
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Multi-Vehicle Detection and Tracking in
Aerial Image Sequences based on Deep

Learning

Somesh Khandelia

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Multi-Vehicle Detection and Tracking in
Aerial Image Sequences based on Deep

Learning

Multi-Vehicle Erkennung und Verfolgung in
Luftbild-Sequenzen basierend auf Deep

Learning

Author: Somesh Khandelia
Supervisor: Prof. Dr.-Ing. habil. Alois Christian Knoll
Advisor: Walter Zimmer, M.Sc.
Submission Date: April 17, 2023

Disclaimer

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, April 17, 2023 Somesh Khandelia

iii

Acknowledgement

On the professional front, I am indebted to Mr. Walter Zimmer of the TUM AIR Chair,
for supervising my thesis and providing valuable guidance from the first day. He always
motivated me to strive for better. I am grateful to Mr. Franz Kurz, Mr. Maximilian
Langheinrich, Mr. Seyed Majid Azimi and Mr. Reza Bahmanyar of DLR (the German
Aerospace Center) for giving me the opportunity and resources to work on a very
interesting thesis. On the personal front, words alone cannot express my gratitude
towards my partner in the TUM master’s journey, Ms. Ashika Manjunath. I am also
grateful to my parents Mr. Anil Khandelia and Mrs. Anita Khandelia, my little sister
Ms. Yukty Khandelia and my grandmother Mrs. Lakshmi Dhanuka for keeping me
in their prayers and being my pillars of support. On the spiritual front, none of this
would have been possible, but for my God, Lord Shiva, from whom I derive my very
name Somesh. In times of anxiety and stress, I chanted the most powerful mantra of
meditation that ever existed: Om Namah Shivaya!

v

Abstract

Multi-object detection is a classical challenge in the computer vision community which
involves the identification of up to several objects of interest in an image and constructing
bounding boxes around them to demarcate them from the background. Multi-object
tracking (MOT) takes this a step further by constructing the course followed by each of
the detected objects in every image frame of a video sequence. The research community
works actively on the task of MOT via the MOT benchmark that offers the most popular
datasets which are generally centered around pedestrian detection and tracking on the
ground. However, in this work, we tackle the relatively less worked-upon problem
of detecting and tracking vehicles in aerial imagery and 11 classes of objects on the
road in ground image sequences. We pick certain state-of-the-art (SOTA) algorithms
from the MOT benchmark and apply them to our domain which consists of two
sharply contrasting datasets, the low FPS high resolution DLR dataset containing aerial
images captured from a helicopter with large camera motion and the high FPS medium
resolution A9 dataset containing ground images captured from traffic monitoring
systems with no camera motion. We train several YOLOv7 based detection models and
test several SOTA tracking algorithms on the two datasets to conclude that intersection-
over-union (IoU) and Kalman Filter work well on the A9 dataset but not on the DLR
dataset, whereas appearance features and camera motion compensation make more
sense for the DLR dataset and not so much for the A9 dataset. We therefore propose a
new robust tracking algorithm called Byte-De-SORT that lacks the Kalman Filter and is
a combination of the IoU based ByteTrack and the appearance features based DeepSORT.
Byte-De-SORT achieves a competitive (HOTA, MOTA, IDF1) score of (0.56, 0.75, 0.63)
on the DLR dataset and (0.48, 0.68, 0.51) on the A9 dataset, making it the best overall
method that can be applied to both the datasets. It achieves an average inference speed
of 2.82 FPS on the DLR dataset and 14.34 FPS on the A9 dataset, making it also suitable
for real-time tracking.

vii

Kurzfassung

Die Erkennung mehrerer Objekte ist eine klassische Herausforderung in der Computer-
basierten Bilderkennung. Diese beinhaltet die Identifizierung von mehreren Objekten
in einem Bild mit einer 2D Box, um sie vom Hintergrund abzugrenzen. Das Verfolgen
von mehreren Objekten (multi-object tracking, kurz MOT) geht noch einen Schritt weiter,
indem es den Verlauf von jedem erkannten Objekt in einer Videosequenz konstruiert. Die
Forschungsgemeinschaft arbeitet aktiv an der MOT-Aufgabe. Hierzu gibt es den MOT-
Benchmark, der die beliebtesten Datensätze im Bereich der Erkennung und Verfolgung
von Fußgängern bietet. In dieser Arbeit fokussieren wir uns jedoch auf das relativ
weniger bearbeitete Problem, der Erkennung und der Verfolgung von Fahrzeugen
in Luftbildaufnahmen, sowie in Bildern aufgenommen aus Infrastrukturperspektive.
Wir wählen neuartige Algorithmen aus dem MOT-Benchmark aus und wenden sie in
unseren zwei Domänen an, die aus zwei Datensätzen bestehen. Der DLR Datensatz
wurde aus einem Hubschrauber aus aufgenommen und beinhaltet hochaufgelöste
Luftbilder, die mit einer niedrigen Bildwiederholungsrate aufgenommen wurden. Bei
der Aufnahme hat sich die Kamera mitbewegt, was eine große Herausforderung an die
Verfolgung der Fahrzeuge darstellt. Der zweite Datensatz (A9 Datensatz) hat eine höhere
Bildwiederholungsrate, jedoch eine geringere Bildauflösung. Dieser Datensatz enthält
Aufnahmen von statischen Verkehrsüberwachungskameras. Wir trainieren mehrere
YOLOv7-basierte Erkennungsmodelle und testen mehrere Algorithmen zur Verfolgung
von Fahrzeugen auf beiden Datensätzen. Letztenendes kommen wir zu dem Schluss,
dass der Schnittpunkt über die Vereinigung (Intersection-over-Union, kurz IoU) und der
Kalman-Filter gut auf dem A9 Datensatz funktionieren, jedoch weniger gut auf dem
DLR Datensatz. Die Verwendung von Erscheinungsmerkmalen sowie die Kompensation
der Kamerabewegung macht auf dem DLR Datensatz mehr Sinn als auf dem A9
Datensatz. Wir schlagen daher einen neuen robusten Algorithmus zur Verfolgung von
Fahrzeugen mit geringen Bildwiederholungsraten vor und nennen diesen Byte-De-
SORT. Aufgrund der geringen Bildwiederholungsrate kommt der Kalman-Filter hier
nicht zum Einsatz. Byte-De-SORT ist eine Kombination aus dem IoU-basierten ByteTrack
und dem auf Erscheinungsmerkmalen basierenden DeepSORT. Byte-De-SORT erreicht
ein wettbewerbsfähiges Ergebnis (HOTA=0,56, MOTA=0,75, IDF1=0,63) auf dem DLR
Datensatz sowie ein etwas niedrigeres Ergebnis (HOTA=0,48, MOTA=0,68, IDF1=0,51)
auf dem A9 Datensatz, was ihn zur besten Methode macht, die auf beiden Datensätzen
angewandt werden kann. Erreicht wird eine durchschnittliche Inferenzgeschwindigkeit
von 2,82 FPS auf dem DLR Datensatz und 14,34 FPS auf dem A9 Datensatz, sodass er
auch für eine eine Verfolgung von Fahrzeugen in Echtzeit geeignet ist.

ix

Contents

Disclaimer iii

Acknowledgement v

Abstract vii

Kurzfassung ix

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 1
1.3 Contribution . 2
1.4 Structural Outline . 3

2 Essential Background 5
2.1 Goals . 5
2.2 Object Classification . 5

2.2.1 What is Object Classification? . 5
2.2.2 How is it done? . 5
2.2.3 Metrics of evaluation . 8

2.3 Object Detection . 9
2.3.1 What is Object Detection? . 9
2.3.2 How is it done? . 9
2.3.3 Metrics of evaluation . 12

2.4 Object Tracking . 14
2.4.1 What is Object Tracking? . 14
2.4.2 How is it done? . 15
2.4.3 Metrics of evaluation . 18

3 Related Work 25
3.1 Goals . 25
3.2 Previous Theses . 25

3.2.1 Beheim et al., 2021 . 25
3.2.2 Kraus et al., 2020 . 27

3.3 Methodology based . 29
3.3.1 MPNTrack . 29
3.3.2 SiamMOT . 31

xi

Contents

3.3.3 TrackFormer . 33
3.4 State of the Art . 35

3.4.1 ByteTrack . 35
3.4.2 UAVMOT . 37
3.4.3 BoT-SORT . 40

4 Working on the DLR dataset 43
4.1 Dataset overview . 43
4.2 Detection experiments . 45

4.2.1 640 X 640 . 46
4.2.2 1280 X 1280 . 47
4.2.3 2560 X 2560 . 48
4.2.4 3200 X 3200 . 49

4.3 Tracking experiments . 50
4.4 Conclusion . 55

5 Working on the A9 dataset 57
5.1 Dataset overview . 57
5.2 Detection experiments . 67
5.3 Tracking experiments . 69
5.4 Conclusion . 74

6 Conclusion 75

7 Future Work 77

List of Figures 79

List of Tables 83

Bibliography 85

xii

1 Introduction

1.1 Problem Statement

Most of the research done today, in the domain of Multiple Object Tracking (MOT), is
focused around pedestrian tracking, at the ground level. Most algorithms developed
in recent times attempt to climb the leaderboard on the popular MOT benchmarks
like MOT15 [1], MOT16 [2], MOT17 [3], and MOT20 [4]. Consequently, state-of-the-art
(SOTA) architectures end up being developed for pedestrian tracking, whereas the
research community is relatively less active in developing algorithms for other domains.
However, other domains do have their own relevance, importance and applications.
Therefore, it would make sense to leverage the SOTA architectures and algorithms,
developed for the domain of pedestrian tracking, in these other domains in order to
establish good baselines. Establishing baselines gives us a quantitative insight into
the difference between different domains. For example, from a qualitative point of
view, the DLR dataset (see Chapter 4) has extremely small objects (GSD: 3-6 cm, image
resolution: 5472 X 3648) captured from a helicopter, in comparison to the conventional
MOT datasets which generally consist of image sequences on the ground level. One
can easily argue that tracking multiple objects simultaneously is going to be relatively
difficult on this dataset, but one of the goals of this thesis is to explain the reasoning
behind that argument, quantitatively, rather than leaving it to intuition. Once we become
objectively aware of the challenges posed by these different domains, the next step is
to build upon the SOTA algorithms further, to overcome their shortcomings (e.g. we
found IoU based algorithms do not work well with low FPS data) while being applied
to these domains. Naturally, the ideal goal would be to obtain an approach that is
one-size-fits-all, and therefore works well for multiple domains. To summarise, the goal
of this thesis is to further develop upon a tracking method, that used to originally
work well on popular MOT benchmarks, such that it can now very well be applied to
track both: "Vehicles in aerial imagery" (the DLR dataset, see chapter 4) as well as
"Multiple (11) classes of objects, in traffic monitoring systems, on the ground level"
(the A9 dataset, see Chapter 5).

1.2 Motivation

Vehicle tracking has several applications including surveillance systems, traffic moni-
toring, autonomous driving, and accident prevention. The Providentia project [5] and
consequently the A9 dataset [6] (see Chapter 5) are aimed at creating a digital twin of

1

1 Introduction

the traffic based on the data collected from the A9 highway in Garching (a little north
of Munich, Germany). This digital twin can be streamed to autonomous vehicles on
the network so that they are better aware of the road and traffic conditions, and thus
accidents can be prevented much better. In the near future, it is planned that the 3D
perception pipeline of the Providentia project will use a detector based on YOLOv7 [7]
pretrained on MS COCO [8] and a tracker based on the SORT [9] algorithm. At the time
of writing this thesis, SORT was published more than 5 years back and therefore more
SOTA trackers should be tested in order to obtain potentially better alternatives to SORT.
The DLR [10] dataset (see Chapter 4), which is yet to be published, consists of very high
resolution aerial image sequences of vehicles in different scenarios like crowded city
streets and highways, and from a research perspective it is desirable to see how effective
can this dataset be, to serve as a benchmark for vehicle tracking in aerial imagery. Since
two very contrasting datasets presented themselves as candidates for vehicle tracking, it
was natural through intellectual curiosity to attempt to find a one-size-fits-all tracking
method that can be, in general, universally applied.

1.3 Contribution

The primary contribution of this thesis is a tracking algorithm called Byte-De-SORT.
We derive the name of this algorithm from two existing methods on which it is based,
namely ByteTrack [11] and DeepSORT [12]. Byte-De-SORT is largely based on the
SOTA tracking method ByteTrack [11], which has recently been used as a basis for
several tracking methods developed across domains, because of its simple yet promising
ideology of not throwing away low-score detections (confidence score of these detections
is a hyperparameter and can typically be between 0.15 and 0.5) while doing tracking.
However, the primary mode of data association in ByteTrack was IoU (see Section
2.4.2), which has been shown in this thesis to not work well for low FPS datasets
with large camera motion. Therefore, it had to be removed. Similarly, Kalman Filter
(see Section 2.4.2), which is a popular choice for motion modelling using a constant
velocity assumption, did not prove to be effective for datasets with low FPS and large
camera motion. Therefore, we removed the Kalman Filter based motion prediction from
ByteTrack as well. Camera motion compensation proved effective while working with
the DLR dataset, when we tried out the BoT-SORT [13] algorithm that uses OpenCV [14]
based image registration techniques to correct the Kalman Filter predictions. However,
the technique was too slow at inferencing (0.01 FPS) to be part of a real-time tracker
and hence we discarded the idea. For the purpose of data-association, inspired from
DeepSORT, we decided to use cosine distance between feature embeddings of detections
in the previous and current image frame. These feature embeddings are basically 512
dimensional vectors, obtained by using a ResNet-50 backbone trained on the task of
re-ID (see Section 2.4.2). Therefore, we obtained an online tracking algorithm for
real-time usage, based on the tracking-by-detection paradigm that can be directly
used off-the-shelf without training, because of the absence of a motion model, by

2

1.4 Structural Outline

plugging in a pretrained object detector and a re-ID model. Byte-De-SORT works
well on both a low FPS high resolution dataset containing very small objects with large
camera motion (DLR dataset, see Chapter 4) and a high FPS medium resolution dataset
containing large objects with no camera motion (A9 dataset, see Chapter 5).

The secondary contribution of this thesis work is the comprehensive study and
comparison of several existing SOTA tracking algorithms and their application to two
very contrasting datasets. We trained and tested several YOLOv7 based detectors on the
two datasets, since in tracking-by-detection paradigm, the performance of the detector
hugely influences the performance of the tracker. We trained with different image sizes
(640 X 640, 1280 X 1280, 2560 X 2560, 3200 X 3200), and discovered that resolution
has an impact on inference accuracy. We tested several tracking algorithms on the
two datasets in order to ascertain which characteristics of tracking algorithms worked
best with different properties of datasets. The tracking algorithms were pretrained on
VisDrone2020 [15] dataset, which has medium-sized vehicles captured from a drone,
since the DLR dataset has very small vehicles captured from a helicopter, while the A9
dataset has large vehicles captured from cameras hosted on traffic monitoring systems.

1.4 Structural Outline

In Chapter 1, we introduce the topic of the thesis, the necessity and motivation behind
conducting research on this topic and our contributions to the research community as
part of this thesis. Chapter 2 provides some conceptual background of multi-object
tracking to seamlessly walk through this thesis work. We start with the most basic
task of object classification and proceed to the more challenging tasks of detection
and tracking. We also explain the most popular metrics of evaluation for these tasks.
Chapter 3 discusses certain noteworthy research works on multi-object tracking. We
look at two previous theses works which are immediate predecessors of this thesis, a
few methods that tackle the problem of MOT with extremely different architectures and
finally some relatively recent SOTA algorithms. In Chapter 4, we briefly take a look at
the DLR dataset, which is yet to be published, that contains aerial image sequences of
vehicles. We discuss the data preprocessing that was essential to bring the data in a
format suitable to be fed in to the detectors and trackers. Finally, we perform detection
and tracking on the dataset and report the results, while gathering some insights behind
the observations. In Chapter 5, we present a brief overview of the A9 dataset, most
sequences of which have not yet been published. This dataset contains image sequences
of mostly different kinds of vehicles on traffic highways and intersections. We talk about
the data preprocessing, detection and tracking experiments that were performed on the
A9 dataset, and we report the results and the insights behind those results. In Chapter 6,
we present a summary of the knowledge gained through several experiments that were
performed as part of this thesis. In Chapter 7, we present some ideas that can be built
on top of the results of this thesis, in order to hopefully obtain even better outcomes in
future.

3

2 Essential Background

2.1 Goals

The goal of this chapter is to acquaint the reader with the concepts that will be discussed
throughout this work. To progress seamlessly through this work, a good understanding
of the concepts presented in this chapter is essential.

2.2 Object Classification

2.2.1 What is Object Classification?

Given an image and a set of known classes or object-types, the goal is to identify which
class the image belongs to or basically to find what is the type of the object present in
the image. For example, if you have a binary classifier that classifies images into two
classes e.g. cars or trucks, you can pass an image to this classifier and ask what is the
probability that the image is of a car (or truck). An example for further clarification is
given in Figure 2.1.

Figure 2.1: Example of Object Classification (image source [16])

2.2.2 How is it done?

With the advent of Deep Learning and Neural Networks, in the last decade, most of the
work revolving around object classification has been done with the help of Convolutional
Neural Networks (CNN). CNN based architectures generally work in two basic steps:

1. Feature extraction: For the purpose of feature extraction, a filter/kernel of a given
size e.g. 5 X 5 is convolved with the image which is of a given resolution e.g. 1080
X 1080. Previously, manually defined kernels would be used to extract particular

5

2 Essential Background

features e.g. edges in images. But in CNNs, these kernels are learnt (the 25 weights
in this example) with the help of back-propagation.

2. Feature selection: The extracted feature maps are passed through a Pooling opera-
tion, which is basically an aggregation. Popular Pooling techniques include Max
Pooling and Average (Mean) Pooling. The goal is to obtain the overall/strongest
feature signal.

The output of the steps above is called a feature embedding. This embedding is flattened
(brought into 1 channel, e.g. the image was in 3 channels originally namely RGB, and
then the number of channels kept changing depending on the number of convolutional
filters in each layer) and passed through Linear (Dense) Neural Network layers, the
output of which in turn can be passed through a Softmax layer to get the probabilities
of the object, in the image, to belong to each of the given classes.

AlexNet

AlexNet [17] was one of the first models to produce excellent results on the ImageNet [18]
challenge, whereby the goal is to correctly classify millions of images across thousands
of classes. AlexNet showed the potential of CNNs for the task of object classification,
and was followed by several models that were based on the same paradigm.

Figure 2.2: AlexNet architecture (image source [17])

VGGNet

It can be seen from Figure 2.2 that AlexNet [17] used convolutional filters of various
sizes, 11 X 11, 5 X 5, 3 X 3 etc. VGGNet [19] simplified this architecture and used only 3
X 3 filters and obtained even better results on the ImageNet [18] challenge. It can be
seen in Figure 2.3 that the authors of VGGNet [19] also experimented with the number
of layers across several models, because that directly influences the number of learnable
parameters and hence the capacity to learn.

6

2.2 Object Classification

Figure 2.3: VGGNet architecture (image source [19])

GoogLeNet

With increasing number of learnable parameters (weights), training the model started
to become a computationally intensive task. VGGNet [19] already had more than a
hundred million trainable parameters. GoogLeNet (Inception) [20] introduced 1 X 1
convolutions to reduce these number of computations. It can be seen in Figure 2.4, 1 X 1
convolutions are performed to first reduce the number of channels (dimensions) in the
feature maps, before applying the more expensive 3 X 3 or 5 X 5 convolutions on them.
This saves many computations and makes the training efficient.

Figure 2.4: Inception module architecture (image source [20])

7

2 Essential Background

ResNet

It is logical to think that deeper neural networks will produce better accuracy, than the
not so deep ones, because they have more trainable parameters and therefore a higher
capacity to learn. However, it was found that merely increasing the number of layers in
a network was saturating the accuracy or in some cases having even a negative impact
on the training loss, and the cause was not overfitting. In order to train deeper networks,
ResNet [21] introduced the concept of Residual blocks, as can be seen in Figure 2.5. A
residual connection enables the network to decide whether it wants to keep the feature
maps produced by a layer or skip the layer. Therefore, very deep architectures can be
constructed and the network itself learns which layers are useful and which are not.
Deeper architectures can now enjoy accuracy gains, as we had assumed at first, thanks
to residual connections. ResNet [21] backbones are very popular today to obtain feature
embeddings, in order to work with appearance based features.

Figure 2.5: Residual block architecture (image source [21])

2.2.3 Metrics of evaluation

In order to compare the performance of different models, quantitative metrics are
essential. For the purpose of object classification, a widely used metric is called F1 score.
Let us understand the calculation of F1 score with an example.

• Suppose we have 4 images of cars and 6 images of trucks, and we have a classifier
whose job is to identify cars i.e. it outputs a probability >= 0.5 if it thinks that the
image is that of a car.

• Assume that for 3 actual car images and 2 actual truck images, the classifier
outputs the probability >= 0.5 of being a car. These are called Positives (P).

• Therefore, (4 + 6)− (3 + 2) = 5 images received a probability of < 0.5 of being a
car by the classifier. These are called Negatives (N).

• Out of 5 Positives, 3 are actually cars and are called True Positives (TP), while 2 are
actually trucks and not cars and are called False Positives (FP).

8

2.3 Object Detection

• Out of 5 Negatives, 4 are actually trucks and are correctly not classified as cars, and
are therefore called True Negatives (TN), while 1 is actually a car but not classified
as one and therefore falls under the category of False Negatives (FN).

• Precision is a measure of the quality of the classification. Our classifier is able to
classify positives, but how good is it at doing so and whether it misclassified a
negative as a positive (FP) is answered by Precision.

Precision =
TP

TP + FP
=

3
3 + 2

=
3
5
= 0.6 (2.1)

• Recall is a measure of the quantity of the classification. Our classifier is able to
classify positives, but how many was it able to correctly classify and whether it
missed out on any positive by classifying it as a negative (FN) is answered by
Recall.

Recall =
TP

TP + FN
=

3
3 + 1

=
3
4
= 0.75 (2.2)

• Precision or Recall alone are not enough to judge the performance of a classifier,
and for a classifier to be good, both these measures should evaluate to as high as
possible (≈ 1). Therefore, a unified metric called F1 score, which is the harmonic
mean of Precision and Recall, is generally used. Higher the F1 score (≈ 1), better is
the performance of the classifier.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ 0.6 ∗ 0.75
0.6 + 0.75

=
0.9

1.35
= 0.67 (2.3)

2.3 Object Detection

2.3.1 What is Object Detection?

Object Detection is a more generic form of Object Classification. Basically, it is Object
Classification + Localization, where Localization means to pinpoint the location of an
object in an image. Generally, Localization is done with the help of a bounding box
(bbox). This can be easily clarified from Figure 2.6. We can also see an example of
Instance Segmentation in Figure 2.6, which is to take things a step further, whereby each
pixel of an image individually undergoes Object Classification.

2.3.2 How is it done?

An Object Detection model needs to not only give the probability of an object to belong
to a class, but also give the coordinates of the bounding box (bbox). Therefore, the
model needs to have two heads: a classification head and a regression head. A bbox can
generally be represented by a quadruple as given in Equation 2.4 or Equation 2.5.

bbox = (xmin, ymin, widthbbox, heightbbox) (2.4)

9

2 Essential Background

Figure 2.6: Example of Object Detection (image source [22])

bbox = (xcenter, ycenter, widthbbox, heightbbox) (2.5)

(xmin, ymin) in Equation 2.4 represent the top-left corner coordinates of the bbox. (xcenter,
ycenter) in Equation 2.5 represent the center coordinates of the bbox. In these equations,
widthbbox is the width of the bbox and heightbbox is the height of the bbox.

There are, broadly speaking, two types of object detectors. We can now take a look at
them, taking a very prominent example for each one of them.

Two-stage detectors

The R-CNN family of detectors, namely, R-CNN [23], Fast R-CNN [24] and Faster
R-CNN [25] are very good examples of two-stage detectors. We can take the example of
R-CNN for the purpose of conceptual understanding, since the others are performance
improvements built on top of it. R-CNN works in three steps, as illustrated in Figure
2.7:

1. Use Selective Search [26] to give region-proposals. The ’R’ in R-CNN stands for
region-proposals, whereby a region-proposal is a section of the image where an
object can probably be. Around 2000 region-proposals of different shapes and
sizes are made.

2. A CNN is run on top of each region-proposal, to obtain a feature embedding.

3. The obtained feature embedding is passed in to a classification head (SVM, Support
Vector Machine) to identify the class of the object in the region-proposal, and a
regression head (Linear Regression) to obtain the bbox offsets (the difference in
size and shape of the bbox from the original region-proposal).

10

2.3 Object Detection

Figure 2.7: R-CNN (image source [27])

Figure 2.8: YOLO (image source [28])

11

2 Essential Background

One-stage detectors

Unlike two-stage detectors, where first prospective regions are proposed and then a
CNN is run on these regions to obtain object classes and bounding boxes, in one-stage
detectors, class probabilities and bounding box predictions are made directly from the
image instead of first proposing regions-of-interest (RoI). YOLO (You Only Look Once)
[28] based models are good examples of one-stage detectors. YOLO basically works in
the following way, as illustrated in Figure 2.8:

1. We first divide the image into a grid. Each grid-cell symbolises whether it contains
the mid-point of an object. Therefore, for every grid-cell we predict a confidence
score, which is the probability that this grid-cell contains the mid-point of an object.
Apart from the confidence score, for each grid-cell, we also predict a bounding
box which should be containing the object whose mid-point is contained by the
grid-cell. Apart from the confidence score and bounding box, we also predict the
class of the object contained by the grid-cell.

2. Many grid-cells can predict that the mid-point of an object belongs to them, and
correspondingly attach a confidence score. We pick the one with the highest
confidence score and call it a Prediction. All the other bounding boxes with a
sufficiently high IoU (refer section 2.4.2) with the Prediction’s bounding box are
discarded. This is called Non-Maximum Supression (NMS). It helps to get rid of
multiple detections for the same object.

3. It is important to note that we assumed that a grid-cell can contain the mid-point
of only one object, which is not going to be true for many cases. Thus, we come to
the concept of anchor boxes, whereby each grid-cell has a predetermined number
of anchor boxes of different shapes and sizes associated with it. Now an object
is assigned to a grid-cell that contains its mid-point and to an anchor box of that
grid-cell that has the largest IoU with the object. Therefore, any grid-cell can now
contain the mid-points of as many objects as the number of anchor boxes.

In this current work, we have used YOLOv7 [7] as the object detector, because of
two main reasons:

• One-stage detectors are faster than two-stage detectors during inferencing, and
are therefore better suited to real-time systems.

• YOLOv7 was the state-of-the-art YOLO model available at the time of writing this
thesis (refer Figure 2.9). YOLOv8 was introduced but was still undergoing active
development, had many issues and bugs, and the research paper for YOLOv8 was
still not published.

2.3.3 Metrics of evaluation

The most popular metric to evaluate Object Detection performance is called mAP, or
Mean Average Precision. Let us now understand how to calculate mAP.

12

2.3 Object Detection

Figure 2.9: YOLOv7 performance (image source [7])

• Positives: All the bounding boxes predicted by a detector.

• True Positives (TP): All Positives that have an IoU (refer Section 2.4.2) >= 0.5 (or
another threshold, this value is a hyperparameter) with a ground truth (GT) bbox.

• False Positives (FP): All Positives that are not True Positives, i.e. all predicted
bounding boxes that have an IoU < 0.5 with a GT bbox.

• False Negatives (FN): All those GT bounding boxes, that did not get predicted, i.e.
they had an IoU < 0.5 with any Positive.

• True Negatives (TN): This basically corresponds to the entire background of the
image where there was not an object and we did not predict any either. This metric
is not useful and hence ignored in Object Detection.

• Precision is given by Equation 2.1 and Recall is given by Equation 2.2. However,
they are now calculated class-wise, and a TP or FP is included in the formula
only when it has a confidence score >= 0.5 (or another threshold, this value is a
hyperparameter) for that object class.

• Average Precision (AP): This is the area under the Precision-Recall (PR) curve. AP is
calculated class-wise, to unmask class-imbalance in the data and to transparently
show whether our detector performs well on certain object classes while not so
well on others. To plot the PR curve, Precision and Recall need to be cumulatively

13

2 Essential Background

calculated for every Positive in an object-class arranged in descending order of
confidence-score. Then, to calculate the area under the curve, Precision values
can be interpolated over 11 (PASCAL VOC 2007 [29]) or (more recently) 101 (MS
COCO 2014-17 [8]) equidistant Recall points between 0 and 1. The sum of Precision
values, at all equidistant Recall points, is then divided by the number of equidistant
Recall points (11 or 101) to obtain AP. Please refer [30] for a good example.

• Mean Average Precision (mAP): Once we have calculated AP for every object class,
we can sum them up and divide by the number of classes to obtain mAP, which is
a holistic metric that signifies how good our detector performed over all the classes.
mAP_0.5 is the usually used metric which is defined such that True Positives are
considered for IoU >= 0.5. However, MS COCO 2014-17 [8] also introduced a more
difficult metric mAP_0.5:0.95, which calculates mAP by changing IoU thresholds in
steps of 0.05, from 0.5 to 0.95, and then takes the average of all the mAP values.

2.4 Object Tracking

2.4.1 What is Object Tracking?

Object Detection dealt with classifying an object and finding its location in an image.
Object Tracking goes a step further, to obtain the trajectory an object follows in an
image sequence (e.g. a video). Therefore, Object Tracking is Object Detection + Data
Association, whereby Data Association means to match the same object’s detections
across multiple frames (images). The problem of Single-object tracking involves detecting
one particular object of interest and tracking it through a sequence of images. However,
the more popular and challenging problem is that of Multi-object tracking, whereby we
detect and track multiple objects, through an image sequence, simultaneously.

Figure 2.10: Different domains of MOT. (From left to right: MOT-16 (source [31]), KIT
AIS (source [32]), A9 (source [6]))

14

2.4 Object Tracking

2.4.2 How is it done?

Most of the research and consequently new and better algorithms for tracking objects are
developed for the domain of pedestrian tracking thanks to popular MOT (Multi-object
tracking) benchmark datasets like MOT-15 [1], MOT-16 [2] and MOT-20 [4]. However,
this thesis focuses mainly on tracking vehicles and other traffic participants and that too
in two very different scenarios (domains):

• Aerial imagery: The dataset used for this thesis has not been published by the
German Aerospace Center (DLR) [10] so far, but a good example of a popular
published dataset, that is similar to but not as challenging as the dataset used for
this thesis, is the KIT AIS Vehicle Dataset [32] whose image sequences were also
provided by DLR.

• Real-time traffic monitoring: For this purpose, the dataset used by this thesis is
the A9 dataset [6].

One of the primary goals of this thesis was to adapt the algorithms, that are primarily
built for pedestrian tracking, to the two domains that we are interested in (refer Figure
2.10). This is because, as previously mentioned, most of the state-of-the-art research is
focused in the pedestrian tracking domain and we wanted to benefit from that research
in our domains. Since this thesis deals primarily with Object Tracking, a whole separate
chapter (Chapter chapter 3) was deemed necessary to go over the works that have
preceded ours and on which we have laid the foundations of this thesis. However,
in this section, we can discuss some commonly used techniques/concepts in tracking
algorithms, which would be helpful in understanding the algorithms themselves later.

Figure 2.11: IoU: a comparison of different bounding boxes. Red bbox is GT and Blue
bbox is Prediction (image source [33])

Kalman filter

• Kalman filter is a popular and complicated algorithm to model an object’s motion.
To talk about it in detail, would be out of scope for this current thesis. However,
[34] is a good reference to understand the working of Kalman filter in depth.

15

2 Essential Background

• Basically, the Kalman filter can predict, using a covariance matrix, the new position
of the bbox and infer the velocity of motion of an object, based on the past
measurements of the position of an object’s bounding box.

• It generally works on the assumptions that the noise in measurements can be
modelled by Gaussian Probability Distribution Function and in a short interval of
time (between two frames, for example), the velocity of an object remains constant.

• There are two primary steps involved, in the learning process of the Kalman filter:

– Prediction: A new state (position/velocity of the object) is predicted.

– Update: The Prediction is combined with the new incoming measurement.

• During training, the new incoming measurement in the Update step is the ground
truth (GT) bbox.

• During inference, the new incoming measurement in the Update step is a Detection
bbox, selected by the Hungarian algorithm (see Section 2.4.2), that had either of the
following characteristics:

– It had a sufficiently high IoU (above a certain threshold, e.g. 0.5, which is a
hyperparameter), with the Prediction (see Section 2.4.2).

– Its feature embedding had a sufficiently low cosine distance from the feature
embedding of the Prediction (see Section 2.4.2).

IoU

Figure 2.12: IoU: an illustration of how it is calculated. Red bbox is GT and Blue bbox is
Prediction (image source [33])

• IoU is the most popular measure of discerning a Positive in the world of Object
Detection (and consequently Object Tracking).

16

2.4 Object Tracking

• The question we are trying to answer is: given a GT bbox and several predicted
bounding boxes, which Prediction best explains/matches the GT. Figure 2.11 basi-
cally asks this question, and Figure 2.12 provides the answer.

• The Prediction which has the highest overlap with the GT bbox, and therefore the
highest IoU, is the best choice.

Figure 2.13: Example of re-ID in the domain of person re-identification (image source
[35])

re-ID

• re-ID is an abbreviation for re-identification. This technique is generally used in
the domain of person re-identification [35]. However, just like Object Tracking, the
concept of re-ID can be borrowed from the domain of person re-identification and
applied to vehicle re-identification.

• The task of re-ID essentially entails that, given a query/probe bbox object, find
one or more bbox objects from a gallery of bbox objects that are basically the same
object captured at a different point in time by the same camera or even a different
camera at the same point in time or a different point in time (see Figure 2.13).

• The feature embeddings of the query and gallery bounding boxes are obtained
using a ResNet-50 [21] backbone.

• Generally, the top 5, 10, 20, 50, or even 100 closest findings (called retrieve) are
obtained. The metric of measuring closeness can be the cosine distance between
the feature embeddings of the query and a particular gallery bbox.

• Precision, Recall and F1 score can now be calculated based on how many retrievals
were actually correct and how many correct ones were not retrieved at all.

17

2 Essential Background

• Triplet Loss is regarded as a good loss function to train a model on the task of
re-ID [36].

• Offline models trained in the task of re-ID have proven very useful in occlusion
handling, and tracking in general. These models can be used to obtain feature
embeddings during inference time for tracking by the Kalman filter (see Section
2.4.2).

• However, the operation of obtaining a feature embedding using a deep ResNet-50
[21] backbone is much more computationally expensive than calculating IoU and
therefore, re-ID based tracking models are generally slower than IoU based models
at inferencing.

Hungarian algorithm

• Consider a bipartite graph, where on one side the nodes represent the GT bounding
boxes, and on the other side the nodes represent the predicted bounding boxes.

• We construct an edge (bidirectional, one-to-one mapping, since only one prediction
can be assigned to one GT bbox and vice versa) from a node on one side to a
node on the other side, if there is an IoU >= 0.5 (or any other suitable threshold,
hyperparameter) between the bounding boxes represented by these nodes.

• In a crowded situation, several predicted bounding boxes will have an IoU >= 0.5
with several GT boxes. And thus we will end up with a many-to-many mapping,
but our goal is to ideally obtain a one-to-one mapping (in an ideal balanced case,
where number of detections is equal to the number of GT bounding boxes).

• This conversion of a many-to-many mapping to a one-to-one mapping is generally
called the assignment problem, and the goal is to have a one-to-one mapping such
that a predetermined cost function is minimised.

• Hungarian algorithm [37] does this job in an efficient manner in polynomial
time. As mentioned in the section for Kalman filter (see Section 2.4.2), low cosine
distance between feature embeddings of bounding boxes can also be used, instead
of high IoU, as a condition to construct edges in the bipartite graph.

2.4.3 Metrics of evaluation

In this thesis, we use the three most popular and widely accepted Object Tracking
evaluation metrics namely MOTA [38], IDF1 [39] and HOTA [40]. The information in
this section has been distilled and consolidated from the following sources: [38], [39],
[40], [41], [2] and [42].

18

2.4 Object Tracking

Common errors in MOT

• False Negative (FN): When GT exists but we did not predict it.

• False Positive (FP): When we make a prediction but a corresponding GT does not
exist.

• Identity Switch (IDSW): An object’s track-id is switched with another object’s
track-id. Basically, one object is confused for another object (see Figure 2.14(a)).
Generally, this happens when the objects move close to each other (IoU based), or
they look very similar (re-ID based).

• Fragmentation (Frag): A GT track is predicted for some frames, then fails to be
predicted for some frames, and then again gets predicted (see Figure 2.14(b)).
Simply put, fragmented tracks are basically broken tracks. However, if a track is
broken and is never predicted again, then it is not counted as fragmented (see
Figure 2.14(c)).

It is expected that a metric to evaluate Object Tracking, takes into account these very
common errors.

Figure 2.14: Common errors in MOT. (a) An ID switch occurs when the mapping switches
from the previously assigned red track to the blue one. (b) A track fragmentation is
counted in frame 3 because the target is tracked in frames 1-2, then interrupts, and then
reacquires its ‘tracked’ status at a later point. A new (blue) track hypothesis also causes
an ID switch at this point. (c) Note that no fragmentations are counted in frames 3 and
6 because tracking of those targets is not resumed at a later point. (image and caption
source [2])

MOTA

• Multiple Object Tracking Accuracy (MOTA) is the most widely used metric for
evaluating Object Tracking performance, since it is able to take into account 3 very
common sources of errors (as given in section 2.4.3), namely, FN, FP and IDSW.

19

2 Essential Background

• The errors made by a model are accounted for in each frame t ∈ T as given by
Equation 2.6.

MOTA = 1 − ∑t(FNt + FPt + IDSWt)

∑t GTt
(2.6)

• However, it is debated that MOTA alone is perhaps not a sufficient measure of
performance, since it gives a lot of significance to detection performance over
data-association performance.

Figure 2.15: IDF1 calculation example (image source [40])

IDF1

• The Identity metrics focus on measuring data-association performance rather than
detection performance and are therefore often used together with MOTA.

• Given a set of GT tracks and a set of predicted tracks, the goal is to have a
one-to-one matching between them.

• This matching is done using the Hungarian algorithm (see Section 2.4.2), whereby
we try to obtain a single best set of matching trajectories (portions of tracks)
between the GT and predicted tracks (see Figure 2.15).

• However, any trajectory that does not end up in this matching set is counted as a
Negative irrespective of whether it contributes to correct detections. This leads to a
decrease in the score. Thus, a high IDF1 score is indicative of a good estimation of
unique objects in the image-sequence but not good detections. Also, IDF1 fails to
evaluate the localization accuracy of tracking algorithms.

• The conventional metrics, as we saw in Section 2.2.3, like TP, FN, FP, Precision,
Recall and F1 are now referred to as IDTP, IDFN, IDFP, IDP (see Equation 2.7), IDR

20

2.4 Object Tracking

(see Equation 2.8) and IDF1 (see Equation 2.9) respectively.

IDP =
IDTP

IDTP + IDFP
(2.7)

IDR =
IDTP

IDTP + IDFN
(2.8)

IDF1 =
2 ∗ IDP ∗ IDR

IDP + IDR
=

2 ∗ IDTP
2 ∗ IDTP + IDFP + IDFN

(2.9)

Figure 2.16: A simple tracking example highlighting one of the main differences between
evaluation metrics. Three different trackers are shown in order of increasing detection
accuracy and decreasing association accuracy. MOTA and IDF1 overemphasize the effect
of accurate detection and association respectively. HOTA balances both of these by being
an explicit combination of a detection score DetA and an association score AssA. (image
and caption source [40])

Figure 2.17: Diagrammatic representation of how HOTA can be decomposed into
separate sub-metrics which are able to differentiate between different types of tracking
errors. (image and caption source [40])

21

2 Essential Background

HOTA

• Higher Order Tracking Accuracy (HOTA) is a more recent, unified and holistic
metric, to evaluate tracking performance, in the sense that it does not bend towards
detection performance like MOTA or data-association performance like IDF1 (refer
Figure 2.16).

• HOTA takes into account all three (detection, association, localisation) perfor-
mances by measuring and incorporating LocA (Localisation Accuracy), DetA
(Detection Accuracy) and AssA (Association Accuracy), as can be seen in Figure
2.17.

• In Figure 2.17, α signifies a particular localisation threshold, e.g. 0.5, basically like
IoU (see Section 2.4.2). We calculate HOTAα over 19 values of α ranging from 0.05
to 0.95 in steps of 0.05, and then integrate to find the final HOTA, as given by
Equation 2.10.

HOTA =
∫ 1

0
HOTAα dα ≈ 1

19 ∑
α

HOTAα (2.10)

• Localisation Accuracy (LocA): Localisation Accuracy is basically the average Localisation-
IoU over all True Positives (TP) in the entire sequence, and is given by the Equation
2.11, where S(c) is the spatial similarity score (basically the IoU) between a pre-
dicted detection (prDet) and a GT detection (gtDet) that make up a TP c.

LocA =
∫ 1

0

1
|TPα| ∑

c∈{TPα}
S(c) dα (2.11)

• Detection Accuracy (DetA): DetA can easily be obtained from the commonly used
metrics, namely, DetRe (Detection Recall) and DetPr (Detection Precision), which
have already been explained in Section 2.3.3. DetA basically gives a percentage of
how many predicted and GT detections could be aligned together, and is given by
the Equation 2.12.

DetAα =
DetReα ∗ DetPrα

DetReα + DetPrα − DetReα ∗ DetPrα
=

|TP|
|TP|+ |FN|+ |FP| (2.12)

• Association Accuracy (AssA): Association Accuracy(AssA) is the average alignment
between matched trajectories (predicted and GT), averaged over all detections. For
a given TP c, we can now define:

– True Positive Association (TPA): A TPA for a given TP c is a TP which has the
same gtID (GT track-id) and prID (predicted track-id) as c.

– False Negative Association (FNA): A FNA for a given TP c is a gtDet with the
same gtID as c, but was assigned a different prID than c or no prID at all if it
was missed.

22

2.4 Object Tracking

– False Positive Association (FPA): A FPA for a given TP c is a prDet with the
same prID as c, but was assigned a different gtID than c or no gtID if it did
not actually correspond to an object.

AssA can now be obtained from the Equation 2.13.

AssAα =
1

|TP| ∑
c∈{TP}

|TPA(c)|
|TPA(c)|+ |FNA(c)|+ |FPA(c)| (2.13)

• Higher Order Tracking Accuracy (HOTA): HOTA can now easily be obtained from
DetA and AssA, as given by Equation 2.14.

HOTAα =
√

DetAα ∗ AssAα (2.14)

23

3 Related Work

3.1 Goals

The goal of this chapter is to discuss several prominent and preceding works, which
have been an inspiration and have been used as a foundation for this current work.
We can classify the related works in three ways, namely, previous theses, methodology
based (different primary architectures) and state of the art. For every work, we discuss
its key contributions, architecture, results on popular benchmarks, perceived advantages
and disadvantages when applied to the field of vehicle tracking in aerial imagery, and
overall remarks in general.

3.2 Previous Theses

This thesis work was carried out in 2022-2023 and was a direct successor of two other
theses ([42] (2021) and [43] (2020)), that were based on object detection and tracking in
aerial imagery, and were also done in the collaboration of TUM I6 Chair [44] and DLR
[10].

3.2.1 Beheim et al., 2021

Contributions

• [42] compared the performance of several tracking algorithms on the KIT AIS
Vehicle Dataset [32] (see Figure 3.2).

• Used the joint-tracking-and-detection paradigm (instead of the more usual tracking-
by-detection paradigm), with TransTrack [45] as a baseline.

• Attempted to improve tracking performance using Angle Prediction (orientation
of vehicles), re-ID (see section 2.4.2) and Motion Prediction using an LSTM [46]
based motion model.

Architecture

• The primary architecture is based on the TransTrack [45] architecture (see Figure
3.1), which in turn uses a Transformer [47] based encoder-decoder architecture to
perform detection and tracking simultaneously instead of treating them as two
disjoint tasks.

25

3 Related Work

Figure 3.1: Pipeline of TransTrack (image and caption source [45])

Results

• The work [42] reported that TransTrack [45], without modifications, achieved a
MOTA score of 78.1 and an IDF1 score of 86.8 on the KIT AIS Vehicle Dataset
[32].

• With the application of re-ID on top of TransTrack [45], a MOTA score of 78.5 and
an IDF1 score of 86 were achieved on the KIT AIS Vehicle Dataset [32], which
were the best reported results that were achieved overall.

• Angle Prediction and Motion Prediction led to worse results than the baseline
TransTrack results.

Advantages

• It showed that re-ID is useful in object tracking.

Disadvantages

• The joint-tracking-and-detection paradigm cannot leverage the power of the
new state-of-the-art object detectors (e.g. YOLOv7 [7]) that can be independently
trained on much larger object detection datasets (e.g. MS COCO [8]), to obtain
better tracking performance on small datasets (e.g. KIT AIS Vehicle Dataset [32]).

Remarks

• Transformer [47] based architectures are difficult to train in the sense that they
require a lot of training data, which is unfortunately not available in the domain
of vehicle tracking in aerial images.

• A Transformer [47] based architecture coupled with re-ID (see Section 2.4.2) and
LSTM [46] based motion prediction, is not suitable for inferencing in real-time
systems because it is going to be extremely slow and memory-intensive.

26

3.2 Previous Theses

Figure 3.2: An overview of the KIT AIS Vehicle Dataset (image source [43])

3.2.2 Kraus et al., 2020

Contributions

• [43] introduced the AerialMPT dataset [48], which has a comprehensive collection
of pedestrian data in various crowded situations.

• Achieved state-of-the-art tracking results in aerial image based pedestrian datasets
like KIT AIS Pedestrian [32] and AerialMPT [48], by proposing AerialMPTNet [48].

• Evaluated AerialMPTNet [48], which was developed primarily for pedestrian
tracking in aerial image sequences, on KIT AIS Vehicle dataset [32] (see Figure 3.2)
as well.

Architecture

• Used a Siamese Neural Network (SNN) architecture, baselined on the work [49],
with tracking-by-regression paradigm.

• An LSTM module [46] was used as a motion vector predictor.

• A Graph Convolutional Neural Network (GCNN) [50] module was used to capture
the relative motion between nearby objects.

• Refer Figure 3.3 for an architectural overview.

27

3 Related Work

Figure 3.3: Overview of the AerialMPTNet architecture including an SNN, an LSTM,
and a GCNN module. The inputs are two consecutive images in a sequence, cropped
and centered to a target object, and the output is the object coordinates in the second
snippet which is then mapped to the image coordinates. (image and caption source [48])

Results

• Since our thesis is focused on Vehicle Tracking, it makes sense to make a note of
AerialMPTNet’s performance on a Vehicle Tracking dataset, even though it was
primarily designed for pedestrian tracking. AerialMPTNet obtained a MOTA
score of 42.0 and an IDF1 score of 70.0 [48] on the KIT AIS Vehicle Dataset [32].

Advantages

• The method works well on pedestrian datasets. It shows successfully that Deep
Learning visual features can be used for small objects, if the bounding box area
is rescaled and more contextual information is taken into account.

Disadvantages

• It does not work so well on Vehicle datasets. The neighborhood considered for
GCNN to find 8 nearest objects is not enough, since vehicles can be quite far apart
in comparison to pedestrians. Therefore, local neighborhood is not sufficient for
vehicle tracking.

Remarks

• Vehicles travel faster than pedestrians. With small FPS, the neighborhood of a
vehicle can change considerably (old vehicles may be gone, new vehicles may have
entered etc.). Therefore, the GCNN approach of a limited neighborhood will not
work.

28

3.3 Methodology based

• The Siamese network takes the current frame centered at the object from the
previous frame. From the previous point it is again evident that with low FPS and
a high-speed vehicle, detection cannot be regressed to a local neighborhood.

• The LSTM is used in a global fashion (to reduce computation), taking 5 previous
positions to give a motion vector (x,y) which is used to predict (regress) the next
position. However, this does not take into account that different objects are at
different velocities (and acceleration) and therefore a single global LSTM cannot
be used to predict motion for all.

3.3 Methodology based

We now shift our attention to several methods that were quite diverse in their pri-
mary architectures, and managed to produce competitive results on the MOT [1, 2, 3]
benchmarks.

3.3.1 MPNTrack

Contributions

• [51] used a Graph Neural Networks [52] based approach to tackle the problem of
Multiple Object Tracking (MOT) on MOT benchmarks that deal with pedestrian
tracking.

• Proposed a MOT solver based on Message Passing Networks (MPN), which can
exploit the natural graph structure of the problem to perform both feature learning
as well as final solution prediction.

• Proposed a novel time-aware neural message passing update step inspired by
classic graph formulations of MOT.

Architecture

While reading the following points, it is recommended to refer to the Figure 3.4:

• Receive as input a set of frames and detections.

• Construct a graph in which nodes represent detections, and all nodes at different
frames are connected by an edge.

• Initialize node embeddings in the graph with a CNN, and edge embeddings with
an MLP (multi-layered perceptron) encoding geometry information.

• The information contained in these embeddings is propagated across the graph
for a fixed number of iterations through neural message passing.

29

3 Related Work

• Once this process terminates, the embeddings resulting from neural message
passing are used to classify edges into active (colored with green) and non-active
(colored with red). During training, the cross-entropy loss of the predictions w.r.t.
ground truth labels is computed and gradients are backpropagated through the
entire pipeline.

• At inference, a simple rounding scheme is followed to binarize the classification
scores and obtain final trajectories.

Figure 3.4: Overview of MPNTrack (image source [51])

Results

• An overview of MPNTrack’s results on popular MOT benchmarks can be found in
Table 3.1.

MPNTrack [51] Results
Benchmark MOTA IDF1
MOT15 [1] 51.5 58.6
MOT16 [2] 58.6 61.7
MOT17 [3] 58.8 61.7

Table 3.1: An overview of MPNTrack’s results on MOT benchmarks.

Advantages

• Method takes into account the global picture and gathers higher order information
through message passing steps.

30

3.3 Methodology based

• Handcrafted geometric features in the edge embeddings offer opportunity to
include other features as seen fit.

Disadvantages

• This method is an Offline Tracker, since it uses future frames, and therefore cannot
be used for real-time systems.

• No specific enhancements to deal with camera motion.

Remarks

• The visual features are extracted using a ResNet50 [21] backbone which is pre-
trained on ImageNet [18] and then retrained for the task of re-ID (see Section
2.4.2) on multiple public datasets. After that it is used in the pipeline, whereby
each detection passes through it to be converted to a node embedding. However,
there is no local context information in these detections, which might be useful for
countering camera motion.

• A separate (independent) dedicated re-ID module can be used which is trained for
re-ID on the current dataset itself, instead of other datasets, so that it has more
domain specific knowledge.

• An edge always exists between detections of two different frames, and therefore
how the camera moved between these frames (relative camera motion) could have
been explicitly embedded in the edge.

3.3.2 SiamMOT

Contributions

• [53] proposed an implicit motion model (IMM) and an explicit motion model
(EMM) (for tracking) on top of a Siamese Neural Network (SNN) architecture,
which uses Faster-RCNN [25] architecture’s Region Proposal Network (RPN) (for
detections).

• Achieved competitive results on three popular benchmarks that offer a variety of
challenges, namely, MOT17 [3] (occlusion and crowded scenes), TAO-person [54]
(wide range of scene types and video corruption artifacts), and Caltech Roadside
Pedestrians (CRP) [55] (large camera motion).

Architecture

While reading the following points, it is recommended to refer to the Figure 3.5:

31

3 Related Work

• SiamMOT [53] takes as input two frames It and It+δ, where the goal is to associate
a set of detections Rt = {Rt

1, ..., Rt
i , ...} in frame It to the detections Rt+δ in the next

frame It+δ.

• For this purpose, a motion model is used to propagate every detected bbox Rt
i at

time t to R̃i
t+δ at time t + δ.

• The new detections Rt+δ
i are obtained by running a RPN based method [25] on

search areas St+δ
i of the frame It+δ. These search areas were obtained by expanding

Rt
i by a factor r(> 1), while maintaining the same geometric center.

• A spatial matching process now associates the output of the motion model R̃i
t+δ

with the new detections Rt+δ
i at time t + δ such that the detected instances are

linked from t to t + δ.

Figure 3.5: Overview of SiamMOT (image source [53])

Results

• SiamMOT [53] achieved a MOTA score of 65.9 and an IDF1 score of 63.3 on
MOT17 [3] benchmark’s test set with public detections.

Advantages

• Method was shown to work on a dataset (CRP [55]) with fast camera motion.

• Online tracking.

• Ablation study done in the paper clearly shows that motion modeling gives better
online tracking results.

32

3.3 Methodology based

Disadvantages

• Gives importance to local features, and thus poor at long-term occlusion handling
and re-identification.

Remarks

• Just like many other Siamese Neural Network based architectures, this does not
seem suitable for low FPS datasets, since the search region is always in the vicinity
of the target.

• Most results were obtained on person-based high FPS datasets and people move
slower in comparison to vehicles. Thus, local neighborhood may not be a good
enough search region for low FPS vehicle-based datasets.

• Using an off-the-shelf one-stage detector (see Section 2.3.2) would be faster than
the current RPN based two-stage detection approach (see Section 2.3.2).

• The spatial matching block could have been removed if instead of computing a
location map, that encodes the offset from that location to the top-left and bottom-
right bbox corners, they had used a more direct re-ID (see Section 2.4.2) based
approach. However, in exchange for gaining speed, they would have had to throw
away EMM which did give them good results.

3.3.3 TrackFormer

Contributions

• [56] proposed an end-to-end trainable multi-object tracking approach, which
achieves detection and data association in a new tracking-by-attention paradigm,
using a Transformer [47] based architecture.

• They also proposed the concept of autoregressive track queries which embed an
object’s spatial position and identity, thereby tracking it in space and time.

• TrackFormer [56] achieved competitive results on two popular benchmarks, namely,
MOT17 [3] for multi-object tracking and MOTS20 [57] for tracking as well as
segmentation.

Architecture

While reading the following points, it is recommended to refer to the Figure 3.6:

• The architecture consists of a common CNN backbone, e.g. ResNet50 [21], for
image feature extraction at the frame-level.

• A Transformer [47] encoder is used for image feature encoding with self-attention.

33

3 Related Work

• A Transformer decoder is used to produce output embeddings with bbox and class
information, by applying self-attention as well as encoder-decoder attention.

• At frame t = 0, the decoder transforms Nobject object queries (white) to output
embeddings, either initializing new autoregressive track queries or predicting the
background class (crossed).

• On subsequent frames, the decoder processes the joint set of Nobject + Ntrack queries
to follow or remove (blue) existing tracks as well as initialize new tracks (purple).

Figure 3.6: Overview of TrackFormer (image source [56])

Results

• An overview of TrackFormer’s results on MOT17 [3] benchmark can be found in
Table 3.2.

TrackFormer [56] Results
Type of Detections MOTA IDF1
Public 62.3 57.6
Private 74.1 68.0

Table 3.2: An overview of TrackFormer’s results on MOT17 test set.

Advantages

• Online Tracking.

• Can handle short-term occlusion, with a patience window during which inactive
tracks are stored.

34

3.4 State of the Art

Disadvantages

• May not be good to track fast moving objects or low FPS data, because tracking
queries have spatial embeddings.

• Require huge amount of data to be trained because of the Transformer architecture.
Ablation study shows that without training on huge amount of data, the results
are not competitive.

• Requires a lot of training time and GPU resources. To obtain results on MOT17
with Private Detections (see Table 3.2), it required 2 days of training on 7 GPU
units, each of 32 GB capacity.

Remarks

• The strong point of this work is that they try to jointly do detection and tracking,
based on feature level attention, to avoid any expensive graph optimization or
inclusion of explicit motion modelling or appearance-based re-ID models.

• However, this is also its weak point because the transformer architecture by itself
is still computation heavy, devoid of long-term re-ID (no graphs), incapable of
handling long-term occlusions (no appearance-based re-ID), and unable to work
with fast motion or low FPS data (no motion model).

• Therefore, the method seems quite tailored for pedestrian datasets with high FPS
and with relatively slow moving objects.

3.4 State of the Art

In this section, we look at a few methods that have produced state-of-the-art results on
the MOT [3, 4] benchmarks, and were therefore considered to be applied to the DLR
dataset (Chapter 4) and the A9 dataset (Chapter 5), as part of this thesis.

3.4.1 ByteTrack

Contributions

• The main contribution of [11] is an algorithm that is based on tracking-by-detection
paradigm and is built on the simple premise of using both high and low score
detections during tracking, unlike previous methods that would generally throw
away low score detections (confidence score < 0.5).

• The algorithm is capable of integrating any off-the-shelf detector and another
tracking method within it.

35

3 Related Work

Architecture

• ByteTrack [11] is more of an algorithm or a methodology, which can be applied
to other methods in hopes of increasing their performance, or can even be used
standalone as a tracking algorithm.

• Therefore, we do not have an architecture to discuss about as such, but we can
discuss the steps of the algorithm itself.

• Step 1: Given an image (one frame of a video sequence), make object detections
using any pretrained detector e.g. YOLOv7 (refer Section 2.3.2).

• Step 2: Construct two disjoint sets of detections, high-score detections and low-
score detections, based on a given threshold (0.5).

• Step 3: Predict track location of existing tracks using Kalman Filter (see Section
2.4.2), and construct a set of existing tracks.

• Step 4: Associate detection boxes, from the set of high-score detections, with tracks
from the set of existing tracks. Some detections and tracks may not be associated
and they will be called remaining high-score detections and tracks respectively.

• Step 5: Associate detection boxes, from the set of low-score detections, with tracks
from the set of remaining existing tracks. The low-score detections that are not
matched are now thrown away and the tracks from the remaining tracks that did
not get matched are also deleted (actually we can construct a set of lost tracks for a
certain number of frames for re-ID purposes, but we will ignore that for simplicity
here).

• Step 6: The remaining high-score detections are initialized as new tracks, and
added to the set of existing tracks. The whole process can now be repeated for the
next image in the video sequence.

Results

• An overview of ByteTrack’s results on popular MOT benchmarks can be found in
Table 3.3.

ByteTrack [11] Results
Benchmark MOTA IDF1 HOTA FPS
MOT17 [3] 80.3 77.3 63.1 29.6
MOT20 [4] 77.8 75.2 61.3 17.5

Table 3.3: An overview of ByteTrack’s results on MOT benchmarks.

36

3.4 State of the Art

Advantages

• Good utilization of low-score detections.

• Can handle occlusion and motion blur, with track interpolation.

• Good inference speed (FPS, refer Table 3.3).

Disadvantages

• No explicit module to deal with camera motion.

Remarks

• In the paper, they performed detections using YOLOX [58]. We can use the more
advanced YOLOv7 [7], which is almost guaranteed to better the performance, since
this method’s performance is highly dependent on the quality of the detections
(tracking-by-detection paradigm).

3.4.2 UAVMOT

Contributions

• [59] tackles the problem of Multiple Object Tracking (MOT) in unmanned aerial
vehicle (UAV) videos, which is more challenging than the conventional MOT
in pedestrian datasets because of large and irregular camera motion and view
changes in 3D directions.

• Proposed an ID feature update (IDFU) module to enhance object ID embedding
features, which could update ID features adaptively with a UAV’s changing views.

• Developed an adaptive motion filter (AMF) for complex motion tracking of objects
in UAV videos, which adaptively switches motion filters to adapt to the movement
of a UAV.

• Designed a novel gradient balanced focal (GBF) loss to supervise the learning of
objects’ heatmaps, which not only considers the imbalanced categories but also
focuses on the small-scale objects in UAV videos.

Architecture

While reading the following points, it is recommended to refer to the Figure 3.7:

• We take the current image frame It and the previous image frame It−1, and pass
them through a shared feature extractor and detection heads to perform object
detection.

37

3 Related Work

Figure 3.7: Overview of UAVMOT (image source [59])

• The detection head consists of object bbox size wh, heatmaps Hm, and tracking ID
embedding features FID. ID embedding feature is a feature that can point to a
particular ID/object.

• The IDFU module extracts the previous frame object features to associate with
current frame features, which can adaptively update the ID embedding features in
various UAV views.

• Kalman Filter (see Section 2.4.2) is first used on the previous frame’s detections to
predict object motion, and then an IoU (see Section 2.4.2) is performed with the
current frame’s detections. During this IoU, if many matches are found between
existing tracks and new detections, it is assumed that the UAV camera did not
undergo any sudden complex motion. However, if the number of matches is
below a threshold, a Local Relational Filter is used to match tracks and detections
assuming that the camera underwent some abrupt motion between the frames,
and therefore Kalman Filter was not enough for association. This is basically the
AMF principle introduced in this paper.

• Please refer to Figure 3.8 to understand the concept of Local Relational Filter.
Basically, for every detection in the previous frame and the current frame, we
calculate a relative relation vector v = [lmax, lmin, θ] where lmax is the distance to
the farthest object, lmin is the distance to the nearest object, and θ is the angle
between them. These three elements are all calculated in a local area around a
particular detection. It is assumed that even if the UAV camera moved between
frames, the relative relation vector for an object would have remained constant
and this assumption is used for tracking instead of the usual Kalman Filter.

38

3.4 State of the Art

Figure 3.8: Schematic diagram of relative relation vector (image and caption source [59])

Results

• An overview of UAVMOT’s results can be found in Table 3.4.

UAVMOT [59] Results
Benchmark MOTA IDF1
VisDrone [15] 36.1 51.0
UAVDT [60] 46.4 67.3

Table 3.4: An overview of UAVMOT’s results.

Advantages

• Gradient Balanced Focal (GBF) loss function for small object detection and class
imbalance.

• Adaptive Motion Filter (AMF) to deal with abrupt camera motion.

• ID Feature Update (IDFU), which uses appearance features for better data associ-
ation.

Disadvantages

• Does not explicitly address occlusion handling, or long term re-ID.

• The assumption for the working of Local Relational Filter, that the relative relation
vector (refer Figure 3.8) remains constant from one frame to another would not
hold for low FPS dataset.

39

3 Related Work

Remarks

• In the Local Relational Filter, since angles are used, maybe the vehicle orientation
can be used to improve results.

3.4.3 BoT-SORT

Contributions

• [13] builds on top of ByteTrack [11], and combines the advantages of IoU and
re-ID, by combining them using a cosine-distance fusion.

• It provides camera motion compensation (CMC) by adopting conventional image
registration techniques to correct the Kalman Filter.

• It improves upon the Kalman Filter state vector to obtain better accuracy.

Architecture

While reading the following points, it is recommended to refer to the Figure 3.9:

• The steps of the algorithm are based on ByteTrack, with a few changes.

• Correct the predictions of Kalman Filter, for camera motion compensation (CMC),
using image registration techniques from the OpenCV library [14].

• Associate high-score detections and CMC corrected Kalman Filter predictions
using a cosine-distance based fusion of IoU and re-ID.

• Associate low-score detections and CMC corrected Kalman Filter predictions using
IoU only.

Figure 3.9: Overview of BoT-SORT (image source [13])

Results

• An overview of BoT-SORT’s results on popular MOT benchmarks can be found in
Table 3.5.

40

3.4 State of the Art

BoT-SORT [13] Results
Benchmark MOTA IDF1 HOTA FPS
MOT17 [3] 80.5 80.2 65.0 4.5
MOT20 [4] 77.8 77.5 63.3 2.4

Table 3.5: An overview of BoT-SORT’s results on MOT benchmarks.

Advantages

• Camera motion compensation, using OpenCV sparse image registration for back-
ground motion estimation.

• Combines re-ID and IoU instead of using one of them case-wise.

• Improved Kalman Filter state vector (directly estimate height and width of box).

• Proposal of frame-dependent MOTA called Current-MOTA or cMOTA, which
helps in better debugging.

Disadvantages

• Much slower at inferencing than ByteTrack, and may not be useful for real-time
applications.

Remarks

• Maybe, the camera motion compensation module could be bettered using visual
SLAM methods [61].

41

4 Working on the DLR dataset

4.1 Dataset overview

• The dataset consisted of several image sequences of vehicles that were captured
from a helicopter. All images are of a very high resolution: 5472 X 3648.

• We filtered out several sequences, based on FPS (frames per second) and GSD
(ground sampling distance, basically the distance between two consecutive pixel
centers measured on the ground), to maintain uniformity across the sequences. The
dataset had not been previously baselined as to object tracking performance, and
it made sense to apply algorithms to a subset of the original dataset that exhibited
uniformity in important regards that affect detection and tracking performance.

• GSD affects the size of the objects in the images and FPS affects the perceived
motion of the objects. Therefore, it was essential to fix certain ranges for these
parameters in order to facilitate meaningful learning and operation by our models.

• Thus, we obtained 7 sequences, which had a GSD in the range of 3-6 cm, and a
frequency in the range of 1-2 FPS.

• Originally, the dataset boasted of multiple classes of vehicles. However, to baseline
it for the first time, we decided to treat the problem as that of a single-class.
Therefore, all vehicles would now belong to a single class called vehicle.

• An overview of the 7 sequences can be seen in Table 4.1. The number of unique
vehicles in the sequence (number of unique tracks), the number of image frames in
a sequence, and the total number of object annotations (labelled bounding boxes)
for a sequence, have been clearly highlighted.

• The annotations were originally in a .xml format with oriented bounding boxes,
and had to be brought into the MS-COCO [8] YOLOv7 [7] format with rectangular
bounding boxes, for the detector and trackers.

• We are using the tracking evaluation metrics from the MOT benchmarks, namely
HOTA, MOTA and IDF1. In order to do so, the Ground Truth annotations had to
be converted to the MOT benchmark compliant format as well.

• Figure 4.1 clearly shows the large camera motion that is an important characteristic
of the sequences in this dataset.

43

4 Working on the DLR dataset

• The large camera motion, the high image resolution, low FPS, and very small
objects (high GSD) make this dataset uniquely challenging to work with, for the
purpose of vehicle tracking.

• Further details about the DLR dataset, e.g., the annotation procedure, original
multiple object classes etc. cannot be provided in this work as there are plans to
separately publish the dataset.

Sequence name #vehicles #frames #annotations
2019-10-17-4k_134 73 53 349
2020-06-23-4k-Fahrzeugtracking 37 23 294
2020-06-19-A99-A8-Starnberg_24 26 10 77
2019-10-17-4k_130 77 13 202
2020-03-19-Kieswerke-A96_14 62 13 298
2021-07-21-ATM_43 173 60 5221
2019-10-17-4k_139 136 78 618

Table 4.1: Overview of the DLR dataset.

Figure 4.1: Frame 1 and Frame 20 of the 2021-07-21-ATM_43 DLR dataset sequence.

44

4.2 Detection experiments

4.2 Detection experiments

We trained several YOLOv7 detection models from scratch, using different image-sizes,
instead of using pretrained YOLOv7 weights (on the MS-COCO dataset), due to the
large difference in object size between the MS-COCO dataset and DLR dataset. An
overview of the training experiments can be found in Table 4.2. A sample of the ground
truth bounding boxes can be found in Figure 4.2. We always focus on three different
scenarios in the same frame, namely, normal and clear visual of vehicles, partially
occluded vehicles in shadows of trees and motorcycles, to check the robustness of the
detection model. The different thresholds used for the experiments are default values
used in the official YOLOv7 [7] code, and can be found in the hyperparameter files of
the official YOLOv7 repository, e.g., the IoU threshold for training is always 0.2. During
inference, the default values of confidence score threshold: 0.25 and IoU threshold: 0.45
are used.

Exp. GPU #GPUs #workers Time #epochs image-size batch-size pre-trained #train images #val images #test images
1 NVIDIA TITAN RTX (24GB) 1 (50% used) 8 1.5 hours 100 640 X 640 16 No 231 20 6
2 NVIDIA TITAN RTX (24GB) 1 (90% used) 8 2 hours 100 1280 X 1280 8 No 231 20 6
3 NVIDIA TITAN RTX (24GB) 4 (50% used) 8 3 hours 100 2560 X 2560 4 No 231 20 6
4 NVIDIA TITAN RTX (24GB) 4 (80% used) 8 3.5 hours 100 3200 X 3200 4 No 231 20 6

Table 4.2: Overview of YOLOv7 detector’s training experiments on the DLR dataset.

Figure 4.2: Ground truth visualisation of bounding boxes, on an image of the
2021-07-21-ATM_43 sequence.

45

4 Working on the DLR dataset

4.2.1 640 X 640

Figure 4.3: YOLOv7 inference result, with 640 X 640 image-size parameter value, on an
image of the 2021-07-21-ATM_43 sequence.

Figure 4.4: YOLOv7 training results, with 640 X 640 image-size parameter value.

Because of the high resolution of the input image, we started with a low image-size
of 640 X 640 for training the detector, in order to keep the memory requirements for
training in check. The quantitative results of the training can be found in Figure 4.4.
The qualitative results obtained by inferencing the trained model on a test image, can
be found in Figure 4.3. It can be seen from the inference that there are many false
positives because the model tries to resize the image of a very high resolution 5472 X
3648 to 640 X 640 before inferencing, the average confidence score of detections is low at
approximately 0.75 and several motor-cycles are not even detected.

46

4.2 Detection experiments

4.2.2 1280 X 1280

Figure 4.5: YOLOv7 inference result, with 1280 X 1280 image-size parameter value, on
an image of the 2021-07-21-ATM_43 sequence.

Figure 4.6: YOLOv7 training results, with 1280 X 1280 image-size parameter value.

To overcome the large number of false positives produced by the 640 X 640 model, we
trained a new model from scratch with the image-size of 1280 X 1280. The quantitative
results of the training can be found in Figure 4.6. The qualitative results obtained by
inferencing the trained model on a test image, can be found in Figure 4.5. It can be
seen from the inference that the false positives have now been reduced, since the image-
resolution we are now working with has increased. However, the average confidence
score is approximately 0.85 now which is higher than before but is still low and several
motor-cycles are not even detected.

47

4 Working on the DLR dataset

4.2.3 2560 X 2560

Figure 4.7: YOLOv7 inference result, with 2560 X 2560 image-size parameter value, on
an image of the 2021-07-21-ATM_43 sequence.

Figure 4.8: YOLOv7 training results, with 2560 X 2560 image-size parameter value.

In order to overcome the limitation of the 1280 X 1280 model, so as to detect smaller
objects like motor-cycles, we trained a new model from scratch with the image-size of
2560 X 2560. The quantitative results of the training can be found in Figure 4.8. The
qualitative results obtained by inferencing the trained model on a test image, can be
found in Figure 4.7. It can be seen from the inference that many more motor-cycles
are now detected (6 instead of 2 before) and the average confidence score of detections
has also increased to approximately 0.9. However, the confidence score of detected
motor-cycles is still low (approximately 0.5) and a few motor-cycles are still not detected.

48

4.2 Detection experiments

4.2.4 3200 X 3200

Figure 4.9: YOLOv7 inference result, with 3200 X 3200 image-size parameter value, on
an image of the 2021-07-21-ATM_43 sequence.

Figure 4.10: YOLOv7 training results, with 3200 X 3200 image-size parameter value.

To overcome the limitation of the 2560 X 2560 model, whereby the confidence score of
detecting motor-cycles was low and to detect all of the motor-cycles, we trained a new
model from scratch with the image-size of 3200 X 3200. The quantitative results of the
training can be found in Figure 4.10. The qualitative results obtained by inferencing
the trained model on a test image, can be found in Figure 4.9. It can be seen from
the inference that not only all motor-cycles (10 of them) are now detected but also
the average confidence score of detecting motor-cycles has increased significantly to
approximately 0.8. The average confidence score of all detections has now attained a
high value of approximately 0.95. Due to GPU memory restrictions, we did not train
any further detection models.

49

4 Working on the DLR dataset

4.3 Tracking experiments

In this section, we would like to present the tracking results of several algorithms, namely,
ByteTrack [11], UAVMOT [59], DeepSORT [12], BoT-SORT [13] and our proposed Byte-
De-SORT, on all the sequences of the DLR dataset. For all tracking experiments, we
used NVIDIA TITAN RTX (24 GB) GPU and we used the same YOLOv7 detector, which
was trained from scratch on the DLR dataset with an image-size of 3200 X 3200, since
that gave us the best detection performance. For all qualitative results, we chose non-
consecutive frames 1, 15 and 25 out of the 60 frames to see a tracker’s performance over
long-term tracking. If the track-id and color of the bounding box are maintained, it
means that the object was tracked correctly. We do not display track history, because that
is already indicated by the track-id and bounding box colour, and we focus on specific
parts of the frame and not the entire frame over a long period of time (non-consecutive
frames).

Figure 4.11: ByteTrack’s qualitative performance on the DLR dataset. Here we can see
Frame 1, Frame 15 and Frame 25 of the 2021-07-21-ATM_43 sequence.

Figure 4.12: UAVMOT’s qualitative performance on the DLR dataset. Here we can see
Frame 1, Frame 15 and Frame 25 of the 2021-07-21-ATM_43 sequence.

50

4.3 Tracking experiments

Figure 4.13: DeepSORT’s qualitative performance on the DLR dataset. Here we can see
Frame 1, Frame 15 and Frame 25 of the 2021-07-21-ATM_43 sequence.

Figure 4.14: BoT-SORT’s qualitative performance on the DLR dataset. Here we can see
Frame 1, Frame 15 and Frame 25 of the 2021-07-21-ATM_43 sequence.

Figure 4.15: Byte-De-SORT’s qualitative performance on the DLR dataset. Here we can
see Frame 1, Frame 15 and Frame 25 of the 2021-07-21-ATM_43 sequence.

51

4 Working on the DLR dataset

• ByteTrack: ByteTrack is one of the SOTA algorithms, and is often used as a basis
for other SOTA algorithms as well. The highlight of the ByteTrack algorithm, which
is taking into account the low score detections (confidence score typically between
0.15 and 0.5), can prove really useful for the DLR dataset with small objects.
The quantitative performance of ByteTrack on the DLR dataset can be found in
Table 4.3. Average Inference Speed: 3.16 FPS. The qualitative performance of
ByteTrack is well represented by Figure 4.11. Because of large camera motion
and low FPS data, an IoU based method like ByteTrack fails to be effective on the
DLR dataset. The Kalman Filter is unable to predict the motion of the vehicles
accurately, because of lack of camera motion compensation and low FPS data.

• UAVMOT: It is a SOTA method, that was specifically designed to work with aerial
imagery and data captured from UAV (unmanned aerial vehicle). It has a Local
Relational Filter, that tries to deal with camera motion in case the Kalman Filter
fails to provide a significant number of matches. The quantitative performance
of UAVMOT on the DLR dataset can be found in Table 4.4. Average Inference
Speed: 2.85 FPS. The qualitative performance of UAVMOT is well represented by
Figure 4.12. While, the method is known to be amongst SOTA for image sequences
captured from a drone, it is probably not tailored for images captured from a
helicopter that contain much smaller objects. Like ByteTrack, IoU based data
association and Kalman Filter fail to work well. The Local Relational Filter also
fails to work since the data is very low FPS and therefore the assumption, that the
angle formed between the nearest and farthest vehicle in a local neighbourhood
remains constant, does not hold good between two consecutive frames.

• DeepSORT (without Kalman Filter): IoU based data association was not working
and therefore the next choice was to check appearance based data association.
Kalman Filter was not able to predict object motion because of large camera
motion and low FPS data, and therefore, we removed it to verify the importance
of appearance features alone in this dataset. The quantitative performance of
DeepSORT (without Kalman Filter) on the DLR dataset can be found in Table 4.5.
Average Inference Speed: 2.92 FPS. The qualitative performance of DeepSORT is
well represented by Figure 4.13. Results conclusively indicate that removal of IoU
based data association and inclusion of appearance features based data association
is conducive to good tracking performance on this dataset. We can also conclude
that if camera motion is not compensated, it is not useful to use Kalman Filter
while performing tracking on this dataset, since we initially tried the original
DeepSORT (with Kalman Filter) and it did not give good results and therefore, we
removed the Kalman Filter and obtained fresh results to present here.

• BoT-SORT: BoT-SORT is based on ByteTrack, and is also one of the SOTA methods
in tracking. On top of IoU based data association, BoT-SORT offers camera motion
compensation, through image registration techniques like SIFT [62]. Therefore,
the large camera motion which is an important characteristic of this dataset can

52

4.3 Tracking experiments

now be dealt with appropriately. The quantitative performance of BoT-SORT
on the DLR dataset can be found in Table 4.6. Average Inference Speed: 0.01
FPS. The qualitative performance of BoT-SORT is well represented by Figure 4.14.
Because of camera motion compensation, both IoU based data association and
Kalman Filter are now working to a great extent. However, as it can be seen in
Figure 4.14, the effects of low FPS data have not been conquered. For example, a
fast moving object, the vehicle-1446 (the black vehicle on top left) in Frame 1 is
tracked as vehicle-1492 in Frame 15. This shows that even after camera motion
compensation, IoU and Kalman Filter do not work well on fast moving objects in
low FPS data. Camera motion compensation, using image registration techniques
like SIFT, is very computationally expensive and therefore, BoT-SORT is much
slower at inferencing than any other method presented here, making it unsuitable
for real-time tracking.

• Byte-De-SORT: Our proposed method Byte-De-SORT is specifically tailored to
work on this dataset, since it is based on data association using appearance features
and not IoU. Byte-De-SORT does not use a Kalman Filter which has been shown to
be not effective on this dataset. While camera motion compensation using SIFT has
been shown to be effective on the dataset via BoT-SORT, it was computationally
expensive and to keep the method relevant for real-time tracking, we have not
included camera motion compensation in Byte-De-SORT. The quantitative perfor-
mance of Byte-De-SORT on the DLR dataset can be found in Table 4.7. Average
Inference Speed: 2.82 FPS. The qualitative performance of Byte-De-SORT is well
represented by Figure 4.15. As can be seen in Figure 4.15, the fast moving object
vehicle-223 (on top left of Frame 1), is now correctly tracked (unlike BoT-SORT).
However, tracking of occluded objects suffers in this method since it depends on
appearance features. For example, in Figure 4.15, the motor-cycle (vehicle-254, on
bottom left of Frame 1) is not correctly tracked. Extremely similar looking vehicles
suffer from ID-switches during tracking, because of dependence on appearance
features. For example, in Figure 4.15, vehicle-194 (in middle-right) in Frame 1 is
tracked as vehicle-238 in Frame 15 and is further tracked as vehicle-216 in Frame
25.

53

4 Working on the DLR dataset

Sequence name HOTA MOTA IDF1
2019-10-17-4k_130 0.41 0.23 0.34
2019-10-17-4k_134 0.34 0.14 0.22
2019-10-17-4k_139 0.37 0.26 0.27
2020-03-19-Kieswerke-A96_14 0.32 0.12 0.21
2020-06-19-A99-A8-Starnberg_24 0.43 0.23 0.32
2020-06-23-4k-Fahrzeugtracking 0.27 0.09 0.15
2021-07-21-ATM_43 0.15 0.05 0.07
COMBINED 0.22 0.08 0.11

Table 4.3: Quantitative results of ByteTrack on DLR dataset.

Sequence name HOTA MOTA IDF1
2019-10-17-4k_130 0.44 0.23 0.36
2019-10-17-4k_134 0.35 0.13 0.22
2019-10-17-4k_139 0.37 0.23 0.25
2020-03-19-Kieswerke-A96_14 0.33 0.12 0.21
2020-06-19-A99-A8-Starnberg_24 0.43 0.23 0.32
2020-06-23-4k-Fahrzeugtracking 0.28 0.10 0.15
2021-07-21-ATM_43 0.15 0.06 0.06
COMBINED 0.23 0.09 0.10

Table 4.4: Quantitative results of UAVMOT on DLR dataset.

Sequence name HOTA MOTA IDF1
2019-10-17-4k_130 0.38 0.35 0.42
2019-10-17-4k_134 0.33 0.40 0.32
2019-10-17-4k_139 0.39 0.35 0.40
2020-03-19-Kieswerke-A96_14 0.39 0.41 0.46
2020-06-19-A99-A8-Starnberg_24 0.37 0.26 0.45
2020-06-23-4k-Fahrzeugtracking 0.35 0.42 0.40
2021-07-21-ATM_43 0.60 0.73 0.73
COMBINED 0.54 0.64 0.64

Table 4.5: Quantitative results of DeepSORT (without Kalman Filter) on DLR dataset.

54

4.4 Conclusion

Sequence name HOTA MOTA IDF1
2019-10-17-4k_130 0.43 0.27 0.40
2019-10-17-4k_134 0.37 0.12 0.24
2019-10-17-4k_139 0.45 0.22 0.37
2020-03-19-Kieswerke-A96_14 0.43 0.21 0.40
2020-06-19-A99-A8-Starnberg_24 0.42 0.23 0.32
2020-06-23-4k-Fahrzeugtracking 0.29 0.11 0.16
2021-07-21-ATM_43 0.64 0.73 0.71
COMBINED 0.59 0.59 0.61

Table 4.6: Quantitative results of BoT-SORT on DLR dataset.

Sequence name HOTA MOTA IDF1
2019-10-17-4k_130 0.40 0.50 0.37
2019-10-17-4k_134 0.38 0.57 0.39
2019-10-17-4k_139 0.36 0.56 0.34
2020-03-19-Kieswerke-A96_14 0.35 0.49 0.39
2020-06-19-A99-A8-Starnberg_24 0.37 0.40 0.41
2020-06-23-4k-Fahrzeugtracking 0.39 0.56 0.43
2021-07-21-ATM_43 0.62 0.82 0.72
COMBINED 0.56 0.75 0.63

Table 4.7: Quantitative results of Byte-De-SORT on DLR dataset.

4.4 Conclusion

Camera Motion Compensation ≈ Appearance Features >> Kalman Filter ≈ IoU (4.1)

BoT-SORT achieved the highest overall HOTA score of 0.59, closely followed by our
proposed method Byte-De-SORT which achieved an overall HOTA score of 0.56. Byte-
De-SORT also achieved an overall MOTA score of 0.75, which was the highest by a large
margin. DeepSORT (without Kalman Filter) achieved the highest overall IDF1 score of
0.64, followed very closely by Byte-De-SORT which achieved an overall IDF1 score of
0.63. Byte-De-SORT clocked an average inference speed of 2.82 FPS, making it much
more suitable for real-time tracking than BoT-SORT which showed an average inference
speed of only 0.01 FPS. Byte-De-SORT is also able to effectively track fast-moving
vehicles, which proved difficult for most trackers using Kalman Filter on this low FPS
DLR dataset. For the DLR dataset, we can safely say that the order of importance of
different features of a tracking algorithm can be given by the Equation 4.1. Therefore,
as per observations, Byte-De-SORT stands out as the best solution to be used for
real-time tracking on the DLR dataset.

55

5 Working on the A9 dataset

5.1 Dataset overview

• This is the second version of the A9 dataset [6]. The first version was called r00
and this version is called r01. As of writing this thesis, r01 has not been completely
published. Only 3 sequences of r01, namely r01_s01, r01_s02 and r01_s03 have been
published so far, which focus on the highway. The sequences from the intersections
will be published in the near future. The dataset, in total, consists of 9 sequences
ranging from r01_s01 to r01_s09.

• Each of these sequences are captured simultaneously from multiple cameras. For
example, r01_s01 has been captured by 4 different cameras. Although the inputs
of 4 different cameras can be fused using timestamps of capture, for our purposes,
we treat them as 4 different sequences, each with its own set of unique objects. In
the future there are plans to fuse the data such that there will be unique objects
per sequence and not per camera view.

• The cameras that have been used to construct the dataset are hosted on traffic
monitoring systems on the A9 traffic highway and intersections in Garching, a
little north of Munich, Germany. There is zero camera motion (unless the weather
is very windy and it ends up moving the camera) in this dataset.

• All images are of a medium resolution: 1920 X 1200. All sequences are of medium-
high frequency: 10 FPS.

• The annotations were originally in OpenLABEL [63] JSON format, and had to be
brought into the MS-COCO [8] YOLOv7 [7] format, for the detector and trackers.

• We are using the tracking evaluation metrics from the MOT benchmarks, namely
HOTA, MOTA and IDF1. In order to do so, the Ground Truth annotations had to
be converted to the MOT benchmark compliant format as well.

• There are 11 classes of objects in this dataset, as can be seen in Table 5.1. Please
always refer to this Table for a mapping from object class name to object class id,
since the class names are not used in other Tables and only class id is used. This is
because of the large number of columns in these Tables which make it difficult to
fit large column names.

• We also provide a detailed overview of the dataset across Tables 5.2 - 5.10. For exam-
ple, Table 5.2 shows that the sequence r01_s01_s040_north_50mm contains a total

57

5 Working on the A9 dataset

of 86 unique objects of the CAR (object class id 0 as per Table5.1) type, across all
frames. The Table 5.2 also informs us that the sequence r01_s01_s040_north_50mm
has a total of 354 image frames and that it has a total of 27428 labelled bounding
boxes (annotations) across all frames including all object types and instances.

CAR TRUCK TRAILER VAN MOTORCYCLE BUS PEDESTRIAN BICYCLE EMERGENCY_VEHICLE OTHER LICENSE_PLATE_LOCATION
0 1 2 3 4 5 6 7 8 9 10

Table 5.1: Classes of objects in the A9 dataset. Mapping of object class name to object
class id.

Sequence name #0 #1 #10 #2 #3 #4 #5 #6 #7 #8 #9 #annotations #frames
r01_s01_s040_north_50mm 86 28 135 19 22 0 0 0 0 0 1 27428 354
r01_s01_s040_north_16mm 56 25 81 19 15 0 0 0 0 0 0 14018 354
r01_s01_s050_south_16mm 65 26 91 18 20 0 0 0 0 0 0 15335 375
r01_s01_s050_south_50mm 74 27 113 14 25 0 0 0 0 0 0 28723 375

Table 5.2: Overview of the r01_s01 sequence of the A9 dataset.

Sequence name #0 #1 #10 #2 #3 #4 #5 #6 #7 #8 #9 #annotations #frames
r01_s02_s040_north_50mm 100 16 0 10 18 0 0 0 0 0 0 11338 375
r01_s02_s040_north_16mm 80 16 0 10 17 0 0 0 0 0 0 7055 375
r01_s02_s050_south_16mm 60 17 0 13 19 0 0 0 0 0 0 5790 358
r01_s02_s050_south_50mm 79 15 0 10 18 0 0 0 0 0 0 10312 358

Table 5.3: Overview of the r01_s02 sequence of the A9 dataset.

Sequence name #0 #1 #10 #2 #3 #4 #5 #6 #7 #8 #9 #annotations #frames
r01_s03_s040_north_50mm 164 55 245 35 45 0 0 0 0 0 3 62682 750
r01_s03_s040_north_16mm 98 39 154 42 25 0 0 0 0 0 4 26221 750
r01_s03_s050_south_16mm 105 34 162 26 32 0 0 6 0 0 3 35094 750
r01_s03_s050_south_50mm 146 41 230 24 37 0 0 1 0 0 3 61640 750

Table 5.4: Overview of the r01_s03 sequence of the A9 dataset.

Sequence name #0 #1 #10 #2 #3 #4 #5 #6 #7 #8 #9 #annotations #frames
r01_s04_s110_east_50mm 21 1 0 0 4 0 0 0 3 0 0 2963 300
r01_s04_s110_east_16mm 34 1 0 0 1 0 0 2 1 0 0 5268 300
r01_s04_s110_north_50mm 12 1 0 2 5 0 0 0 0 0 0 2215 300
r01_s04_s110_south2_8mm 19 2 0 1 3 0 0 3 0 0 0 4698 300
r01_s04_m090_west_50mm 44 3 0 1 5 0 0 4 0 0 0 6611 300
r01_s04_s110_south1_8mm 18 3 0 1 4 0 0 3 0 0 0 4152 300
r01_s04_s110_north_16mm 7 0 0 0 2 0 0 2 0 0 0 2094 300

Table 5.5: Overview of the r01_s04 sequence of the A9 dataset.

58

5.1 Dataset overview

Sequence name #0 #1 #10 #2 #3 #4 #5 #6 #7 #8 #9 #annotations #frames
r01_s05_s110_east_50mm 32 2 0 2 3 0 0 0 0 0 0 4336 300
r01_s05_s110_east_16mm 53 3 0 2 2 0 0 6 0 0 0 7169 300
r01_s05_s110_north_50mm 13 1 0 2 1 0 0 0 0 0 0 2883 300
r01_s05_s110_south2_8mm 28 1 0 1 3 0 0 2 0 0 0 4449 300
r01_s05_m090_west_50mm 55 4 0 3 2 0 0 4 0 0 0 8471 300
r01_s05_s110_south1_8mm 27 3 0 2 1 0 0 2 1 0 0 4713 300
r01_s05_s110_north_16mm 7 0 0 0 1 0 0 0 0 0 0 1043 300

Table 5.6: Overview of the r01_s05 sequence of the A9 dataset.

Sequence name #0 #1 #10 #2 #3 #4 #5 #6 #7 #8 #9 #annotations #frames
r01_s06_s040_north_50mm 127 12 0 12 24 0 1 0 0 0 0 16399 300
r01_s06_s040_north_16mm 84 9 0 7 17 0 0 0 0 0 0 8609 300
r01_s06_s050_south_16mm 83 9 0 7 16 0 0 0 0 0 0 3439 126
r01_s06_s050_south_50mm 138 14 0 8 27 0 0 0 0 0 0 18493 300

Table 5.7: Overview of the r01_s06 sequence of the A9 dataset.

Sequence name #0 #1 #10 #2 #3 #4 #5 #6 #7 #8 #9 #annotations #frames
r01_s07_s040_north_50mm 119 14 0 7 12 0 0 6 0 3 0 16625 300
r01_s07_s040_north_16mm 96 5 0 4 11 0 1 2 0 5 0 10481 300
r01_s07_s050_south_16mm 71 4 0 4 7 0 0 0 0 0 0 2584 131
r01_s07_s050_south_50mm 119 17 0 10 22 0 0 12 0 5 0 19726 300

Table 5.8: Overview of the r01_s07 sequence of the A9 dataset.

Sequence name #0 #1 #10 #2 #3 #4 #5 #6 #7 #8 #9 #annotations #frames
r01_s08_s110_east_16mm 108 8 0 6 12 2 0 1 2 0 0 26616 1200
r01_s08_s110_north_50mm 61 9 0 7 14 3 1 15 5 0 0 23084 1200
r01_s08_m090_north_16mm 70 2 0 2 7 0 2 1 2 0 0 14770 1201
r01_s08_s110_south2_8mm 86 9 0 11 14 2 4 15 2 0 0 22527 1200
r01_s08_m090_west_50mm 182 17 0 16 19 5 2 7 6 0 0 33826 1200
r01_s08_m090_east_50mm 95 8 0 7 21 1 0 0 0 0 0 8516 1200
r01_s08_s110_south1_8mm 74 13 0 9 9 2 2 10 3 0 0 15190 1200
r01_s08_s110_north_16mm 48 7 0 5 6 2 0 4 1 0 0 9983 1200
r01_s08_m090_west_16mm 151 6 0 6 12 2 0 1 0 0 0 36090 1201

Table 5.9: Overview of the r01_s08 sequence of the A9 dataset.

Sequence name #0 #1 #10 #2 #3 #4 #5 #6 #7 #8 #9 #annotations #frames
r01_s09_s110_east_16mm 8 1 0 0 1 0 1 0 0 0 0 1152 618
r01_s09_s110_north_50mm 6 0 0 0 1 0 0 0 0 0 0 1211 619
r01_s09_m090_north_16mm 6 0 0 0 1 0 0 0 0 0 0 1286 606
r01_s09_s110_south2_8mm 10 4 0 2 2 0 2 0 0 0 0 4947 620
r01_s09_m090_west_50mm 11 1 0 0 1 0 1 0 0 0 0 1401 606
r01_s09_m090_east_50mm 9 1 0 1 0 0 2 0 0 0 0 1185 602
r01_s09_s110_south1_8mm 7 1 0 1 1 0 1 0 0 0 0 1815 620
r01_s09_s110_north_16mm 2 0 0 0 0 0 0 0 0 0 0 723 619
r01_s09_m090_west_16mm 10 1 0 2 1 0 1 0 0 0 0 1301 605

Table 5.10: Overview of the r01_s09 sequence of the A9 dataset.

59

5 Working on the A9 dataset

Figure 5.1: A distribution of the total number of labelled bounding boxes (annotations)
across the A9 dataset.

Figure 5.2: A distribution of the total number of image frames across the A9 dataset.

60

5.1 Dataset overview

Figure 5.3: A distribution of the total number of unique objects of the CAR object class
across the A9 dataset.

Figure 5.4: A distribution of the total number of unique objects of the TRUCK object
class across the A9 dataset.

61

5 Working on the A9 dataset

Figure 5.5: A distribution of the total number of unique objects of the TRAILER object
class across the A9 dataset.

Figure 5.6: A distribution of the total number of unique objects of the VAN object class
across the A9 dataset.

62

5.1 Dataset overview

Figure 5.7: A distribution of the total number of unique objects of the MOTORCYCLE
object class across the A9 dataset.

Figure 5.8: A distribution of the total number of unique objects of the BUS object class
across the A9 dataset.

63

5 Working on the A9 dataset

Figure 5.9: A distribution of the total number of unique objects of the PEDESTRIAN
object class across the A9 dataset.

Figure 5.10: A distribution of the total number of unique objects of the BICYCLE object
class across the A9 dataset.

64

5.1 Dataset overview

Figure 5.11: A distribution of the total number of unique objects of the
EMERGENCY_VEHICLE object class across the A9 dataset.

Figure 5.12: A distribution of the total number of unique objects of the OTHER object
class across the A9 dataset.

65

5 Working on the A9 dataset

Figure 5.13: A distribution of the total number of unique objects of the
LICENSE_PLATE_LOCATION object class across the A9 dataset.

66

5.2 Detection experiments

5.2 Detection experiments

Figure 5.14: YOLOv7 training results, with 1216 X 1216 image-size parameter value.

Exp. GPU #GPUs #workers Time #epochs image-size batch-size pre-trained #train images #val images #test images
1 NVIDIA TITAN RTX (24GB) 2 (90% used) 8 40 hours 100 1216 X 1216 16 No 25648 2280 570

Table 5.11: Overview of YOLOv7 detector’s training experiment on the A9 dataset.

• We trained a YOLOv7 model from scratch on the entire A9 dataset instead of using
pretrained MS-COCO weights, because out of the 11 classes of the A9 dataset, only
6 are found in the MS-COCO dataset.

• We trained the model using an image-size of 1216 X 1216 which is slightly higher
than the lower dimension of the images in the A9 dataset, namely, 1920 X 1200.

• Although higher resolutions (larger image-size) have been observed to provide
better results, they are also significantly more memory intensive to train (as we
saw for the Detection experiments on the DLR dataset in Table 4.2) and given
the large number of images in the A9 dataset, we were both limited by time and
hardware. Besides, the inference time of higher resolution models is also larger.
For example, the 640 X 640 YOLOv7 detection model of the DLR dataset took 1.966
seconds to perform inference on a test image, whereas the 3200 X 3200 YOLOv7
detection model took 2.017 seconds to perform inference on the same test image.

• An overview of the training experiment can be found in Table 5.11. The quantitative
results of the training can be found in Figure 5.14. The quantitative results on the
validation set can be found in Table 5.12. The quantitative results on the test set
can be found in Table 5.13. The qualitative results obtained by inferencing the
trained model on a test image, can be found in Figure 5.15.

67

5 Working on the A9 dataset

Figure 5.15: YOLOv7 inference result, with 1280 X 1280 image-size parameter value, on
a test image of the A9 dataset.

Class #Images #Labels Precision Recall mAP@.5 mAP@.5:.95
all 2280 54275 0.955 0.923 0.946 0.785

CAR 2280 30959 0.967 0.984 0.994 0.872
TRUCK 2280 5571 0.974 0.992 0.997 0.869

TRAILER 2280 2968 0.965 0.979 0.987 0.891
VAN 2280 4999 0.966 0.989 0.994 0.891

MOTORCYCLE 2280 192 0.974 0.984 0.986 0.832
BUS 2280 165 0.975 0.994 0.995 0.866

PEDESTRIAN 2280 926 0.921 0.954 0.973 0.684
BICYCLE 2280 192 0.942 0.943 0.981 0.74

EMERGENCY_VEHICLE 2280 198 1 0.954 0.973 0.9
OTHER 2280 139 0.94 1 0.993 0.884

LICENSE_PLATE_LOCATION 2280 7966 0.88 0.382 0.535 0.21

Table 5.12: YOLOv7 quantitative results on the validation set, with 1216 X 1216
image-size parameter value.

Class #Images #Labels Precision Recall mAP@.5 mAP@.5:.95
all 570 13536 0.949 0.931 0.949 0.78

CAR 570 7763 0.967 0.982 0.993 0.872
TRUCK 570 1437 0.969 0.992 0.996 0.868

TRAILER 570 778 0.973 0.985 0.993 0.894
VAN 570 1194 0.961 0.99 0.995 0.9

MOTORCYCLE 570 43 0.981 1 0.996 0.857
BUS 570 49 0.96 1 0.994 0.877

PEDESTRIAN 570 270 0.908 0.922 0.953 0.64
BICYCLE 570 34 0.914 1 0.996 0.742

EMERGENCY_VEHICLE 570 71 0.986 0.915 0.968 0.861
OTHER 570 31 0.974 1 0.996 0.854

LICENSE_PLATE_LOCATION 570 1866 0.85 0.452 0.565 0.221

Table 5.13: YOLOv7 quantitative results on the test set, with 1280 X 1280 image-size
parameter value.

68

5.3 Tracking experiments

5.3 Tracking experiments

In this section, we would like to present the tracking results of several algorithms,
namely, SORT [9], ByteTrack [11], DeepSORT [12], and our proposed Byte-De-SORT
on all the sequences of the A9 dataset. For all tracking experiments, we used NVIDIA
TITAN RTX (24 GB) GPU and we used the same YOLOv7 detector, which was trained
from scratch on the A9 dataset. We use an image-size of 1280 X 1280 for inferencing,
since that was the optimal choice between speed and accuracy for this dataset. We do
not display track history in the qualitative results, because that is already indicated by
the track-id and bounding box colour, and we focus on specific parts of the frame and
not the entire frame, generally over a long period of time (non-consecutive frames), to
ascertain long-term tracking performance.

Figure 5.16: SORT’s qualitative performance on the A9 dataset. These images were
taken from the r01_s08_s110_south2_8mm sequence.

Figure 5.17: ByteTrack’s qualitative performance on the A9 dataset. These images were
taken from the r01_s08_s110_south2_8mm sequence.

69

5 Working on the A9 dataset

Figure 5.18: DeepSORT’s qualitative performance on the A9 dataset. These images were
taken from the r01_s05_s110_south2_8mm sequence.

Figure 5.19: Byte-De-SORT’s qualitative performance on the A9 dataset. These images
were taken from the r01_s08_s110_south2_8mm sequence.

• SORT: As of writing this thesis, SORT is currently planned to be used in the 3D
perception pipeline in the near future of the Providentia [5] project. Therefore, it
made sense to judge its performance with the detector we have trained. SORT is a
straightforward tracker without any algorithmic complexities and its performance
can shed light on the important characteristics needed by a tracker to do tracking
on the A9 dataset. SORT achieved HOTA: 0.62, MOTA: 0.69, IDF1: 0.74, and
Average Inference Speed: 19.31 FPS overall on the A9 dataset. The qualitative
performance of SORT can be found in Figure 5.16. A9 dataset, being a medium-
high FPS dataset with no camera motion, is perfect for an IoU based algorithm
like SORT that also utilises the Kalman Filter. Because of high FPS, IoU thresholds
between frames are easily met and because of no camera motion, Kalman Filter’s
predictions work well. Consequently, SORT gives us the best overall results on
the A9 dataset amongst all the algorithms presented here. However, since SORT
is purely IoU based, it is unable to work well when an object moves too fast or

70

5.3 Tracking experiments

accelerates as is the case with the vehicles in the left lane in Figure 5.16. It is
difficult for a fast moving object to have a large IoU with itself from the previous
frame. Moreover, Kalman Filter works on the assumption of constant velocity.
Therefore, if an object rapidly accelerates, it fails to be tracked correctly by SORT.

• ByteTrack: ByteTrack is one of the SOTA methods used for tracking on the MOT
benchmark datasets. ByteTrack has the special characteristic of matching low-
score detections with remaining tracks after matching high-score detections. This
has proven to work well on pedestrian heavy MOT datasets and we can verify
whether it works well on a vehicle heavy dataset like the A9 dataset. ByteTrack
achieved HOTA: 0.58, MOTA: 0.63, IDF1: 0.71, and Average Inference Speed:
18.88 FPS overall on the A9 dataset. The qualitative performance of ByteTrack
can be found in Figure 5.17. Despite being a SOTA method and being IoU based,
ByteTrack falls short of being the best tracking algorithm for the A9 dataset, and
loses the top spot to SORT by a small margin. The consideration of low-score
detections which is the highlight of ByteTrack, that works for MOT benchmarks
and pedestrian datasets, leads to False Positives on the A9 dataset (as can be seen
in Figure 5.17). The low-score detections were primarily built into ByteTrack to
deal with occluded pedestrians in crowded scenarios in the MOT benchmarks.
However, A9 dataset has several non-crowded and non-occluded scenarios and is
primarily composed of large vehicles and very few pedestrians. Therefore, instead
of increasing performance, low-score detections end up decreasing it. Because
of considering low-score detections, ByteTrack is also slower at inferencing than
SORT.

• DeepSORT: DeepSORT is a great choice when we wish to verify the importance
of appearance based features for data-association instead of the conventional IoU
based data association. We have not removed the Kalman Filter from DeepSORT
like we did for the DLR dataset. This is because A9 dataset is relatively high
FPS and has no camera motion and therefore Kalman Filter works well on this
dataset. DeepSORT achieved HOTA: 0.50, MOTA: 0.58, IDF1: 0.56, and Average
Inference Speed: 15.22 FPS overall on the A9 dataset. The qualitative performance
of DeepSORT can be found in Figure 5.18. DeepSORT is slower than IoU based
methods at inferencing because a feature embedding needs to be calculated for
every detection using a ResNet-50 backbone. DeepSORT does not utilise crucial
location based information, e.g. where the object was in the previous frame and
where is it in the current frame. This information is highly beneficial in a high FPS
dataset, since in this case the object should generally be quite near to itself from
the previous frame. Since only appearance based features are given importance,
sometimes pedestrians are mistracked as bicycles and vice versa, since they look
similar. Sometimes ID-switches also happen between similar looking vehicles (as
can be seen for both CAR-2126 and CAR-2113 in Figure 5.18). Because of these
reasons, DeepSORT performs worse when compared to ByteTrack and SORT.

71

5 Working on the A9 dataset

• Byte-De-SORT: While Byte-De-SORT was primarily developed for the DLR dataset,
it also provides an opportunity to test a new method, which is completely devoid
of IoU and Kalman Filter and depends solely on appearance features, on the A9
dataset. This is the only method amongst our chosen methods that is devoid of
a Kalman Filter and therefore, the results obtained with this method will clearly
reflect the importance of Kalman Filter for the A9 dataset. Byte-De-SORT achieved
HOTA: 0.48, MOTA: 0.68, IDF1: 0.51, and Average Inference Speed: 14.34 FPS
overall on the A9 dataset. The qualitative performance of Byte-De-SORT can
be found in Figure 5.19. Byte-De-SORT is the worst performer amongst all the
algorithms that we tried for tracking on the A9 dataset. However, there is a logical
reasoning behind this. Byte-De-SORT was primarily designed to work well on the
DLR dataset, which is a low FPS dataset with large camera motion, and therefore
quite the opposite of the A9 dataset. Byte-De-SORT is a combination of ByteTrack
and DeepSORT and performs worse than either of them on the A9 dataset. This
is because unlike DeepSORT, Byte-De-SORT does not use a Kalman Filter which
is useful in the A9 dataset for motion prediction because of no camera motion.
Byte-De-SORT performs worse than ByteTrack because unlike ByteTrack, it does
not use IoU for data association which is useful in a high FPS dataset. Despite
its flaws, Byte-De-SORT shines where the best algorithm for A9 dataset, namely
SORT, does not. As can be seen in Figure 5.19, unlike SORT, Byte-De-SORT can
consistently track fast moving vehicles, because of the absence of IoU based data
association and Kalman Filter.

The A9 dataset has several sequences (9 in total, but because of multiple camera views,
52 overall in our case), with multiple classes of objects (11 classes) in very different
scenarios (highways, intersections, day and night). Thus, it would make sense to have a
detailed quantitative overview of the tracking results on all sequences. This will enable
researchers in future to draw valuable insights as to which scenarios, camera angles,
and object classes are conducive to tracking.

Sequence HOTA_BDS HOTA_BT HOTA_DS HOTA_ST IDF1_BDS IDF1_BT IDF1_DS IDF1_ST MOTA_BDS MOTA_BT MOTA_DS MOTA_ST
r01_s01_s040_north_16mm 0.37 0.46 0.37 0.49 0.38 0.58 0.41 0.60 0.47 0.41 0.35 0.46
r01_s01_s040_north_50mm 0.39 0.51 0.41 0.56 0.42 0.63 0.47 0.67 0.53 0.48 0.40 0.54
r01_s01_s050_south_16mm 0.35 0.51 0.40 0.56 0.35 0.65 0.45 0.67 0.52 0.46 0.40 0.54
r01_s01_s050_south_50mm 0.39 0.51 0.42 0.55 0.41 0.64 0.49 0.66 0.52 0.46 0.37 0.52

Table 5.14: Quantitative results of all tracking algorithms on the r01_s01 sequence of the
A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST: SORT.

Sequence HOTA_BDS HOTA_BT HOTA_DS HOTA_ST IDF1_BDS IDF1_BT IDF1_DS IDF1_ST MOTA_BDS MOTA_BT MOTA_DS MOTA_ST
r01_s02_s040_north_16mm 0.39 0.54 0.38 0.55 0.44 0.79 0.48 0.77 0.73 0.65 0.57 0.69
r01_s02_s040_north_50mm 0.43 0.56 0.44 0.63 0.50 0.78 0.57 0.85 0.81 0.74 0.69 0.87
r01_s02_s050_south_16mm 0.36 0.54 0.37 0.56 0.41 0.77 0.46 0.77 0.72 0.68 0.58 0.74
r01_s02_s050_south_50mm 0.40 0.57 0.48 0.62 0.50 0.82 0.65 0.87 0.75 0.73 0.68 0.84

Table 5.15: Quantitative results of all tracking algorithms on the r01_s02 sequence of the
A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST: SORT.

72

5.4 Conclusion

Sequence HOTA_BDS HOTA_BT HOTA_DS HOTA_ST IDF1_BDS IDF1_BT IDF1_DS IDF1_ST MOTA_BDS MOTA_BT MOTA_DS MOTA_ST
r01_s03_s040_north_16mm 0.38 0.50 0.35 0.51 0.39 0.62 0.37 0.62 0.54 0.46 0.38 0.50
r01_s03_s040_north_50mm 0.37 0.49 0.37 0.53 0.36 0.59 0.39 0.61 0.56 0.51 0.41 0.55
r01_s03_s050_south_16mm 0.43 0.54 0.41 0.58 0.44 0.66 0.45 0.68 0.57 0.51 0.45 0.56
r01_s03_s050_south_50mm 0.40 0.50 0.39 0.55 0.41 0.60 0.40 0.62 0.53 0.48 0.38 0.53

Table 5.16: Quantitative results of all tracking algorithms on the r01_s03 sequence of the
A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST: SORT.

Sequence HOTA_BDS HOTA_BT HOTA_DS HOTA_ST IDF1_BDS IDF1_BT IDF1_DS IDF1_ST MOTA_BDS MOTA_BT MOTA_DS MOTA_ST
r01_s04_m090_west_50mm 0.56 0.65 0.61 0.71 0.64 0.84 0.76 0.88 0.80 0.76 0.71 0.84
r01_s04_s110_east_16mm 0.65 0.71 0.68 0.73 0.74 0.86 0.82 0.89 0.81 0.78 0.76 0.82
r01_s04_s110_east_50mm 0.55 0.74 0.70 0.81 0.52 0.85 0.76 0.90 0.89 0.81 0.84 0.91
r01_s04_s110_north_16mm 0.50 0.60 0.53 0.55 0.56 0.67 0.62 0.57 0.29 0.39 0.33 0.38
r01_s04_s110_north_50mm 0.66 0.76 0.73 0.79 0.64 0.78 0.74 0.80 0.64 0.62 0.61 0.66
r01_s04_s110_south1_8mm 0.68 0.73 0.70 0.76 0.73 0.86 0.80 0.89 0.79 0.74 0.75 0.80
r01_s04_s110_south2_8mm 0.69 0.79 0.79 0.82 0.74 0.94 0.93 0.95 0.96 0.93 0.93 0.97

Table 5.17: Quantitative results of all tracking algorithms on the r01_s04 sequence of the
A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST: SORT.

Sequence HOTA_BDS HOTA_BT HOTA_DS HOTA_ST IDF1_BDS IDF1_BT IDF1_DS IDF1_ST MOTA_BDS MOTA_BT MOTA_DS MOTA_ST
r01_s05_m090_west_50mm 0.53 0.65 0.56 0.69 0.58 0.85 0.71 0.87 0.82 0.80 0.71 0.87
r01_s05_s110_east_16mm 0.60 0.65 0.61 0.71 0.66 0.83 0.74 0.87 0.80 0.71 0.68 0.81
r01_s05_s110_east_50mm 0.55 0.73 0.61 0.79 0.53 0.87 0.65 0.92 0.88 0.80 0.79 0.92
r01_s05_s110_north_16mm 0.31 0.38 0.28 0.41 0.30 0.37 0.27 0.40 -0.11 -0.05 -0.14 0.00
r01_s05_s110_north_50mm 0.57 0.70 0.72 0.71 0.56 0.78 0.84 0.77 0.77 0.75 0.74 0.78
r01_s05_s110_south1_8mm 0.60 0.71 0.70 0.75 0.67 0.90 0.88 0.92 0.82 0.79 0.79 0.86
r01_s05_s110_south2_8mm 0.67 0.78 0.74 0.79 0.72 0.91 0.86 0.91 0.93 0.90 0.87 0.93

Table 5.18: Quantitative results of all tracking algorithms on the r01_s05 sequence of the
A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST: SORT.

Sequence HOTA_BDS HOTA_BT HOTA_DS HOTA_ST IDF1_BDS IDF1_BT IDF1_DS IDF1_ST MOTA_BDS MOTA_BT MOTA_DS MOTA_ST
r01_s06_s040_north_16mm 0.55 0.65 0.50 0.67 0.60 0.84 0.56 0.82 0.84 0.77 0.73 0.80
r01_s06_s040_north_50mm 0.55 0.64 0.56 0.70 0.61 0.80 0.66 0.85 0.84 0.77 0.74 0.87
r01_s06_s050_south_16mm 0.44 0.52 0.36 0.51 0.48 0.70 0.41 0.59 0.67 0.56 0.32 0.52
r01_s06_s050_south_50mm 0.53 0.65 0.54 0.71 0.58 0.80 0.63 0.86 0.82 0.76 0.73 0.86

Table 5.19: Quantitative results of all tracking algorithms on the r01_s06 sequence of the
A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST: SORT.

Sequence HOTA_BDS HOTA_BT HOTA_DS HOTA_ST IDF1_BDS IDF1_BT IDF1_DS IDF1_ST MOTA_BDS MOTA_BT MOTA_DS MOTA_ST
r01_s07_s040_north_16mm 0.53 0.62 0.52 0.66 0.58 0.78 0.60 0.80 0.88 0.78 0.79 0.89
r01_s07_s040_north_50mm 0.54 0.67 0.58 0.72 0.60 0.83 0.66 0.87 0.84 0.81 0.77 0.88
r01_s07_s050_south_16mm 0.46 0.54 0.31 0.46 0.50 0.78 0.35 0.60 0.70 0.60 0.41 0.46
r01_s07_s050_south_50mm 0.50 0.60 0.53 0.67 0.59 0.77 0.64 0.83 0.78 0.74 0.70 0.81

Table 5.20: Quantitative results of all tracking algorithms on the r01_s07 sequence of the
A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST: SORT.

Sequence HOTA_BDS HOTA_BT HOTA_DS HOTA_ST IDF1_BDS IDF1_BT IDF1_DS IDF1_ST MOTA_BDS MOTA_BT MOTA_DS MOTA_ST
r01_s08_m090_east_50mm 0.48 0.59 0.41 0.58 0.47 0.73 0.39 0.67 0.62 0.53 0.47 0.59
r01_s08_m090_north_16mm 0.48 0.49 0.51 0.55 0.56 0.58 0.59 0.65 0.76 0.73 0.71 0.77
r01_s08_m090_west_16mm 0.53 0.58 0.56 0.60 0.56 0.64 0.60 0.65 0.66 0.63 0.61 0.66
r01_s08_m090_west_50mm 0.45 0.55 0.46 0.60 0.50 0.67 0.52 0.73 0.76 0.72 0.68 0.78
r01_s08_s110_east_16mm 0.55 0.62 0.60 0.65 0.55 0.72 0.66 0.74 0.78 0.70 0.70 0.77
r01_s08_s110_north_16mm 0.55 0.66 0.63 0.69 0.59 0.75 0.71 0.78 0.62 0.58 0.58 0.64
r01_s08_s110_north_50mm 0.54 0.68 0.64 0.73 0.58 0.81 0.71 0.85 0.88 0.82 0.80 0.90
r01_s08_s110_south1_8mm 0.54 0.65 0.54 0.70 0.61 0.79 0.61 0.83 0.74 0.65 0.65 0.75
r01_s08_s110_south2_8mm 0.53 0.67 0.64 0.71 0.56 0.81 0.74 0.83 0.91 0.85 0.84 0.91

Table 5.21: Quantitative results of all tracking algorithms on the r01_s08 sequence of the
A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST: SORT.

73

5 Working on the A9 dataset

Sequence HOTA_BDS HOTA_BT HOTA_DS HOTA_ST IDF1_BDS IDF1_BT IDF1_DS IDF1_ST MOTA_BDS MOTA_BT MOTA_DS MOTA_ST
r01_s09_m090_east_50mm 0.40 0.50 0.45 0.49 0.54 0.74 0.61 0.72 0.57 0.48 0.46 0.55
r01_s09_m090_north_16mm 0.42 0.65 0.39 0.47 0.55 0.94 0.52 0.66 0.78 0.89 0.65 0.75
r01_s09_m090_west_16mm 0.48 0.54 0.43 0.52 0.51 0.67 0.42 0.63 0.41 0.37 0.33 0.34
r01_s09_m090_west_50mm 0.52 0.64 0.49 0.65 0.66 0.88 0.58 0.88 0.85 0.85 0.84 0.86
r01_s09_s110_east_16mm 0.51 0.67 0.58 0.71 0.59 0.88 0.67 0.89 0.87 0.77 0.78 0.85
r01_s09_s110_north_16mm 0.86 0.86 0.86 0.86 0.98 0.98 0.98 0.99 0.97 0.97 0.97 0.97
r01_s09_s110_north_50mm 0.76 0.81 0.79 0.81 0.86 0.95 0.94 0.95 0.92 0.91 0.89 0.92
r01_s09_s110_south1_8mm 0.46 0.63 0.62 0.65 0.49 0.81 0.80 0.82 0.67 0.62 0.62 0.65
r01_s09_s110_south2_8mm 0.67 0.80 0.78 0.81 0.77 0.95 0.92 0.96 0.94 0.92 0.92 0.94

Table 5.22: Quantitative results of all tracking algorithms on the r01_s09 sequence of the
A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST: SORT.

Sequence HOTA_BDS HOTA_BT HOTA_DS HOTA_ST IDF1_BDS IDF1_BT IDF1_DS IDF1_ST MOTA_BDS MOTA_BT MOTA_DS MOTA_ST
COMBINED 0.48 0.58 0.50 0.62 0.51 0.71 0.56 0.74 0.68 0.63 0.58 0.69

Table 5.23: Overall quantitative results of all tracking algorithms on all sequences of the
A9 dataset.

5.4 Conclusion

Kalman Filter ≈ IoU > Appearance Features > Camera Motion Compensation (5.1)

Table 5.23 contains the overall quantitative tracking results of all algorithms on all
sequences of the A9 dataset. SORT gives the best quantitative results while our proposed
algorithm Byte-De-SORT performs relatively the worst on the A9 dataset. However,
overall, all 4 algorithms managed to give decent results. IoU based algorithms like SORT
and ByteTrack produced relatively better HOTA scores of 0.62 and 0.58 respectively in
comparison to appearance features based algorithms like DeepSORT and Byte-De-SORT
that managed to produce HOTA scores of 0.50 and 0.48 respectively. SORT achieved the
highest MOTA score of 0.69, closely followed by Byte-De-SORT which achieved a MOTA
score of 0.68. SORT and ByteTrack achieved relatively higher IDF1 scores of 0.74 and 0.71
respectively in comparison to DeepSORT and Byte-De-SORT that achieved IDF1 scores
of 0.56 and 0.51 respectively. SORT clocked the fastest inference speed at 19.31 FPS and
Byte-De-SORT clocked the slowest inference speed at 14.34 FPS, making all 4 algorithms
relatively suitable for real-time tracking on the A9 dataset. It is quite clear that unlike
the DLR dataset, IoU and Kalman Filter work quite well for the A9 dataset since it is a
high FPS dataset with no camera motion. Therefore, for the A9 dataset, we can safely say
that the order of importance of different features of a tracking algorithm can be given
by the Equation 5.1. Byte-De-SORT, however, proved to be quite effective in tracking
fast moving vehicles that were specially accelerating quickly. This is because IoU based
data association is difficult for fast moving objects between frames and Kalman Filter
is based on the constant velocity assumption and therefore works poorly with rapid
acceleration. Since Byte-De-SORT lacks IoU based data association and Kalman Filter,
it could track fast moving vehicles well. Therefore, as per observations, SORT stands
out as the overall best solution for real-time tracking while Byte-De-SORT is a good
candidate for tracking fast moving objects on the A9 dataset.

74

6 Conclusion

• All 4 tracking algorithms that were tested on the A9 dataset provided decent
results, which is unlike the case of the DLR dataset where IoU based algorithms
like ByteTrack performed quite badly. Therefore, it can be said that the DLR
dataset is more challenging for tracking than the A9 dataset, particularly when
MOT benchmark based tracking algorithms are applied.

• We did not try BoT-SORT and camera motion compensation on the A9 dataset,
since the cameras are static and therefore there was no special advantage to be
gained. Similarly, UAVMOT did not make sense for the A9 dataset since it was
designed for datasets captured from drones and also had a Local Relational Filter
to compensate for the drone’s motion.

• Similarly, we did not try the SORT algorithm on the DLR dataset, because from
the pattern observed it was clear that it would perform even worse than ByteTrack
on that dataset and ByteTrack had already performed quite poorly on the DLR
dataset.

• We understood that IoU based data association and Kalman Filter work best
for slow moving objects in a high FPS dataset containing no camera motion.
For other cases, appearance features based data association is the way to go.
Effective camera motion compensation, like in BoT-SORT, is quite computationally
expensive and not suitable for real-time tracking.

• SOTA algorithms like ByteTrack are quite tailored for popular pedestrian
datasets like the MOT benchmarks. However, these algorithms are not the
best when it comes to tracking vehicles.

• Byte-De-SORT and DeepSORT gave decent performance in both datasets, unlike
other algorithms which made sense for just one of the datasets. However, we used
DeepSORT without Kalman Filter for the DLR dataset and therefore technically
it was not DeepSORT anymore.

• Thus, our proposed method Byte-De-SORT, which is a combination of ByteTrack
and DeepSORT, with IoU based data association and Kalman Filter completely
removed, alone emerged as a robust real-time tracking algorithm that worked
well for two very contrasting datasets, the DLR dataset with low FPS image
sequences containing large camera motion and the A9 dataset with high FPS
image sequences containing zero camera motion.

75

7 Future Work

• With this thesis, we established previously non-existent baselines for object tracking
on not one but two contrasting datasets. Analysing and further building up on
those baselines will be expected of the successive works that are carried out
in future. For example, A9 dataset has a large data diversity including image
sequences from both day and night, highways and intersections, containing 11
classes of objects. The quantitative results that were produced as part of this work,
can be analysed to build more robust algorithms that work in a variety of scenes.

• We tested tracking algorithms on the A9 and DLR datasets which were trained
on the VisDrone dataset. We can expect a potential improvement in performance
when the algorithms are trained on these datasets themselves.

• While using appearance features, the bounding boxes can be scaled to include
some local surrounding information. This can hopefully compensate for the lack
of location based information that is utilised by IoU based systems and is missed
by the appearance features based systems.

• The DLR dataset is yet to be published, and therefore we have to limit the infor-
mation supplied by this thesis about the dataset. That being said, we filtered out
several sequences from the DLR dataset based on GSD and FPS. We also converted
the multi-class dataset into a single-class one, containing only a vehicle class. We
converted the oriented bounding boxes to rectangular bounding boxes. In future,
when the dataset is published, we can come up with more robust algorithms that
can work in a generic fashion on this dataset.

• We trained detection models to predict only the bounding boxes. However, to
produce a digital twin as in the Providentia project, instance segmentation is
needed and can be worked upon in future. Because of time and resource limitation,
we never trained the detectors more than 100 epochs, and also upto a certain image
resolution only. Training for greater number of epochs on higher resolution may
lead to improvements in performance. Also, at the time of writing this thesis,
YOLOv8 was in active development and it promises performance improvements
over the YOLOv7 based models that we have used.

• Our proposed method Byte-De-SORT can be further improved by including a
camera motion compensation component in it which is effective like BoT-SORT’s
SIFT module but should not be computationally expensive like it. Sparse Optical
Flow methods could be a good starting point in this direction.

77

List of Figures

2.1 Example of Object Classification (image source [16]) 5
2.2 AlexNet architecture (image source [17]) 6
2.3 VGGNet architecture (image source [19]) 7
2.4 Inception module architecture (image source [20]) 7
2.5 Residual block architecture (image source [21]) 8
2.6 Example of Object Detection (image source [22]) 10
2.7 R-CNN (image source [27]) . 11
2.8 YOLO (image source [28]) . 11
2.9 YOLOv7 performance (image source [7]) 13
2.10 Different domains of MOT. (From left to right: MOT-16 (source [31]), KIT

AIS (source [32]), A9 (source [6])) . 14
2.11 IoU: a comparison of different bounding boxes. Red bbox is GT and Blue

bbox is Prediction (image source [33]) . 15
2.12 IoU: an illustration of how it is calculated. Red bbox is GT and Blue bbox

is Prediction (image source [33]) . 16
2.13 Example of re-ID in the domain of person re-identification (image source

[35]) . 17
2.14 Common errors in MOT. (a) An ID switch occurs when the mapping

switches from the previously assigned red track to the blue one. (b) A
track fragmentation is counted in frame 3 because the target is tracked
in frames 1-2, then interrupts, and then reacquires its ‘tracked’ status at
a later point. A new (blue) track hypothesis also causes an ID switch at
this point. (c) Note that no fragmentations are counted in frames 3 and 6
because tracking of those targets is not resumed at a later point. (image
and caption source [2]) . 19

2.15 IDF1 calculation example (image source [40]) 20
2.16 A simple tracking example highlighting one of the main differences

between evaluation metrics. Three different trackers are shown in order
of increasing detection accuracy and decreasing association accuracy.
MOTA and IDF1 overemphasize the effect of accurate detection and
association respectively. HOTA balances both of these by being an explicit
combination of a detection score DetA and an association score AssA.
(image and caption source [40]) . 21

2.17 Diagrammatic representation of how HOTA can be decomposed into
separate sub-metrics which are able to differentiate between different
types of tracking errors. (image and caption source [40]) 21

79

List of Figures

3.1 Pipeline of TransTrack (image and caption source [45]) 26
3.2 An overview of the KIT AIS Vehicle Dataset (image source [43]) 27
3.3 Overview of the AerialMPTNet architecture including an SNN, an LSTM,

and a GCNN module. The inputs are two consecutive images in a
sequence, cropped and centered to a target object, and the output is the
object coordinates in the second snippet which is then mapped to the
image coordinates. (image and caption source [48]) 28

3.4 Overview of MPNTrack (image source [51]) 30
3.5 Overview of SiamMOT (image source [53]) 32
3.6 Overview of TrackFormer (image source [56]) 34
3.7 Overview of UAVMOT (image source [59]) 38
3.8 Schematic diagram of relative relation vector (image and caption source

[59]) . 39
3.9 Overview of BoT-SORT (image source [13]) 40

4.1 Frame 1 and Frame 20 of the 2021-07-21-ATM_43 DLR dataset sequence. 44
4.2 Ground truth visualisation of bounding boxes, on an image of the 2021-

07-21-ATM_43 sequence. 45
4.3 YOLOv7 inference result, with 640 X 640 image-size parameter value, on

an image of the 2021-07-21-ATM_43 sequence. 46
4.4 YOLOv7 training results, with 640 X 640 image-size parameter value. . . 46
4.5 YOLOv7 inference result, with 1280 X 1280 image-size parameter value,

on an image of the 2021-07-21-ATM_43 sequence. 47
4.6 YOLOv7 training results, with 1280 X 1280 image-size parameter value. . 47
4.7 YOLOv7 inference result, with 2560 X 2560 image-size parameter value,

on an image of the 2021-07-21-ATM_43 sequence. 48
4.8 YOLOv7 training results, with 2560 X 2560 image-size parameter value. . 48
4.9 YOLOv7 inference result, with 3200 X 3200 image-size parameter value,

on an image of the 2021-07-21-ATM_43 sequence. 49
4.10 YOLOv7 training results, with 3200 X 3200 image-size parameter value. . 49
4.11 ByteTrack’s qualitative performance on the DLR dataset. Here we can see

Frame 1, Frame 15 and Frame 25 of the 2021-07-21-ATM_43 sequence. . . 50
4.12 UAVMOT’s qualitative performance on the DLR dataset. Here we can see

Frame 1, Frame 15 and Frame 25 of the 2021-07-21-ATM_43 sequence. . . 50
4.13 DeepSORT’s qualitative performance on the DLR dataset. Here we can

see Frame 1, Frame 15 and Frame 25 of the 2021-07-21-ATM_43 sequence. 51
4.14 BoT-SORT’s qualitative performance on the DLR dataset. Here we can see

Frame 1, Frame 15 and Frame 25 of the 2021-07-21-ATM_43 sequence. . . 51
4.15 Byte-De-SORT’s qualitative performance on the DLR dataset. Here we can

see Frame 1, Frame 15 and Frame 25 of the 2021-07-21-ATM_43 sequence. 51

5.1 A distribution of the total number of labelled bounding boxes (annota-
tions) across the A9 dataset. 60

80

List of Figures

5.2 A distribution of the total number of image frames across the A9 dataset. 60
5.3 A distribution of the total number of unique objects of the CAR object

class across the A9 dataset. 61
5.4 A distribution of the total number of unique objects of the TRUCK object

class across the A9 dataset. 61
5.5 A distribution of the total number of unique objects of the TRAILER

object class across the A9 dataset. 62
5.6 A distribution of the total number of unique objects of the VAN object

class across the A9 dataset. 62
5.7 A distribution of the total number of unique objects of the MOTORCYCLE

object class across the A9 dataset. 63
5.8 A distribution of the total number of unique objects of the BUS object

class across the A9 dataset. 63
5.9 A distribution of the total number of unique objects of the PEDESTRIAN

object class across the A9 dataset. 64
5.10 A distribution of the total number of unique objects of the BICYCLE

object class across the A9 dataset. 64
5.11 A distribution of the total number of unique objects of the EMER-

GENCY_VEHICLE object class across the A9 dataset. 65
5.12 A distribution of the total number of unique objects of the OTHER object

class across the A9 dataset. 65
5.13 A distribution of the total number of unique objects of the LICENSE_PLATE_LOCATION

object class across the A9 dataset. 66
5.14 YOLOv7 training results, with 1216 X 1216 image-size parameter value. . 67
5.15 YOLOv7 inference result, with 1280 X 1280 image-size parameter value,

on a test image of the A9 dataset. 68
5.16 SORT’s qualitative performance on the A9 dataset. These images were

taken from the r01_s08_s110_south2_8mm sequence. 69
5.17 ByteTrack’s qualitative performance on the A9 dataset. These images

were taken from the r01_s08_s110_south2_8mm sequence. 69
5.18 DeepSORT’s qualitative performance on the A9 dataset. These images

were taken from the r01_s05_s110_south2_8mm sequence. 70
5.19 Byte-De-SORT’s qualitative performance on the A9 dataset. These images

were taken from the r01_s08_s110_south2_8mm sequence. 70

81

List of Tables

3.1 An overview of MPNTrack’s results on MOT benchmarks. 30
3.2 An overview of TrackFormer’s results on MOT17 test set. 34
3.3 An overview of ByteTrack’s results on MOT benchmarks. 36
3.4 An overview of UAVMOT’s results. 39
3.5 An overview of BoT-SORT’s results on MOT benchmarks. 41

4.1 Overview of the DLR dataset. 44
4.2 Overview of YOLOv7 detector’s training experiments on the DLR dataset. 45
4.3 Quantitative results of ByteTrack on DLR dataset. 54
4.4 Quantitative results of UAVMOT on DLR dataset. 54
4.5 Quantitative results of DeepSORT (without Kalman Filter) on DLR dataset. 54
4.6 Quantitative results of BoT-SORT on DLR dataset. 55
4.7 Quantitative results of Byte-De-SORT on DLR dataset. 55

5.1 Classes of objects in the A9 dataset. Mapping of object class name to
object class id. 58

5.2 Overview of the r01_s01 sequence of the A9 dataset. 58
5.3 Overview of the r01_s02 sequence of the A9 dataset. 58
5.4 Overview of the r01_s03 sequence of the A9 dataset. 58
5.5 Overview of the r01_s04 sequence of the A9 dataset. 58
5.6 Overview of the r01_s05 sequence of the A9 dataset. 59
5.7 Overview of the r01_s06 sequence of the A9 dataset. 59
5.8 Overview of the r01_s07 sequence of the A9 dataset. 59
5.9 Overview of the r01_s08 sequence of the A9 dataset. 59
5.10 Overview of the r01_s09 sequence of the A9 dataset. 59
5.11 Overview of YOLOv7 detector’s training experiment on the A9 dataset. . 67
5.12 YOLOv7 quantitative results on the validation set, with 1216 X 1216

image-size parameter value. 68
5.13 YOLOv7 quantitative results on the test set, with 1280 X 1280 image-size

parameter value. 68
5.14 Quantitative results of all tracking algorithms on the r01_s01 sequence of

the A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST:
SORT. 72

5.15 Quantitative results of all tracking algorithms on the r01_s02 sequence of
the A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST:
SORT. 72

83

List of Tables

5.16 Quantitative results of all tracking algorithms on the r01_s03 sequence of
the A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST:
SORT. 73

5.17 Quantitative results of all tracking algorithms on the r01_s04 sequence of
the A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST:
SORT. 73

5.18 Quantitative results of all tracking algorithms on the r01_s05 sequence of
the A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST:
SORT. 73

5.19 Quantitative results of all tracking algorithms on the r01_s06 sequence of
the A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST:
SORT. 73

5.20 Quantitative results of all tracking algorithms on the r01_s07 sequence of
the A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST:
SORT. 73

5.21 Quantitative results of all tracking algorithms on the r01_s08 sequence of
the A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST:
SORT. 73

5.22 Quantitative results of all tracking algorithms on the r01_s09 sequence of
the A9 dataset. BDS: Byte-De-SORT, BT: ByteTrack, DS: DeepSORT, ST:
SORT. 74

5.23 Overall quantitative results of all tracking algorithms on all sequences of
the A9 dataset. 74

84

Bibliography

[1] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler. MOTChallenge 2015:
Towards a Benchmark for Multi-Target Tracking. 2015. arXiv: 1504.01942 [cs.CV].

[2] A. Milan, L. Leal-Taixe, I. Reid, S. Roth, and K. Schindler. MOT16: A Benchmark
for Multi-Object Tracking. 2016. doi: 10.48550/ARXIV.1603.00831. url: https:
//arxiv.org/abs/1603.00831.

[3] MOT17. https://motchallenge.net/data/MOT17/. Accessed: 2023-03-09.

[4] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth, K.
Schindler, and L. Leal-Taixé. MOT20: A benchmark for multi object tracking in crowded
scenes. 2020. arXiv: 2003.09003 [cs.CV].

[5] A. Krämmer, C. Schöller, D. Gulati, V. Lakshminarasimhan, F. Kurz, D. Rosenbaum,
C. Lenz, and A. Knoll. Providentia – A Large-Scale Sensor System for the Assistance of
Autonomous Vehicles and Its Evaluation. 2021. arXiv: 1906.06789 [cs.RO].

[6] C. Creß, W. Zimmer, L. Strand, V. Lakshminarasimhan, M. Fortkord, S. Dai, and
A. Knoll. A9-Dataset: Multi-Sensor Infrastructure-Based Dataset for Mobility Research.
2022. doi: 10.48550/ARXIV.2204.06527. url: https://arxiv.org/abs/2204.
06527.

[7] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. YOLOv7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors. 2022. doi: 10.48550/ARXIV.2207.
02696. url: https://arxiv.org/abs/2207.02696.

[8] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D.
Ramanan, C. L. Zitnick, and P. Dollár. Microsoft COCO: Common Objects in Context.
2014. doi: 10.48550/ARXIV.1405.0312. url: https://arxiv.org/abs/1405.0312.

[9] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. “Simple online and realtime
tracking”. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE,
2016. doi: 10.1109/icip.2016.7533003. url: https://doi.org/10.1109%2Ficip.
2016.7533003.

[10] DLR Homepage. https://www.dlr.de/EN/Home/home_node.html. Accessed:
2023-02-26.

[11] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and X. Wang.
ByteTrack: Multi-Object Tracking by Associating Every Detection Box. 2021. doi: 10.
48550/ARXIV.2110.06864. url: https://arxiv.org/abs/2110.06864.

85

https://arxiv.org/abs/1504.01942
https://doi.org/10.48550/ARXIV.1603.00831
https://arxiv.org/abs/1603.00831
https://arxiv.org/abs/1603.00831
https://motchallenge.net/data/MOT17/
https://arxiv.org/abs/2003.09003
https://arxiv.org/abs/1906.06789
https://doi.org/10.48550/ARXIV.2204.06527
https://arxiv.org/abs/2204.06527
https://arxiv.org/abs/2204.06527
https://doi.org/10.48550/ARXIV.2207.02696
https://doi.org/10.48550/ARXIV.2207.02696
https://arxiv.org/abs/2207.02696
https://doi.org/10.48550/ARXIV.1405.0312
https://arxiv.org/abs/1405.0312
https://doi.org/10.1109/icip.2016.7533003
https://doi.org/10.1109%2Ficip.2016.7533003
https://doi.org/10.1109%2Ficip.2016.7533003
https://www.dlr.de/EN/Home/home_node.html
https://doi.org/10.48550/ARXIV.2110.06864
https://doi.org/10.48550/ARXIV.2110.06864
https://arxiv.org/abs/2110.06864

Bibliography

[12] N. Wojke, A. Bewley, and D. Paulus. Simple Online and Realtime Tracking with
a Deep Association Metric. 2017. doi: 10.48550/ARXIV.1703.07402. url: https:
//arxiv.org/abs/1703.07402.

[13] N. Aharon, R. Orfaig, and B.-Z. Bobrovsky. BoT-SORT: Robust Associations Multi-
Pedestrian Tracking. 2022. arXiv: 2206.14651 [cs.CV].

[14] G. Bradski. “The openCV library.” In: Dr. Dobb’s Journal: Software Tools for the
Professional Programmer 25.11 (2000), pp. 120–123.

[15] P. Zhu, L. Wen, D. Du, X. Bian, H. Fan, Q. Hu, and H. Ling. Detection and Tracking
Meet Drones Challenge. 2020. doi: 10.48550/ARXIV.2001.06303. url: https:
//arxiv.org/abs/2001.06303.

[16] Faster R-CNN Object Detection with PyTorch. https://learnopencv.com/faster-r-
cnn-object-detection-with-pytorch/. Accessed: 2023-02-22.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks”. In: Advances in Neural Information Processing
Systems. Ed. by F. Pereira, C. Burges, L. Bottou, and K. Weinberger. Vol. 25. Curran
Associates, Inc., 2012. url: https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. “ImageNet Large
Scale Visual Recognition Challenge”. In: International Journal of Computer Vision
(IJCV) 115.3 (2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y.

[19] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. 2014. doi: 10.48550/ARXIV.1409.1556. url: https://arxiv.
org/abs/1409.1556.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going Deeper with Convolutions. 2014. doi: 10.48550/
ARXIV.1409.4842. url: https://arxiv.org/abs/1409.4842.

[21] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recog-
nition”. In: CoRR abs/1512.03385 (2015). arXiv: 1512.03385. url: http://arxiv.
org/abs/1512.03385.

[22] A. Ouaknine. Review of Deep Learning Algorithms for Object Detection. https://
medium.com/zylapp/review- of- deep- learning- algorithms- for- object-
detection-c1f3d437b852. Accessed: 2023-02-22.

[23] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. 2013. doi: 10.48550/ARXIV.1311.2524.
url: https://arxiv.org/abs/1311.2524.

[24] R. Girshick. Fast R-CNN. 2015. doi: 10.48550/ARXIV.1504.08083. url: https:
//arxiv.org/abs/1504.08083.

86

https://doi.org/10.48550/ARXIV.1703.07402
https://arxiv.org/abs/1703.07402
https://arxiv.org/abs/1703.07402
https://arxiv.org/abs/2206.14651
https://doi.org/10.48550/ARXIV.2001.06303
https://arxiv.org/abs/2001.06303
https://arxiv.org/abs/2001.06303
https://learnopencv.com/faster-r-cnn-object-detection-with-pytorch/
https://learnopencv.com/faster-r-cnn-object-detection-with-pytorch/
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.48550/ARXIV.1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.48550/ARXIV.1409.4842
https://doi.org/10.48550/ARXIV.1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://medium.com/zylapp/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/zylapp/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/zylapp/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://doi.org/10.48550/ARXIV.1311.2524
https://arxiv.org/abs/1311.2524
https://doi.org/10.48550/ARXIV.1504.08083
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1504.08083

Bibliography

[25] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. 2015. doi: 10.48550/ARXIV.1506.01497.
url: https://arxiv.org/abs/1506.01497.

[26] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. “Selective Search
for Object Recognition”. In: International Journal of Computer Vision (2013). doi:
10.1007/s11263-013-0620-5. url: http://www.huppelen.nl/publications/
selectiveSearchDraft.pdf.

[27] Deep Learning for Object Detection: A Comprehensive Review. https://towardsdatascience.
com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9.
Accessed: 2023-02-23.

[28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You Only Look Once: Unified,
Real-Time Object Detection. 2015. doi: 10.48550/ARXIV.1506.02640. url: https:
//arxiv.org/abs/1506.02640.

[29] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.
pascalnetwork.org/challenges/VOC/voc2007/workshop/index.html.

[30] Mean Average Precision (mAP) in Object Detection. https://learnopencv.com/
mean-average-precision-map-object-detection-model-evaluation-metric/.
Accessed: 2023-02-25.

[31] Y. Xiang, A. Alahi, and S. Savarese. “Learning to Track: Online Multi-object
Tracking by Decision Making”. In: 2015 IEEE International Conference on Computer
Vision (ICCV). 2015, pp. 4705–4713. doi: 10.1109/ICCV.2015.534.

[32] KIT AIS Data Set. https://www.ipf.kit.edu/downloads_data_set_AIS_vehicle_
tracking.php. Accessed: 2023-02-26.

[33] Intersection over Union (IoU) in Object Detection & Segmentation. https://learnopencv.
com/intersection-over-union-iou-in-object-detection-and-segmentation/.
Accessed: 2023-03-04.

[34] H. Masnadi-Shirazi, A. Masnadi-Shirazi, and M.-A. Dastgheib. A Step by Step
Mathematical Derivation and Tutorial on Kalman Filters. 2019. doi: 10.48550/ARXIV.
1910.03558. url: https://arxiv.org/abs/1910.03558.

[35] L. Zheng, Y. Yang, and A. G. Hauptmann. Person Re-identification: Past, Present and
Future. 2016. doi: 10.48550/ARXIV.1610.02984. url: https://arxiv.org/abs/
1610.02984.

[36] A. Hermans, L. Beyer, and B. Leibe. In Defense of the Triplet Loss for Person Re-
Identification. 2017. doi: 10.48550/ARXIV.1703.07737. url: https://arxiv.org/
abs/1703.07737.

[37] The Hungarian method for the assignment problem. https://web.eecs.umich.edu/
~pettie/matching/Kuhn-hungarian-assignment.pdf. Accessed: 2023-03-04.

87

https://doi.org/10.48550/ARXIV.1506.01497
https://arxiv.org/abs/1506.01497
https://doi.org/10.1007/s11263-013-0620-5
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9
https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9
https://doi.org/10.48550/ARXIV.1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
http://www.pascalnetwork.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascalnetwork.org/challenges/VOC/voc2007/workshop/index.html
https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/
https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/
https://doi.org/10.1109/ICCV.2015.534
https://www.ipf.kit.edu/downloads_data_set_AIS_vehicle_tracking.php
https://www.ipf.kit.edu/downloads_data_set_AIS_vehicle_tracking.php
https://learnopencv.com/intersection-over-union-iou-in-object-detection-and-segmentation/
https://learnopencv.com/intersection-over-union-iou-in-object-detection-and-segmentation/
https://doi.org/10.48550/ARXIV.1910.03558
https://doi.org/10.48550/ARXIV.1910.03558
https://arxiv.org/abs/1910.03558
https://doi.org/10.48550/ARXIV.1610.02984
https://arxiv.org/abs/1610.02984
https://arxiv.org/abs/1610.02984
https://doi.org/10.48550/ARXIV.1703.07737
https://arxiv.org/abs/1703.07737
https://arxiv.org/abs/1703.07737
https://web.eecs.umich.edu/~pettie/matching/Kuhn-hungarian-assignment.pdf
https://web.eecs.umich.edu/~pettie/matching/Kuhn-hungarian-assignment.pdf

Bibliography

[38] K. Bernardin and R. Stiefelhagen. “Evaluating Multiple Object Tracking Per-
formance: The CLEAR MOT Metrics”. In: EURASIP Journal on Image and Video
Processing 2008 (2008), pp. 1–10.

[39] E. Ristani, F. Solera, R. S. Zou, R. Cucchiara, and C. Tomasi. Performance Measures
and a Data Set for Multi-Target, Multi-Camera Tracking. 2016. doi: 10.48550/ARXIV.
1609.01775. url: https://arxiv.org/abs/1609.01775.

[40] J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixé, and B. Leibe.
“HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking”. In: Interna-
tional Journal of Computer Vision (2020), pp. 1–31.

[41] Evaluation Metrics for Multiple Object Tracking. https://arshren.medium.com/
evaluation-metrics-for-multiple-object-tracking-7b26ef23ef5f. Accessed:
2023-03-05.

[42] T. Beheim. “Multi-Vehicle Detection and Tracking in Aerial Imagery Sequences
using Deep Learning Algorithms”. 2021. url: https://elib.dlr.de/146903/.

[43] M. Kraus. “Multi-Object Tracking in Aerial and Satellite Imagery”. 2020. url:
https://elib.dlr.de/138070/.

[44] TUM I6 Chair Homepage. https://www.ce.cit.tum.de/en/air/home/. Accessed:
2023-03-07.

[45] P. Sun, J. Cao, Y. Jiang, R. Zhang, E. Xie, Z. Yuan, C. Wang, and P. Luo. TransTrack:
Multiple Object Tracking with Transformer. 2020. doi: 10.48550/ARXIV.2012.15460.
url: https://arxiv.org/abs/2012.15460.

[46] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural computa-
tion 9.8 (1997), pp. 1735–1780.

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention Is All You Need. 2017. doi: 10.48550/ARXIV.1706.
03762. url: https://arxiv.org/abs/1706.03762.

[48] M. Kraus, S. M. Azimi, E. Ercelik, R. Bahmanyar, P. Reinartz, and A. Knoll.
AerialMPTNet: Multi-Pedestrian Tracking in Aerial Imagery Using Temporal and Graph-
ical Features. 2020. doi: 10.48550/ARXIV.2006.15457. url: https://arxiv.org/
abs/2006.15457.

[49] R. Bahmanyar, S. Azimi, and P. Reinartz. “Multiple vehicle and people tracking in
aerial imagery using stack of micro single-object-tracking CNNs”. In: ISPRS. 2019.

[50] T. N. Kipf and M. Welling. Semi-Supervised Classification with Graph Convolutional
Networks. 2016. doi: 10.48550/ARXIV.1609.02907. url: https://arxiv.org/abs/
1609.02907.

[51] G. Braso and L. Leal-Taixe. “Learning a Neural Solver for Multiple Object Track-
ing”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2020.

88

https://doi.org/10.48550/ARXIV.1609.01775
https://doi.org/10.48550/ARXIV.1609.01775
https://arxiv.org/abs/1609.01775
https://arshren.medium.com/evaluation-metrics-for-multiple-object-tracking-7b26ef23ef5f
https://arshren.medium.com/evaluation-metrics-for-multiple-object-tracking-7b26ef23ef5f
https://elib.dlr.de/146903/
https://elib.dlr.de/138070/
https://www.ce.cit.tum.de/en/air/home/
https://doi.org/10.48550/ARXIV.2012.15460
https://arxiv.org/abs/2012.15460
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/ARXIV.2006.15457
https://arxiv.org/abs/2006.15457
https://arxiv.org/abs/2006.15457
https://doi.org/10.48550/ARXIV.1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907

Bibliography

[52] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun.
Graph Neural Networks: A Review of Methods and Applications. 2018. doi: 10.48550/
ARXIV.1812.08434. url: https://arxiv.org/abs/1812.08434.

[53] B. Shuai, A. Berneshawi, X. Li, D. Modolo, and J. Tighe. “SiamMOT: Siamese
Multi-Object Tracking”. In: (2021). doi: 10.48550/ARXIV.2105.11595. url: https:
//arxiv.org/abs/2105.11595.

[54] A. Dave, T. Khurana, P. Tokmakov, C. Schmid, and D. Ramanan. TAO: A Large-Scale
Benchmark for Tracking Any Object. 2020. doi: 10.48550/ARXIV.2005.10356. url:
https://arxiv.org/abs/2005.10356.

[55] D. Hall and P. Perona. Fine-Grained Classification of Pedestrians in Video: Benchmark
and State of the Art. 2016. doi: 10.48550/ARXIV.1605.06177. url: https://arxiv.
org/abs/1605.06177.

[56] T. Meinhardt, A. Kirillov, L. Leal-Taixe, and C. Feichtenhofer. TrackFormer: Multi-
Object Tracking with Transformers. 2021. doi: 10.48550/ARXIV.2101.02702. url:
https://arxiv.org/abs/2101.02702.

[57] P. Voigtlaender, M. Krause, A. Osep, J. Luiten, B. B. G. Sekar, A. Geiger, and
B. Leibe. “MOTS: Multi-Object Tracking and Segmentation”. In: (2019). doi: 10.
48550/ARXIV.1902.03604. url: https://arxiv.org/abs/1902.03604.

[58] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun. YOLOX: Exceeding YOLO Series in 2021.
2021. doi: 10.48550/ARXIV.2107.08430. url: https://arxiv.org/abs/2107.
08430.

[59] S. Liu, X. Li, H. Lu, and Y. He. “Multi-Object Tracking Meets Moving UAV”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2022, pp. 8876–8885.

[60] D. Du, Y. Qi, H. Yu, Y. Yang, K. Duan, G. Li, W. Zhang, Q. Huang, and Q. Tian.
The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking. 2018. doi:
10.48550/ARXIV.1804.00518. url: https://arxiv.org/abs/1804.00518.

[61] T. Taketomi, H. Uchiyama, and S. Ikeda. “Visual SLAM algorithms: a survey from
2010 to 2016”. In: IPSJ Transactions on Computer Vision and Applications 9.1 (2017),
p. 16. doi: 10.1186/s41074-017-0027-2. url: https://doi.org/10.1186/s41074-
017-0027-2.

[62] D. G. Lowe. “Distinctive image features from scale-invariant keypoints”. In: Inter-
national journal of computer vision 60 (2004), pp. 91–110.

[63] ASAM OpenLABEL. https://www.asam.net/standards/detail/openlabel/.
Accessed: 2023-04-03.

89

https://doi.org/10.48550/ARXIV.1812.08434
https://doi.org/10.48550/ARXIV.1812.08434
https://arxiv.org/abs/1812.08434
https://doi.org/10.48550/ARXIV.2105.11595
https://arxiv.org/abs/2105.11595
https://arxiv.org/abs/2105.11595
https://doi.org/10.48550/ARXIV.2005.10356
https://arxiv.org/abs/2005.10356
https://doi.org/10.48550/ARXIV.1605.06177
https://arxiv.org/abs/1605.06177
https://arxiv.org/abs/1605.06177
https://doi.org/10.48550/ARXIV.2101.02702
https://arxiv.org/abs/2101.02702
https://doi.org/10.48550/ARXIV.1902.03604
https://doi.org/10.48550/ARXIV.1902.03604
https://arxiv.org/abs/1902.03604
https://doi.org/10.48550/ARXIV.2107.08430
https://arxiv.org/abs/2107.08430
https://arxiv.org/abs/2107.08430
https://doi.org/10.48550/ARXIV.1804.00518
https://arxiv.org/abs/1804.00518
https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1186/s41074-017-0027-2
https://www.asam.net/standards/detail/openlabel/

	Disclaimer
	Acknowledgement
	Abstract
	Kurzfassung
	Contents
	Introduction
	Problem Statement
	Motivation
	Contribution
	Structural Outline

	Essential Background
	Goals
	Object Classification
	What is Object Classification?
	How is it done?
	Metrics of evaluation

	Object Detection
	What is Object Detection?
	How is it done?
	Metrics of evaluation

	Object Tracking
	What is Object Tracking?
	How is it done?
	Metrics of evaluation

	Related Work
	Goals
	Previous Theses
	Beheim et al., 2021
	Kraus et al., 2020

	Methodology based
	MPNTrack
	SiamMOT
	TrackFormer

	State of the Art
	ByteTrack
	UAVMOT
	BoT-SORT

	Working on the DLR dataset
	Dataset overview
	Detection experiments
	640 X 640
	1280 X 1280
	2560 X 2560
	3200 X 3200

	Tracking experiments
	Conclusion

	Working on the A9 dataset
	Dataset overview
	Detection experiments
	Tracking experiments
	Conclusion

	Conclusion
	Future Work
	List of Figures
	List of Tables
	Bibliography

