Scale/\Edge

Timing instructions for RISC-V based
hard real time edge devices

Nithin Ravani Nanjundaswamy (nithin.ravaninanjundaswamy@dir.de)
DLR

SSSSSSSSSSSSS

This work has been developed in the ZuSE project Scale4Edge. Scale4Edge is funded by the German ministry of education and research (BMBF) (reference * g G
inistry

numbers: 16ME0122K-16ME0140). The authors are responsible for the content of this publication. of Education
and Research

2022-11-07 5th Workshop on RISC-V Activities

mailto:nithin.ravaninanjundaswamy@dlr.de

Motivation Scaleé}Edge

= Most real-time edge devices follow cyclic execution and require precise timing and
deterministic behavior

cycle time
e e e e e e e e = e e == —t
o — timebudgetA _, _ _timebudgetB _ _ , _timebudgetC _ _,
A B C cycle time >= time budget A +
Read data Perform Update time EuggEt z +
(sensors) computation (actuator) time budget

= Achieving precise timing is usually realized through software that relies on HW
timers/counters, interrupts and interrupt service routines

= Hypothesis: Dedicated RISC-V custom timing instructions enable low-overhead (number

of instructions) and highly precise timing (number of clock cycles) measurement and
control

" Proof-of-concept: Three new instructions (measure, smonit and emonit) are implemented
on Murax SoC which is based on VexRiscV core.

2022-11-07 5th Workshop on RISC-V Activities 2

Timing Measure Instruction Scale/\Edge

. : : Measure Plugin
= Helps obtaining software execution time

= Counts clock cycles between successive measure <MEA—'NST=T“J>

instructions

\ 4

= Measure plugin implemented in SCALA and added |> Measure = cyc_new — cyc. old
to Murax SoC l

" measure instruction is of R-type

UART
measure,
// software to obtain
// temporal behavior
Instruction 1' 0000000 00000 00000 000 00000 0001011
. funct? rs2 rsl funct3 rd opcode
Instruction n;

measure,

2022-11-07 5th Workshop on RISC-V Activities 3

Timing Control Instructions

Scale/.Edge

Control Plugin

= Enforces a specific timing behavior CNTRL_INST =
= smonit instruction (R-type)- start monitoring True >
= emonit instruction (R-type)- end monitoring

D Deadline = time + current_time

smonit(Block_id, time);

y

// software to be monitored Deadline crossed?

instruction 1;

....... I]

2022-11-07

instruction n; Continue Halt Execution
Execution raise exception
emonit(Block_id);
. . . . 0000000 00000 00001 010 00000 0001011
= Exception raised if deadline crossed
. . . funct? rs2 rsl funct3 rd opcode
= Nesting of control blocks is possible
0000000 00011 00001 011 00000 0001011
funct?7 rs2 rsl funct3 rd opcode

5th Workshop on RISC-V Activities

Control Blocks Nesting Scaleé}Edge

Nesting without overlap Nesting with overlap
smonit(1, t1); smonit(1, t1);
instruction 1; instruction 1;
instruction 2; instruction 2;

smonit(2, t2); smonit(2, t2);
instruction 3; instruction 3;
instruction 4; instruction 4;
emonit(2); emonit(1);
instruction n; instruction n;
emonit(1); emonit(2);

= Controlinstructions support nesting with & without overlap

2022-11-07 5th Workshop on RISC-V Activities 5

Reference Software Solutions

= Software solutions rely on programmable timers/counters
and interrupts

= Libbla (https://github.com/offis/libbla)
= C++ based library originally developed for an ARM processor

= Ported to RISC-V using counter register
= Provides timing annotations to obtain temporal behavior

= Estimate Execution Time (EET) — software counterpart for
measure instruction

= Forced Execution Time (FET) — software counterpart for
control instructions

= C based optimized

= Mere counter to count clock cycles without OOPs concepts

2022-11-07 5th Workshop on RISC-V Activities

Scale/\Edge

EET{
// software to obtain
// temporal behavior

}

FET-Block structure

While (true) {
BLOCK_FET (100_ms) {

BLOCK_FET (5_ms) {

}

BLOCK_FET (5_ms) {

}

BLOCK_FET (10_ms) {

}

https://github.com/offis/libbla

Results, Conclusion & Outlook Scale@]]Edge

Hardware vs Libbla SW solution Hardware vs optimized C SW solution
Measurement Assembler code Temporal Measurement Assembler code Temporal
block overhead overhead block overhead overhead
Hardware solution 7 (0.5%) 20 ns Hardware solution 7 20 ns
Libbla solution 1169 (101.5%) 3.002 ms Software solution 78 1.89 ps

H a rd ware Ut| I |Sat|0 N Hardware vs Software approach

LUTs Registers 80 1800

Measure 189 (11.5%) 200 (11.97%) 70 o

Control 276 (17.18%) 225 (13.47%) 6° oo
Conclusion ; E 1000

40
800

* Precise temporal behavior with low overhead is achieved
with timing instructions as compared to software approach
e ISAX comes at a cost of hardware overhead
Outlook ” T
* Can be combined with power management (slack time) y PRSI ’ "~ etporaBlasfead
* Interface to safety and security monitoring Pt e

30
600

Number of Assembler Instructions

20 400

200

2022-11-07 5th Workshop on RISC-V Activities 7

