multi-Channel Harmonic Analysis

5.2.1 Algorithm Description

The focused and co-registered one-dimensional azimuth SAR image from 𝑍 channels, compare Fig. 5.1,
may be modeled as

u[𝑛] = ⎡⎢⎢⎢⎢⎣
𝑢1[𝑛]𝑢1[𝑛]⋮𝑢𝑍 [𝑛]

⎤⎥⎥⎥⎥⎦ = u′[𝑛] + µ[𝑛] , (5.16)

where u′[𝑛] ∈ C𝑍×1 is the coherent signal part and µ[𝑛] ∈ C𝑍×1 is the non coherent signal part, mainly
due to noise but also scene de-correlation over time [Bam98]. In interferometry, one is interested in
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the cross-correlation information between images, which is provided by the coherent signal part. This
part does not only consist of the main signal contribution but also the coherent ambiguities. One may
express the SAR images

u[𝑛] = 𝑀∑𝑚=−𝑀 h(𝜙𝑚)𝛤𝑚[𝑛] + µ[𝑛] = H(𝜙−𝑀 , 𝜙−𝑀+1,… , 𝜙𝑀)Γ [𝑛] + µ[𝑛] (5.17)

with 2𝑀 coherent ambiguities and a matrix containing the harmonic signatures of their interferometric
phases

H(𝜙−𝑀 , 𝜙−𝑀+1,… , 𝜙𝑀) = [h(𝜙−𝑀 ) h(𝜙−𝑀+1) … h(𝜙𝑀 )] = H𝑀 ∈ C𝑍×2𝑀+1 . (5.18)

The model is restricted to a maximum of 2𝑀 ambiguities, because the effect of even higher order ambi-
guities are dominated by the effect of noise, and their biases are neither observable nor distinguishable.
A motion of the surface results in a phase change of the coherent signal part for short baselines. For a
constant surface velocity during acquisition, the vector

h(𝜙) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1ej 𝐵ATI,12𝐵ATI,1𝑍 𝜙ej 𝐵ATI,13𝐵ATI,1𝑍 𝜙⋮ej𝜙
⎤⎥⎥⎥⎥⎥⎥⎥⎦
= ⎡⎢⎢⎢⎢⎢⎣

1ej 𝑏12𝜙ej 𝑏13𝜙⋮ej𝜙
⎤⎥⎥⎥⎥⎥⎦
∈ C𝑍×1 (5.19)

shows a Vandermonde structure [Dhr13, p. 56] and the problem formulation shows similarities to
direction of arrival estimation with antenna arrays. This description holds in general for stripmap,
ScanSAR, TOPS and other scanning modes. However, one must consider, that the matrix H𝑀 might
be depending on azimuth position for especially ScanSAR, because this mode images only parts of the
Doppler spectrum, which varies with azimuth position [De 06].

The interferometric phases are frequencies of the complex exponential over the temporally separated
images. To solve for the interferometric phases, one may apply methods from harmonic analysis,
which are highly researched for finding direction of arrivals, i.e. MVDR — also known as Capon’s
algorithm — [Cap69; Ben05]

𝜙MVDR = argmax𝜙 1
hH(𝜙)Ĉ−1

uuh(𝜙) , (5.20)

where the sample covariance matrix

Ĉuu = 1𝑁tot
𝑁tot∑𝑖=1 u[𝑛 + 𝑖]uH[𝑛 + 𝑖] (5.21)

is used, or MUSIC [Sch86]

𝜙MUSIC = argmax𝜙 1
hH(𝜙)Û2ÛH2 h(𝜙) . (5.22)
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MUSIC requires the singular value decomposition of the sample covariance matrix

Ĉuu = [Û1 Û2]Σ̂V̂H , (5.23)

which is introduced in basic vector algebra or statistical signal processing textbooks. The ambiguity
removal problem has one major difference, which is the usually wide matrix H𝑀 , due to many coherent
ambiguities. The precise number of coherent ambiguities depends on the SAR system and geometry, as
discussed in Chapters 2 and 3. In direction of arrival estimation, the matrix H𝑀 is tall with 𝑍 > 2𝑀 + 1.
Then, the signal sub-space is distinguishable from the noise sub-space and MUSIC may be applied
[Sch86]. For a wide matrix H𝑀 , there exists no pure noise sub-space. However, from the Karhunen-
Loève transform it is known, that eigenvectors of a covariancematrix alignwith the principal directions
of variation of the data samples, where the eigenvector assigned to the largest eigenvalue denotes
the direction of highest variance [Hua98]. This eigenvector shows in direction of h(𝜙0), because the
main signal usually has the highest power due to damping of ambiguities by the antenna pattern.
To apply MUSIC, the signal sub-space is approximated by the eigenvectors of largest eigenvalues
and it is assumed that the sub-space spanned by remaining eigenvectors is free of signal. Using this
approximation yields a biased estimate, because the signal can not be perfectly reconstructed by
the truncated signal sub-space. In the Harmony mission case using three antennas, best results are
achieved by a two-dimensional signal sub-space, which reduces the MUSIC algorithm to the method
of Pisarenko [Pis73].

MUSIC requires the noise to be non-isotropic and white, here, a noise whitening technique [Bie83;
Pau86; Sto97] may be applied while processing real data. For the conducted simulations, noise whiten-
ing can be simply achieved by a multiplication

u′ =Wu , (5.24)

with the inverse of the known noise covariance matrix

W = E[µ[𝑛]µH[𝑛]]−1 . (5.25)

5.2.2 Interferometric Performance with Multiple Channels

The evaluation of the interferometric performance bases on themodel configuration as given in Tab. A.1
in the Appendix.

As expected, 3 antennas show a negligibly small improvement in noise averaging compared to the
two antenna case, which becomes observable in Fig. 5.3 (c) by comparing the algorithm performance
with respect to the CRB for 2 channels. But, 3 channels can be used to reduce the impact of coherent
ambiguities. For example, the 95.4%-quantile of velocity error in high signal power scenarios in
Fig. 5.3 (a) reduces by a factor of 9.79 at 99 000 samples. For increasing numbers of samples between
the targeted 1 km2 to 25 km2 (104 to 25 ⋅ 104 samples), the velocity error does not further decrease with
MUSIC and MVDR, but is limited due to residual biases of the estimators. MUSIC and MVDR can only
suppress the biases by coherent ambiguities. The estimators are not optimum for removal of coherent
ambiguities withmultiple channels, because the error is not decreasingwithmore independent samples.
Also, if an ambiguity 𝑚 contains different power over channels due to different antenna sizes per
channel, the suppression capability gets qualitatively reduced. Reason is, that the data model assumes
a vector h(𝜙), according to (5.19), with equal power per channel.
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Tab. 5.1: Improvement of interferometric performance related to the uncorrected interferogram by coherent
ambiguity removal with multi-channel algorithms for reference product resolution of Harmony 1.2 km × 1.2 km
(15 000 samples)

Douglas IIR equalizer MUSIC MVDR
sea state 68.2% 95.4% 68.2% 95.4% 68.2% 95.4%6 4.14 5.45 4.02 5.32 3.87 5.115 2.35 3.05 2.36 3.13 2.31 3.002 1.22 1.24 1.36 1.45 1.36 1.39

Tab. 5.1 summarizes the simulated interferometric performance improvement for the reference
product resolution, corresponding to 15 000 samples. In sea state 6, the interferometric performance of
MUSIC and MVDR is worse than the performance of the IIR equalizer, due to the residual biases. For
lower sea states 2 and 5, the performance is comparable or better due to the third channel. To achieve a
similar performance improvement using the IIR equalizer in sea states 2 and 5 compared to sea state 6
at reference product resolution, there are 482 798 and 68 989 samples required, respectively. Using the
MUSIC algorithm, there are 495 800 and 69 871 samples required, respectively. The improvement may
be realized for sea state 5, but for sea state 2, more samples are needed than offered by the maximum
product resolution of the Harmony mission. The MVDR algorithm exceeds the maximum number of
samples for the Harmony mission to achieve similar improvement, due to increasing residual biases
with decreasing SNR.



6 Conclusion

6.1 Overall Algorithm Comparison

In this work, several techniques for removal of coherent ambiguity biases or estimation of a main
signal in noise and coherent ambiguities were derived and their interferometric performance was
analyzed. Tab. 6.1 gives a summary on benefits and drawbacks of the investigated algorithms.
Because the IIR equalizer uses the ambiguous positions to estimate the ambiguous signals from

its corresponding main signal, the CASR must be known precisely, i.e. effective baseline. Otherwise,
biases are introduced from imperfectly removed ambiguities. The (augmented) LMMSE algorithm can
tolerate an absolute error, i.e. from an estimation error in the effective baseline. This error will bias
the estimate of the ambiguities, but, only the estimate of the main signal is of interest, and ambiguity
estimates are discarded. This effect is shown in an associated publication [Ric22].

6.2 General Conclusion and Outlook

The effect of coherent azimuth ambiguities limits the achievable interferometric performance, which
becomes worse the less azimuth ambiguities are suppressed by the antenna pattern. A complete
removal of their systematic error is only achieved by algorithms that consider the biasing effect by
coherent ambiguities. Especially, systems with low azimuth ambiguity suppression capabilities or
systems with high interferometric performance requirements need those algorithms. The Harmony
mission and its ATI mode was exemplarily studied during this work.
The IIR equalizer algorithm achieves the best interferometric performance if the DPCA condition

is fulfilled. However, the simulations were performed on frozen scenes without modeling true wave
dynamics, which would have resulted in residual biases. The (augmented) LMMSE algorithm circum-
vents the dependency on scene dynamics and reduces calibration requirements, by disregarding the
information on ambiguous positions. It achieves removal of coherent ambiguity biases at a slight
loss of interferometric performance, i.e., a factor of 1.61 more samples are required to achieve similar
performance on an ocean in sea state 6. To draw a final conclusion on the remaining residual biases
due to scene dynamics, ambiguous and main interferometric signals must be analyzed and compared
using real data. Also, the (augmented) LMMSE algorithm must be applied to real data to show its
feasibility. Further theoretical analysis must be done regarding number, shape and spectral support of
window functions, minimum required dynamic of modulated CASR and consideration of correlated
samples, and the effect on bias-variance trade-off. For both algorithms, IIR equalizer and (augmented)
LMMSE, it is necessary to adaptively choose the number of averaged samples. Instead of the LMMSE
combination one may also apply a simpler maximum likelihood (ML) estimator, that does not base on
prior interferometric information and hence, is less limited to this knowledge. But, the ML estimator
must know the distribution of the interferometric data samples, which has to be estimated as well.
The LMMSE estimator needs only a coarse estimate of the sea state and its prior distributions for
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implementation, that can be taken from empirical knowledge or the biased measured data.
To evaluate the improvementmadewithmore than two channels, a general equation for the unbiased

CRB in ATI was derived. Using the results in the three channel case, it is found, that only asymmetrical
antenna placement or low coherence achieve improvements of the CRB, compared to common two-
channel interferometry. It remains interesting to find an analytic description of the biased CRB, where
more than one coherent signal component — main and ambiguous — is present.
Multiple channels enable the use of harmonic analysis to estimate the main interferometric phase.

The implemented MVDR and MUSIC algorithms show similar coherent ambiguity suppression ca-
pabilities, while not depending on prior knowledge of scene and system parameters, i.e. CASR or
power factors. This makes the algorithms easier to implement, because IIR equalizer and (augmented)
LMMSE algorithm require this knowledge, and must cope with their variation over the full swath
width. The interferometric performance of MUSIC and MVDR is limited by residual biases. Nonethe-
less, an improvement of interferometric performance by a factor of 9.79 makes them available for
application in the Harmony mission. Further improvements must consider a removal of the residual
biases, such that only random errors limit the interferometric performance. To apply the harmonic
analysis to real scenarios, an adaptive estimation of the covariance matrix from the non-stationary
scene is necessary. A different, but interesting discussion is, how the DCA estimator performs with
multiple channels and coherent ambiguities.

The algorithms were tested and evaluated using a simple interferometric SAR data model on a frozen
multiplicative noise scene. To project the performance of an algorithm in real scenarios, i.e. dynamic
ocean scenes, a sophisticated (forward) model of the ocean dynamics and SAR imaging is required.
This will help to identify and improve appropriate techniques and evaluate their performance under
defined conditions.



A Model Parameter Values

Tab. A.1: Simulation model parameterization used for interferferometric performance evaluation

Harmony mission Customized
Parameter Description Chapter 3 and 5 Chapter 4𝑅0 slant range 700 km 700 km𝑥0 Harmony-Sentinel separation 348 km 260 km𝑣Sat satellite velocity 7600 m/s 7600 m/s𝜙inc incidence angle 40° 40°𝑓PRF pulse repetition frequency 1.5 kHz 1.17 kHz𝑓BW processed bandwidth 350Hz 700Hz𝜗sq Harmony squint 26.43° 20.38°𝐿d Doppler loss factor 0.8334 0.905𝑓0 carrier frequency 5.45GHz 5.45GHz𝛥𝑅 uncompr. range pulse width 7475m 7475m𝐿H,1 fore antenna length in azimuth 4m 4m𝐿H,2 mid. antenna length in azimuth 2m not used𝐿H,3 aft antenna length in azimuth 4m 4m𝐵ATI,13 physical fore-aft-baseline 12.16m 14.36m𝑏12 relative middle baseline 0.5 not used𝜎0NE noise equivalent sigma nought −20 dB −20 dB𝑃Tx transmit power 10 kW 10 kW𝐴eff effective antenna size 𝐿 ⋅ 12m 𝐿 ⋅ 12m𝜒 oversampling factor 16 16
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