
Computers and Fluids 255 (2023) 105833

A
0
(

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

HPC performance study of different collision models using the Lattice
Boltzmann solver Musubi
Gregorio Gerardo Spinelli a,∗, Tobias Horstmann b, Kannan Masilamani a, Malav Mukesh Soni c,
Harald Klimach a, Arthur Stück a, Sabine Roller a

a German Aerospace Center (DLR), Institute of Software Methods for Product Virtualization, Dresden, Germany
b German Aerospace Center (DLR), Institute of Propulsion Technology, Berlin, Germany
c German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Braunschweig, Germany

A R T I C L E I N F O

Keywords:
Lattice Boltzmann method
Hybrid recursive regularized BGK
Cumulant
Turbulence modeling
Musubi

A B S T R A C T

Over the past decades, the lattice Boltzmann method (LBM) has become increasingly popular thanks to its
capabilities in the domain of Large-Eddy Simulations (LES). Different collision schemes have been proposed
to extend the scope of application to higher Reynolds number flows. This study compares the accuracy and
the performance of some of these schemes on a 𝐷3𝑄27 lattice, including the original Multiple Relaxation
Times (MRT) model, the Hybrid Recursive Regularized Bhatnagar–Gross–Krook (HRR) operator, as well as
the Projected Recursive Regularized Bhatnagar–Gross–Krook (PRR) operator and the parametrized Cumulant
collision scheme. For this purpose, the above-mentioned schemes are implemented in the HPC LBM solver
Musubi and tested on a well-documented test-case describing the flow past a circular cylinder at a Reynolds
number of 3900. Three different subgrid scale (SGS) models are used to account for the unresolved turbulence,
i.e. the Smagorinsky model, the Wall-Adapting Local Eddy-viscosity (WALE) model, and the Vreman model.
The Cumulant scheme uses an Implicit LES (ILES) subgrid scale model and shows the best agreement with the
experimental data followed by MRT with WALE, and HRR with Vreman. The examined collision models are
able to capture the second peak at 𝑓 = 3𝑓vs of the power spectra density of the 𝑦 velocity component first
discovered in experiments.

With respect to performance, the collision models are compared in terms of MLUPs/node and parallel
efficiency for a strong scaling analysis. Again the Cumulant scheme outperforms the other collision models
even when they are run on the reduced 𝐷3𝑄19 stencil. All the collision schemes show a strong scaling parallel
efficiency above 60% on up to 16384 cores in our implementation.
1. Introduction

Over the past years, the lattice Boltzmann method has further
strengthened its position as a valuable tool in the field of Computational
Fluid Dynamics (CFD) [1–4]. Due to its high parallel efficiency and
ability to discretize complex geometries with little effort, it found its
way into many industries and research organizations. In contrast to
conventional methods that solve for a set of macroscopic conservation
laws, this method populates a cartesian (quadtree/octree) mesh with
discrete particle densities that hop between neighboring nodes during
exactly one time-step. This so-called streaming step is followed (or
rather preceded) by a local collision, which drives the distribution
functions toward a thermodynamic equilibrium [5]. Mathematically,
the streaming is an exact solution to the Lagrangian derivative of the
populations along the discrete velocity directions defined by the lattice.

∗ Corresponding author.
E-mail address: gregoriogerardo.spinelli@dlr.de (G.G. Spinelli).

This property, which computationally translates in a simple index shift
in memory is one of the main reasons for the success of this method.
However, the lack of numerical dissipation restricts the original method
to the low Reynolds number regime.

A remedy may be provided by using a discretization in the Eulerian
sense [6], which nevertheless compromises many of the method’s ad-
vantages. More popular strategies to increase the stability limit address
the collision operator. The simplest operator that respects the so-
called H-Theorem, i.e. the increase in entropy during the collision, is
the Bhatnagar–Gross–Krook (BGK) operator [7]. Here, the entire set
of populations is relaxed with a Single Relaxation Time (SRT). An
alternative approach transforms the populations into moment space
before the collision, which then allows the use of Multiple Relaxation
Times (MRT) [8–11] to specifically relax the different flow quantities
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Nomenclature

Roman

𝑎 Coefficient of the Hermite pol. exp.
𝒄, 𝑐 Lattice velocity, cumulant
𝑐𝑠 Speed of sound
𝐶𝑑 Drag coefficient
𝐶𝑙 Lift coefficient
𝑑 Number of dimensions
𝐷 Diameter
𝑓 Distribution function or frequency
𝑓vs Vortex shedding frequency
𝑭 , 𝐹 Force, Laplace transformation of 𝑓
 Hermite polynomial
𝐿𝑟 Length of the recirculation bubble
𝑚 Moment
𝐌 Moment transformation matrix
Ma Mach number
𝑛 General index
𝑝 Pressure
𝑞 Number of integration points
Re Reynolds number
𝐒 Relaxation times matrix
St Strouhal number
𝑡 Time
𝑇C Characteristic time
𝑢 𝑥-component of 𝑽
𝑣 𝑦-component of 𝑽
𝑽 Velocity
𝑤 Weight associated with 𝒄
𝒙 Position

Greek

𝛼 General index
𝛽 General index
𝛾 General index
𝜁 Bulk viscosity
𝜩 𝒄 in wave number space
𝜈 Kinematic viscosity
𝜌 Density
𝜎 Blending coefficient
𝜏 Relaxation time
𝜔 Collision frequency
𝛺 Collision operator

Superscript
′ Fluctuating quantity
−1 Inverse
eq Equilibrium value
(𝑛) Order
neq Non-equilibrium value
⋆ Post-collision value

(hydrodynamic moments). Contrary to the classical BGK scheme, the
MRT allows having a variable bulk viscosity. For BGK the relation
between kinematic and bulk viscosity [12] is locked e.g. in 3D 𝜁 =
2∕3𝜇. From the first mention of such an MRT model in the early
nineties [8], many variants with improved stability properties have
2

m

Subscript

0 Inflow quantity
𝑖 Along 𝑖th direction
phy In physical units
tot Total quantity
tur Turbulent quantity

been proposed including different moment spaces (raw and central
moments, cumulants) as well as different moment bases (orthogonal,
tensor product, Hermite tensor product, etc.) [13–18]. An extensive
overview is given by Coreixas et al. [19].

One of the main drawbacks of the MRT is the lack of a univer-
sal choice of relaxation parameters. The parameters related to non-
hydrodynamics moments do not influence the physics of the problem as
long as the continuum hypothesis is valid. However, they influence the
stability and accuracy of the scheme. In some cases, these parameters
are modified to improve the accuracy of a specific boundary condi-
tion [10,11]. Often an individual set of parameters only works well for
a specific problem. To overcome this issue, Geier et al. [20] derived a
formulation of the collision operator based on statistically independent
observable quantities, the cumulants. The Cumulant scheme allows
for curing the velocity-dependent errors in the transport coefficients,
granting the Cumulant the tag of a Galilean-invariant scheme. This is
not true in the case of the MRT scheme, where the moments are relaxed
with different frequencies in a static reference frame [15].

Another stability-enhancing strategy introduces a regularization
step prior to a BGK collision in function space. Similar to the MRT
models, regularization attenuates the so-called ghost modes, which
result from a disparity between the number of populations and the
number of hydrodynamics moments. Instead of over-relaxing these
ghost modes in moment space, the distribution functions are projected
on Hermite polynomials.1 This idea was first proposed by Latt and
Chopard [21]. Improvements include the use of a recursive relation
to construct the higher-order off-equilibrium moments [22] as well
as a hybrid approach, where the second-order off-equilibrium mo-
ment (strain rate tensor) is reconstructed in a hybrid fashion using
central differences [17]. It is worth mentioning that although the
recursive regularization of the distribution functions, i.e. the inclusion
of high-order velocity terms, helps to reduce the Galilean invariance
defect [23], it introduces new non-hydrodynamic modes that might
cause instabilities. The hybrid approach mitigates the defect, but does
not cure it in a permanent fashion [18].

When the strain rate tensor is solely reconstructed by central dif-
ferences, the model is referred to as Projected Recursive Regularized
(PRR) [24] and constitutes one of the most dissipative variants of
collision. As multifaceted as the possibilities are to model the col-
lision process, little has been done so far to compare the different
approaches and provide guidelines for their use. Only recently, Coreixas
et al. [19] presented a consistent theoretical framework for existing
collision models.

In addition, some numerical comparisons have been carried out. For
instance, Coreixas et al. [25] compared different collision schemes on
the D2Q9 stencil. They concluded that the Recursive Regularized BGK
and the Cumulant are the best choices for weakly-compressible flows
discretized in velocity space with the D2Q9 stencil. Nathen et al. [26]
carried out a comparative study for direct numerical simulations of the
Taylor Green vortex and the turbulent channel flow on a D3Q19 stencil.

1 It should nevertheless be noted that regularization can be expressed as an
RT model with a Hermite tensor product basis, where the non-hydrodynamic
oments are relaxed to their equilibrium value.
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Table 1
The three-dimensional quadrature stencils commonly used to discretize the BE in the
velocity space.

Stencil 𝑖 𝒄𝑖 𝑤𝑖 𝑐𝑠

𝐷3𝑄19
0 (0, 0, 0) 1∕3

1∕
√

31 − 6 (±1, 0, 0), (0,±1, 0), (0, 0,±1) 1∕18
7 − 18 (±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1∕36

𝐷3𝑄27

0 (0, 0, 0) 8∕27

1∕
√

3
1 − 6 (±1, 0, 0), (0,±1, 0), (0, 0,±1) 2∕27
7 − 18 (±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1∕54
19 − 26 (±1,±1,±1) 1∕216

They observed that the MRT scheme was not able to provide good
convergence behavior. In particular, the results obtained with MRT on
fine meshes produced nonphysical states. A similar comparison was
conducted by Haussmann et al. [27] for the same stencil. To the best
of the authors’ knowledge, the literature lacks a comparison of these
collision models for LES simulations in 3D. This lack of comparison was
also pointed out by Coreixas et al. [25].

For this reason, we conducted a numerical comparison in 3D of
two prominent, but conceptually different models: the parametrized
Cumulant [28] and the hybrid recursive regularized BGK model. For the
sake of comparison, we also showcase the results obtained with the PRR
and MRT models. These models were implemented in the open-source
LBM solver Musubi [29] and compared to experimental data provided
by Parnaudeau et al. [30]. Besides their different nature of dealing
with ghost modes, another crucial difference lies in the modeling of
turbulence. While the Cumulant model, according to Geier et al. [31],
intrinsically accounts for subgrid scale (SGS) turbulence, the HRR, PRR,
and MRT models require the computation of a turbulent viscosity. Here
three different SGS models are tested: Smagorinksy [32], Wall-Adapting
Local Eddy-viscosity (WALE) [33], and Vreman [34].

The paper is organized as follows: Section 2 briefly presents the
LBM framework and the collision models that are compared in this
study. This is followed by a presentation of the LBM solver Musubi 3.
The next two sections describe the results in terms of accuracy 4 and
performance 5 for the considered collision models. A conclusion on the
here presented comparison is provided in Section 6.

2. Lattice Boltzmann method

This section describes the lattice Boltzmann method and its equa-
tions. LBM aims to model fluid flows based on the Boltzmann equation
(BE) [5]
𝜕𝑓
𝜕𝑡

+ 𝒄 ⋅ 𝛁𝑓 +
𝑭 ⋅ 𝛁𝑓

𝜌
= 𝛺(𝑓 ). (1)

The BE is discretized in space, time, and velocity space to obtain the
force-free lattice Boltzmann equation (LBE) [5]

𝑓𝑖(𝒙 + 𝒄𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓𝑖(𝒙, 𝑡) + 𝛥𝑡𝛺(𝑓𝑖). (2)

The quadrature stencil used to discretize the velocity space is indicated
as 𝐷𝑑𝑄𝑞, where 𝑑 is the number of dimensions and 𝑞 is the number
of integration points. The commonly used stencils for three dimensions
are 𝐷3𝑄19 and 𝐷3𝑄27, which are detailed in Table 1.

The original collision operator 𝛺 (proposed by Boltzmann) is a non-
linear term, which can be simplified to the Bhatnagar–Gross–Krook
(BGK) model [7], also referred to as the single relaxation time (SRT)
model. Then Eq. (2) takes the following form in lattice units (𝛥𝑥 = 𝛥𝑡 =
1)

𝑓𝑖(𝒙 + 𝒄𝑖, 𝑡 + 1) = 𝑓𝑖(𝒙, 𝑡) + 𝜔
[

𝑓 eq
𝑖 (𝒙, 𝑡) − 𝑓𝑖(𝒙, 𝑡)

]

, (3)

with 𝜔 being the relaxation frequency defined as

𝜔 = 1 , (4)
3

𝜏

where 𝜏 is the numerical relaxation time in lattice units. For standard
lattices in three (and two) dimensions 𝜏 may be initialized as

𝜏 = 0.5 +
3𝜈phy

𝛥𝑥phy𝑐𝑠,phy
, (5)

where 𝜈phy is the kinematic viscosity [35].
The two principal steps of an LBM algorithm are collision and

streaming. Accordingly Eq. (3) is divided into a local collision (right-
hand side) and a subsequent streaming step. Labeling the post-collision
distribution functions as 𝑓⋆, Eq. (3) may then be presented as follows

𝑓⋆
𝑖 (𝒙, 𝑡) = 𝑓𝑖(𝒙, 𝑡) + 𝜔

[

𝑓 eq
𝑖 (𝒙, 𝑡) − 𝑓𝑖(𝒙, 𝑡)

]

, (6)

𝑓𝑖(𝒙 + 𝒄𝑖, 𝑡 + 1) = 𝑓⋆
𝑖 (𝒙, 𝑡). (7)

To recover the isothermal, weakly-compressible Navier–Stokes equa-
tions, the truncated equilibrium distribution function has to be ex-
panded up to at least second-order, i.e.

𝑓 eq
𝑖 = 𝑤𝑖𝜌

[

1 +
𝒄𝑖 ⋅ 𝑽
𝑐2𝑠

+ 0.5
(𝒄𝑖 ⋅ 𝑽 )2

𝑐4𝑠
− 0.5𝑽 ⋅ 𝑽

𝑐2𝑠
+ (Ma3)

]

. (8)

The macroscopic quantities are then retrieved (in lattice units) from the
distribution functions as velocity moments such that

𝜌 =
𝑞−1
∑

𝑖=0
𝑓𝑖, (9)

𝑽 =
𝑞−1
∑

𝑖=0
𝑓𝑖𝒄𝑖, (10)

𝑝 = 𝑐2𝑠 𝜌. (11)

2.1. Hybrid recursive regularized BGK

The hybrid recursive regularized scheme (HRR) is an advanced colli-
sion scheme based on the LBGK equation (3). Following the convention
in literature to express the distribution function as an infinite sum of
Hermite polynomials [18], the collision (Eq. (6)) is rewritten as

𝑓⋆
𝑖 (𝒙, 𝑡) = 𝑓 eq

𝑖 (𝒙, 𝑡) + (1 − 𝜔)𝑓 neq
𝑖 (𝒙, 𝑡), (12)

with

𝑓 eq
𝑖 (𝒙, 𝑡) = 𝑤𝑖

𝑁
∑

𝑛=0

1
𝑛!
𝒂(𝑛)0 ∶ (𝑛)

𝑖 , (13)

𝑓 neq
𝑖 (𝒙, 𝑡) = 𝑤𝑖

𝑁
∑

𝑛=2

1
𝑛!
𝒂(𝑛)1 ∶ (𝑛)

𝑖 . (14)

The Hermite polynomials (𝑛)
𝑖 as well as the expression for the co-

efficients 𝒂(𝑛)0 ,𝒂(𝑛)1 in the above expansions are given in [18]. In his
PhD thesis, Coreixas [24] studied which coefficients are properly rep-
resented on a given stencil 𝐷𝑑𝑄𝑞. The interested reader is invited to
consult Appendix D of this thesis.

In order to increase the numerical stability, the second-order Her-
mite polynomial coefficient of 𝑓 neq is blended as follows

𝒂(2,HRR)1 = 𝜎𝒂(2)1 + (1 − 𝜎)𝒂(2,PRR)1 , (15)

where 0 ≤ 𝜎 ≤ 1. While the first expression of 𝒂(2)1 on the RHS is the
second-order velocity moment of 𝑓 neq, i.e.

𝑎(2)1,𝛼𝛽 =
𝑞−1
∑

𝑖=0
𝑐𝑖,𝛼𝑐𝑖,𝛽𝑓

neq
𝑖 , (16)

the second expression is derived from a Chapman–Enskog analysis
of the standard LBGK equation up to second-order in the Knudsen
number [12]

𝑎(2),PRR1,𝛼𝛽 = −𝜌𝑐2𝑠 𝜏
( 𝜕𝑉𝛽 +

𝜕𝑉𝛼
)

. (17)

𝜕𝑥𝛼 𝜕𝑥𝛽
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Evaluating the velocity gradient with a finite difference scheme [17]
introduces a form of hyperviscosity that damps numerical instabilities
near the Nyquist limit (checkerboard instability).

Higher order Hermite polynomial coefficients (𝑛 > 2) in Eq. (14)
are computed via a recursive relation derived by Malaspinas [22]
using the equilibrium coefficients 𝒂(𝑛)0 . For the explicit formulations, the
nterested reader may refer to Appendix G in [24].

.2. Projected Recursive Regularized BGK

The projected recursive regularized (PRR) [24] scheme is obtained
rom the HRR collision model. One needs to set 𝜎 to zero in Eq. (15)
o obtain the following equation
(2,HRR)
1 = 𝒂(2,PRR)1 , (18)

here 𝒂(2,PRR)1 is evaluated as in Eq. (17). This model is stable, but
ighly dissipative due to the finite-difference formulation of the Her-
ite expansion coefficients.

.3. Multi relaxation time

The multi-relaxation time (MRT) scheme was first introduced by
’Humières [8] in 1992. The main idea is to collide in moment space
ather than velocity space. Therefore, Eq. (2) is transformed before the
ollision such that

𝑖(𝒙 + 𝒄𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓𝑖(𝒙, 𝑡) +𝐌−1𝐒
[

𝑚eq
𝑖 (𝒙, 𝑡) − 𝑚𝑖(𝒙, 𝑡)

]

, (19)

here 𝒎 = 𝐌𝒇 . 𝒎 is a 𝑞 × 1 vector containing (amongst others)
he relevant hydrodynamic moments and 𝐌 is a 𝑞 × 𝑞 transformation
atrix with 𝑞 being the number of velocity directions of the lattice. The

riginal transformation matrix had an orthogonal basis, but alternative
ases such as simple tensor products and Hermite tensor products are
ossible as well [19]. The diagonal matrix 𝐒 may take on different
elaxation times for each moment 𝑚𝑖. Nevertheless, the frequencies
elated to the hydrodynamic moments are constrained to properly
eproduce the Navier–Stokes dynamics. Non-physical modes may then
e filtered explicitly by changing, i.e. increasing, the relaxation time
ssociated with them. Different formulations for 𝐌 with their suggested
alues for the relaxation matrix 𝐒 are available [9,36,37].

.4. Cumulant

The Cumulant collision model was introduced by Geier et al. in
015 [20]. The MRT collision model has several drawbacks, such as
lack of a universal formulation of optimal collision rates, deficiency

temming from an arbitrary choice of moment space, and being non-
alilean invariant.2 The Cumulant model was developed to overcome

ome of these drawbacks. This is achieved by using a formulation based
n statistically independent observable quantities of the distribution
unctions, the cumulants 𝑐𝛼𝛽𝛾 .

𝐹 is defined as the two-sided Laplace transformation of 𝑓 , i.e.

(𝜩) =  [𝑓 (𝒄)] = ∫

∞

−∞
𝑓 (𝒄) exp−𝜩⋅𝒄 d𝒄, (20)

here 𝜩 = (𝛯, 𝛶 ,𝑍) is the particle velocity 𝒄 in wave number space.
hen, the cumulants are obtained as follows:

𝛼𝛽𝛾 = 𝑐−𝛼−𝛽−𝛾 𝜕𝛼𝜕𝛽𝜕𝛾

𝜕𝛯𝛼𝜕𝛶 𝛽𝜕𝑍𝛾 ln [𝐹 (𝛯, 𝛶 ,𝑍)]
|

|

|

|𝛯=𝛶=𝑍=0
, (21)

2 ‘‘Taking moments in a static frame of reference and relaxing them with
ifferent rates introduces violations of Galilean invariance not present in
single relaxation time model with the same velocity set and the same

quilibrium function’’ [20].
4

where 𝑐−𝛼−𝛽−𝛾 is the lattice velocity. Finally the cumulants are relaxed
as follows

𝑐⋆𝛼𝛽𝛾 = 𝑐𝛼𝛽𝛾 + 𝜔𝛼𝛽𝛾

(

𝑐eq𝛼𝛽𝛾 − 𝑐𝛼𝛽𝛾
)

. (22)

The Cumulant model solely works on the 𝐷3𝑄27 stencil and contains
7 moments or rather cumulants and therefore 27 possible collision
requencies. It is demonstrated in [38] that to attain the rotational
nvariance property some relaxation rates have to be identical, reducing
he degrees of freedom to 10, i.e. 𝜔1, 𝜔2, … , 𝜔10. Only the first of these
requencies is related to the physical (kinematic) viscosity as in Eq. (5).
eier et al. [20] suggest to set 𝜔2–10 = 1.

In a later publication, Geier et al. [28] parametrized the Cumulant
model to obtain a fourth-order accurate diffusion term in the Navier–
Stokes equation. A limitation, which – at the same time – is beneficial
to industrial applications is a constraint on the kinematic viscosity to
be small. Appendix B of [28] introduces a further correction to the
parametrized Cumulant model to obtain a fourth-order accurate advec-
tion operator. Nevertheless, the suggested correction has proven to be
unstable at low viscosities and was therefore omitted in the present
work. With this formulation 𝜔2 is chosen to set the bulk viscosity 𝜁 of
the flow [36]

𝜁phy =
𝛥𝑥2phy
𝛥𝑡phy

5 − 9𝑐2𝑠,lat
9

(

𝜔2,lat − 0.5
)

. (23)

2.5. Boundary conditions

In this study, we use the non-equilibrium extrapolated boundary
condition (BC) introduced by Guo et al. [39]. This BC is used to mimic
the Dirichlet kind, where we assign a velocity at the inlet and a pressure
at the outlet. The missing variables are extrapolated from inside the
domain. Being an extrapolation method means that all distribution
functions at the boundary nodes need to be reconstructed [5].

The Bouzidi BC is used to mimic a curved no-slip wall [40]. The
distribution function of the links being crossed by the curved solid
boundary is reconstructed via a combination of the bounce-back rule
and a linear interpolation of neighboring values.

2.6. Subgrid scale modeling

Unresolved turbulent scales are here accounted for by an eddy-
viscosity model adopted from the classical Navier–Stokes framework.
The total viscosity of the flow is modified locally by adding a turbulent
viscosity term 𝜈tur to the kinematic viscosity of the fluid 𝜈phy, i.e.

𝜈tot = 𝜈phy + 𝜈tur . (24)

Then 𝜔 or rather 𝜏 is evaluated via Eq. (5). An extensive introduction
to the most frequently used turbulence models is given in chapter 2
of [41]. For this study, we adopt the standard Smagorinsky model [32],
the Wall-Adapting Local Eddy-viscosity (WALE) model [33], and the
Vreman model [34]. The coefficient of the Smagorinsky model is set to
0.17, while for the WALE model and the Vreman model it is set to 0.50
and 0.07, respectively.

The Cumulant model has an inherent numerical stabilization, there-
fore it does not require a turbulence model [31]. This collision scheme
[28] relies on the time history of high-order cumulants. Geier et al.
suggest a limiter for the third-order cumulants to reset the time history.
It is worth mentioning that the error introduced by the limiters lies well
below the leading error of the LBM. Thus, the fourth-order accuracy of
the scheme is kept. The formula of 𝜔3–5 is modified as in [28]. The

−2
limiters are set to a value of 10 .
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Fig. 1. Computational domain with its refinement levels, where red is the finest.
3. Musubi, a lattice Boltzmann solver

Musubi3 [29] is an open-source lattice Boltzmann solver which
is mostly written in Fortran 2003 and parallelized with the Message
Passing Interface (MPI) [42]. Musubi offers a selection of different
collision models, stencil layouts, and LES turbulence models, as well
as the possibility to work on multi-level meshes. Since 2021, Musubi is
adopted by the DLR and has been extended to support high Reynolds
number flows in aerodynamic and aeroacoustic applications.

Musubi uses an octree-type mesh consisting of cubical cells gen-
erated by the mesh generator Seeder [43]. Seeder sorts the cells by
depth-first order following a space-filling curve (Morton or Z curve),
which maintains locality and reduces the communication between
processors [44]. In the solver, the sorted list of cells is partitioned
equally among processes, aiming to achieve optimal load balancing.
However, in real applications, some cells are more computationally
expensive than others due to grid refinements, boundary conditions,
source terms, etc., resulting in load imbalances. This imbalance is
resolved by deploying the load balancing algorithm SPartA [45], which
redistributes the elements by using weights. These weights take into
account the computational cost linked to each element. Musubi offers
both, static and dynamic load balancing. Static load balancing can
be used for fixed multi-level meshes. For instance, in a domain with
one refinement level, fine cells are computationally two times more
expensive than coarse cells due to the halved time-step. Therefore, the
weights for the fine cells are doubled during mesh distribution. On
the other hand, with dynamic load balancing, the weights of each cell
are computed after every few iterations during runtime, and cells are
redistributed according to the time spent on the different cells without
the need of restarting the simulation.

The solver reads the sorted list of cells in a distributed manner,
where each process requires minimal information about the mesh.
Nevertheless, the explicit neighborhood information is necessary for
the solver to pull the distribution function from the direct neighbor to
the local cell according to the stencil definition (streaming step, as in
Eq. (7)). A stencil is defined as a set of offset directions describing the
relative position of the neighborhood of a cell. With the help of the
space-filling curve and the topology of the octree mesh, a process can
easily locate on which partition the neighbor of a cell is stored.

To achieve good performance with multi-level meshes, Musubi does
computations on cells in a level-wise fashion. Thus, the sorted list of
cells generated by the mesher is resorted by level in the solver. Then,

3 The Musubi repository is publicly available at https://osdn.net/projects/
apes/scm/hg/musubi/.
5

ghost cells are used to interpolate values between different refinement
levels. To decrease computational time state values are stored in a
double buffer array at each level: one for reading and one for writing.
Each buffer has a size of 𝑁 × 𝑞, where 𝑁 is the number of elements
in the level, and 𝑞 is the number of velocity directions. Additionally,
a connectivity array of the same size is stored for indirect addressing
of adjacent neighbors in the state array. More arrays are used to store
auxiliary values required for multi-level interpolation, computation of
boundary conditions, source terms, and turbulent viscosities.

4. Results and discussions

To assess the accuracy and performance of the different collision
models, we modeled the quasi 3D cylinder test-case at a Reynolds
number of 3900, based on the cylinder diameter 𝐷. Although this is
considered an academic test-case, it is commonly used to compare LES
solvers as it is well documented in the literature [17,30,46,47].

Fig. 1 shows the computational domain with the cylinder located at
the origin of the coordinate system. The rectangular domain stretches
60𝐷 in stream-wise (𝑥-axis) and 30𝐷 in wall normal (𝑦-axis) direction,
respectively. Velocity inlet (left) and pressure outlet (right) boundary
conditions are applied as mentioned in Section 2. The top and bottom
sides of the domain are defined as slip boundaries. Periodic boundaries
are used for the sides in spanwise direction (𝑧-axis). The cylinder
surface is modeled as a no-slip curved boundary according to [40]. To
avoid any influence of the periodic boundaries on the flow field, the
domain extends in spanwise direction by 4𝐷. Such a spanwise extent is
compliant with the observations made by Breuer [48]. The inflow is a
uniform velocity profile 𝑽 = (𝑢0, 0, 0), with 𝑢0 = 20.077 m s−1. This leads
to an inlet Mach number of Ma0 = 5.850×10−2. The pressure is fixed at
the outflow and is obtained via Eq. (11), where 𝜌0 = 1.225 kg m−3.

To prevent spurious reflections at the boundaries that occur during
the transient phase, both a rectangular-shaped viscous sponge layer
and an absorbing layer [49] are placed on the boundaries in 𝑥 and
𝑦 directions. The width of the layers is set to 5𝐷 extending from the
boundaries into the domain. The target quantities of the absorbing
layer are set to 𝑝 = 𝑝0 and 𝑽 = (𝑢0, 0, 0). The viscous sponge layer
linearly increases the viscosity of the fluid to a factor of 10 at the
boundaries. According to our simulations, this factor of 10 is not high
enough to damp reflections coming from the inlet BC sufficiently when
the Cumulant is used as collision scheme. To stabilize the Cumulant
scheme, a numerical trial and error approach shows that a factor of
150 is required.

Five different uniform refinement regions are used to create a
hierarchical Cartesian mesh of the domain (cf. Fig. 1). To properly
resolve the boundary layer on the cylinder and the recirculating bubble

https://osdn.net/projects/apes/scm/hg/musubi/
https://osdn.net/projects/apes/scm/hg/musubi/
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Fig. 2. Contour of the averaged LES quality index of Celik et al. [50] in the mid 𝑥𝑦-plane for the combination of HRR with Vreman.
downstream of the cylinder, the diameter of the cylinder is discretized
by 80 voxels in the finest region, leading to a maximum 𝑦+ value of
about 1 at 50° or rather 310°. The extents of the refinement regions are
kept similar to the ones defined in Jacob et al. [17], albeit with a slight
variation in the shape for the three finest levels. These regions (i.e. the
three regions closest to the cylinder) have a radial offset of 𝐷, 1.25𝐷,
and 1.5𝐷 in the upstream direction and a rectangular offset of 2𝐷, 4𝐷,
and 6𝐷 in the wake direction, respectively. The other two refinement
levels have dimensions of [13𝐷 × 5𝐷] and [40𝐷 × 10𝐷] and are located
2.5𝐷 and 5𝐷 away from the cylinder with respect to both the 𝑥-axis
and the 𝑦-axis. This domain discretization results in approximately 12.7
million cells.

The statistics shown in the following are averaged in time with
a total sampling time of 92 𝑇C (≈20 vortex shedding periods), where
𝑇C = 𝐷∕𝑢0. The sampling is started after 𝑡 ≥ 200 𝑇C. Finally, the
statistics are spatially averaged in spanwise (𝑧) direction.

The authors were not able to stabilize the MRT model to work on
the 𝐷3𝑄27 stencil as suggested in [36]. For this reason, MRT results
were only acquired for the 𝐷3𝑄19 stencil with a parametric setting
as defined in [37]. On the other hand, the Cumulant scheme is only
compliant with the 𝐷3𝑄27 stencil, hence results for the HRR and PRR
schemes were also obtained on this stencil.

The quality of the LES solutions is computed according to the index
of Celik et al. [50], as below

LESQI = 1

1 + 0.05
(

1 + 𝜈tur∕𝜈phy
)0.53

. (25)

An LES simulation is considered of good quality if LESQI ≥ 0.80. The
same value of 0.80 is suggested by Pope [51] for a similar index. Fig. 2
shows the contour of the LES quality index of Celik et al. [50] in the
mid-𝑦𝑧-plane for the combination of HRR with Vreman model. The
minimum of the quality index is located in the wake in the coarsest
patch. Noteworthy, the minimum is higher than 0.80, assuring the qual-
ity of the present LES result. The contours for the other combinations
are similar and therefore omitted. Nevertheless, the minimum of the
quality index for the considered combinations is reported in Table 2.
The Cumulant scheme employs its ILES model. Thus, this quality index
cannot be used for this scheme, 𝜈tur = 0 → LESQI = 0.95, which
is the DNS limit. Nevertheless, the resolution of the finest region in
the domain, located around the cylinder, is 𝛥𝑥 = 0.0125𝐷, which is
lower than the one used by Parnaudeau et al. [30] (𝛥𝑥 = 0.0210𝐷)
and the same as the one used by Jacob et al. [17]. In general, this
resolution is also in range with other LES studies such as Alkishriwi
et al. [46] (𝛥𝑥 = 0.0130𝐷) and Ouvrard et al. [47] (𝛥𝑥 = 0.0170𝐷).
Taking into account that the resolution in the finest mesh is appropriate
6

Table 2
The minimum of the LES quality index of Celik et al. [50] for considered combinations
of collision schemes and turbulence models.

Combination HRR MRT PRR

Smag. Vrem. WALE Smag. Vrem. WALE Vrem.

min(LESQI) 0.89 0.89 0.86 0.88 0.89 0.86 0.93

to discretize the boundary layer, i.g. 𝑦+ ≤ 1, and that the quality index
is higher than 0.94 in the region of interest, the mesh resolution is
sufficiently high for this test-case.

A first comparison is carried out between HRR, PRR, MRT, and
Cumulant, where the first three collision models use the Vreman turbu-
lence model, while the Cumulant uses the implicit subgrid scale model
introduced in Section 2.6. Fig. 3 shows the average of the normalized
𝑥-velocity 𝑢 (top), and the normalized Reynolds stress 𝑢′𝑢′∕𝑢20 (bottom)
along the wake center line. The value of the maximum velocity deficit
in the recirculation bubble is predicted accurately by the Cumulant
model although the maximum is reached further downstream compared
to the experiments. However, the length of the recirculation bubble
agrees well with the experimental data. The HRR predicts well the
maximum deficit and shows a slight overestimation of the downstream
position where this occurs. For the MRT and PRR this trend is more
pronounced so that it clearly deviates from the experimental data.
Noteworthy is the recovery of the velocity in the far wake observed for
all collision models. This implies that the domain size and the boundary
conditions are adequately chosen to model this problem.

The trend of the Reynolds stress 𝑢′𝑢′ along the streamwise direction,
obtained by the experiment, shows two peaks in the recirculation
bubble. Although both peaks are present in the numerical results, they
do not match the experimental data correctly. The magnitude of the
first and second peak is severely underestimated by the PRR. Only
the Cumulant shows a fair agreement with respect to the position of
these peaks. The other collision schemes shift the position of both
peaks downstream. The MRT fails to predict the experimental trend
when 𝑥∕𝐷 > 2. The difference between the behavior of the schemes
can be attributed to the physical assumptions of the models. The MRT
collision matrix is generated from a moment base, which neglects high-
order terms (𝑛 > 3) of velocity. The other schemes are generated by
taking into account high-order terms of velocity (up to 6th-order) [19].
Therefore, as a natural consequence, the Cumulant and HRR have a
reduced velocity-dependent error in the viscous stress tensor. Although
the PRR has the same characteristic as HRR, its dissipative nature
strongly affects the computation of the Reynolds stresses, leading to
an underestimation.
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Fig. 3. Normalized average of the 𝑥-velocity 𝑢 (top), and normalized Reynolds stress 𝑢′𝑢′ (bottom) along the wake center line.
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The same observation can justify the difference in the trends of the
Reynolds stresses 𝑢′𝑢′ in the 𝑦𝑧 plane at different positions downstream
of the cylinder (cf. Fig. 4). At 1.06𝐷 downstream of the cylinder, all
schemes capture the location of the peaks properly, but underestimate
their magnitude, with PRR showing the worst and Cumulant showing
the best agreement. The same behavior can be seen further downstream
(1.54𝐷), where the Cumulant is the only model that accurately predicts
the magnitude of the peaks. At 2.02𝐷 all models but the PRR provide
satisfactory results.

The next comparison is carried out to assess the impact of different
turbulence models. Both, the MRT and the HRR schemes are coupled
with the Smagorinsky, WALE, and Vreman subgrid model, respectively.
Given the poor agreement of the results obtained with PRR compared
to the experimental data, this collision model is excluded from the
following comparisons. Fig. 5 shows the normalized average of the
𝑥-velocity 𝑢 (top), and normalized Reynolds stress 𝑢′𝑢′∕𝑢20 (bottom)
along the wake center line. It can be noticed that the combinations of
collision and turbulence models that show the best agreement with the
PIV data are MRT with WALE and HRR with Vreman. The minimum
of the mean 𝑥-velocity is underpredicted by MRT with WALE, while
the HRR with Vreman agrees well with the experimental data. The
length of the recirculation bubble is well overpredicted by the MRT
with Smagorinsky and HRR with WALE, while MRT with WALE shows
the best agreement.

Regarding the evolution of the Reynolds stress 𝑢′𝑢′ along the wake
center line (Fig. 5 (bottom)), one can immediately observe that all the
proposed combinations fail to predict the location of both, the first
and second peak of the experimental trend, which is shifted further
downstream. The magnitude of the first peak is in fair agreement with
the experimental results for all combinations. The HRR with Vreman
fails to predict the magnitude of the second peak, while the other
7

n

combinations show a fair comparison. Another glaring difference is
observed right downstream of the cylinder. The results obtained by
the combinations of HRR with WALE and MRT with Smagorinsky
show more discrepancy from the experimental result compared to other
combinations. Noteworthy is the accurate prediction of 𝑢′𝑢′ after 𝑥∕𝐷 >
2 shown by the HRR with Vreman.

By analyzing Fig. 6, one can notice that in the near wake (1.06𝐷) all
odels fail to correctly predict the Reynolds stresses. The combination

f MRT with WALE shows the best agreement here, nevertheless the
iscrepancy with the experimental result is still noticeable. At the in-
ermediate distance (1.54𝐷), stresses are still under-predicted, whereas
RT with WALE shows the closest agreement with the experimental

ata. While both combinations of HRR with WALE and MRT with
magorinsky show the farthest agreement. At the last downstream
osition (2.02𝐷), all models show a satisfactory agreement with the
eynolds stresses.

Fig. 7 shows the ratio between the average eddy-viscosity and the
hysical viscosity of the fluid. The Vreman model generates the least
mount of dissipation, followed by the WALE and Smagorinsky models.
he Smagorinsky model contributes to the dissipation even in the finest
atch of the mesh, 𝑥∕𝐷 ∈ [0, 2]. However, the contribution of the
ther two models is nearly equal to zero. All the considered turbulence
odels rely on the gradient of velocity to estimate the eddy-viscosity.
he HRR already uses this gradient during the collision step to generate
issipation and stabilize the scheme, see Eq. (17). For the modeled test-
ase, the HRR works well in conjunction with the Vreman model, which
dds the least amount of dissipation among the considered models, cf.
ig. 7. A comparable plot is obtained for the MRT scheme, but it is
mitted here for brevity. As the present study shows, the MRT delivers
atisfactory results in conjunction with the WALE model.

Fig. 8 shows the normalized average of the 𝑥-velocity 𝑢 (top), and
′ ′ 2
ormalized Reynolds stress 𝑢 𝑢 ∕𝑢0 (bottom) along the wake center line



Computers and Fluids 255 (2023) 105833G.G. Spinelli et al.

f
C
t
a
b
C
s
3
s
f
a
t

i
i
m

Fig. 4. Vertical profile of the normalized Reynolds stress 𝑢′𝑢′ at 𝑥 = 1.06𝐷 (top), 𝑥 = 1.54𝐷 (middle), and 𝑥 = 2.02𝐷 (bottom).
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or Cumulant with ILES, MRT with WALE, and HRR with Vreman.
ompared to Fig. 3 only the MRT data is different. It can be seen that
he WALE turbulence model leads to a higher velocity deficit but also
smaller recirculation bubble. One can notice that the result obtained
y the MRT is located between the ones obtained by the HRR and
umulant. The MRT model achieves a good prediction of the Reynolds
tress but differs from the experimental trend in the interval 2 < 𝑥∕𝐷 <
. Fig. 9 illustrates that the Cumulant model captures the Reynolds
tresses in the detached shear layers (peaks) with the least deviation
rom the PIV data, followed by the combinations of MRT with WALE
nd HRR with Vreman. Noteworthy, the MRT with WALE approximates
he peaks at the station 𝑥∕𝐷 = 1.06 better than the Cumulant.

It is worth mentioning that while the MRT scheme is already written
n a matrix form (𝑀−1𝑆𝑀), the HRR collision operator can be written
n a matrix form as well. The former is generated by an orthogonal raw
oment basis, while the latter is by a non-orthogonal Hermite tensor
8

T

asis. On the other hand, this observation is not valid for the Cumulant
cheme, which therefore generates results different than those obtained
ith HRR and MRT. Another important difference is the value of the
ulk viscosity. For the HRR scheme, this value is fixed to 2∕3𝜇phy.
he same value is used in the present work to evaluate the relaxation
requency which relaxes the kinetic energy moment of the MRT scheme.
egarding the parametrized Cumulant, the considered value would
enerate an error in the evaluation of 𝜔3−5 attempting a division by
ero [28]. Therefore, a value of 2𝜇phy is used to avoid computational
rror when evaluating the parametrized 𝜔3−5. In general, the effects
f the bulk viscosity should be minimal, and mostly affects the sound
ropagation, which is not in the scope of this paper.

A quantitative comparison is shown in Table 3, where the force co-
fficients, the Strouhal number (𝑆𝑡), and the length of the recirculation
ubble 𝐿𝑟 are compared with results available in the literature [17,30].
he results of Parnaudeau et al. [30] are experimental and only provide
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Fig. 5. Normalized average of the 𝑥-velocity 𝑢 (top), and normalized Reynolds stress 𝑢′𝑢′ (bottom) along the wake center line for different collision schemes and subgrid scale
turbulence models.
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Table 3
Comparison of the force coefficients, the Strouhal number and length of the recircula-
tion bubble obtained by Musubi with the reference results [17,30]. Here 𝐶 ′

𝑙 indicates
he root mean square of the lift coefficient.
Model 𝐶𝑑 𝐶 ′

𝑙 St(𝑣) 𝐿𝑟∕𝐷

PIV [30] – – 0.208 1.51
ProLB (case 3) [17] 0.954 0.048 0.209 2.04
ProLB (case 4) [17] 1.047 0.165 0.212 1.43
Cumulant 1.073 0.335 0.212 1.60
HRR and Vreman 0.954 0.218 0.222 1.80
MRT and WALE 1.017 0.309 0.217 1.68

data for 𝑆𝑡 and 𝐿𝑟. The results of Jacob et al. [17] are obtained
ith ProLB, an LBM based, commercial solver. The results of case
are obtained via a combination of HRR with Vreman model on a

3Q19 stencil. While, for the results of case 4, Jacob et al. utilize an
mplicit LES model instead of the Vreman model. At a first glance,
e observe that all results obtained with Musubi are comparable with

he reference data. The length of the recirculation bubble is generally
verpredicted when compared to the PIV result, while the Cumulant
hows the best agreement. This means that the transition to turbulence
n the separated shear layer is delayed in the numerical simulations.
he Strouhal number is best captured by the Cumulant model. With
egard to the force coefficients, all models fail to predict the value
btained with ProLB case 4, while Cumulant and HRR with Vreman
how the least deviation for 𝐶𝑑 and 𝐶𝑙, respectively.

Fig. 10 presents the iso-contour of the normalized 𝑄-criterion (𝑄 =
1) colored by the normalized velocity magnitude. The snapshots show
the Cumulant model with ILES (top-left), the HRR model with Vre-
man (top-right), and the MRT model with WALE (bottom). It can be
9

observed that the flow is qualitatively well predicted in all cases. It
is laminar around the cylinder, the separation of the boundary layer
occurs in the laminar regime, and the transition to turbulent flow
occurs in the wake. One can also notice the presence of large-scale and
small-scale structures in the wake, which is typical of this flow regime.
The difference in the length of the bubble is too subtle to be seen here.

The power spectra density of the 𝑦-component of the velocity at
(𝑥, 𝑦, 𝑧) = (3.0𝐷, 0.0, 0.0) is shown in Fig. 11. The sampling is done at
ach 10𝛥𝑡, for 𝑡 in the range of 200–300𝑇C. One can see that the main
eak is accurately predicted at 𝑓 = 𝑓vs. Experimentally, it was shown
hat there is a second peak at 𝑓 = 3𝑓vs [30]. This peak is also found in
he numerical results. While Cumulant accurately predicts the peak at
= 3𝑓vs, the combinations of MRT with WALE and HRR with Vreman

lightly shift its location to the right and to the left of 3𝑓vs, respectively
see zoom-in in Fig. 11).

. Performance

In this study, we performed computations on the CARA cluster of
LR. Each node is equipped with two AMD EPYC 7601 (32 cores;
,2 GHz). Therefore, each node has 64 physical cores. The perfor-
ance analysis is done for the HRR and PRR models on both, the
3𝑄19 and the 𝐷3𝑄27, for the MRT model on the 𝐷3𝑄19, and for

he Cumulant scheme on the 𝐷3𝑄27 lattice stencil. All collision models
ut the Cumulant are coupled with the Vreman turbulence model. The
umulant uses an implicit LES model. For the sake of clarification, the
ollision routines are optimized as follows.

MRT: vector matrix multiplication is explicitly written for all 𝑞
directions. The null entries are omitted.
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Fig. 6. Vertical profile of the normalized Reynolds stress 𝑢′𝑢′ at 𝑥 = 1.06𝐷 (top), 𝑥 = 1.54𝐷 (middle), and 𝑥 = 2.02𝐷 (bottom).
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HRR: the Hermite polynomials are explicitly computed and stored
in memory during initialization rather than being calculated
during run-time.

umulant: the weight coefficients are explicitly computed and stored
in memory during initialization rather than being calculated
during run-time. Furthermore, the fast Chimera transforma-
tion is employed as suggested by Geier et al. [28].

lthough the following performance analysis is done with the same
est-case as introduced before, the entire domain is discretized with
𝑥min = 𝐷∕80 leading to a uniform mesh of about 57 million cells.

Fig. 12 compares Million Lattice UPdates per second per node
MLUPs/node) on a range of node counts. It is noteworthy that the
umulant is faster than any other model. In addition to the optimiza-
ion explained above, the difference in performance is also affected by
he turbulence model and by the locality of the accessed data. The
10

t

umulant model solely uses local data, while PRR and HRR access
he data from the neighbors to compute the gradients of the hybrid,
econd-order Hermite coefficient (cf. Eq. (17)). The same is true for the
urbulence models. Smagorinsky, WALE, and Vreman utilize gradient
alculation, while the implicit LES model of the Cumulant scheme only
ses local data.

The 𝐷3𝑄27 and the 𝐷3𝑄19 stencils show a performance drop with
and 16–17 nodes, respectively. This drop only happens at these node

ounts specifically, as illustrated by the additional measurements with
ode counts of plus and minus 1 around the drop for Cumulant (𝐷3𝑄27)
nd PRR with 𝐷3𝑄19. The reason might be a bad memory access pat-
ern for this particular number of nodes, due to an unfortunate domain
ecomposition. To provide an explanation, further investigations are
equired.

The strong scaling analysis is shown in Fig. 13. As noticed before,
here is an isolated sudden drop in performance. Aside from that drop,
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Fig. 7. Ratio between the averaged eddy-viscosity and the physical viscosity of the flow along the wake center line.
Fig. 8. Normalized average of the 𝑥-velocity 𝑢 (top), and normalized Reynolds stress 𝑢′𝑢′ (bottom) along the wake center line.
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the general parallel efficiency nearly linearly decreases over the node
counts for this setup with 57 million cells but yielding at least more
than 60% on 256 nodes (16384 cores). Some variation in scalability can
be observed between the schemes and the Cumulant approach yields
the highest strong scaling parallel efficiency on 256 nodes with around
70%.

6. Conclusion

This study presents a comparison of different collision models of
the lattice Boltzmann equation in 3D, including Cumulant, HRR, MRT,
11

and PRR. For this purpose, the different models are implemented in L
the existing LBM framework Musubi, which has a proven record of
achieving high scalability and performance on HPC infrastructures.
Emphasis is laid on accuracy and performance. The velocity space is
discretized with the 𝐷3𝑄27 stencil except for the MRT model, which is
employed on a 𝐷3𝑄19 stencil due to stability reasons. Furthermore, the
ccuracy of these collision models is investigated in conjunction with
hree different subgrid scale turbulence models, namely the Smagorin-
ky, the WALE, and the Vreman model. The Cumulant has an implicit
ES model and, therefore, does not require a separate model to account
or turbulence. All the results in this study are obtained with the HPC

BM open-source solver Musubi.
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Fig. 9. Vertical profile of the normalized Reynolds stress 𝑢′𝑢′ at 𝑥 = 1.06𝐷 (top), 𝑥 = 1.54𝐷 (middle), and 𝑥 = 2.02𝐷 (bottom).
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The comparison is carried out by simulating a uniform flow past
circular cylinder at a Reynolds number of 3900. First, the effects of

he mesh resolution on the results are studied. We quantified that the
ES quality index is above 0.80 throughout the computational domain,
hich is the minimum value used in literature to label an LES solution
s properly resolved. Given that also the resolution of our mesh in
he regions of interest, i.g. boundary layer and wake, is in range with
he ones available in the literature, and that the boundary layer is
iscretized with a mesh characterized by 𝑦+ ≤ 1, the effects of the mesh
esolution on the results are deemed as minimal.

A first comparison is done by coupling HRR, MRT, and PRR with the
reman model. We observe that the PRR fails to reproduce the trend of

he Reynolds stresses obtained from the experiments. This observation
grees with the nature of the scheme, which is comparatively dissi-
ative due to the finite-difference reconstruction of the second-order
on-equilibrium Hermite coefficient. The results obtained via other
12

(

chemes match the experimental trend, where the Cumulant shows the
est agreement, followed by HRR and MRT. The difference is due to the
igh-order terms of velocity included in the equilibrium distributions.
he MRT uses terms up to 2nd-order, while the other schemes use terms
p to 6th-order. Thus, the macroscopic quantities show better accuracy
ue to the reduction of the magnitude of velocity-dependent errors.

In a second step, HRR and MRT are combined with different turbu-
ence models. It is shown that results from HRR with Vreman, MRT
ith WALE, and the Cumulant with its ILES are in good agreement
ith the PIV data. Nevertheless, the best results are achieved with

he Cumulant model. This becomes particularly clear when observing
he trends of the Reynolds stresses. The HRR scheme does not cope
ell with the Smagorinsky and the WALE subgrid models. The reason

or this relies on the velocity gradient. Both subgrid models use the
alue of the gradient to increase the amount of numerical dissipation
eddy-viscosity), while the same gradient is already used by the HRR
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Fig. 10. Iso-contour of the normalized 𝑄-criterion (𝑄 = 1) colored by normalized velocity magnitude. Cumulant with ILES (top-left), HRR with Vreman (top-right), and MRT with
WALE (bottom).
Fig. 11. Power spectra density of the 𝑦-component of the velocity at (𝑥, 𝑦, 𝑧) = (3.0𝐷, 0.0, 0.0).
to generate dissipation during the collision step. The MRT shows a lack
of dissipative behavior, which is corrected by the WALE model that
introduces slightly more dissipation than the Vreman model.

A quantitative comparison is carried out by comparing drag and lift
coefficients, the Strouhal number (𝑆𝑡), and the length of the recircula-
tion bubble (𝐿𝑟). Apart from a general tendency to overpredict 𝑆𝑡 and
𝐿 , all results obtained with Musubi agree with both, numerical and
13

𝑟

experimental data available in the literature. The numerical benchmark
was obtained with ProLB, a commercial CFD solver based on LBM.
Once again, the Cumulant model stands out by best predicting the
length of the recirculation bubble. By observing the power spectra
density of the 𝑦-component of the velocity, all collision models are
able to predict the second peak at 𝑓 = 3𝑓vs, which was first observed
experimentally.
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𝐷

Fig. 12. Comparison of Million Lattice UPdates per second per node (MLUPs/node) with respect to the number of nodes for different collision models on either the 𝐷3𝑄19 or the
3𝑄27 lattice stencil. The Cumulant model works only on the 𝐷3𝑄27 stencil. For stability issues, the MRT runs only on the 𝐷3𝑄19 stencil.
Fig. 13. Comparison of strong scaling for different collision models on either 𝐷3𝑄19 or 𝐷3𝑄27 lattice stencil. The Cumulant model works only on the 𝐷3𝑄27 stencil. For stability
issues the, MRT runs only on the 𝐷3𝑄19 stencil.
The above test-case on a uniform mesh is used to investigate the
performance of the different collision models. Results show that the
Cumulant model, which was solely designed for the 𝐷3𝑄27 stencil,
is faster than the other models independent of the 3𝐷 lattice stencil.
The difference may be explained by the locality of the data. Regarding
parallel efficiency, a strong scaling analysis for 57 million cells is
carried out. We observe that the parallel efficiency remains higher than
at least 60% on up to 16384 cores for all collision models.

In conclusion, the results confirm that the Cumulant model is the
best choice in terms of accuracy and performance for the chosen
14

test-case. Nevertheless, the implicit consideration of the subgrid scale
turbulence is not intuitive and it is not clear to the authors how much
turbulent viscosity is added when using the ILES model. To our best
knowledge, there is no direct link between the turbulent viscosity and
the limiter values used in the Cumulant model. How far these results
and observed trends are transferable to other, more complex test-cases
remains an open question that requires further investigation.
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