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Motivation Scaleé}Edge

= Most real-time edge devices follow cyclic execution and require precise timing and
deterministic behavior

cycle time
e e e e e e e e = e e == —t
o — timebudgetA _, _ _timebudgetB _ _ , _timebudgetC _ _,
A B C cycle time >= time budget A +
Read data Perform Update time EuggEt z +
(sensors) computation (actuator) time budget

= Achieving precise timing is usually realized through software that relies on HW
timers/counters, interrupts and interrupt service routines

= Hypothesis: Dedicated RISC-V custom timing instructions enable low-overhead (number

of instructions) and highly precise timing (number of clock cycles) measurement and
control

" Proof-of-concept: Three new instructions (measure, smonit and emonit) are implemented
on Murax SoC which is based on VexRiscV core.
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Timing Measure Instruction Scale/\Edge

. : : Measure Plugin
= Helps obtaining software execution time

= Counts clock cycles between successive measure <MEA—'NST=T“J>

instructions

\ 4

= Measure plugin implemented in SCALA and added |> Measure = cyc_new — cyc. old
to Murax SoC l

" measure instruction is of R-type

UART
measure,
// software to obtain
// temporal behavior
Instruction 1' 0000000 00000 00000 000 00000 0001011
. funct? rs2 rsl funct3 rd opcode
Instruction n;

measure,
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Timing Control Instructions

Scale/.Edge

Control Plugin

= Enforces a specific timing behavior CNTRL_INST =
= smonit instruction (R-type)- start monitoring True >
= emonit instruction (R-type)- end monitoring

D Deadline = time + current_time

smonit(Block_id, time);

y

// software to be monitored Deadline crossed?

instruction 1;

....... I ]

2022-11-07

instruction n; Continue Halt Execution
Execution raise exception
emonit(Block_id);
. . . . 0000000 00000 00001 010 00000 0001011
= Exception raised if deadline crossed
. . . funct? rs2 rsl funct3 rd opcode
= Nesting of control blocks is possible
0000000 00011 00001 011 00000 0001011
funct?7 rs2 rsl funct3 rd opcode
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Control Blocks Nesting Scaleé}Edge

Nesting without overlap Nesting with overlap
smonit(1, t1); smonit(1, t1);
instruction 1; instruction 1;
instruction 2; instruction 2;

smonit(2, t2); smonit(2, t2);
instruction 3; instruction 3;
instruction 4; instruction 4;
emonit(2); emonit(1);
instruction n; instruction n;
emonit(1); emonit(2);

= Controlinstructions support nesting with & without overlap
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Reference Software Solutions

= Software solutions rely on programmable timers/counters
and interrupts

= Libbla (https://github.com/offis/libbla)
= C++ based library originally developed for an ARM processor

= Ported to RISC-V using counter register
= Provides timing annotations to obtain temporal behavior

= Estimate Execution Time (EET) — software counterpart for
measure instruction

= Forced Execution Time (FET) — software counterpart for
control instructions

= C based optimized

= Mere counter to count clock cycles without OOPs concepts
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Scale/\Edge

EET{
// software to obtain
// temporal behavior

}

FET-Block structure

While (true) {
BLOCK_FET (100_ms) {

BLOCK_FET (5_ms) {

}

BLOCK_FET (5_ms) {

}

BLOCK_FET (10_ms) {

}



https://github.com/offis/libbla

Results, Conclusion & Outlook Scale@]]Edge

Hardware vs Libbla SW solution Hardware vs optimized C SW solution
Measurement Assembler code Temporal Measurement Assembler code Temporal
block overhead overhead block overhead overhead
Hardware solution 7  (0.5%) 20 ns Hardware solution 7 20 ns
Libbla solution 1169 (101.5%) 3.002 ms Software solution 78 1.89 ps

H a rd ware Ut| I |Sat|0 N Hardware vs Software approach

LUTs Registers 80 1800

Measure 189 (11.5%) 200 (11.97%) 70 o

Control 276 (17.18%) 225 (13.47%) 6° oo
Conclusion ; E 1000
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* Precise temporal behavior with low overhead is achieved
with timing instructions as compared to software approach
e ISAX comes at a cost of hardware overhead
Outlook ” T
* Can be combined with power management (slack time) y PRSI ’ "~ etporaBlasfead
* Interface to safety and security monitoring Pt e
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