
ar
X

iv
:2

11
2.

06
62

3v
3 

 [
cs

.C
R

] 
 6

 M
ar

 2
02

3

ROMEO: A Binary Vulnerability Detection

Dataset for Exploring Juliet through the Lens of

Assembly Language

Clemens-Alexander Brust, Tim Sonnekalb, Bernd Gruner

DLR Institute of Data Science

Jena, Germany

firstname.lastname@dlr.de

Abstract

Context Automatic vulnerability detection on C/C++ source code has ben-
efitted from the introduction of machine learning to the field, with many recent
publications targeting this combination. In contrast, assembly language or ma-
chine code artifacts receive less attention, although there are compelling reasons
to study them. They are more representative of what is executed, more easily
incorporated in dynamic analysis, and in the case of closed-source code, there
is no alternative.

Objective We evaluate the representative capability of assembly language
compared to C/C++ source code for vulnerability detection. Furthermore, we
investigate the role of call graph context in detecting function-spanning vulnera-
bilities. Finally, we verify whether compiling a benchmark dataset compromises
an experiment’s soundness by inadvertently leaking label information.

Method We propose ROMEO, a publicly available, reproducible and reusable
binary vulnerability detection benchmark dataset derived from the synthetic
Juliet test suite. Alongside, we introduce a simple text-based assembly lan-
guage representation that includes context for function-spanning vulnerability
detection and semantics to detect high-level vulnerabilities. It is constructed by
disassembling the .text segment of the respective binaries.

Results We evaluate an x86 assembly language representation of the com-
piled dataset, combined with an off-the-shelf classifier. It compares favorably to
state-of-the-art methods, including those operating on the full C/C++ code. In-
cluding context information using the call graph improves detection of function-
spanning vulnerabilities. There is no label information leaked during the com-
pilation process.

1

http://arxiv.org/abs/2112.06623v3


Conclusion Performing vulnerability detection on a compiled program in-
stead of the source code is a worthwhile tradeoff. While certain information is
lost, e.g., comments and certain identifiers, other valuable information is gained,
e.g., about compiler optimizations.

1 Introduction

Machine learning has advanced automatic vulnerability detection significantly
compared to traditional static analysis security testing (SAST) tools [17]. The
focus of recent methods is mainly on C/C++ source code, where many vulner-
abilities can be detected reliably, but others cannot [5]. We argue that, at least
for C/C++ software projects, but also other languages, the compiler’s output
warrants the same attention as the source code, if not more. The machine code
is more closely related to the actual state transitions during execution than the
original source code, and SAST tools often fail to consider implementation de-
tails of compilers [4]. Moreover, source code is not always available for third
party software, which nevertheless has to be audited. Finally, a method that
works directly on assembly language or machine code can easily be transferred
to a dynamic environment, e.g. for runtime monitoring of JIT compilers, and it
supports all compiled higher-level languages by design.

While there is recent work in the area of vulnerability detection on machine
code and assembly language (see section 2.1), there is no reproducible, publicly
available dataset for this task. Previous work suffers from further limitations
(see section 2). To the best of our knowledge, there is also no binary vulnerability
method that incorporates the semantics and context information necessary to
detect more abstract vulnerabilities spanning multiple functions. To advance
the state of the art into this direction, we contribute the following:

The ROMEO dataset: a binary vulnerability detection benchmark dataset
based on the Juliet test suite [10] version 1.3, with approx. 168k examples
labeled as one of 91 Common Weakness Enumeration (CWE, [21]) cate-
gories. We publish the source code of the entire processing pipeline, which
is reproducible and configurable to meet the needs of other researchers.

The ROMEO representation: a simple text representation of disassembled
binaries suitable for various sequence classifiers. It incorporates context
for across-function vulnerabilities and preserves semantics to identify API
calls, while still preventing label leakage.

Experiments: using an off-the-shelf Transformer approach [9], we show the
efficacy of our assembly language representation, which compares favor-
ably even to state-of-the-art methods that have access to the full source
code, and highlight the relative strengths and weaknesses in qualitative
analyses.

The remainder of this work is structured as follows: we first present related
work in section 2. We then give a detailed description of the dataset creation

2



process and our representation in section 3. Research questions are posed and
answered experimentally in section 4. We finally offer a brief conclusion and an
outlook towards future research in section 5.

2 Related Work

In this section, we review previous work related to our investigation. We focus
on two main areas. First, we consider approaches to vulnerability detection that
use an assembly language or machine code representation. Second, we explore
work that uses the Juliet test suite as a benchmark or evaluation dataset.

2.1 Vulnerability Detection using Assembly Language Rep-
resentations

Lee et al. [13] combine a bespoke encoding of assembly language instructions
called Instruction2vec [12] with a deep learning model “Text-CNN” to detect
vulnerabilities in binary code. The encoding represents each instruction as a
vector of a fixed length. Individual components of the instruction, i.e. the
opcode and operand fragments, are encoded using a custom word2vec [18] model.
Their model detects CWE-121 (Stack Overflow) vulnerabilities in Juliet with an
accuracy of 96.1% compared to an off-the-shelf word2vec at 94.2%. We replicate
their setup in our evaluation for comparison.

BVDetector [22] operates based on pre-extracted program slices. It relies
on a per-token word2vec encoding. While the authors test a variety of neural
networks to classify the encoded slices, they find that a BGRU [6] performs best.
They measure the performance of their method on program slices extracted
from a subset of the Juliet test suite concerning memory corruption and number
handling vulnerabilities and report an accuracy of 96.7%. We construct a subset
using the same criteria to compare our approach to BVDetector as their dataset
is not publicly available.

The notion of program slices [17, 16] is extended to assembly language by
Li et al. [14]. They also incorporate a combined representation of source code
and assembly called “hybrid slices”. The hybrid slice method is evaluated on
an aggregated subset of Juliet, where it reaches 96.9% accuracy compared to
BVDetector at 88.9%.

Le et al. propose a Maximal Divergence Sequential Auto-Encoder [11] and
rely on a fixed encoding of opcodes and a histogram-like encoding of operands
to represent assembly language instructions. The autoencoder is evaluated on
the dataset introduced alongside VulDeePecker [17], and outperforms it slightly
with an accuracy of 85.3% vs. 83.5%.

In [1, 2], a dataset called BVATT is constructed similarly to ours. It is
intended as a reliable benchmark for binary vulnerability detection methods.
However, it is no longer publicly available.

All the aforementioned methods choose different learned or hand-crafted

3



encodings of the machine code. However, none attempt to leverage the human-
readable mnemonic representation of assembly as we propose in this work.

2.2 Juliet Test Suite as a Benchmark for Vulnerability
Detection

In the following, we provide a brief overview of related work where the Juliet
test suite is used as a benchmark dataset outside its intended SAST application.

Russel et al. [20] augment Juliet with examples mined from GitHub repos-
itories and Debian packages. The mined examples are annotated using the
static analysis tools Clang, Cppcheck and Flawfinder. While the tool selection
is diverse, it cannot provide a replacement for manually labeled data. Machine
learning-based methods can simply learn the rules embedded in these tools, and
thus will produce similar errors. Juliet, while synthetic, is almost by definition
always labeled correctly.

Li et al. evaluate their method VulDeePecker [17] on a combination of
CWEs 119 and 399 of the Juliet test suite and vulnerabilities in open source
projects listed in the National Vulnerability Database (NVD). This dataset is
compiled and used by Le et al. in [11] to validate their binary vulnerability
detector (see above). The NVD provides compelling real-world examples, but
introduces label quality concerns into the dataset due to the complex mining
process involved. Furthermore, the dataset is not suitable for our evaluation
because its individual examples are not compilable on their own. Li et al. refine
and extend the combination of Juliet and examples from the NVD to evaluate
SySeVR [16].

BVDetector [22] uses a subset of the Juliet test suite without any additions
(see section 2.1 for further details). A similar approach, but combined with the
C/C++ source code, is taken by Li et al. [14]. Conversely, our evaluation uses
a much larger subset, missing only Windows-specific weaknesses. The Juliet
test suite is further used as an alternative training and evaluation dataset in
the ReVeal study [5] by Chakraborty et al., who criticize the high number of
duplicates compared to real-world datasets. We describe our approach to this
matter in section 3.4.1.

3 Extracting an Assembly Language Dataset from

the Juliet Test Suite

This section details the steps required to extract an assembly language dataset
from the Juliet test suite that is suitable for processing by a machine learning
model. The resulting dataset should fulfill the following requirements, which
will serve as our design goals throughout the process:

Coverage The dataset should cover as large a fraction of the Juliet test suite as
possible. While previous work [13, 22] focuses on subsets of the test suite
to manage complexity, or uses static analysis rules to extract examples

4



[17], this work covers the largest possible fraction of the entire test suite
that does not compromise the following two properties and is compatible
with Linux environments.

Context While our goal is to provide examples on a function level, a single
function can be vulnerable or not depending on the content of related
functions or data. The dataset should provide appropriate context in
terms of relevant functions for each example.

No Label Leakage Because of the very methodical construction of the test
cases in Juliet, there are various ways in which label information can leak
into examples. Symbols include label information in their names, e.g.,
when they end in good or bad. Context can also leak information, e.g.,
the presence of any context is enough to distinguish a primary good func-
tion from a primary bad function in certain flow variants. Label leakage
can lead to overestimation of a machine learning model’s predictive per-
formance during validation as the model exploits inadvertent correlations
between examples and labels. Consequently, a model trained on a “leaky”
dataset will exhibit worse performance in real-world applications, where
these correlations do not exist. Hence, no label leakage should occur.

3.1 Preparations

Before we can extract examples, the Juliet test suite requires some preparations,
which we discuss in the following.

3.1.1 Modifications

As a sanity check, the support file io.c, which we need to include for context,
contains 18 empty functions by the names of good1-good9 and bad1-bad9. We
have to remove these functions from the support file because they would be
present in every testcase after linking, and could be confused with actual ex-
amples. Ignoring empty functions entirely is not feasible, as there are testcases
where empty functions are present on purpose, e.g., concerning CWE-570 (Ex-
pression Always False). Hence, this modification is unavoidable. Aside from
these support functions, we do not modify the Juliet source code in any way.

3.1.2 Compilation and Linking

We compile all testcases individually with GCC 11.2.0 using the provided Make-
file generation script. Since our platform of choice is Linux, the script does not
create Makefiles for Windows-specific CWEs such as CWE-247 (Reliance on
DNS Lookups in a Security Decision). Compiling testcases individually results
in single object files per translation unit, which we then link with the compiled
support unit io.c because functions such as printLine are used in the testcases
and could provide relevant context. Testcases consisting of multiple translation
units are linked into one object file, together with the support unit.

5



Overall, this process results in object files for 41,812 testcases covering 91
CWEs, with the remainder consisting of Windows-specific testcases.

3.2 From C/C++ to Assembly Language

To obtain an assembly language representation of C/C++ sources, there are
two obvious options. First, one can compile the sources directly into assembly
language, skipping the assembly into machine code. Second, one can compile the
sources fully into machine code, link them, and then disassemble the resulting
binaries. We choose the latter approach, as it can in principle reveal more
information about optimizations, e.g., link-time optimization (LTO), as well
as specific instruction encodings. It also more closely resembles a black-box
analysis situation where source code is not available.

We disassemble each testcase’s linked object file using objdump configured
to produce Intel syntax assembly. C++ symbols are demangled. Moreover, we
extract static and dynamic symbol tables for each testcase to later distinguish
global and local functions. The disassembly is parsed including addresses, binary
representations, sections etc. and compared to the output of capstone on a per-
instruction basis to ensure a correct disassembly.

3.3 Extracting Examples

In the following, we construct the ROMEO assembly language representation
from the disassembly in a number of steps, including modifying operands and
symbols, and selecting relevant context. Furthermore, we describe the mapping
from testcases in Juliet to examples in the ROMEO dataset.

3.3.1 Symbol Representation

We build a scrambling table for each testcase, mapping each local symbol to a
unique random name in the pattern of lc000-lc999 to prevent label leakage,
e.g., from function names ending in good or bad. Global symbols are not re-
named, as they contain no label information, but are crucial for more abstract
vulnerability detection, e.g., memcpy.

Many instructions contain addresses in the operands, which objdump anno-
tates with corresponding symbols. As the specific memory layout is not impor-
tant and potentially confusing for a classifier, we remove the addresses. Memory
operands are represented only by symbols, which we replace with their scram-
bled names.

Moreover, many operands represent memory locations indirectly, e.g., as off-
sets to registers. When objdump recognizes a known address, it emits a comment
containing the address and a symbol plus offset. We replace the correspond-
ing operand with the symbol and offset, also scrambled if applicable. The lea

instruction in listing 1.2 illustrates this replacement.

6



3.3.2 Selecting and Representing Functions

Every function in the .text section of an object file is a potential example
for ROMEO, or part of the context of one (see section 3.3.3). Hence, we ex-
tract a text representation of each function, consisting of a header line with
the function’s (scrambled) name, followed by the disassembly modified in the
aforementioned manner. The function name is prefixed with an exclamation
mark, such that there is a unique token to mark the beginning of a function.
Listing 1 shows an example of this representation.

However, not all functions are either positive or negative examples of a vul-
nerability. There are also supporting or completely unrelated functions in the
object files. We only admit examples into the dataset that are primary or
secondary good functions, or primary bad functions according to the regular
expressions in [10]. The remained is ignored. We remove the primary good
function to avoid label leakage (see the introduction to section 3). A large frac-
tion, but not all, would be removed later in the process when duplicates are
eliminated.

3.3.3 Including Context

The Juliet test suite lends itself to vulnerability classification on a function level,
which we adapt for ROMEO. However, individual functions cannot always be
classified based on their body alone. In terms of the source and sink model,
a function containing a bad source might call another function containing the
corresponding bad sink. Its vulnerability status can then only be determined
by analyzing the called function as well.

To mitigate this issue, we include context information by concatenating the
text representation of a given function with the text representation of all func-
tions that are referenced by it, recursively. We exclude boilerplate and runtime
functions such as libc csu fini as their content is always identical. We fur-
ther remove all bad functions if the given function is a primary or secondary
good function, and vice versa, to avoid label leakage.

The scrambling of symbols applies to the context as well. Listing 1 shows
an example of a function and the relevant context, where it can be seen that
the argument passed to it is actually used in the context of an I/O operation.

3.4 Building a Dataset for Machine Learning

The collection of examples from the previous section is then labeled either with
binary (“good” or “bad”) or multi-class (CWE number or “no weakness”) labels
as chosen by the user. For our evaluation, we use the binary labels because most
related work uses this formulation. Subsequently, we eliminate duplicates and
split the dataset for proper validation.

7



3.4.1 Duplicate Elimination

Duplicates in benchmarks based on the Juliet test suite are observed by sev-
eral works [3, 5, 20]. Since each testcase in Juliet is initially roughly unique,
duplicates likely result from preprocessing or extraction steps, or in our case,
from the compilation process. Our proposed ROMEO representation leads to a
fraction of 2.6% (with context) and 9.7% (without context) duplicate examples,
i.e., examples with an identical representation.

For each set of identical examples, we remove all but one instance. Random
selection determines which exact instance of a duplicate example is kept.

Our fraction of duplicates is lower compared to other works, e.g., [20], which
identifies an extreme value of 90.2% for Juliet. However, they do not remove the
primary good functions of each testcase beforehand, which are mostly identical.
Moreover, their representation is designed to require a very small vocabulary,
and removes most natural language elements such as identifiers and literals. And
most importantly, it does not consider context, which would help distinguish
between similar instances. An overview of duplicate fractions in vulnerability
detection benchmarks can be found in [5].

3.4.2 Splitting

We then randomly split the dataset into three parts for training, validation and
testing, with a fraction of 80%, 10% and 10% of the examples, respectively. The
resulting dataset is prepared for use by any machine learning methods capable
of processing text sequences. We name it ROMEO to highlight its dependence
on Juliet. It is publicly available at https://gitlab.com/dlr-dw/romeo.

3.5 Descriptive Statistics of ROMEO

This section is intended to give a brief overview of the distribution of samples in
ROMEO. We distinguish between ROMEO and ROMEO without context, since
the duplicate elimination process (see section 4) affects each variant differently.
In table 1, we show the number of training, validation and test examples per
weakness for the 20 most common weaknesses. There are 91 CWEs in total.
However, the distribution of examples over CWEs is long-tailed, with CWE 190
accounting for approx. 11% of all examples. Flow variants are more uniformly
distributed, hence the CWE distribution is more affected by the number of
functional variants. Overall, the ROMEO variant including context consists
of 134129 training examples, 16766 validation examples and 16765 held-out
test examples. Without context, there are 124360, 15545 and 15544 examples,
respectively. In the training set with context, there 34831 positive and 99298
negative examples. Without context, there are 34561 and 89799, respectively.

8

https://gitlab.com/dlr-dw/romeo


Table 1: Number of examples of top 20 weaknesses in ROMEO. Numbers differ
depending on context inclusion because of subsequent duplicate elimination.

With Context Without Context
CWE Train Val Test Train Val Test
190 Integer Overflow 14794 1947 1878 14784 1863 1910
122Heap Based Buffer Overflow 11480 1418 1395 9959 1235 1215
191 Integer Underflow 11149 1355 1375 11097 1374 1360
762Mismatched Mem. Mgmt. 10533 1301 1332 10485 1238 1323
121 Stack Based Buffer Overflow 8828 1091 1084 7885 978 976
590 Free Memory Not on Heap 6166 750 754 4932 604 617
401Memory Leak 4990 622 630 4965 633 603
134Uncontrolled Format String 4482 551 573 4460 577 550
457Use of Uninitialized Variable 3773 450 502 3780 476 466
124 Buffer Underwrite 3471 465 406 3032 387 365
127 Buffer Underread 3441 469 436 3016 397 369
369Divide by Zero 3299 399 419 3255 413 427
195 Signed-Unsigned Conv. Error 3211 384 399 2586 317 319
194Unexpected Sign Extension 3164 410 420 2599 312 305
415Double Free 2904 345 380 2929 319 369
400 Resource Exhaustion 2811 312 342 2766 347 345
126 Buffer Overread 2728 335 330 2471 290 287
36 Absolute Path Traversal 2668 341 330 2327 303 296
23 Relative Path Traversal 2651 326 361 2524 304 341
78 OS Command Injection 2647 332 313 2469 312 281

Total 134129 16766 16765 124360 15545 15544

9



!lc383 :

push rbp

mov rbp ,rsp

sub rsp ,0x10

mov DWORD PTR [rbp -0x4],0x0

mov DWORD PTR [rbp -0x4],0x0

mov eax ,DWORD PTR [rbp -0x4]

sub eax ,0x1

mov DWORD PTR [rbp -0x8],eax

mov eax ,DWORD PTR [rbp -0x8]

mov edi ,eax

call lc188

leave

ret

(1.1) The extracted function.

!lc188:

push rbp

mov rbp ,rsp

sub rsp ,0x10

mov DWORD PTR [rbp -0x4],edi

mov eax ,DWORD PTR [rbp -0x4]

mov esi ,eax

lea rdi ,_IO_stdin_used+0x6e

mov eax ,0x0

call printf

nop

leave

ret

(1.2) The context of the extracted
function.

Listing 1: A function extracted from a Juliet testcase concerning CWE-191
(Integer Underflow) and its accompanying context. Both are in the text repre-
sentation as described in section 3.3. This example illustrates one purpose of
including context functions, namely to check whether a result is actually used,
e.g., in an API call.

4 Experiments

We consider the ROMEO dataset and representation itself our main contribution
for this work. Still, there are research questions relating to the design goals
of ROMEO and the usefulness of its representation for vulnerability detection
applications that should be answered empirically. We identify the following
research questions:

RQ1 What benefits and drawbacks are associated with the inclusion of context
(as described in section 3.3.3)?

RQ2 To what extent, if any, does our assembly language representation leak
label information?

RQ3 How does an off-the-shelf model using our assembly language representa-
tion compare to other methods, including ones with access to the C/C++
source code?

In the remainder of this section, we first describe our experimental setup in-
cluding datasets and baselines. We then present our results structured along the
aforementioned research questions and offer brief discussions. Finally, we sum-
marize the results, linking questions and answers, and address the limitations
of this evaluation.

10



4.1 Setup

This section describes the situation concerning binary vulnerability detection
datasets derived from Juliet as well as our Transformer-based vulnerability de-
tector.

4.1.1 Datasets

In section 2, we list several works that perform vulnerability detection on as-
sembly or machine code representations of the Juliet test suite. In particular,
there is [11], which is only available in an already encoded vector form, from
which the original instructions cannot be recreated. The same is true for [13].
BVATT [1, 2], is not available publicly anymore, against the claims in their
work.

In all cases, the respective authors did not accommodate our request for the
datasets in their original form.

4.1.2 Baselines

While we cannot directly compare our representation combined with the Trans-
former based approach (see section 4.1.3) to other methods on identical data
(due to availability reasons explained in section 4.1.1), we can draw conclusions
from comparisons to other work on reasonably similar data. Specifically, we
compare our approach to works that evaluate their methods on test sets derived
from the Juliet test suite, namely Instruction2Vec [13, 12], BVDetector [22],
Russel et al. [20], and ReVeal [5]. We modify the ROMEO dataset to match
the respective subset or construction as closely as possible in each case.

4.1.3 Transformer-based Model for Vulnerability Detection

The empirical part of this work focuses mainly on exploring the advantages and
drawbacks of an assembly language representation for vulnerability detection.
Hence, we select a rather generic, but very powerful approach to perform the
actual classification task, namely Transformers [23]. Specifically, we use the pre-
trained CodeBERT model [9] for initialization. Our implementation is based on
PyTorch [19] and HuggingFace Transformers [24].

Because assembly language is less complex and variable than the languages in
the initial training set of CodeBERT (which does not include assembly directly),
the included tokenization and encoding is not optimal. Hence, we replace them
with a byte-pair encoding [7] optimized on the ROMEO training set, which can
represent common mnemonics such as mov by a single token. With context, the
average example is 318.4 tokens long, where the model can handle at most 512
tokens. Without context, it is 157.2 tokens.

In our comparison with other methods, we use the name “ROMEO method”
to refer to the combination of our ROMEO assembly language representation
and the Transformer model.

11



Table 2: Accuracy of our Transformer-based method on the held-out test set
of ROMEO. We list the five CWEs where including context has the strongest
positive or negative effect on overall accuracy, respectively. The number of
examples is provided to assess the overall effect size.

Accuracy (%) Examples (#)
CWE / Context: w w/o w w/o
190 Integer Overflow 98.3 89.2 1878 1910
191 Integer Underflow 98.1 88.7 1374 1360
762 Mismatched Mem. Mgmt. 97.9 89.9 1332 1326
122 Heap Based Buffer Overflow 95.7 88.2 1395 1215
401 Memory Leak 96.8 89.5 631 604
676 Use of Potentially Dangerous Func. 88.9 95.2 6 5
468 Incorrect Pointer Scaling 75.0 82.4 8 17
396 Catch Generic Exception 73.0 77.2 18 19
590 Free Memory Not on Heap 99.7 99.8 753 619
398 Poor Code Quality 94.3 96.6 64 59

Overall/Total 96.9 90.2 16764 15544

We train the model for ten epochs on the ROMEO training set with and
without context, respectively. One epoch equals one iteration over the entire
training set. We use a minibatch size of 16, a learning rate of 1.1e-5, and a
L2 regularization coefficient of 3e-4. These values are determined using the
validation set, and subsequent evaluations are performed on the held-out test
set. Each training and evaluation is performed three times, and all reported
results are the average over all runs, with standard deviations displayed where
applicable.

4.2 Results

In the following, we present our experimental results. Each section addresses
one of the three research questions from the beginning of section 4, in order. All
metrics are reported in terms of a binary classification problem (vulnerable / not
vulnerable) for better comparison with other methods. However, the ROMEO
dataset can easily be configured by users to include multi-class classification
labels, as can the ROMEO method.

4.2.1 Context

RQ1 asks “what benefits and drawbacks are associated with the inclusion of
context?” We answer this research question quantitatively and qualitatively
using two variants of the ROMEO dataset, one with context and one without.
Context is defined in section 3.3.3.

We first apply our ROMEO method (see section 4.1.3) to both variants of
the ROMEO dataset. With context, the overall accuracy on the held-out test

12



Table 3: Accuracy of our Transformer-based method on the held-out test set
of ROMEO. We list the five flow variants, where including context has the
strongest positive or negative effect on overall accuracy, respectively. The num-
ber of examples is provided to assess the overall effect size.

Acc. (%) Ex. (#)
Flow Variant / Context: w w/o w w/o
62 Data flows using a C++ reference from one function

to another in different source files
99.2 66.2 237 203

42 Data returned from one function to another in the
same source file

98.6 65.7 236 188

61 Data returned from one function to another in dif-
ferent source files

99.0 70.0 242 217

43 Data flows using a C++ reference from one function
to another in the same source file

97.7 65.9 219 204

83 Data passed to a class constructor and destructor
by declaring the class object on the stack

92.6 72.3 332 325

8 if(staticReturnsTrue()) and if(staticReturnsFalse()) 98.7 98.4 501 516
15 switch(6) and switch(7) 99.3 99.0 451 442
14 if(globalFive==5) and if(globalFive!=5) 99.3 99.2 511 504
5 if(staticTrue) and if(staticFalse) 99.1 99.1 501 493
21 Flow controlled by value of a static global variable.

All functions contained in one file.
99.3 99.8 304 317

Overall/Total 96.9 90.2 16764 15544

13



set is 96.9% and the overall F1 score is 94.0%. Without context, the accuracy
and F1 score are 90.2% and 81.9%, respectively. Hence, on average, our method
strongly benefits from the included context.

From a machine learning point of view, removing the context information
can be interpreted as manual feature selection, which is occasionally done on
purpose to prevent overfitting. Removing features that are unrelated to the
problem prevents the classifier from adapting to spurious correlations. However,
in our case, there are clearly instances where context is crucial to determine
whether a function is vulnerable or not, e.g., when the actual vulnerability is
spread over multiple function calls. Still, context information might not always
be relevant and introduce misleading features. To get a clearer picture of this
situation, we evaluate our method for each flow variant and CWE individually.

Table 3 shows the accuracy obtained with and without context information
and which flow variants are most affected. In line with our expectations, the
flow variants that benefit most from including context all describe vulnerabilities
spread over multiple functions or even multiple translation units. Here, we see
accuracy improvements up to 34.5 percent points. Without context, it is not
possible to identify whether a function is calling a “bad sink” (assuming no label
leakage through symbols or inlining by the compiler). We also show the flow
variants that are most negatively affected, and in the worst case, the difference
in accuracy is less than two percent points.

In table 2, we present the CWE types most affected by the inclusion of
context. Overall, the most positively affected CWE types are simply those with
the most examples and vice versa for the most negatively affected types. The
most negatively affected weakness types have such low representation in Juliet
that we cannot extract a meaningful interpretation of the results. In contrast
to the flow variants, there is no set of CWE types that specifically benefit from
context inclusion – most of them do.

To answer RQ1, including context in the assembly language representation
of ROMEO is clearly beneficial for vulnerability detection. The benefits and
drawbacks of including context do not appear to be specific to certain types
of weaknesses in terms of CWEs. They are specific to certain presentations of
vulnerabilities, i.e., flow variants, that are spread out over multiple functions or
translation units.

4.2.2 Label Leakage

RQ2 asks “To what extent, if any, does our assembly language representation
leak label information?” Preventing label leakage is also one of the design goals
of ROMEO (see section 3).

Our process is carefully designed to prevent label leakage in terms of fea-
tures, e.g. by renaming symbols (section 3.3.1) and excluding telltale functions
from the context (section 3.3.3). Still, it is theoretically possible that some oc-
currence of label leakage is missing. However, we can estimate the label leakage
in ROMEO empirically. The Juliet test suite includes examples of CWE-546
(suspicious comment), whose vulnerability status is impossible to infer in our

14



Table 4: Accuracy and F1 score on the held-out test set of ROMEO with and
without context, compared to other methods on their respective variants of
Juliet. Note that Russel et al. works on slices, while ROMEO and ReVeal

work on functions.

Method Dataset Accuracy (%) F1 (%)
ROMEO ROMEO w/o context 90.2 ± 0.2 81.9 ± 0.4
ROMEO ROMEO 96.9 ± 0.2 94.0 ± 0.4
Russell et al. Juliet (slices) — 84.0
ReVeal Juliet (functions, no SMOTE) — 93.7

Table 5: Accuracy and F1 score on subsets of the held-out test set of ROMEO,
compared to BVDetector on similar subsets of the Juliet test suite. Note that

BVDetector works on slices, while ROMEO works on functions.

Method Dataset Accuracy (%) F1 (%)
ROMEO ROMEO (MC) 95.6 ± 0.5 91.3 ± 1.1
BVDetector Juliet (MC, slices) 94.8 85.4
ROMEO ROMEO (NH) 98.1 ± 0.1 96.1 ± 0.2
BVDetector Juliet (NH, slices) 97.6 92.2
ROMEO ROMEO (MC+NH) 97.1 ± 0.2 94.1 ± 0.5
BVDetector Juliet (MC+NH, slices) 96.7 89.9

assembly language representation, because the comments from C/C++ are not
carried over. In the test set, there are six positive and 25 negative examples of
this CWE. If there is no label leakage, the highest possible accuracy any method
can achieve for this CWE is 80.6%, by constantly making negative predictions.
Our method reaches 96.9% accuracy on the whole dataset, but achieves only
77.4% on CWE-546, which is below this threshold and a strong indication that
there is no exploited label leakage.

However, label leakage can also be present on a dataset level even if the indi-
vidual examples are free of it. While ROMEO does not have a time component,
there are three distinct groupings that should be considered during the sampling
process, namely CWEs, flow variants, and functional variants. For our evalu-
ation, we require all CWEs and flow variants to be represented proportionally
in all splits, which precludes splitting along them. Testing generalization across
CWEs or flow variants could be an interesting investigation, but is beyond the
scope of this work. Furthermore, we do not split the dataset along the func-
tional variants because it would hinder our comparison with other work (see
section 4.2.3), all of which apply random sampling.

To summarize: empirically, our representation does not leak label informa-
tion.

15



4.2.3 Comparison with Other Methods

RQ3 asks “How does an off-the-shelf model using our assembly language repre-
sentation compare to other methods, including ones with access to the C/C++
source code?”

As alluded to in section 4.1.2, we can only offer an estimate of relative perfor-
mance. All performance numbers that we use from other works are based on the
same Juliet test suite, but there are different evaluation processes. The works
differ in granularity, i.e., program slices [22] vs. functions [13, 20, 5]. Moreover,
we extract sample functions from the full dataset unconditionally, but popular
options include a selection of candidates by static analysis. Deduplication is
performed at different stages or according to different representations [20, 5], or
not at all [13, 22]. With these limitations in mind, we offer comparisons to re-
lated methods [13, 20, 22, 5] and modify our dataset to match their evaluations
as closely as possible.

Instruction2Vec + Text-CNN This combination of methods [13, 12] is
evaluated on a small subset of the Juliet test suite, namely vulnerabilities of type
CWE-121 (stack-based buffer overflows). It also relies on assembly language in-
structions instead of source code. For comparison, we evaluate our Transformer-
based method on this single vulnerability category only. Our ROMEO method
achieves an accuracy of 97.3%, compared to 96.1% reported by Lee et al. Both
methods operate on a function level.

Russel et al. [20] employs a bespoke C/C++ lexer to obtain a token sequence
directly from the source code. On the Juliet suite, which is not subsampled
in their work, they report an F1 score of 84.0% for the best combination of
classifiers. In contrast, the ROMEO method obtains an F1 score of 94.0% over
the whole suite (see also table 4).

BVDetector [22] extracts program slices instead of functions, but operates
on assembly language instructions. The authors evaluate their method on a
subset of Juliet involving memory corruption (MC) and number handling (NH)
vulnerability types as defined by the STONESOUP program1. We evaluate
our ROMEO method on a subset corresponding to these types and obtain an
accuracy of 97.1% on MC and NH combined, where BVDetector reaches 96.7%.
Both subsets are evaluated individually in table 5.

ReVeal [5] is proposed alongside an in-depth analysis of the current state of
deep learning-based vulnerability detection and an eponymous dataset. It pro-
vides interesting insight into the limitations of synthetic datasets such as Juliet,
but nevertheless the authors evaluate their method on it. On the unmodified
dataset, they report an F1 score of 93.7%, compared to ROMEO’s very close
94.0% (see also table 4). However, due to the extreme class imbalance observed

1https://samate.nist.gov/SARD/around.php

16

https://samate.nist.gov/SARD/around.php


by them, they apply SMOTE to alter the distribution by resampling that data
and increase their F1 score to 95.7%.

Overall, the ROMEOmethod, consisting of our assembly language representa-
tion combined with an off-the-shelf Transformer approach, performs better than
other state-of-the-art methods, except for ReVeal-SMOTE, to the degree that
these methods can be compared fairly. Importantly, the outperformed meth-
ods include [20, 5], which have access to the full C/C++ source code including
comments.

4.3 Limitations of this Study

There are aspects in which this investigation is limited. For example, our eval-
uation is performed on the function level, similar to [13, 20, 5]. This design
choice is appropriate for the Juliet test suite and our derived dataset ROMEO,
but may not translate well to real-world applications. This limitation applies
only to our dataset, since our representation could in principle be annotated on
a per-instruction level. Alternatively, explainable methods such as IVDetect [15]
could be applied to generate per-line results even from per-method annotations.

We maintain that the Juliet test suite is a sensible choice for our investigation
as it allows for a methodical and detailed evaluation of our representation. It also
covers a very wide range of weaknesses. However, it is not representative of real-
world software projects in terms of vulnerability statistics and code complexity.

Moreover, in its present state, the examples in the dataset only include
information from .text sections. Hence, information from data segments is
missing. In listing 1, this can be seen in the context function lc188. The
format string handed to printf is not part of the representation.

Currently, comments from the C/C++ code are also not carried over to
the assembly language representation. While this could be solved by accessing
debug information, it is not reasonable to expect this information to be present
in a real-world binary analysis scenario. Our choice of x86-64 ISA is another
minor limitation, however, our representation is not technically restricted to it
and could be adapted, e.g., to ARM.

We discuss proposed solutions to these limitations in section 5.1.

4.4 Summary of Results

In the following, we provide a brief summary of the research questions posed
and answered in this evaluation:

RQ1 What benefits and drawbacks are associated with the inclusion of context
(as described in section 3.3.3)?

RA1 Including context in the assembly language representation of ROMEO is
clearly beneficial for vulnerability detection. The benefits are specific to
certain presentations of vulnerabilities that are spread out over multiple
functions.

17



RQ2 To what extent, if any, does our assembly language representation leak
label information?

RA2 Empirically, our representation does not leak label information.

RQ3 How does an off-the-shelf model using our assembly language representa-
tion compare to other methods, including ones with access to the C/C++
source code?

RA3 It performs better than other state-of-the-art methods (including C/C++-
based), except forReVeal-SMOTE, to the degree that these methods can
be compared fairly.

5 Conclusion

In this work, we present ROMEO, a publicly available, reproducible and reusable
binary vulnerability detection benchmark dataset. It is derived from the Juliet
test suite [10] of C/C++ vulnerabilities by compiling and extracting an assembly
language representation.

Our representation incorporates context information in the form of related
functions, which allows for detection of cross-function vulnerabilities. It also
includes symbols to relate API call semantics. However, symbols that would
leak label information are replaced with random names.

To evaluate the capabilities of this representation, we combine it with an
off-the-shelf Transformer model to build the ROMEO method, and compare the
combination with other methods. We show that even state-of-the-art methods
that have full access to the C/C++ code only outperform ROMEO in specific
cases. Furthermore, we find that, empirically, there is no label leakage in the
ROMEO dataset or caused by our representation. Finally, there is a clear
benefit to including context functions derived from the call graph for types of
vulnerabilities that are span multiple functions.

In the following, we provide a brief outlook regarding possible future re-
search.

5.1 Future Work

First and foremost, future work should address the limitations mentioned in
section 4.3. Low-hanging fruit includes adding data to the context instead of
only code. Currently, only the .text segment is analyzed. This analysis could
be extended to .data.

Insight could be gained from adding source code comments to the appro-
priate location in the assembly representation and adding further details using
debug information. However, this needs to be done carefully as to not intro-
duce label leakage. A further interesting evaluation would involve repeating the
experiments on a different ISA, e.g., ARM, and observing the qualitative effects.

18



On a larger scale, our process of deriving a dataset from binaries could be
adapted to real-world vulnerabilities, e.g. from the NVD. However, it is not
trivial to construct a dataset of C/C++ code vulnerabilities that can be fully
compiled, which is a requirement for binary vulnerability detection. Alterna-
tively, one could adapt an existing dataset, e.g., Big-Vul [8], and accept that
only a subset is provided in a readily compilable form.

Availability

We provide the entire dataset, including the raw binaries and source code to
generate them and the representation, and to reproduce all results in this work.
The dataset is available for download at https://gitlab.com/dlr-dw/romeo.

References

[1] Afanador, K.N., 2021. A Benchmark Framework and Support for At-scale
Binary Vulnerability Analysis. Ph.D. thesis. Naval Postgraduate School.
Monterey, CA.

[2] Afanador, K.N., Irvine, C., 2020. Representativeness in the benchmark
for vulnerability analysis tools (B-VAT), in: USENIX Workshop on Cyber
Security Experimentation and Test (CSET 20).

[3] Allamanis, M., 2019. The adverse effects of code duplication in machine
learning models of code, in: SPLASH Onward! arXiv:1812.06469.

[4] Balakrishnan, G., Reps, T., 2010. WYSINWYX: What you see is not what
you execute. ACM Transactions on Programming Languages and Systems
32, 1–84. doi:10.1145/1749608.1749612.

[5] Chakraborty, S., Krishna, R., Ding, Y., Ray, B., 2021. Deep learning based
vulnerability detection: Are we there yet. IEEE Transactions on Software
Engineering doi:10.1109/tse.2021.3087402.

[6] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., Bengio, Y., 2014. Learning phrase representations using rnn
encoder-decoder for statistical machine translation, in: Empirical Methods
in Natural Language Processing (EMNLP). arXiv:1406.1078.

[7] Devlin, J., Chang, M.W., Lee, K., Toutanova, K., . BERT: Pre-training
of deep bidirectional transformers for language understanding, in: arXiv
preprint arXiv:1810.04805.

[8] Fan, J., Li, Y., Wang, S., Nguyen, T.N., 2020. A C/C++ code vulnerabil-
ity dataset with code changes and CVE summaries, in: Mining Software
Repositories (MSR), ACM. doi:10.1145/3379597.3387501.

19

https://gitlab.com/dlr-dw/romeo
http://arxiv.org/abs/1812.06469
http://dx.doi.org/10.1145/1749608.1749612
http://dx.doi.org/10.1109/tse.2021.3087402
http://arxiv.org/abs/1406.1078
http://dx.doi.org/10.1145/3379597.3387501


[9] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L.,
Qin, B., Liu, T., Jiang, D., Zhou, M., 2020. CodeBERT: A pre-trained
model for programming and natural languages, in: EMNLP 2020, ACL.
doi:10.18653/v1/2020.findings-emnlp.139.

[10] Juliet, 2012. Juliet test suite v1.2 for c/c++ user guide.

[11] Le, T., Nguyen, T., Le, T., Phung, D., Montague, P., Vel, O.D., Qu, L.,
2019. Maximal divergence sequential autoencoder for binary software vul-
nerability detection, in: International Conference on Learning Representa-
tions (ICLR). URL: https://openreview.net/forum?id=ByloIiCqYQ.

[12] Lee, Y., Kwon, H., Choi, S.H., Lim, S.H., Baek, S.H., Park, K.W., 2019.
Instruction2vec: Efficient preprocessor of assembly code to detect software
weakness with CNN. Applied Sciences 9, 4086. doi:10.3390/app9194086.

[13] Lee, Y.J., Choi, S.H., Kim, C., Lim, S.H., Park, K.W., 2017. Learning bi-
nary code with deep learning to detect software weakness, in: International
Conference on Internet (ICONI).

[14] Li, X., Feng, B., Li, G., Li, T., He, M., 2021a. A vulnerability detection sys-
tem based on fusion of assembly code and source code. Multimodality Data
Analysis in Information Security 2021, 1–11. doi:10.1155/2021/9997641.

[15] Li, Y., Wang, S., Nguyen, T.N., 2021b. Vulnerability detection with fine-
grained interpretations, in: European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC-FSE),
ACM. doi:10.1145/3468264.3468597.

[16] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z., 2021c. Sy-
SeVR: A framework for using deep learning to detect software vul-
nerabilities. IEEE Transactions on Dependable and Secure Computing
doi:10.1109/tdsc.2021.3051525.

[17] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y., 2018.
VulDeePecker: A deep learning-based system for vulnerability detection, in:
Network and Distributed System Security Symposium (NDSS), Internet
Society. doi:10.14722/ndss.2018.23158.

[18] Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013. Efficient estimation
of word representations in vector space, in: International Conference on
Learning Representations (ICLR).

[19] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A.,
Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,
Fang, L., Bai, J., Chintala, S., 2019. PyTorch: An imperative style, high-
performance deep learning library, in: arXiv preprint arXiv:1912.01703.

20

http://dx.doi.org/10.18653/v1/2020.findings-emnlp.139
https://openreview.net/forum?id=ByloIiCqYQ
http://dx.doi.org/10.3390/app9194086
http://dx.doi.org/10.1155/2021/9997641
http://dx.doi.org/10.1145/3468264.3468597
http://dx.doi.org/10.1109/tdsc.2021.3051525
http://dx.doi.org/10.14722/ndss.2018.23158


[20] Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir,
O., Ellingwood, P., McConley, M., 2018. Automated vulnerability de-
tection in source code using deep representation learning, in: Interna-
tional Conference on Machine Learning and Applications (ICMLA), IEEE.
doi:10.1109/icmla.2018.00120.

[21] The MITRE Corporation, 2021. Common Weakness Enumeration (CWE).
URL: https://cwe.mitre.org/.

[22] Tian, J., Xing, W., Li, Z., 2020. BVDetector: A program slice-based binary
code vulnerability intelligent detection system. Information and Software
Technology 123. doi:10.1016/j.infsof.2020.106289.

[23] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, L., Polosukhin, I., 2017. Attention is all you need, in: Neural
Information Processing Systems (NeurIPS). arXiv:1706.03762.

[24] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A.,
Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S.,
von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T.L., Gugger,
S., Drame, M., Lhoest, Q., Rush, A.M., 2020. Transformers: State-of-the-
art natural language processing, in: Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP): System
Demonstrations, Association for Computational Linguistics.

21

http://dx.doi.org/10.1109/icmla.2018.00120
https://cwe.mitre.org/
http://dx.doi.org/10.1016/j.infsof.2020.106289
http://arxiv.org/abs/1706.03762

	1 Introduction
	2 Related Work
	2.1 Vulnerability Detection using Assembly Language Representations
	2.2 Juliet Test Suite as a Benchmark for Vulnerability Detection

	3 Extracting an Assembly Language Dataset from the Juliet Test Suite
	3.1 Preparations
	3.1.1 Modifications
	3.1.2 Compilation and Linking

	3.2 From C/C++ to Assembly Language
	3.3 Extracting Examples
	3.3.1 Symbol Representation
	3.3.2 Selecting and Representing Functions
	3.3.3 Including Context

	3.4 Building a Dataset for Machine Learning
	3.4.1 Duplicate Elimination
	3.4.2 Splitting

	3.5 Descriptive Statistics of ROMEO

	4 Experiments
	4.1 Setup
	4.1.1 Datasets
	4.1.2 Baselines
	4.1.3 Transformer-based Model for Vulnerability Detection

	4.2 Results
	4.2.1 Context
	4.2.2 Label Leakage
	4.2.3 Comparison with Other Methods

	4.3 Limitations of this Study
	4.4 Summary of Results

	5 Conclusion
	5.1 Future Work


