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ABSTRACT
An analytic methodology is presented to reconstruct the pressure waveform of flowfields with circular symmetry from the phase shift detected
with Focused Laser Differential Interferometry (FLDI). A weak blast wave generated by an electric spark in ambient air is investigated with the
proposed approach. Values of separation distance between the differentiating foci of the FLDI Δx of 76, 120, 175, and 252 μm are employed
to probe the flowfield at locations between 3 and 50 mm from the spark source. In a subset of these distances, reference measurements of
peak pressure obtained with a surface pressure sensor indicate good agreement with the reconstructed data when small separation distances
are used. Further analysis of FLDI reconstructed data is conducted using theoretical correlations for N-waves in terms of the distribution
of pressure peak amplitude and compression phase as the wave front propagates. Agreement with theory is verified for all differentiation
separation distances except the largest, for which peak pressure comparison shows a 10% loss of measured vs predicted value. A computational
FLDI is employed to scrutinize the simplifying hypotheses supporting the waveform reconstruction approach. The direct comparison between
experimental and computational FLDI output reveals additional discrepancies for intermediate Δx values but very good agreement for the
smallest Δx. The proposed methodology is thus verified to be reasonable, upon appropriate minimization of the FLDI differentiation distance.
A parametric analysis using computational FLDI indicates the adequate value of FLDI Δx to be 20% or less of the flowfield characteristic length
in terms of density gradient.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0132874

I. INTRODUCTION

Focused Laser Differential Interferometry (FLDI) is a non-
invasive measurement technique that measures flowfield density
fluctuations. Its distinct spatial and temporal resolutions render
it especially suited for ground-based experimental investigation of
hypersonic flowfields. Attention to this technique has been growing
steadily within the community since Refs. 1 and 2. This is evidenced
by the increasing number of laboratories implementing the FLDI
technique in recent years.3–8

Owing to the broad bandwidth of the FLDI and its robust-
ness to external noise, the evaluation of the frequency spectrum
of FLDI data using only simplified post-processing approaches has
been proven to already offer valuable information about the probed

flowfields.9–13 Nonetheless, a rigorous conversion of FLDI data into
flowfield quantities such as density fluctuation is required in order to
fully explore the capabilities of the technique and allow quantitative
evaluations. However, this task is made difficult by some of the key
features of the FLDI. The ability of the FLDI to dampen frequencies
away from its focus and the finite differentiation it performs must be
considered when attempting to convert the FLDI output back into
flowfield variables.

The extraction of quantitative density data while respecting
the complexity of the FLDI response has been explored by means
of transfer function analysis.2,14 This methodology has been ini-
tially shown for special types of flowfields such as uniformly dis-
tributed turbulence or Gaussian jets.2 Agreement between pitot-
based pressure fluctuations and FLDI data processed with transfer
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functions has also been experimentally demonstrated in a Mach 6
free stream.15 Recent efforts have included the deduction of transfer
functions for more complex flowfields, encompassing two and three-
dimensional sinusoidal disturbances, either infinitesimally thin, uni-
form within a finite volume, or modulated by a Gaussian intensity
profile.16,17 A sensitivity function for the FLDI has been developed
using transfer functions and verified using a turbulent air jet18,19

and wind-tunnel disturbances.20 A solution for the inverse FLDI
problem for single-direction, continuous-frequency waves has been
proposed and experimentally verified against supersonic free stream
pitot data.21

These efforts represent significant advancements toward a bet-
ter understanding of the FLDI technique and the proper treatment
of the data it offers. Nonetheless, at each instant in time, the FLDI
output from a three-dimensional density field consists of a single
scalar value as a result of successive integrals and differences of flow-
field quantities. Therefore, assumptions about the topology of the
flowfield are inevitable when trying to reverse this problem.22 The
flowfield models recently explored in Refs. 16–22 are able to repre-
sent many practical applications, such as turbulent jets, free stream
turbulence, and acoustic radiation, among others. Still, they must be
adjusted according to the flowfield at hand and might not offer the
easiest solution for all kinds of flowfields. Furthermore, if the flow-
field model must be adjusted manually in a case-by-case fashion,
it is important to have a way to independently verify the obtained
results.

One such way is to numerically simulate the FLDI response
using a ray-tracing scheme,23 which is able to reproduce how the
flowfield variations are perceived by the FLDI beams. This compu-
tational FLDI (cFLDI) has been shown to produce accurate quan-
titative results against experiments for a static laminar jet24 and
a complex shock-dominated dynamic flowfield.25 The cFLDI has
since been employed to further study the technique. For example,
the dependence between the FLDI sensitivity length and the beam
divergence angle has been verified using parametric analysis.26 The
ability of the FLDI instrument to see through unwanted signals at
the edges of the probing volume, such as the wall boundary layers
or the nozzle shear layer in hypersonic wind-tunnels, has also been
explored.27 Furthermore, cFLDI simulated on the DNS solution of
a wind-tunnel boundary layer has been investigated as a means to
inform constraints for the FLDI application.28

This type of insight is allowed by the proven physical fidelity of
the cFLDI, which, therefore, places it as a tool to explore method-
ologies that aim at obtaining quantitative information from FLDI
data but are only feasible by assuming model parameters or adopting
certain simplifying hypotheses. Once the flowfield is reconstructed
from real FLDI measurements, a simulated FLDI response may
be obtained with the high-fidelity ray-tracing algorithm; then, a
comparison between the real and simulated FLDI data allows for
assessing the validity of any assumptions or simplifications involved
in the post-processing method.

The goal of the present work is to contribute toward the inclu-
sion of circularly symmetric flowfields in the subset of special cases
for which FLDI data can be fully regressed into flowfield quanti-
ties through analytic approaches. A number of assumptions will be
necessary to reach this objective. In light of the physical accuracy
of cFLDI demonstrated in Refs. 24 and 25, simulations using an
implementation of the FLDI ray-tracing algorithm are employed

to support the analysis of the results obtained with the analytic
approach.

The object of study to apply and analyze the proposed method-
ology is a weak blast wave generated by an electric spark in ambient
air at rest, using a setup detailed in a previous study by the present
authors.8 The study of blast waves pertains to various applica-
tions ranging from explosive detonations to sonic booms.29,30 A
review of the diagnostic tools currently available for the experi-
mental study of such flows is summarized in Ref. 31. In that work,
laser interferometry was suggested as a solution to overcome the
bandwidth and sensitivity limitations of consolidated techniques
such as dynamic pressure transducers and condenser microphones.
The FLDI presents similar capabilities with further advantages such
as adjustable sensitivity and simplicity, and may, therefore, be of
interest to related investigations.

The contents of this paper are summarized as follows: Exper-
imental measurements of a weak spark-generated blast wave are
collected using FLDI at multiple distances from the spark source.
A methodology is presented to obtain the spherical distribution of
quantitative acoustic pressure from such measurements, following a
series of simplifying assumptions. No other instruments of similar
capability were available to produce detailed reference measure-
ments for comparison with the FLDI data. Therefore, the obtained
results are verified using multiple complementary approaches. In
a first step, peak pressures are compared to direct measurements
using a fast piezoelectric pressure transducer, performed at loca-
tions allowed by the geometric constraints of the experimental setup.
Next, the obtained waveforms are compared with analytic corre-
lations involving compression phase duration and peak pressure
for propagating acoustic pulses. Finally, the FLDI response to the
reconstructed flowfield is simulated with the ray-tracing scheme
and compared to the original experimental data. The simplifying
assumptions necessary for the flowfield reconstruction methodol-
ogy are analyzed in light of observed discrepancies to help identify
eventual constraining parameters that control the fidelity of the
reconstruction. The emphasis is given to a single location along the
blast wave trajectory, namely, 30 mm from the spark, although the
procedure is applicable to any given location.

II. THEORETICAL BACKGROUND
A. Blast waves

A blast wave in a fluid at rest can be originated by a local-
ized instantaneous release of energy. The change in local pressure
and temperature propagates away from the origin of the event at
the speed of sound in the immediate medium. Because the speed
of sound is larger in regions with higher temperatures, those por-
tions of the disturbance propagate faster than those in their vicinity.
A discontinuity is hence formed as a shock wave front,29 which
propagates supersonically with respect to the undisturbed fluid.

In the case of radially propagating blast waves, the strength of
the shock wave front will progressively become weaker due to vol-
ume divergence, dissipation, and molecular relaxation. Eventually,
the blast wave becomes so weak that it propagates approximately
at the sound speed of the non-disturbed gas, becoming an acous-
tic wave. This process is accompanied by changes in the pressure
signature, best described in terms of acoustic pressure, i.e., the over-
pressure with respect to the undisturbed field. The blast wave is
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marked by a sharp and narrow compression phase (positive acoustic
pressure), followed by a longer and smoother expansion phase (neg-
ative acoustic pressure). As the blast wave propagates, the amplitude
of the positive phase decreases and the trailing edge of the negative
phase becomes sharper due to the slightly higher local sound speed.
The pressure waveform then describes a so-called N-wave.

Close to the blast wave source, the spark-generated blast wave
is best approximated as a cylindrical shock due to the finite length
of the spark. In the acoustic limit region, which is evaluated in
more detail here, the distance to the cylindrical source is an order
of magnitude higher than the length of the spark. In such a case, the
flowfield generated by a point-source is a better representation of
the local blast wave disturbance than the one generated by an infi-
nite line. Therefore, a point-source hypothesis is considered in this
work.

For the spherical propagation of N-waves, Ref. 32 presented
analytic expressions from the linear theory of sound in gases (weak-
shock theory) amenable to experimental comparisons, having also
approximated an electric spark as a point-source downstream of
a few spark lengths from the discharge. The methodology pre-
sented therein consisted of calculating the acoustic pressure peaks
behind the shock, P, expected from theory, given measurements
of compression phase duration, T, over several distances from the
N-wave source. In the present work, both peak pressure and com-
pression phase duration will be obtained directly from FLDI mea-
surements. The cited methodology will, therefore, be employed to
verify whether the obtained (T, P) pairs are physically consistent
with the expected behavior of an N-wave.

The equations and procedures from Ref. 32 pertinent to the
present work are briefly reproduced next. A different variable nota-
tion than presented in that work is used here for clarity. The
compression phase duration T of the N-wave when the spherical
wave front has propagated through a distance R from its origin can
be written in terms of its value at an arbitrary reference propagation
distance (subscript 0) as

T = T0
√

1 + σ0 ln (R/R0). (1)

The non-dimensional parameter σ0 in this equation is a func-
tion of the N-wave compression phase duration and peak acoustic
pressure at the reference distance, as well as the undisturbed medium
pressure Pamb, sound speed camb, and specific heat ratio γ as

σ0 = (γ + 1)R0P0/(2 γ Pamb camb T0). (2)

It is noted in Ref. 32 that through Eq. (1), T2 as a function of
log R describes a straight line with slope equal to σ0T2

0 ln10. This slope
may be obtained from a dataset of measured compression phases T
at multiple locations R. Since the reference location (subscript 0) is
arbitrary, the slope evaluates σ for any T. Finally, Eq. (2) defines the
peak pressure P from weak-shock theory, which corresponds to the
experimentally measured T.

B. Focused laser differential interferometry
Laser interferometry is achieved by combining two coherent

monochromatic beams presenting equal intensity and linear polar-
ization in the same direction, after having traveled through different
optical paths. The interference resulting from their superposition

causes the combined light intensity to be modulated by any dif-
ference in phase between the beams. This difference in phase is
accumulated along the entirety of the paths described by the beams.
The intensity of the recombined beam is detected as a scalar value,
resulting from integrating the light intensity changes across the face
of the beam at the detector. A differential interferometer is obtained
when the beams go through the same medium, separated by a small
distance.

In the special case of a focused laser differential interferometer
(FLDI), the two beams are focused to a point within the probed vol-
ume. These two defining characteristics are responsible for making
the sensitive volume of the FLDI dependent on the wavelength of
the disturbances in the probed flowfield, with high-frequency con-
tent being rejected away from the focal plane. If the wavelength of
the flowfield fluctuation in a certain portion of the beams is too small
relative to their cross-section size, the contribution of those distur-
bances to the final signal is averaged out through integration at the
face of the detector. For a thorough discussion about this, see Ref. 2.

For the reconstruction of spherical blast waves from FLDI
detection presented in this work, a simplified approach that disre-
gards the FLDI wavelength-dependent sensitivity is adopted. The
validity of this assumption is verified with the assistance of a com-
putational model that fully represents the real apparatus. This is
made possible by observing that the series of processes involved in
the interaction between the probed flowfield and the FLDI beams
is challenging to reverse but straightforward to reproduce. Sim-
plifying hypotheses can, therefore, be evaluated by comparing the
high-fidelity simulated FLDI output of the reconstructed field with
the experimental FLDI data that originated it.

The computational FLDI used in this work is based on the ray-
tracing model of Ref. 23 and is similar in terms of implementation
and application to the recent validation work of Ref. 25. A summary
of the pertinent concepts and equations used in this work is given
next.

A Cartesian coordinate system is defined with the z axis paral-
lel to the optical axis (direction of propagation of the beams), the x
axis parallel to the direction of separation between the beams, and
the origin at the midpoint between the FLDI foci. Each beam is dis-
cretized into a finite number of rays, parameterized in a convenient
auxiliary coordinate system to account for the focusing of the beams
in a computationally effective manner. The FLDI used in this work
presents a Gaussian, circular beam cross-section. Therefore, a polar
coordinate system (r̃, θ) is used to distribute the rays around a cen-
ter point in the cross-section with 0 ≤ θ < 2π and 0 < r̃ ≤ r̃max. The
radial coordinate r̃ is non-dimensionalized with respect to the local
Gaussian beam radius w(z),

w(z) =

¿
ÁÁÁÀw2

0
⎛
⎝

1 + [ λ0z
πw2

0
]

2⎞
⎠

, (3)

where λ0 is the light wavelength and w0 = λ0/πθd is the waist of
the beam at the focal plane (z = 0), with θd the beam divergence
angle. An upper limit for the non-dimensional radial coordinate of
r̃max = 2 (two times the local Gaussian beam radius, in dimensional
coordinates) is adopted.23

A greatly simplified exemplary computational mesh is illus-
trated in the Cartesian space in Fig. 1. For clarity, only a region very
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FIG. 1. Illustrative cFLDI mesh, very coarse for clarity. A pair of beams of an FLDI
very near its center plane are shown in different colors, each denoting one plane of
orthogonal polarization. Lines connecting the nodes of individual rays are marked.
The labels of nodes on the front plane are numbered as coordinate pairs: radial
coordinate and angle coordinate.

close to the focus of the system is shown. The pair of orthogonally
polarized beams is displayed in different colors. The spatial dis-
cretization is performed through the definition of nodes as the (r̃, θ)
pairs at each z-plane and rays connecting all nodes with the same
non-dimensional coordinates across all z-planes. The discretization
of each beam is identical except for an offset in the x direction.

The rays shown in Fig. 1 are treated as pairs to perform the
differential operations. Each ray in one of the beams has a correspon-
dent counterpart in the other, as labeled on the front plane of the
figure. Flowfield density values are interpolated to the FLDI nodes at
each instant in time. The total number of z planes is even, so that all
rays undergo a quadrant inversion in θ as they cross z = 0 to account
for image inversion through the focus.25 This is performed internally
in the algorithm and is not shown in Fig. 1.

Fluctuations in density ρ in the flowfield crossing the rays
shown in Fig. 1 cause their optical paths to vary due to changes in
the local refraction index n. A difference in the optical paths traveled
by two monochromatic and coherent light rays causes a difference in
phase Δϕ between them.33 These effects are combined as

Δϕ = 2πK
λ0
(∫

C1

ρ(s1) ds1 − ∫
C2

ρ(s2) ds2), (4)

with K the Gladstone–Dale constant for the light wavelength λ0,
C1 and C2 defining the spatial path traveled by each beam, and the
field density parameterized as ρ(si), with si the spatial variable that
describes Ci.

Equation (4) is valid for each corresponding pair of light rays
that compose the two beams of one FLDI. Upon recombination and
projection of the two beams back to a common polarization plane,
the resulting light intensity of each ray is modulated by the phase
difference Δϕ as33

I = I1 + I2 + 2
√

I1I2 cos Δϕ, (5)

where I1 and I2 are the intensities of the separate rays, and I is the
intensity of the recombined ray.

The output of the FLDI is given by the average of the intensities
of all rays, weighted according to the intensity profile of the beam.
For a Gaussian beam, the normalized intensity profile is described by
Ĩ0(r̃) = 2π−1 exp (−2r̃ 2). If the undisturbed orthogonally polarized
pair is adjusted to present an initial phase difference of π/2 and an
equal intensity distribution Ĩ0/2, the normalized intensity at the face
of the detector D becomes,

ĨD =∬
D
(Ĩ0(r̃, θ) + Ĩ0(r̃, θ) sin Δϕ(r̃, θ)) dr̃ dθ, (6)

with Δϕ(r̃, θ) evaluated using Eq. (4) for each ray. Experimental
FLDI data are usually given in terms of an equivalent phase shift ΔΦ
that represents the normalized intensity ĨD of Eq. (6). With the light
intensity normalization chosen such that the integral of Ĩ0 over D is
unity, the equivalent phase shift ΔΦ becomes

ΔΦ = sin−1(∬
D

Ĩ0(r̃, θ) sin Δϕ(r̃, θ) dr̃ dθ). (7)

In the present work, all integrals are numerically calculated
using trapezoidal integration. Equations (4) and (7), when used with
an appropriate computational mesh, fully represent the FLDI prob-
ing a given flowfield. The cFLDI mesh is kept fixed in space, which
implies ignoring any steering of the rays caused by local gradients of
refraction index. Nonetheless, the effect of this simplification on the
accuracy of cFLDI simulations is negligible. This has been confirmed
in Ref. 25, in which a complex experimental shock-dominated flow-
field was accurately represented by cFLDI simulation using that
same constraint.

It is noteworthy that, when performing cFLDI simulations, the
operation of interpolating flowfield data to FLDI nodes presents a
marked influence on computational cost. For the analysis of a spher-
ically symmetrical disturbance such as the spark-generated blast
wave of the present work, the magnitude of the field disturbance
at any location is simply described in terms of the radial variable
r of a spherical coordinate system. By shifting the origin of the FLDI
Cartesian system to coincide with the source of the disturbance, the
coordinates of each FLDI node (xi, yi, zi) are simply represented in

that system as ri =
√

x2
i + y2

i + z2
i . This way, the density value at each

node is efficiently interpolated from the field disturbance data.

C. Reconstruction of spherical waveforms
from FLDI data

Figure 2 illustrates the principle of the flowfield investigation
in this work. The generated disturbance flowfield is approximated
as spherical, such that at any given instant it is fully described by the
spherical coordinate r, with origin coincident with the location of the
disturbance source. The interferometric pair of the FLDI is parallel
to the Cartesian z and crosses x at a distance x0 to the disturbance
source. The separation distance between the orthogonally polarized
beams is Δx. In this section, a methodology to obtain the radial
distribution of acoustic pressure based on measured FLDI data is
presented.

The problem of interpreting data from spherically diverging
acoustic N-waves using experimental techniques that probe along
straight lines was addressed in detail in Refs. 31 and 34. A similar
procedure will be adopted here, with a few additional assumptions
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FIG. 2. Schematic of one FLDI bundle (green) probing a circular disturbance (gray).
Relevant Cartesian and spherical coordinates are shown. Dimensions not to scale.

and considerations specific to the FLDI. Simplifying hypotheses are
adopted and critically evaluated later in this work with the support
of experiments and computational FLDI.

First, the line integrals in Eq. (4) are expressed in spherical
coordinates. The FLDI coordinate system is defined such that the
center lines of the paths C1 and C2 are parallel to the Cartesian z axis.
The volume described by the FLDI beams is assumed to be slender
enough that the problem can be simplified to the two dimensions
shown in Fig. 2 and that the small divergence angle of the beams can
be neglected within the reconstruction method.

It is noteworthy that with these assumptions, the method
described here is applicable in cases of circular symmetry around
a point, such as a sphere, and also around an axis, such as a cone
or a cylinder with the probing direction perpendicular to their
center axis. The integration paths si in Eq. (4) are hence defined
by a constant x, i.e., si = si(xi, z) and dsi = dz. A line of constant
x = xi is written in spherical coordinates as r =

√
x2

i + z2, yielding
dz = r dr/

√
r2 − x2

i . Finally, considering that the disturbance field is
symmetric around z = 0 and that ri∣z=0 = xi and ri∣z=∞ =∞, each
integral in Eq. (4) becomes

∫
∞

−∞

ρ(xi, z) dz = 2∫
∞

xi

ρ(r) r√
r2 − x2

i

dr. (8)

This integral is now analyzed in light of the problem at hand.
The flowfield surrounding the blast wave is assumed to be initially
at rest. Hence, although the upper limit of the integral in Eq. (8)
is infinite, the integration length of practical significance will be
defined by the blast wave radius. Furthermore, except for very close
to the origin of the blast wave, the acoustic disturbance defined
by it will be largely concentrated in the inner vicinity of its radius
at any instant in time, and zero everywhere else. With these two
observations, it is reasonable to consider z ≪ xi within the relevant
integration length in Eq. (8). Finally, for a small displacement Δx,
consequently, x + Δx ≈ x, Δr ≈ Δx, and r + Δr ≈ r. By defining the
location of each FLDI beam as xi = x0 ± Δx/2 (see Fig. 2), Eq. (8) can
be approximated for each beam as

∫
∞

x0−
Δx
2

ρ(r) r√
r2 − (x0 − Δx

2 )
2

dr ≈ ∫
∞

x0

ρ(r − Δr
2 ) r√

r2 − x2
0

dr,

∫
∞

x0+
Δx
2

ρ(r) r√
r2 − (x0 + Δx

2 )
2

dr ≈ ∫
∞

x0

ρ(r + Δr
2 ) r√

r2 − x2
0

dr.

(9)

With the integrals now having the same integration limits,
Eq. (4) is rewritten as

Δϕ = 2πK
λ0
[2∫

∞

x0

(ρ(r − Δr
2
) − ρ(r + Δr

2
)) r√

r2 − x2
0

dr]. (10)

It is possible to isolate the density difference in the integrand of
Eq. (10) by means of an Abel transform, following Refs. 31 and 34,

F(x) = 2∫
∞

x

f (r) r√
r2 − x2

dr, ((11a))

f (r) = − 1
π∫

∞

r

dF(x)
dx

dx√
x2 − r2

. ((11b))

An expression describing the radial distribution of density dif-
ferences as a function of phase differences measured along a secant
line is thus obtained,

ρ(r − Δr
2
) − ρ(r + Δr

2
) = − λ0

2π2 K∫
∞

r

dΔϕ(x)
dx

dx√
x2 − r2

. (12)

Note that Eq. (12) requires knowledge of the spatial distri-
bution of phase differences. However, the FLDI system outputs a
time-resolved phase difference at a fixed spatial location, namely the
optical axis of the FLDI system. This can be addressed by assum-
ing that the waveform probed by the FLDI travels with a uniform
velocity. Indeed, the weak spark-generated blast wave analyzed here
is produced with the same experimental setup as in Ref. 8, in which
it was verified to present little variation from M = 1 as close as
20 mm from its source. Furthermore, the hypothesis of uniform
propagation velocity was tested in Ref. 31 by means of numeri-
cally simulating blast wave convection using the generalized Burger’s
partial differential equation. Terms accounting for non-linearity,
dissipation, and relaxation processes were included, and the results
revealed maximum errors close to 1% for the estimates of peak
pressure and positive phase duration.

Through this assumption, a time-resolved Δϕ(t) is converted
into a spatially-resolved Δϕ(x) by using

x = x0 − (t − t0)c0, (13)

where c0 is the convection velocity and t0 is the time correspond-
ing to a reference coordinate x0, which may be conveniently defined
without loss of generality.

With the radial distribution of differences in density obtained
from Eq. (12), an estimate of field amplitudes is obtained as follows.
Assuming that the density field is composed of small disturbances,
the local density can be expressed as the sum of a mean value and a
fluctuating component, ρ(r) = ρ̄ + ρ′(r). Since the mean component
is the same for all values of r, the left-hand side of Eq. (12) is equiva-
lent to the difference of fluctuations ρ′(r − Δr

2 ) − ρ′(r + Δr
2 ). Next, if
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Δr is small with respect to the length scale of fluctuations, the spatial
derivative of ρ′ at some radial coordinate ri can be approximated as

dρ′(ri)
dr

≈ −(ρ′(ri − Δr
2 ) − ρ′(ri + Δr

2 )
Δr

). (14)

Finally, expanding the radial density fluctuation ρ′(r) into a
Taylor series at some radial coordinate ri and neglecting higher-
order terms,

ρ′(r) = ρ′(ri) +
dρ′(ri)

dr
(r − ri). (15)

Without its higher-order terms, the accuracy of this expansion
will quickly deteriorate as r becomes distant from ri. Nonetheless,
the FLDI measurements are capable of providing a very fine mesh
of dρ′/dr values due to their high temporal resolution, and the dis-
tribution of ri can be chosen accordingly. A reasonable estimate of
ρ′(r) can be obtained by using Eq. (15) sequentially, with each point
ρ′(ri) defining its neighbor ρ′(ri+1). Remembering that the density
fluctuations are confined to the volume described by the blast wave
radius at any given time, i.e., ρ′(+∞) = 0, this is best done in the
reverse direction, starting from the most outside point

ρ′(ri) = ρ′(ri+1) −
dρ′(ri)

dr
(ri+1 − ri). (16)

As seen in Sec. II A, blast wave data are commonly presented
in the literature in terms of acoustic pressure amplitudes. As such,
it will be more convenient to express the FLDI measurements as
pressure fluctuations rather than density. For the small, isentropic
disturbances analyzed here, density and pressure fluctuations are
related through the local sound speed as

p′ = ρ′c2
0. (17)

In summary, the complete set of simplifying hypotheses
detailed in the preceding paragraphs is listed below:

(a) FLDI
i. Divergence angle of the beams is neglected.

ii. Finite differentiation approximates a spatial derivative.
(b) Flowfield

i. Symmetric around a center point or axis.
ii. Negligible density gradients outside the wave front radius

at any instant.
iii. The wave front travels with uniform velocity within the

relevant probing time.
iv. Isentropic within the relevant probing volume.

It is worth noting that the flowfield reconstruction methodol-
ogy presented here and the numerical representation of the FLDI
detailed in Sec. II B only share Eq. (4). That equation refers to a gen-
eral physical principle of the behavior of light through a transparent
medium of variable density. Therefore, the methods of computa-
tional FLDI simulation and flowfield reconstruction from FLDI data
may be regarded as mutually independent.

III. METHODS
A. Experimental setup

The experimental arrangement employed in this work is the
same as that used in Ref. 8. Information relevant to flowfield
reconstruction and simulation is repeated here for clarity.

The FLDI system was designed to operate in the HEG shock
tunnel.35 The laser source is an Oxxius LCX-532S DPSS with a nom-
inal wavelength of 532.3 nm. The corresponding Gladstone–Dale
constant for this wavelength is K = 0.227 × 10−3 m3/kg. The orthog-
onally polarized pair of beams is produced and later recombined
using a pair of Sanderson prisms,36 allowing different beam separa-
tion distances Δx to be produced. Four values of Δx are analyzed,
namely 76, 120, 175, and 252 μm. The beams are approximately
Gaussian with a maximum diameter of 45 mm at the field lenses,
which are 3.8 m apart.

The photodetector is a Thorlabs DET36A2 of nominal band-
width 25 MHz connected to an amplifier and recorder with a 50 Ω
termination. The signal is recorded with DC-coupling and a sam-
pling rate of 100 MHz. The conversion of the voltage produced by
the photodetector into the FLDI phase difference is performed fol-
lowing Ref. 37. Prior to measurements, the undisturbed response of
the FLDI is adjusted to the region of maximum sensitivity.

The probed flowfield is generated by the electric spark of an
automotive spark plug with a 4 mm separation between its elec-
trodes. The resulting weak blast wave propagates with approximately
the ambient sound speed at distances larger than 20 mm from its
origin, as analyzed in Ref. 8. The flowfield topology is shown in
Fig. 3, with a series of superimposed schlieren images. In addition
to the blast wave propagating radially, Fig. 3 also shows a secondary
wave that propagates diagonally upward. This is a reflection of the
main wave front off the structure of the spark generator and will be
considered in Sec. IV.

A diagram of the experimental setup is shown in Fig. 4. The
spark generator can be moved with respect to the fixed FLDI
depicted in Figs. 4(a) and 4(b) along the axis of beam separation,
such that measurements can be taken and analyzed at multiple dis-
tances from the source, represented as R in the frames of the figure.
Measurements are taken at 23 positions with nominal distances
between the source and probing volume of 3–50 mm. The spac-
ing between the probing positions is smaller near the source, and
position uncertainty is estimated at ±0.25 mm. A single spark is
generated for each measurement, with the disturbances allowed to
fully dissipate before the next one. Despite the careful adjustment

FIG. 3. Superposition of enhanced schlieren images of the blast wave generated
using an automotive spark plug. The wave fronts at each instant in time are marked
with the label ti , with ti − ti−1 = 16.7 μs. Scale at the bottom in mm.
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FIG. 4. Diagram of the experimental setup employed to acquire blast wave mea-
surements. (a) and (b) Depict two moments of a given measurement with FLDI,
before and after the blast wave reaches the probing location, respectively. (c) and
(d) Depict the corresponding moments of a measurement using the wall-mounted
PCB sensor. In (d), the blast wave front has reflected off the wall on which the PCB
is mounted.

and operation of the spark generator, eventual variations in flowfield
generation have been observed during the tests. One possible reason
is random changes in the spark breakdown path, which shift the ori-
gin and slightly alter the strength of the blast wave. Furthermore,
although the experiments are conducted in a protected environ-
ment, it is not completely sealed, which may allow eventual small
non-uniformities to be present in the surrounding medium. To min-
imize the effects of such eventual variations in flowfield generation,
ten measurements are repeated at each position. The ambient sound
speed is calculated using ambient temperature values obtained near
the probing region before each series of measurements.

A separate series of blast wave measurements are conducted
using a wall-mounted fast response piezoelectric pressure sensor
PCB 132A32, as depicted in Figs. 4(c) and 4(d). The measurement
approach is repeated from the FLDI measurements using the same
movable spark generator setup. Starting at 16 mm from the source,
the same nominal distances between the blast wave source and prob-
ing device are used. Measurements closer than this lower bound
were hindered by geometric constraints. The pressure magnitudes
obtained with the sensor are used as a reference for comparisons
with the data post-processed from FLDI measurements. Due to the
interaction between the flowfield and the wall, depicted in Fig. 4(d),
a full waveform comparison is not possible. Nonetheless, the peak
magnitude of overpressure detected at the wall upon reflection of
the weak blast wave should be twice the overpressure of the incident
wave.29

B. Computational FLDI
A mesh convergence analysis must be conducted before using

the computational FLDI to perform flowfield evaluations. The dis-
cretization of the beam cross-section variables r̃ and θ follows a

FIG. 5. Computational FLDI results of a blast wave using different mesh densities
in the z direction. The mesh in z is defined by the uniform distance between two
adjacent planes, denoted dz. Symbols are shown only in the detail inset for clarity.

mutually dependent approach such that each mesh cell has an aspect
ratio close to unity,23 and z is discretized in uniform steps. A single
waveform, based on experiments and representative of the data that
will be detailed in Sec. IV C, is used to generate computational FLDI
results with different meshes.

Figure 5 shows the simulation results for different discretiza-
tion steps in z. The cFLDI solution is sensitive to this parameter
in later moments of the simulation when the radial propagation of
the disturbances causes a more varied distribution of field proper-
ties along the FLDI optical axis. Mesh-independent results for the
discretization in z are obtained with a spacing of 480 μm and below.
The value of 480 μm has been chosen for the subsequent evaluations.

Simulations were performed varying the number of divisions
in the cross-section coordinate θ, shown in Fig. 6. Slight mesh-
dependent variations are observed for the peak absolute values of
the difference ΔΦ. These regions correspond to the largest flowfield
gradient magnitudes, which require fine meshes to be sufficiently
resolved. Since the radial discretization is linked to the steps in θ, the
refinement of this parameter has a strong impact on the computa-
tional requirement of the simulation. Between 144 and 576 divisions
in θ, the relative maximum difference in the simulated signal was
only 0.5%. Therefore a number of 144 divisions were chosen as a
balance between mesh convergence and computational cost. The
corresponding number of divisions in the radial direction was 176.

The waveform used in this analysis corresponds to measure-
ments obtained 30 mm away from the spark source, which is the
location to be explored in detail in Sec. IV C. Due to the varying flow
topology crossing the FLDI beams at each location, a similar mesh
convergence study as presented here must be repeated accordingly if
different locations are to be simulated.

IV. RESULTS AND DISCUSSION
A. Experimental data and processing

Figure 7 shows exemplary time-resolved experimental signals
obtained at a number of probing locations and all four system con-
figurations. The signals are minimally post-processed to yield phase
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FIG. 6. Computational FLDI results of a blast wave using different beam cross-
section meshes. The mesh in θ is defined by the number of divisions around the
circumference nθ, and the discretization in the radial direction is such that the
aspect ratio of each cell remains close to 1. Symbols are shown only in the detail
inset for clarity.

differences ΔΦ and divided by the corresponding differentiation
distance Δx to allow direct magnitude comparison.

The experimental signals from all probing locations were
passed through a Savitzky–Golay filter for noise reduction and pro-
cessed using the procedure detailed in Sec. II C to obtain pressure
waveforms. The compression phase duration was noted to be the
most sensitive parameter to non-uniformities in blast wave genera-
tion. Since the blast wave correlations presented in Sec. II A depend
on the global behavior of the wave as it travels away from the source,
for each measurement location, the waveforms with the highest and
lowest values of compression phase duration were excluded as out-
liers. The remaining eight waveforms were combined into an average

pressure profile, representative of the respective location, for further
analysis.

Figure 8 shows the spatial evolution of pressure waveforms
p′(r) detected with the FLDI for all four system configurations. Note
that the spatial waveforms in Fig. 8 travel from left to right, present-
ing a reversed profile along the x axis compared to the temporal
traces in Fig. 7 [see Eq. (13)]. Each distinct line in Fig. 8 corre-
sponds to the blast wave detection at a given location as the spark
generator was consecutively moved away from the optical axis of
the FLDI. The waveforms are spatially distributed such that they
cross the respective measurement location with half their peak pres-
sure. Where available, the reference peak pressures measured with
the wall-mounted PCB pressure sensor are also shown, divided by a
factor of two as mentioned in Sec. III A.

The typical blast wave profile with a sharp and strong compres-
sion front followed by a longer and less intense expansion region
is observed in the vicinity of the spark generation. As the wave
front propagates radially, the N-wave shape becomes evident, with
approximately symmetric compression and expansion phases. The
inset in Fig. 8 shows in detail the waveform obtained for R = 30 mm
as an example. Small differences between the lines for each Δx can
be seen, which will be further explored in Sec. IV C with aid from
computational FLDI. The positive pressure seen at the trailing edge
of the waveforms (e.g., near the left-hand edge of the inset) is a sec-
ondary wave that stems from the reflection of the main wave front on
the structure of the spark generator. This is seen as an oblique trace
propagating diagonally upward in the flow topology shown in Fig. 3.
The remainder of the secondary wave is cut off from the waveforms
in Fig. 8 for clarity.

Concerning the reference peak magnitudes obtained with the
wall-mounted PCB, the pressure data reconstructed from FLDI
measurements present an overall good agreement. Downstream of
∼30 mm, a consistent small difference in peak magnitudes is appar-
ent, with the PCB data always higher. This may be an effect of the
trailing secondary wave mentioned earlier. Referring again to Fig. 3,
this secondary wave front follows the main one closely along the cen-
ter line in the vicinity of the 30 mm station. While the FLDI is still

FIG. 7. Time signals obtained from FLDI measurements of spherical blast waves using multiple FLDI differentiation distances Δx, minimally post-processed. Each line is
the average of ten overlapping time signals independently obtained at the same location and with the same Δx.
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FIG. 8. Waveforms obtained from FLDI measurements of spherical blast waves using multiple FLDI differentiation distances Δx. The blast wave source is located at r = 0.
Each profile is the average of eight waveforms independently obtained at the same location and with the same Δx. The displayed results are a subset of the complete
dataset, selected for clarity such that consecutive waveforms do not overlap. The waveforms are aligned to their respective measurement location using half the peak
pressure along the front of the wave. Corresponding reference peak pressures measured with a wall-mounted PCB pressure sensor are also shown where available.

capable of a clear detection of the main wave front, the interaction
between the flowfield and the wall in the case of the pressure sensor
favors the combination of the two waves, biasing the measured peak
overpressures.

The physical analysis of the flowfield reconstructed from FLDI
data can be continued by looking at the complete waveforms
obtained. In addition to the peak pressure P, they also allow extract-
ing the compression phase duration T, as illustrated in the inset of
Fig. 8. To account for the finite thickness of the wave front, the value
of half the peak pressure is used as a reference to obtain the com-
pression phase duration as shown. The relationship between these
two features, as expected from weak-shock theory, Eqs. (1) and (2),
is analyzed next.

B. Analysis through weak-shock theory
The distributions of compression phase duration T from the

reconstructed waveforms are shown in Fig. 9. Data for all ana-
lyzed Δx are shown, with an offset of one grid line between each
adjacent dataset. Information obtained from the averaged pressure
profiles is shown using empty symbols with dashed lines. The val-
ues obtained from each individually performed measurement are
shown as filled small symbols on the background for completeness.
The least-squares linear fits of T2 vs log R for each case are shown as
solid lines.

The sets of values from individual waveform regressions shown
in Fig. 9 display an evident scatter toward the larger evaluated dis-
tances. This is attributed to a combination of two factors. First, small
variations in the strength of the generated spark across the repe-
titions may yield pronounced accumulated differences as the wave
propagates further away from the source. Second, as the amplitude
of the detected signal becomes smaller, an eventual weak signal off-
set, either positive or negative, preceding the arrival of the wave
front may bias the results of the integration procedure for waveform
reconstruction, Eq. (12). The average of signal magnitude in a 10 μs

range before the first signal rise is used to offset the zero level, in an
attempt to avoid this. However, low signal-to-noise ratios reduced
the accuracy of the offset in some cases. This is further evidenced
by the fact that scatter is larger for smaller Δx values, in which case
overall smaller signal amplitudes are produced. The biasing effect is
small, as will be verified next with the fluctuation of peak pressures
in this region. However, its influence on the evaluation of compres-
sion phase duration may be significant. A change in peak pressure
will cause a proportional change in the compression phase duration
(refer to the inset in Fig. 8). With the compression phase duration

FIG. 9. Distribution of compression phase duration of spherical blast waves
detected with FLDI using multiple differentiation distances Δx. Data are cascaded
along the y axis with a positive offset of 2 μs2 for each increasing Δx for clar-
ity. Empty large symbols with dashed lines correspond to the mean waveforms,
while filled small symbols in the background correspond to each independently
regressed waveform. Linear fits for the distributions are shown as solid lines.
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becoming ever larger as the wave propagates further, a small rela-
tive change in peak pressure may yield a noticeable change in the
compression phase duration in terms of absolute values.

The observed scatter highlights the importance of performing
repeated measurements across the probed distances. By considering
the averaged waveform to obtain representative values for each loca-
tion, the influence of the detailed factors is greatly reduced. This is
verified by the generally low deviation between the data from aver-
aged waveforms and a straight line, as expected from Eq. (1), and the
similar slope independently obtained for each case.

Figure 10 shows the peak pressure data obtained for each case.
Again, the datasets are cascaded for clarity, and values for the mean
and individual waveforms are shown as empty symbols with dashed
lines and filled small symbols, respectively. The comparatively low
scatter of the values based on individual waveforms confirms that
the non-uniformities mentioned earlier have a small effect on the
peak pressures.

The complete dataset of reference peak pressures obtained with
the wall-mounted PCB sensor is also shown, and repeated accord-
ingly for each FLDI configuration. The logarithmic scale of Fig. 10
highlights the agreement between peak pressures measured with
FLDI and the wall-mounted PCB for R ≤ 30 mm. The PCB measure-
ments beyond that location present a vertical offset. Nonetheless,
they remain described by a straight line, as would be the case with
a slightly stronger blast wave. This is evidence of the combina-
tion between the main and trailing wave fronts downstream of R =
30 mm, mentioned previously.

Proceeding with the analysis of the FLDI measurements, the
slopes obtained from Fig. 9 are used to determine a σ0 for each
measured value of T (refer to Sec. II A) from the averaged wave-
forms. The corresponding values of peak pressure P expected from
the weak-shock theory are then calculated for each measurement
position using Eq. (2). The resulting distribution for each case is

FIG. 10. Distribution of peak pressures of spherical blast waves, detected with the
FLDI using multiple differentiation distances Δx. Data are cascaded along the y
axis with a positive offset in factors of 4 for each increasing Δx for clarity. Empty
large symbols with dashed lines correspond to the mean waveforms, while filled
small symbols in the background correspond to each independently regressed
waveform. The distributions of peak pressures expected from weak-shock theory
based on mean T are shown as solid lines. Reference peak pressures measured
with a wall-mounted PCB pressure sensor are also plotted where available.

shown with a solid line in Fig. 10. For the waveforms reconstructed
from FLDI measurements to be physically consistent, the solid and
dashed lines in Fig. 10 must overlap.

A pronounced disagreement is noticed in the vicinity of the
blast wave source for R < 6 mm. This may be due to a poor approx-
imation of the blast wave as spherical in this region since the spark
length is ∼4 mm. In the case of a purely spherical blast wave, e.g.,
generated using laser induced breakdown as in Ref. 38, it could be
expected that pressures in the close vicinity of the blast wave source
would be higher,39 rising to match the theoretical predictions. The
predictions themselves would not be expected to change, given that
the slopes in Fig. 9 are a global parameter and the compression phase
durations shown in that same figure seem to follow a constant slope
all the way through.

Away from the blast wave source, Fig. 10 shows an overall
good agreement between measured and expected values for the three
lower Δx values, in contrast to the consistent offset observed for
Δx = 252 μm. To quantify this offset, the point-wise ratios between
the peak pressures measured on the FLDI waveforms P and the
corresponding value expected from the weak-shock theory Pws are
calculated. The ratios for R < 6 mm are discarded for all cases for
the reason mentioned earlier. Table I shows the mean and standard
deviation values of P/Pws observed for each case. For the three lower
values of Δx, the distribution of P/Pws is close to and varies across
unity, indicating a reasonable match between the measured pressure
peaks and the weak shock predictions. Conversely, for Δx = 252 μm,
a 10% offset is obtained on average, with the predicted values always
greater than the measurements.

It is noted that only the separation distance Δx between
the interferometric pair of the FLDI differentiates the four cases.
These results indicate that the post-processing approach detailed in
Sec. II C is able to yield physically consistent waveforms as long
as the constraints imposed by the simplifications thereby listed are
adequately considered. A value of Δx = 252 μm likely violates sim-
plification (a).ii, namely, the approximation of the finite difference
performed by the FLDI to a spatial derivative. This is analyzed in
further detail in Secs. IV C and IV D through cFLDI calculations.

C. Computational FLDI simulation
As seen in Sec. II C, the reconstruction of spherically propagat-

ing pressure waveforms using FLDI measurements is made possible
through a series of approximations. In the following, the quality
of the obtained waveforms is assessed by means of cFLDI to pro-
duce time-resolved phase difference ΔΦ(t) simulations based on
the reconstructed flowfield p′(r). These computational results are

TABLE I. Compilation of ratios between peak pressures P measured from averaged
waveforms and the corresponding values expected from the weak-shock theory Pws,
for each FLDI configuration. The mean and standard deviation values obtained from
the distribution for R ≥ 6 mm.

Δx Mean P/Pws

76 μm 0.992 ± 0.055
120 μm 1.033 ± 0.065
175 μm 1.009 ± 0.045
252 μm 0.894 ± 0.054
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compared with the original experimental data. An accurate recon-
struction must produce overlapping simulated results, meaning this
cycle between measured or simulated ΔΦ and reconstructed p′ may
go on indefinitely without any loss of information.

This approach is made possible by recalling that the methods of
flowfield reconstruction and cFLDI simulation are entirely indepen-
dent from each other, as seen in Sec. II. Since the ray-tracing cFLDI
is physically accurate, a match between the simulation of a flow-
field reconstructed from experiments and the experimental data that
originated it implies that the reconstruction is also accurate (pro-
vided the possibility of non-unique solutions can be neglected). Any
deviation between computed and experimental data is, therefore, an
indication of flaws in the flowfield reconstruction procedure.

Figure 11 illustrates how the cFLDI perceives the passage of the
blast wave. The wave front is marked with a darkened surface, and
the FLDI beams are painted according to the instantaneous local
density distribution. Due to the small time of interaction between the
FLDI and the disturbance carried by the blast wave, the shape of the
disturbance is assumed to be frozen in time and moving radially with
a constant velocity. The temporal resolution for the computational
FLDI calculations is chosen to be 20 MHz, based on a convergence
analysis similar to the one presented for the mesh discretization in
Sec. III B.

Careful evaluation of the reconstructed flowfield was conducted
at R = 30 mm for all four Δx values. The observations presented next
are specific to this probing location, but the methodology is general.

An averaged experimental time-resolved phase difference
ΔΦ was obtained for each differentiation distance Δx, and pro-
cessed into a spatially resolved pressure flowfield to be simu-
lated with cFLDI. The approach with averaged experimental data
has the benefit of smoothing out eventual flowfield imperfections
while keeping the signal main features. A clear reference is thus
obtained to compare the computational results after completing

FIG. 11. Illustration of the computational FLDI of a blast wave, in isometric and
top views. Colors are contours of density perturbation within the FLDI domain,
with positive and negative variations indicated as tones of red and blue, respec-
tively. The FLDI bundle is positioned 30 mm away from the blast wave source,
with beams 252 μm apart in this example. At the moment of this snapshot, the
blast wave radius is ∼32.7 mm. The wave front is marked by a darkened surface.

the reconstruction–simulation cycle, improving the detection of
eventual differences stemming from the reconstruction procedure.

Figure 12 shows the comparison between experimental and
computed data. Results are displayed as the ratio between phase dif-
ference ΔΦ and beam separation Δx. With such scaling, all lines
are ideally identical regardless of FLDI configuration since the same
disturbance field is probed at the same location across the cases. A
vertical offset of 20○/mm is used between adjacent cases for clar-
ity. The time origin in each case is arbitrarily defined such that the
peak signals are aligned to facilitate visual comparison. The gray
lines in the main plot show the original experimental data in each
case, with colors denoting the cFLDI output of the corresponding
reconstructed pressure waveforms.

The experimental signals across all four cases are verified to
present a similar general form. All time series show the detection of
the main wave front starting at ∼2.5 μs and the previously mentioned
secondary wave front close to 10 μs. The most noticeable difference
is more apparent noise as Δx is smaller, which is a consequence of
the overall lower signal amplitudes obtained with a small differen-
tiation distance. The signals displayed as ΔΦ/Δx represent a finite
difference approximation of a spatial derivative. Considering the
reduction of non-uniformities through averaging repeated measure-
ments, the flowfield is essentially the same for all cases. Therefore, all
experimental signals are ideally the same in terms of ΔΦ/Δx, as long
as Δx is small enough. The experimental lines in Fig. 12 show this to
be the case for Δx = 76 and 120 μm. For the higher Δx, a reduction
in peak value and a damping of gradients are observed, especially for
Δx = 252 μm. Those are indications that the finite difference oper-
ated by the FLDI is not performed across a small enough spatial
interval to adequately represent a spatial derivative in this flowfield.

More insight can be gained from the cFLDI results. The colored
lines in the main plot of Fig. 12 show that all four cases are mostly

FIG. 12. Comparison of FLDI response to spherical blast waves, detected at
30 mm from the source using multiple FLDI differentiation distances Δx. Mag-
nitudes are the ratio of phase difference to beam separation distance, offset in
multiples of 20○/mm. Time origins are arbitrarily defined. The gray lines corre-
spond to experimental measurements; colors represent the cFLDI response to the
reconstructed disturbance field. The insets on the right refer to the box in the main
plot with the vertical offsets removed, offering a direct comparison between the
peak values of each experimental and cFLDI dataset.
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well reproduced. The exceptions concern the sharp signal rise upon
blast wave arrival. For Δx = 252 and 175 μm, a damping of gradient
and reduction of peak value are again observed, more evidently for
the former. This corroborates the previous observations concerning
the experimental results. At this point, flowfield feature losses due to
inadequate FLDI configuration have taken place twice: once when
the experimental measurements were performed and again when the
computational FLDI responses were simulated. The computational
FLDI results in Fig. 12 also evidence small differences in peak values
for Δx = 120 μm (and very small for Δx = 76 μm).

Table II evaluates these disagreements. For each Δx, the relative
peak signal difference and the zero-lag cross-correlation between
experimental and computational FLDI for the main wave front
(between 1 and 10 μs in Fig. 12) are given. The cross-correlation is
normalized by the auto-correlation of the experimental signal, such
that both shape and amplitude differences result in a departure from
unity. The listed values evidence the influence of Δx on the ability
to return the reconstructed flowfield back into FLDI data. For the
smallest evaluated Δx, good agreement is confirmed, with a loss in
peak value of less than 3% and the overall time signal from the FLDI
simulation correlating with the experimental one at 0.5%.

These observations allow the definition of two types of inaccu-
racies. First, on the ability of the FLDI as an instrument to detect
strong gradients due to finite differentiation. Second, on the effect
of simplifications adopted in Sec. II C to allow reconstruction of the
blast wave flowfield from FLDI measurements. The former is seen in
the raw experimental data as the signals present loss of features if Δx
is above a certain threshold (Δx > 120 μm, in this case) and is unre-
lated to the post-processing methodology. The latter is verified when
the physically accurate computational FLDI fails to reproduce the
experimental signal from which the flowfield was obtained, therefore
being of relevance in this work.

Interestingly, the cFLDI indicates a noticeable peak signal loss
for Δx = 120 μm even though the experimental signal used to recon-
struct the waveform was seemingly sufficiently resolved, as indicated
by the nearly identical experimental ΔΦ/Δx for Δx = 120 and 76 μm.
Furthermore, it is noted that the differences observed in Fig. 12
and reported in Table II are mostly subtle for all cases other than
Δx = 252 μm. It is evidenced that the comparison between measured
and expected values of the reconstructed waveforms performed in
Sec. IV B was only able to identify flaws for the highest Δx, despite
the cFLDI results presenting discrepancies against the experimental
data for other Δx values as well. This highlights the contribution of

TABLE II. Quantitative comparison between experimental FLDI data and the cFLDI
output to the reconstructed disturbance field. Values concern the spherical blast wave
detected 30 mm from its source using multiple FLDI differentiation distances Δx. The
peak signal difference is relative to the experimental signal, and the cross-correlation
coefficient is normalized by the auto-correlation of the experimental signal.

Δx
Relative peak signal

difference (%)
Normalized cross-correlation

coefficient

76 μm 2.74 0.9950
120 μm 6.12 0.9849
175 μm 9.20 0.9704
252 μm 14.48 0.9556

the cFLDI analysis to verify post-processing approaches, especially
in the absence of parallel, reliable measurements to provide further
support. These results are analyzed in more detail next, in view of
the methodology proposed in Sec. II C and the list of simplifying
hypotheses presented in its closing paragraph.

D. Analysis of post-processing simplifications
It is first noted that agreement between experimental and com-

putational results presented in Sec. IV C was obtained for at least
one Δx while all other FLDI parameters remained unchanged. This
indicates that simplifications such as neglecting the divergence of
the beams and their finite volume, hypothesis (a).i, do not signif-
icantly interfere with the field reconstruction for a blast wave and
FLDI setup with the dimensions presented here. An investigation
of this hypothesis can be performed through the cFLDI simula-
tion of a hypothetical instrument in which only one of the beams
crosses the disturbance field, the other remaining unaffected as if
it was a reference beam. In the case of this single beam FLDI, the
output of Eq. (12) from Sec. II C is used directly in Eq. (17) with-
out the steps concerning the conversion of density differences into
density fluctuation magnitude. This is similar to the Mach–Zehnder
interferometer simulation in Ref. 31, with the additional capabil-
ity of having a full three-dimensional beam in the present cFLDI.
By comparing the input flowfield with the flowfield reconstructed
from this single beam instrument output, it is possible to assess
the effects pertaining to beam divergence in an isolated manner.
The comparison between an input flowfield and the reconstruction
from a single beam FLDI simulation using different beam divergence
angles is shown in Fig. 13. The acoustic pressure of the blast wave at
R = 30 mm is used as the reference flowfield. The results confirm
that the effect of beam divergence angle for the FLDI setup used in
the experiments is negligible, while for much larger angles, it would
become relevant. In the case reported here, the effect observed in
Fig. 13 is caused by an interaction between the wave front and the

FIG. 13. Input blast wave acoustic pressure distribution in time, compared to recon-
structed values from single beam computational FLDI simulations. Three different
beam divergence angles are used in the simulations, namely, the divergence cor-
responding to the experimental setup in the present work (∼0.7○), 10 times this
value, and 20 times this value.
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wide radius of the FLDI beams away from the focal plane before the
blast wave reaches the FLDI focus.

Next, regarding the loss of accuracy as Δx becomes larger, an
oversimplification regarding the finite beam separation, hypothe-
sis (a).ii, is evidenced. This finite distance was disregarded when
approximating the integral limits in Eq. (9) and the derivative
in Eq. (14). These approximations can be analyzed separately as
follows.

The approximation of the derivative through finite differences
is a central hypothesis in the reconstruction method since the den-
sity value at each instant depends on the preceding value and
the derivative following Eq. (16). An error in the finite difference
approximation would misrepresent the local gradient, which in turn
would introduce a local magnitude offset that would propagate to all
subsequent points. In addition, recall that the flowfield reconstruc-
tion is performed spatially from outside the blast wave toward the
inside. Hence, in the temporal simulated data in Fig. 12, the accu-
mulated offset would become more significant at later times as the
inner portions of the blast wave reach and travel through the FLDI
location. Figure 12 shows that even for the largest Δx, the disagree-
ment between experimental and computational results is limited to
the first instants after blast wave arrival, with accurate reproduction
later on. Therefore, the finite difference approximation is verified
to be reasonable. This observation concerns the flowfield recon-
struction method alone, even when the instrument itself might be
ill-conditioned to perform the detection as mentioned for the larger
values of Δx in the present case.

Conversely, the approximation of the integral limit can be
particularly inaccurate in the brief moments following blast wave
arrival. During this time interval, the disturbance field affects exclu-
sively the upstream beam, and the combination of the integrals from
Eq. (4) through the approximation described in Eq. (9) is not valid.
A representative distribution of derivatives in this region is still
obtained, but the precise conversion to radial quantities in Eq. (12)
is affected. Evidently, the time interval in which this misrepresenta-
tion is observed (and hence its effect) increases with increasing beam
separation Δx. Figure 12 shows that for the blast wave measurements
presented here, the influence of the misrepresentation is negligible
for Δx = 76 μm, while for Δx ≥ 120 μm it is not.

A parametric study was conducted using the experimental data
and the cFLDI to evaluate this effect. For every probing location and
FLDI configuration, a pressure waveform was reconstructed from
the experiment. By including multiple probing locations, waveforms
of different characteristics are considered, as previously illustrated in
Fig. 8. Each waveform was simulated in a cFLDI using several values
of Δx, encompassing smaller, identical, and larger values than the
experimental ones.

Figure 14 displays an overview of the observed results. On the y
axis of the figure, the difference in the simulated FLDI peak value
with respect to each experimental counterpart is represented as a
percentage of loss. The abscissa shows the cFLDI differentiation dis-
tance Δx used in each simulation, normalized by the width of the
compression front of the simulated waveform. Here, the width of the
compression front refers to the first rising portion of the traveling
pressure waveform, objectively defined as twice the distance between
the waveform maximum pressure P and P/2 upstream of it, as anno-
tated in the inset of Fig. 8. This normalization parameter is proposed
to represent a region of strong gradients with a length across which

FIG. 14. Compilation of peak signal comparisons from parametric cFLDI analysis,
performed over multiple probing locations and with different FLDI configurations.
The y axis shows the percentage of loss on the peak of the cFLDI signal in
terms of ΔΦ/Δx with respect to the original experimental FLDI measurement
used to obtain the computational flowfield. The x axis shows the value of FLDI
differentiation distance Δx, normalized by the width of the compression front of
each simulated pressure waveform. A reference value of expected loss due to
finite differentiation is also given as 1 − HΔx , with HΔx being the transfer function
corresponding to the finite difference.

the approximation of identical integral limits would not hold well.
With the variation of FLDI differentiation distance reaching magni-
tudes comparable to a flowfield length scale, it becomes important
to monitor losses caused by finite differentiation as well. This effect
and that of the integral limit approximation overlap as functions of
the differentiation distance and, therefore, cannot be analyzed sep-
arately. Nonetheless, an important distinction between these two
effects is that the finite difference is physical, while the integral limit
approximation pertains only to the flowfield reconstruction method.
As such, the former is present in both experimental and compu-
tational FLDI, but the latter is exclusive to the cFLDI simulation.
The transfer function describing the effect of finite differentiation
distance as a function of wavenumber is given in Refs. 2 and 21 as
HΔx(k) = sinc(Δx ⋅ k/2). The transfer function is used to calculate
the loss in FLDI response magnitude expected for multiple values
of Δx ⋅ k, or Δx ⋅ 2π/λ in terms of disturbance wavelength, which
is shown in Fig. 14. The width of the compression front used as the
normalization parameter in the figure is assumed to be 1/4 of the
wavelength of an equivalent sinusoidal disturbance.

It is first noted that for all cases, the loss in peak value is
larger than the expected damping due to finite differentiation. This
confirms that the approximation of the integral limit is the most
constraining factor in the present flowfield reconstruction method.
The results show a monotonic relationship between the cFLDI dif-
ferentiation distance Δx and the ability of the simulated setup to
reproduce the experimental signal, with lower values of Δx pro-
ducing the best results. Furthermore, the width of the compression
front of the probed waveform as a normalizing factor for Δx was
able to approximately collapse this relationship, regardless of experi-
mental FLDI configuration or probing location (the latter associated
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with different widths of the compression front, recall Fig. 8). The
apparent larger spread of the points pertaining to the smaller experi-
mental Δx is related to the lower signal-to-noise ratio in those cases,
which introduces larger uncertainties in the determination of ref-
erence magnitudes. It is verified that for values of Δx less than 0.2
times the width of the flowfield compression front, the loss in the
simulated value becomes a minimum, subject to other factors that
may become dominant.

This general rule may be applied to the cases evaluated before,
concerning the probing location of 30 mm away from the spark
source, for verification. Using as a reference the experimental data
obtained with Δx = 76 μm, the obtained compression front width
was ∼0.32 mm. It is noted that Δx = 76 μm is close to 0.2 times this
value, whereas Δx = 120, 176, or 252 μm are much higher, with losses
indicated by Fig. 14 that are compatible with the ones reported in
Table II.

V. CONCLUSION
This work presented a new, analytic post-processing methodol-

ogy to extract quantitative information from Focused Laser Differ-
ential Interferometry (FLDI) measurements of flowfields possessing
circular symmetry. In the absence of complementary experimental
data for complete direct comparisons, a physically accurate com-
putational FLDI was employed as a tool to assess the accuracy
of the approach. Constraining conditions were identified, and the
methodology was confirmed to be reasonable if these conditions are
met.

The methodology was applied and analyzed in FLDI measure-
ments of spark-generated spherical weak blast waves, using multiple
FLDI differentiation distances and probing locations. In a first ver-
ification effort, the reconstructed pressure waveforms agreed with
predictions from weak-shock theory at distances larger than 6 mm
from the spark source, below which the approximation of a spher-
ical blast wave used by the theoretical model is not adequate. The
agreement was observed for all but the largest differentiation dis-
tance, namely, Δx = 252 μm, which showed consistently lower peak
pressure values. Where allowed by experimental constraints, refer-
ence peak pressure values were obtained using a wall-mounted fast
response piezoelectric pressure sensor. Comparisons between these
references and the peak pressure magnitudes of the reconstructed
waveforms provided similar observations.

An in-depth analysis of the reconstructed flowfield using cFLDI
simulations helped identify further inaccuracies not captured in the
theoretical comparisons, in terms of both peak signal amplitude and
gradient damping. The simplification of equal integration lengths
between the two beams composing the FLDI interferometric pair
was identified as the most critical in the post-processing opera-
tions. Nonetheless, very good agreement was obtained between the
computational FLDI for Δx = 76 μm applied to the reconstructed
flowfield and the experimental FLDI which gave origin to it. Dif-
ferences were evaluated as less than 3% restricted to the close
vicinity of the peak signal, and cross-correlation between the signals
including all features agreed to 0.5%. The proposed post-processing
methodology was hence verified to be sound, as long as a small
enough Δx is employed. This threshold was evaluated by means of a
parametric analysis using the cFLDI, as 20% or less of the length of

the compression front, which represents a reference of strong spatial
variation of density in the flowfield studied here.

It must be highlighted that the quantitative results presented in
this work are specific to the blast wave flowfield investigated herein.
Flowfields with different features or length scales might have dif-
ferent sensitivities to either Δx or other FLDI system properties.
Nonetheless, the methodology of using cFLDI to evaluate such sensi-
tivities can be extrapolated to different investigations. The approach
detailed here is therefore recommended for any particular appli-
cation, to ensure proper consideration of limiting constraints and
obtain accurate post-processing output. The depth of insight offered
by cFLDI as exemplified in this work is a strong argument for
encouraging the widespread application of such simulations as an
instrument of analysis.
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