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Abstract—The presence of Deformable Linear Objects (DLOs)
such as wires, cables or ropes in our everyday life is massive.
However, the applicability of robotic solutions to DLOs is still
marginal due to the many challenges involved in their perception.
In this letter, a methodology to generate datasets from a mixture of
synthetic and real samples for the training of DLOs segmentation
approaches is thus presented. The method is composed of two
steps. First, key-points along a real-world DLO are labeled by
employing a VR tracker operated by a user. Second, synthetic
and real-world datasets are mixed for the training of semantic
and instance segmentation deep learning algorithms to study the
benefit of real-world data in DLOs segmentation. To validate this
method a user study and a parameter study are conducted. The
results show that the VR tracker labeling is usable as other labeling
techniques but reduces the number of clicks. Moreover, mixing
real-world and synthetic DLOs data can improve the IoU score of
a semantic segmentation algorithm by circa 5%. Therefore, this
work demonstrates that labeling real-world data via a VR tracker
can be done quickly and, if the real-world data are mixed with
synthetic data, the performances of segmentation algorithms for
DLOs can be improved.

Index Terms—Deformable linear objects, dataset generation,
spatial labeling, usability, image segmentation.
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I. INTRODUCTION

D EFORMABLE Linear Objects (DLOs) are part of our
everyday life in the form of wires, cables, ropes, tubes, and

many more. DLOs are characterized by an elongated cylindrical
shape lacking relevant features. Therefore, their detection via
Computer Vision (CV) is challenging, and the application of
robotics aiming at their autonomous manipulation is heavily
affected [1], [2], [3]. In fact, the cabling and wire routing
processes, which constitute a huge part of industrial assembly
tasks, are still largely performed by humans in the automotive
and aerospace sectors [4], [5]. Consequently, there is a need to
propose new perception methodologies based on CV to bridge
this gap [2], [3], [6], [7]. Existing data-driven approaches,
in real-world applications, are still massively affected by the
quality and size of the datasets. More precisely, in the DLOs
domain, there are two main needs as identified by [8]. First, how
to generate a real-world dataset for DLOs. Second, investigate
if a mix of real and synthetic data is impacting data-driven
segmentation learning. Therefore, our contributions are twofold.
First, a novel weakly supervised method to collect real-world
pixel-wise annotated DLOs samples starting from imprecise
user input given by a VR tracker (Fig. 1) is proposed. Second,
a thorough analysis of segmentation improvements given by
various levels of mix between synthetic and real datasets for
DLOs is provided.

To present our contributions the remainder of this letter
is organized as follows. Section II provides an overview of
the current literature available concerning the perception of
DLOs and existing labeling approaches. Sec III presents the
methodologies employed to obtain the synthetic samples and the
real ones, source code is made available1. Section IV outlines
the experimental methodologies employed whereas Section V
provides a in-depth discussion of the results. Section VI gives
the concluding remarks and future research directions.

II. RELATED WORKS

A. Segmentation of DLOs

In the past, the problem of DLOs identification has been
solved in simple settings like in [1], [9] and [10] where the
segmentation is performed with color-based thresholds or con-
trolled backgrounds. Even simpler approaches, common in the
past, reside in the application of “filters” to highlight tubular
structures in images, as the case of the Frangi filter [11], the
Ridge filter [12] and the ELSD [13] algorithm. Both the Frangi
and Ridge filters are based on the Hessian matrix, while ELSD

1https://github.com/lar-unibo/DLO-WSL
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Fig. 1. VR tracker-based weakly supervised dataset generation.

is an algorithm developed to detect line segments and elliptical
arcs. Many false positives are detected in case of complex
backgrounds [6] when employing these approaches.

The advances of deep learning approaches have brought
significant improvements in the context of DLO segmentation.
For instance, the semantic segmentation of wires and cables
via learning-based methods has been attempted in [2] where a
dataset consisting of electric wires obtained with a chroma-key
approach is made publicly available. However, for subsequent
automatic handling of DLOs, in some cases it is necessary to
distinguish the instances, e.g. if cables are on top of each other.
Therefore, a more advanced method is Ariadne+ [7]. It achieves
the instance segmentation of DLOs empowering a segmentation
Deep Convolutional Neural Network (DCNN) [14] in its frame-
work. Recently, FASTDLO [3] has been proposed improving the
performances of Ariadne+ both in terms of speed and accuracy.

In the context of general-purpose learning-based instance
segmentation methods [15], [16], [17], [18], the major problem
in their application to DLOs resides in the lack of publicly
available high-quality datasets and, consequently, the difficulty
in annotating a large set of images. Compared to [2], our
approach is capable of performing both a semantic labeling
and an instance-level one. In addition, the captured sample is
entirely real and not obtained by mixing a real DLO with a
post-processed background image, as the case in [2].

B. Image Labeling

The efficient generation of ground truth segmentation masks,
in general, is explored in many studies. The research area is pri-
marily motivated by the need for large data variability in training
datasets to achieve performance saturation [19]. Furthermore,
supervised methods, i.e., those trained on manually annotated
data, currently best perform in public benchmarks [20]. How-
ever, the manual labeling process can become burdensome
with large datasets. Therefore, to make the image labeling
process more efficient, a broad range of methods come into
consideration.

To minimize the need for pixel-wise annotated training
data, the development of weakly supervised training methods
is one of the most active research fields. Here, all kinds of
weak supervision sources are explored to generate segmentation
masks, including image labels [21], point clicks [22], bounding
boxes [23], or scribbles [24]. Alternatively, saliency detection
can be employed [25], but it cannot differentiate among objects’
instances. Furthermore, the performances of models trained in
these ways are still significantly worse than that of models
trained with fully annotated masks [20]. To further correct faulty
detections from weakly annotated data, interactive segmentation
is introduced. In [26] an iterative method to generate a pixel-wise
mask based on an initial human-annotated bounding box and im-
proved with corrective clicks on the predicted mask is proposed.
Another industrial weakly supervised labeling tool is introduced
in [27] where the image is first oversegmentated in superpixels
and the user must label only a few superpixels per class. Then,
based on a superpixel similarity metric, an algorithm annotates
the remaining superpixels. Another approach is an automatic
adjustment of the given weak noisy labels which are corrected
based on specific knowledge about their generation process [28].
In the work of [29] this approach is applied by using gradient
guidance to automatically correct manual annotations of edge
positions. A different approach, however, is proposed with Re-
viving Iterative Training with Mask Guidance for Interactive
Segmentation (RITM) in [30]. In this work, the authors show that
using pre-trained networks to infer object masks after the user
labels a few points can diminish the labeling effort. However,
despite these good results, all these methods apply to single
images. Therefore, they are difficult to scale to big datasets while
limiting user label points.

A widely adopted strategy for efficient high-volume labeled
data generation is to produce synthetically rendered images.
With this approach, the generation of a virtually unlimited num-
ber of synthetic and photo-realistic images encompassing vari-
ous types of objects with different sizes, shapes, compositions
and 3D distributions is enabled. Thereby, the respective synthetic
ground truth segmentation mask is automatically derived for
each generated image reaching a segmentation accuracy compa-
rable to human-made labeling. This method is already applied to
the problem of three-dimensional pose estimation of DLOs tips
by [31] but is also used in related research areas [32], [33], [34],
[35], [36], [37]. However, simulated data can cause a domain gap
which refers to a loss in model performance due to a difference
from training data to test data [38].

Therefore, in this work, we present the generation of both
instance-wise labeled synthetic and real-world data for big
datasets, and we study the effects of this mixed training.

III. METHODOLOGY

A. Problem Statement

As described in the introduction, the goal of this research is
to provide a methodology to generate a mix of real-world and
synthetic data and show the impact given by mixing the two
obtained datasets. The mathematical definition related to this
problem is also known as domain adaptation and it is already
well-documented in [35]. Therefore, this letter focuses on the
challenge for DLOs. First, the generation of synthetic and real-
world datasets are described in Section III-B and Section III-C.
Second, to study the impact given by mixing two datasets, we
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employ the End-to-End (e2e) training approach. This approach
is selected as long as the synthetic dataset is similar to the
real-world one [39]. Our problem is formulated as training on
a dataset mixture obtained by different ratios of real-world and
synthetic data, specifically:

F (x) = wrPr(x) + wsPs(x) (1)

where,wr andws are the ratios between real-world and synthetic
datasets with wr = 1− ws, Pr(x) and Ps(x) representing the
distributions of the real-world and synthetic dataset respectively,
andF (x) is the resulting distribution. Therefore, during training,
samples extracted from F (x) are used to optimize the learn-
ing models. In our research we address how different wr and
ws impact the segmentation performances, this is described in
Section III-D.

B. Synthetic Dataset Sampling

By modeling DLOs as spline curves and by employing a
rendering engine it is possible to sample photo-realistic synthetic
images of DLOs closely matching real ones. A generic DLO
shape can be represented in the Cartesian space by a 3rd-order
spline basis as a function of a free coordinate u representing the
position along the cable starting from an endpoint (u = 0) to the
opposite end (u = L) being L the length of the DLO. That is:

q(u) =

n∑
i=1

bi(u)qi (2)

where q(u) = [x(u) y(u) z(u)]T is the vector of Cartesian
coordinates of each point along the DLO, bi(u) is the i-th
elements of the spline polynomial basis used to represent the
DLO shape and qi are n properly selected coefficients, usually
called control points, used to interpolate the DLO shape through
the bi(u) function basis. Therefore, the set of control points
is constructed with an iterative propagation method. Being pt
the last element of the ordered set of already generated control
points, the new point pt+1 is defined as pt+1 = pt + s d where
s is the propagation step randomly selected between two bound-
ary values and d describes a random direction vector pointing
forward with respect to the existing sequence of points. The z
component of the point is clamped between boundary values
to make the obtained curve follow a real DLO shape more.
Therefore, a random sequence of points is generated and then
interpolated by a spline curve as defined in (2).

Concerning the rendering of the synthetic images, a novel
pipeline making use of BlenderTM is exploited [40]. A mesh
object is created from the generated spline-based DLO model
by specifying the DLO thickness, color and stripes. These
attributes can be also made random to increase the variance
of the dataset. Therefore, a random texture is chosen as the
background along with random lighting settings. In this way,
different combinations of shadows can be simulated. All these
expedients are needed to enhance the generalization capabili-
ties of the data-driven approaches. Along with the image, the
rendering pipeline allows the creation of label data (i.e., mask
image). As an example, in Fig. 2 some generated images with
the proposed procedure and corresponding labels are shown.

C. Real-World Dataset Sampling

To enable the labeling of DLOs in a real environment through
user input, several elements are required. In particular, at first,

Fig. 2. Synthetically generated RGB samples and labels.

the dataset is recorded as outlined in Section III-C1. Then,
instances of DLOs are labeled via a VR tracker as described
in Section III-C2. Finally, the generated labels are corrected
to account for possible calibration and user input errors as
illustrated in Section III-C3. We denote this labeling method
as DLO-WSL.

1) Recording of Images With a Robot: To create a dataset
via DLO-WSL, images along with the position of the camera in
the world coordinate system must be known. Therefore, a 2D
RGB camera is mounted on the flange of a robotic arm in an
eye-in-hand configuration as shown from Fig. 1 for a two-fold
benefit. First, the recording of several images is achieved in a
matter of seconds. Second, the position of the camera is known
as long mechanically connected to the robot. Nonetheless, to
achieve these benefits, the camera position had to be known
with respect to the mounting screws and the robot trajectory
had to fit the application requirements (e.g., visible object in the
camera FOV). To solve these two issues, the following strategies
are included. On one hand, the transformation from the camera
frame to the mounting position is obtained by the iterative
camera calibration routine proposed by [41]. On the other hand,
a robot trajectory with an ellipsoidal shape is integrated into the
robot control to ensure that the images taken by an inward-facing
camera had always the object at the center of the trajectory. This
trajectory is calculated using (3) (where x, y, z are the trajectory
points, a, b, c are the ellipsoid parameters, θ is the zenith angle,
φ is the azimuth angle, and x0, y0, z0 are the coordinates of the
initial position).

⎧⎨
⎩
x = a sin θ sinφ+ x0

y = −b sin θ sin θ + y0
z = c cos θ + z0

(3)

2) VR Tracker Labeling: A methodology involving a sensor
tracked in space is selected to label instances of DLOs. There-
fore, an input methodology similar to [42] is preferred. However,
a different tracking technology to both avoid the need for an
additional camera to obtain the position of the tracked sensor
and to provide an industrial solution has been chosen. More
precisely, the TracepenTM virtual reality (VR) pen is selected.
This VR pen works on the basis of reflective photodiode sensors
which, by receiving and mirroring an infrared signal, enable
the calculation of the sensor’s pose from the emitting station.
Due to this working principle, the coordinates of the VR pen
are expressed in reference to the emitting station (P t

i ) [43].
However, to obtain DLOs instance labels for the images, such
positions had to be transformed in camera pixel coordinates
(P c

i ). To solve this issue, homogeneous transformations between
the emitting station and the camera position had to be considered
as shown in Fig. 3. Hence, the approach of [44] is used and the
transformation between the emitting station and the robot (tTr)
is calculated to obtain VR tracker points in the robot coordinate
frame (P r

i ).
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Fig. 3. Transformations involved in the labeling procedure using the VR
tracker. The transformations named tTr , rTc are needed to transform the labeled
point from the VR coordinates (P t

i ) to points in the robot coordinates (P r
i ) and

in the camera coordinates (P c
i ).

Afterward, such 3D points can be projected in the 2D images
to generate training data. This is achieved through (4) (where
u, v are pixel coordinates, w′ is the scaling factor, K is the
intrinsic camera matrix obtained via camera calibration, rTc is
the transformation from robot to camera, [x, y, z] is the 3D point
which needs to be projected, and u = u′/w′ and v = v′/w′).

[
u′
v′
w′

]
= K rTc

⎡
⎢⎣

x
y
z
1

⎤
⎥⎦ (4)

Thus, with this approach, images of real-world scenarios with
different camera positions are taken using a single labeled input.
This procedure is repeated for each DLO instance to label.

3) Weakly Supervised Semi-Automatic Labeling: Unlike
synthetic labeling, which is inherently error-free, during the
labeling of real-world DLOs performed by a human operator,
some level of error is expected. In particular, the major sources
of errors are due to inaccuracies in 1) the calibration of the anno-
tation tool and/or eye-in-hand camera; 2) the labeling performed
by the human operator. The presence of errors is more evident
and severe especially on very thin DLOs.

To overcome these problems, a fine-tuning step is applied after
the human input to each labeled DLO instance, its main stages
are shown in Fig. 4. First, the labeling points of one DLO instance
are smoothed employing an approximating spline curve in the
2D pixel space, similar to the definition of (2), see Fig. 4(c).

Then, an approach based on a CNN is applied for computing a
correction offset for each labeled point. Given the source image
I , the vertically oriented crop extracted around the i-th labeled
point and having a size of s× s pixels is denoted as Îi. With
vertically oriented, we denote the condition with the DLO having
an almost vertical shape in Îi, see input crop in Fig. 5. Thus, the
CNN-based network H(·) performs the following operation:

h = H(Îi)

being h ∈ Rs the vector approximating the location of the DLO
in the image along the horizontal axis, see the output in Fig. 5. In
other words, h describes the probability of each image column,
i.e. column 0 to column s− 1, of corresponding to the center-line

TABLE I
FACTORIAL DESIGN FOR THE ANALYSIS OF DATASET MIXTURES

of the DLO in Îi. Finally, the maximum of h is obtained as:

k = argmax(h) : ḣk = 0

being ḣk the derivative of h evaluated at point k. Hence, the
correcting offset δ for the crop Îi is computed as δ = k − s/2,
being s the crop size fixed to be 96 in the following.

The CNN structure is composed of a feature extractor, i.e.
ResNet-18 [45], and two Fully Connected linear layers, i.e.
FC512,256 and FC256,96. Binary cross-entropy is used as loss
function during the training stage to optimize the network
weights.

The dataset for the training of this network is obtained from
the synthetic samples of Section III-B. Thus, crops of 96× 96
pixels are randomly extracted from the synthetic images, given
the available spline description, employing a fictitious offset to
simulate the user error. Hence, the offset is converted with a
Gaussian distribution centered at the offset value and with a
variance of 8 pixels. In total, 40000 crops are used for the opti-
mization with the typical 90-10 split in training and validation
sets. The network is optimized for 50 epochs, employing a batch
size of 128 and a learning rate of 5× 10−5. Adam is selected
as optimizer with the final network weights chosen based on
the validation loss. Having corrected the points, Fig. 4(d), the
knowledge of the DLO thickness is exploited to construct a
polygon that precisely follows the contour of the targeted DLO
in each image plane. Thereafter, from the polygon, an instance
mask can be easily drawn as shown in Fig. 4(e).

D. Training on a Dataset Mixture

For the manipulation of DLOs, the availability of a segmenta-
tion mask is fundamental [3]. Therefore, we focus on the impact
given byws andwr in semantic and instance segmentation tasks.
With the former, our goal is to discern between the DLO class
and other objects in the image by assigning a pixel-wise label.
With the latter, we aim to recognize all the DLO instances in the
images by assigning a unique pixel-wise label for each DLO. For
the investigation of ws and wr, a full factorial experiment with
the datasets as factors on three levels with three runs has been
conceived. Specifically, the experiments with the respective wr

are shown in Table I.
For semantic segmentation task, DeepLabV3+ [14] and

U2PL [46] are used as networks for the tests. The former is a
standard fully supervised approach and allows a direct compar-
ison with [2]. The latter is a recently proposed semi-supervised
method where, in our case, the real-world dataset is used both
labeled and unlabeled. In this way, we can evaluate the benefits
of labeling real-world data as opposed to a semi-supervised
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Fig. 4. Labeling flow performed for each captured image. On the sampled image (a) the input points of the VR tracker captured for each instance are projected
(b) and smoothed with a spline curve (c). Thereafter, the CNN-based correction procedure is executed (d), the instance masks generated (e), and the output mask
finalized (f). Colors meaning: input tracker points as white crosses, smoothed points in orange and corrected points in cyan.

Fig. 5. CNN corrector schema. The input crop of 96× 96 pixels is forwarded
to the network outputting a 96-dim vector approximating the DLO center
horizontally. Using this method, the correction offset for the user input is
computed.

Fig. 6. Evaluation of the performances in terms of semantic segmentation
and number of clicks for the labeling approaches. The segmentation reports the
outcomes with chroma-key (CK), RITM [30], our approach (DLO-WSL) and raw
data from the user fitted in a spline without the CNN correction (SPL).

approach. DeepLabV3+ is trained with a ResNet-101 [45] back-
bone with a batch size of 10, output stride of 16, separable
convolutions, a polynomial learning rate of 10−5 with power
0.95, and Adam optimizer. Instead, U2PL is trained with a
ResNet-50 [45] backbone with a batch size of 2, a polynomial
learning rate of 5× 10−5 with power 0.9, and stochastic gradient
descent (SGD) as optimizer.

For instance segmentation task, YOLACT [15] is selected and
trained with a ResNet-101 backbone with a batch size of 6, a
step learning rate of 10−3 with factor 0.1 at iterations 30K and
60K, and SGD as optimizer.

All networks are optimized for 50 epochs with the final
weights selected based on the validation loss. As augmentation
scheme, the following is employed: channel shuffling; hue,
saturation and value randomization; flipping; perspective dis-
tortions; random cropping; random brightness and contrast.

With reference to Table I, for DeepLabV3+ and YOLACT,
the training mixtures consist of a total of 9 configurations. For
U2PL, due to computation burden, the synthetic 16 K config-
uration is avoided thus resulting in a total of 10 configurations
accounting also the semi-supervised condition.

IV. EXPERIMENTS

In this section, the results of two sets of experiments are
reported to investigate the impact of our method on both the
user experience and the labeling performances. More precisely,
with these experiments we aim to answer the following:

RQ1: What is the perceived usability, required effort and
labeling accuracy when using DLO-WSL?

RQ2: Does the inclusion of real-world data in the synthetic
dataset, through DLO-WSL, help the training of data-
driven CV segmentation algorithms for DLOs? If yes,
in which way?

A. DLO-WSL Perceived Usability and Performances

To evaluate the impact of labeling and find data for RQ1, a user
test with a balanced randomized order of three subsequent inter-
actions was envisioned. To the best of the authors’ knowledge, no
labeling method exists for big datasets which requires labeling
for only one image with uneven backgrounds. Therefore, the
comparison is done against the chroma-key technique for its
adequacy to generate multi-image datasets with single human
intervention in even backgrounds [47], and RITM due to its good
performance in state-of-the-art single image weakly-supervised
labeling [30]. For these comparisons, the users were requested
to label 10 images with the three different methods. At the end of
each interaction, usability and workload were measured through
the System Usability Scale (SUS) [48] and the NASA-TLX [49].
Additionally, the number of clicks (NoC) to complete the label-
ing task was also recorded.

A total of 13 users, not experienced with labeling techniques,
age mean (M) = 32.70 yrs, standard deviation (SD) = 9.23,
participated in the study. All of them performed the test correctly
and no data were discarded.

Concerning the usability, the score for chroma-key is M =
60.38%, SD = 21.00, for DLO-WSL is M=69.61%, SD=16.26,
and for RITM is M=82.30%, SD=9.54. A Mann-Whitney-U-
Test is applied for statistical difference as long the normality
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Fig. 7. Evaluation of wr on DeepLabV3+. To the left is the change of average
IoU score with different wr . To the right is the change of training time over
dataset size.

Fig. 8. Evaluation of wr on U2PL with the comparison between supervised
(red) and semi-supervised (blue) training.

pre-condition did not hold true p > 0.05 (CI=95%). The test
reported p > 0.05 (CI=95%) when comparing DLO-WSL with
the other methods. Therefore, it is possible to conclude that the
usability of DLO-WSL is good and comparable to chroma-key
and RITM.

Regarding perceived effort, the score for chroma-key is
M=30.51%, SD=15.08, for DLO-WSL is M=29.74%,
SD=12.96, and for RITM is M=22.31%, SD=13.12. A Mann-
Whitney-U-Test is applied for statistical difference as long the
normality pre-condition did not hold true p > 0.05 (CI=95%).
The test reported p > 0.05 (CI=95%), therefore it is possible
to conclude that the workload perceived in using DLO-WSL is
comparable to the other methods.

Finally, to examine the performances of labeling, the av-
erage Intersection over Union (IoU) and IoU over the av-
erage Number of Clicks (NoC) for the dataset of 10 im-
ages are used. The results are shown in Fig. 6. To further
analyze the differences across the distributions, a pair-wise
Mann-Whitney-U-Test is conducted due to invalidity of the
homogeneity of variance pre-condition. The test reported
p < 0.05 (CI=95%) when comparing DLO-WSL with the
other methods. More precisely, IoU scores were M=91.68%,
SD=6.56, M=91.32%, SD=1.52, M=81.05%, SD=6.22 and
M=36.88%, SD=12.45 for chroma-key, RITM, DLO-WSL and
spline respectively. IoU/NoC scores were M=15.31%/clicks,
SD=1.09, M=6.54%, SD=2.78, M=3.16%/clicks, SD=2.05
and M=0.21%/clicks, SD=0.13 for chroma-key, DLO-WSL,
spline and RITM respectively. Thus, DLO-WSL obtains a good
average IoU while minimizing the number of clicks for uneven
backgrounds.

Fig. 9. Qualitative test set samples and predictions of DeepLabV3+ when
trained on 4 K synthetic images (S4), 8 K synthetic images (S8), a mix of 4 K
synthetic and 1 K real (S4 + R1, wr = 0.20) and a mix of 8 K synthetic and
1 K real (S8 + R1, wr = 0.11).

B. Mixing Synthetic and Real Samples for Training

The baseline deep learning models, datasets mixtures and
training pipelines outlined in Sec.III-D are employed to find
data regarding RQ2. As real-world test set, a set of 135 manually
labeled real images of electrical wires with varying diameters
is used from [3]. The IoU is employed as metric, with the
mask M corresponding respectively to the binary mask for the
semantic segmentation task and to the instance mask where each
DLO instance is denoted by a unique color for the instance
segmentation task. Additionally, in the latter case, the IoU score
is the average score across the instances composing one image.

V. DISCUSSIONS

A. DLO-WSL Perceived Usability and Performances

As shown from the results, the usability and the workload
of DLO-WSL are comparable with the state-of-the-art chroma-
key and RITM approaches. However, DLO-WSL enables users
to label more images with good average IoU while requiring
fewer clicks in uneven backgrounds as shown by the IoU/NOC
metric, thus lowering the overall effort and allowing us to reply
positively to RQ1.

Despite these results, DLO-WSL showed worse statistically
significant performance in the average IoU of the labels, however
still better than the spline approach. Therefore, some pitfalls
might have been in the CNN fine-tuning step proposed in our
method (see Section III-C3). To better evaluate its specific
performances, a synthetic test-set is generated. This set consisted
of 1000 randomly cropped image regions obtained according
to Section III-B where a random horizontal shift of the DLO
is introduced to simulate user error. Afterward, this set was
used to evaluate the CNN corrector by monitoring the offset
prediction error computed as δ = Op −Ogt, where Op is the
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offset predicted and Ogt is the ground truth. Out of this test, the
resulting error δ can be approximated by a normal distribution
with M=0.05 pixels, SD=1.57. Thus, considering that the test
DLOs have diameters in the range of 10-20 pixels wide, one
source of error resulting in a non optimal IoU is due to the not
perfect matching of the DLOs edges by the CNN fine-tuning.
Therefore, future work should address this issue and improve
the pixel-wise labeling of the DLOs around the contour of the
instances.

B. Mixing Synthetic and Real Samples

In Fig. 7 results of the semantic segmentation task employing
DeepLabV3+ as detailed in Section III-D are shown. From the
plot of Fig. 7(a), it is evident that the introduction of real images
helps in achieving higher accuracy in general. For instance,
employing a total of 5 K samples (4 K synthetic and 1 K real,
wr = 0.20) an IoU of M=82.83%, SD=0.54 is obtained com-
pared to M=74.97%, SD=2.78 for the 4 K synthetic only dataset
(statistically significant p < 0.05, CI = 95%). Similarly, when
employing 1 K real images on the 8 K synthetic dataset (wr =
0.11), an overall higher IoU of M=83.93%, SD=0.17 is reached
compared to M=81.60%, SD=0.42 for the 8 K synthetic only
dataset (statistically significant p < 0.05, CI = 95%). For com-
parison, an IoU score of 81.9% is obtained on the same test set
when employing the dataset from [2] for training. Concerning
Fig. 7(b), the training time shows a slight rise as wr increases,
as expected due to the growth of the overall dataset size.

In Fig. 9(a) qualitative analysis of the results from
DeepLabV3+ is performed. Visually, both synthetic and real
samples bring important benefits. The first ones permit an
accurate segmentation of the DLO thanks to the availability
of high-quality error-free ground truth labels. The latter ones
allow, during the training stages, to recover the DLOs texture
and appearance real information that are difficult to capture in
synthetic renderings. Indeed, in Fig. 9, the DLOs with complex
textures and lights are better handled once the real samples are
employed (e.g., yellow DLO sample 1, blue DLO sample 2).
The contribution of increasing the size of the synthetic dataset
is beneficial but less significant.

The evaluation of the segmentation and time performances
achieved by U2PL is instead shown in Fig. 8. Focusing on
Fig. 8(a) and comparing the scores for the same values of
wr, we can observe how the semi-supervised training brings
only very marginal benefits compared to the only synthetic
fully-supervised one. Instead, the utilization of labels obtained
exploiting DLO-WSL for the real samples boosts the IoU per-
formances by about 10% with the highest result for wr = 0.20.
The timings of Fig. 8(b) depict how the semi-supervised train-
ing approach is much slower due to the need of constructing
pseudo-labels at run-time.

Considering this we can then answer to RQ2 saying that for
DLOs trained with a mixture of real and synthetic data an optimal
value of wr = 0.2 seems to be beneficial. Additionally, we can
conclude that wr seems to not drastically change the training
time if differences between semi-supervised and supervised
training are not considered.

A similar analysis but in the context of the instance segmenta-
tion task is also addressed employing YOLACT as deep learning
model, see Section III-D. For instance, we obtained the mean
IoU scores of M=31.3% SD=1.07, M=33.2% SD=1.72 and
M=34.5% SD=1.73 for the 4 K only synthetic, 4K+1 K real

(wr = 0.20) and 4K+2 K real (wr = 0.33) datasets respectively.
Although the introduction of real samples, in particular the 2 K
split, increases the overall IoU score, statistical significance is
not found and future studies are needed concerning the instance
segmentation of DLOs.

VI. CONCLUSION

In this work, a method to create datasets composed of real-
world and synthetic data for DLOs perception has been pre-
sented. This method encompasses a weakly supervision to label
points by an operator via a VR tracker and a CNN-based method
to refine the input points and compute pixel-wise labels. Addi-
tionally, a synthetic DLOs data generator is proposed to render
photo-realistic images of DLOs. The weakly supervised labeling
method is gauged in terms of usability and quality of the labels,
whereas the generated datasets are evaluated in terms of the
impact of mixing real-world and synthetic data. The results show
that the VR tracker labeling is as usable as the chroma-key and
RITM but drastically reduces the number of necessary clicks for
uneven backgrounds. Moreover, the introduction of real samples
during the training of segmentation models helps in recovering
not modeled specific texture and appearance information boost-
ing the performance if the ratio between real-world data and
synthetic one is 0.2. Despite these results, we identified several
points that can be further studied in future work. In particular,
the proposed CNN fine-tuning approach to correct the noisy user
input could be improved in terms of annotation precision. In a
more general context, the instance segmentation of DLOs via
deep learning methods needs further investigation and analysis
to understand the pitfalls of current methods and develop new
techniques.

Ethics: Ethical review and approval are waived for this study
due to anonymized data collection which, in Bavaria, where the
study was conducted, does not need approval from an ethical
committee (https://ethikkommission.blaek.de/studien/sonstige-
studien/antragsunterlagen-ek-primarberatend-15-bo) (accessed
on 22 November 2022).
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