
2022-11-07 5th Workshop on RISC-V Activities 1

This work has been developed in the ZuSE project Scale4Edge. Scale4Edge is funded by the German ministry of education and research (BMBF) (reference
numbers: 16ME0122K-16ME0140). The authors are responsible for the content of this publication.

Nithin Ravani Nanjundaswamy (nithin.ravaninanjundaswamy@dlr.de)

DLR

Timing instructions for RISC-V based
hard real time edge devices

mailto:nithin.ravaninanjundaswamy@dlr.de

2022-11-07 5th Workshop on RISC-V Activities 2

Motivation

▪ Most real-time edge devices follow cyclic execution and require precise timing and
deterministic behavior

▪ Achieving precise timing is usually realized through software that relies on HW
timers/counters, interrupts and interrupt service routines

▪ Hypothesis: Dedicated RISC-V custom timing instructions enable low-overhead (number
of instructions) and highly precise timing (number of clock cycles) measurement and
control

▪ Proof-of-concept: Three new instructions (measure, smonit and emonit) are implemented
on Murax SoC which is based on VexRiscV core.

A
Read data
(sensors)

B
Perform

computation

C
Update

(actuator)

cycle time

time budget A time budget B time budget C

cycle time >= time budget A +
time budget B +
time budget C

2022-11-07 5th Workshop on RISC-V Activities 3

Timing Measure Instruction

▪ Helps obtaining software execution time

▪ Counts clock cycles between successive measure
instructions

▪ Measure plugin implemented in SCALA and added
to Murax SoC

▪ measure instruction is of R-type
measure;

// software to obtain
// temporal behavior

instruction 1;
…….
instruction n;

measure;

Measure = cyc_new – cyc_old

Measure Plugin

MEA_INST = True

UART

0000000 00000 00000 000 00000 0001011

funct7 rs2 rs1 funct3 rd opcode

2022-11-07 5th Workshop on RISC-V Activities 4

Timing Control Instructions

▪ Enforces a specific timing behavior
▪ smonit instruction (R-type)- start monitoring
▪ emonit instruction (R-type)- end monitoring

▪ Exception raised if deadline crossed
▪ Nesting of control blocks is possible

smonit(Block_id, time);

// software to be monitored

instruction 1;
…….
instruction n;

emonit(Block_id);

Deadline = time + current_time

Control Plugin

CNTRL_INST =

True

Deadline crossed?

Continue

Execution

Halt Execution

raise exception

0000000 00000 00001 010 00000 0001011

funct7 rs2 rs1 funct3 rd opcode

0000000 00011 00001 011 00000 0001011

funct7 rs2 rs1 funct3 rd opcode

2022-11-07 5th Workshop on RISC-V Activities 5

Control Blocks Nesting

smonit(1, t1);
instruction 1;
instruction 2;

smonit(2, t2);
instruction 3;
instruction 4;
emonit(2);

…..
instruction n;
emonit(1);

smonit(1, t1);
instruction 1;
instruction 2;

smonit(2, t2);
instruction 3;
instruction 4;

emonit(1);
…..
instruction n;
emonit(2);

Nesting without overlap Nesting with overlap

▪ Control instructions support nesting with & without overlap

2022-11-07 5th Workshop on RISC-V Activities 6

Reference Software Solutions

EET{
// software to obtain
// temporal behavior
}

▪ Software solutions rely on programmable timers/counters
and interrupts

▪ Libbla (https://github.com/offis/libbla)

▪ C++ based library originally developed for an ARM processor

▪ Ported to RISC-V using counter register

▪ Provides timing annotations to obtain temporal behavior

▪ Estimate Execution Time (EET) – software counterpart for
measure instruction

▪ Forced Execution Time (FET) – software counterpart for
control instructions

▪ C based optimized

▪ Mere counter to count clock cycles without OOPs concepts

https://github.com/offis/libbla

2022-11-07 5th Workshop on RISC-V Activities 7

Results, Conclusion & Outlook

Hardware vs Libbla SW solution

LUTs Registers

Measure 189 (11.5%) 200 (11.97%)

Control 276 (17.18%) 225 (13.47%)

Hardware Utilisation

Measurement
block

Assembler code
overhead

Temporal
overhead

Hardware solution 7 (0.5%) 20 ns

Libbla solution 1169 (101.5%) 3.002 ms

Hardware vs optimized C SW solution
Measurement
block

Assembler code
overhead

Temporal
overhead

Hardware solution 7 20 ns

Software solution 78 1.89 μs

Conclusion
• Precise temporal behavior with low overhead is achieved

with timing instructions as compared to software approach
• ISAX comes at a cost of hardware overhead
Outlook
• Can be combined with power management (slack time)
• Interface to safety and security monitoring

