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Adoption of human–robot collaboration is hindered by barriers in collaborative

task design. A new approach for solving these problems is to empower operators

in the design of their tasks. However, how this approach may affect user welfare

or performance in industrial scenarios has not yet been studied. Therefore, in this

research, the results of an experiment designed to identify the influences of the

operator’s self-designed task on physical ergonomics and task performance are

presented. At first, a collaborative framework able to accept operator task

definition via parts’ locations and monitor the operator’s posture is presented.

Second, the framework is used to tailor a collaborative experience favoring

decision autonomy using the SHOP4CF architecture. Finally, the framework is

used to investigate how this personalization influences collaboration through a

user studywith untrained personnel onphysical ergonomics. The results from this

study are twofold. On one hand, a high degree of decision autonomy was felt by

the operators when they were allowed to allocate the parts. On the other hand,

high decision autonomy was not found to vary task efficiency nor the MSD risk

level. Therefore, this study emphasizes that allowing operators to choose the

position of the parts may help task acceptance and does not vary operators’

physical ergonomics or task efficiency. Unfortunately, the test was limited to

16 participants and themeasured risk level wasmedium. Therefore, this study also

stresses that operators should be allowed to choose their own work parameters,

but some guidelines should be followed to further reduce MSD risk levels.
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1 Introduction

Small-batch manufacturing is becoming increasingly important

for the competitive advantage of European factories, especially

within small and medium enterprises (SMEs) (Bayha et al.,

2020). Technologies proposed in Industry 4.0 (I4.0) can enable

economically feasible small-batch manufacturing (Rüßmann et al.,

2015). One of the promising technologies within I4.0 is

human–robot collaboration (HRC). In HRC, humans are

foreseen to collaborate with robots in a shared workspace to

achieve higher flexibility and throughput. However, their

introduction is still hampered by safety, interfaces, and design

(Villani et al., 2018). To address these problems, including the

human operator in the design via human-driven design paradigms

can be beneficial (Kaasinen et al., 2019). In such scenarios, the design

paradigms known as human-centered design (HCD) (Deutschen

Instituts für Normung, 2020) and value-sensitive design (VSD)

(Friedman, 1996) have helped to improve the usability of robotic

systems for novice operators (Coronado et al., 2021; Eiband et al.,

2022), reduce workload by using custom designed interfaces

(Pantano et al., 2020), or improve acceptance by changing the

appearance of humanoid robots (Kahn et al., 2007). However, to

achieve these results, design must aim to establish means of

communication that enable humans to build good mental

models of the application (Rook, 2013; Sofge, 2013; Hoff and

Bashir, 2015; Teo et al., 2018; Demir et al., 2019; Kolbeinsson

et al., 2019; Shahrdar et al., 2019). One recent example proving

the benefit of good mental models can be seen in the work of

(Tausch and Kluge, 2020). In this work, the authors found that

greater satisfaction in human–robot interaction can be achieved if

operators design their own sequence of tasks. However, no

investigation in industrial scenarios was performed in the study.

Therefore, there is a need for further research in this sector. By

looking at the adoption of HRC in industry, the applications which

could benefit the most from those design suggestions are the ones

known as cooperation and collaboration (Weiss et al., 2021). In these

modes, teammates (i.e., human and robot) perform tasks in a shared

workspace on different components or on the same components

(Bauer et al., 2016). If these modes are successfully implemented

through good mental models, several benefits can be achieved. One

of those is the improvement of the operators’ physical ergonomics

(Gualtieri et al., 2021). Therefore, the following section describes

how mental models were implemented when the physical

ergonomics of operators had to be taken into account in an

HRC application.

To consider the physical ergonomics of operators in

HRC, an assessment must be carried out. In the literature,

two assessment methodologies are available: simulation via

computer-aided engineering (CAE) and digital human

models (DHMs) (Sanchez-Lite et al., 2013; Baizid et al.,

2016; Mgbemena et al., 2020) or in situ process surveys

(Lidstone et al., 2021). In the case of CAE simulations, the

digital workcell, the digital task workflow, and the DHM

must be available (Gläser et al., 2016). This is often the case

when planning new automotive production lines (Ruiz

Castro et al., 2017; Zhu et al., 2019). Therefore, several

commercial tools are available in the market such as IPS

IMMA™
1 or Siemens Tecnomatix™

2. However, given the

complexity of such commercial systems, they cannot be

always applied in the context of SMEs, and the level of

freedom for the operator is rather limited (Ballestar et al.,

2020). In the case of in situ measurements, experts are

requested to monitor the task and provide evaluations.

This is often performed through the classification of

operator postures through observations (Namwongsa

et al., 2018). However, not surprisingly, this latter method

can be subject to errors due to the observational source

(Diego-Mas et al., 2017). Despite that, the in situ

measurement is more flexible and does not require

intensive digitization like the CAE method. Hence, the in

situ approach, with proper technologies for reducing errors,

has been widely adopted for estimating and improving

physical ergonomics in HRC. Rahal et al., 2020 proposed

a haptic control based on an inverse kinematics (IK) of the

human arm to derive user comfort and thus change the

control strategy. This strategy leads to lower muscular

loads of operators by considering a physical ergonomics

measurement in the algorithm. Shafti et al., 2019

presented a robot-assisted interaction that improves the

operator armload by controlling the robot arm positioning

in accordance with muscular and physical ergonomics

measurements. Their approach tunes the robot response

according to the physical ergonomics obtained through

computer vision (CV). Makrini et al., 2019 suggested that

human and robot task allocation based on physical

ergonomics can improve the overall working conditions of

the operators. Their result was based on a visual module for

estimating the operator position, but it was influenced by a

human posture tracking algorithm in sub-optimal operation.

A similar approach, but with an improved visual algorithm

based on OpenPose (Cao et al., 2017), can be used to derive

compliant robot motions that follow postures of different

1 http://www.fcc.chalmers.se/software/ips/ips-imma/

2 https://www.plm.automation.siemens.com/global/en/products/
manufacturing-planning/human-factors-ergonomics.html
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operators, thus reducing the operator joint torque

overloading (Kim et al., 2019).

The proposed in situ methodologies are mainly presenting

robot control algorithms which adapt to the human posture to

improve the physical ergonomics in the hand-over task.

Therefore, individuals cannot explicitly program the robot

behavior but should trust the robot control algorithm to

choose the most comfortable position. Although beneficial to

the user physical ergonomics, this could lead to rising feelings of

uncertainty which can influence team dynamics (Friedman et al.,

2000; Kolbeinsson et al., 2019; Tausch and Kluge, 2020).

Therefore, studies investigating the effect of individuals’

explicit decisions on task design in industrial scenarios are

missing. Thus, this work investigates if mental models based

on a self-designed task in an industrial scenario influence the

operator in terms of physical ergonomics and task performance.

To study these influences, we measure the level of physical

ergonomics in two experiments with different levels of task

autonomy and we formulate the following research hypotheses.

Hypothesis 1. (H1): The worker, through the ability to

explicitly define the location of objects to be manipulated, has

a high task decision autonomy.

Hypothesis 2. (H2): When the worker can explicitly define the

location of the objects and perceives more autonomy, the

physical ergonomics of the operator is better.

To test these research hypotheses, the work in this article is

structured as follows. In Section 2, the use case and the envisioned

novel control method based on an adaptive control architecture that

leaves the decision on where to place the parts to the operator are

described. In Section 3, the results of a user test with untrained

personnel on physical ergonomics data are presented. In Section 4,

the results considering the research hypotheses and possible factors

influencing the outcomes are discussed. Finally, in Section 5, the

conclusions along with future research directions are given.

2 Materials and methods

This section discusses the materials and methods used to test the

research hypotheses through experiments. First, the task and the

interaction envisioned for the experiments are described in Section 2.1.

Second, the methods to estimate the physical ergonomics are

described in Section 2.2. Third, Section 2.3 and Section 2.4

describe how the user could specify the location of the objects and

FIGURE 1
Graphical representation of the envisioned interaction. The task is composed of a teach-in phase and a collaboration phase. At first, the user
decides where the parts should be placed. Afterward, the collaboration unfolds with 5 sub-steps where the robot and the user have to share some
tasks. Step ➀ the robot moves the part to the insulating layer. Step ➁ the user places the distancers on the insulating layer. Step ➂ the robot moves
another insulating layer while the user moves away the paper sheet. Step➃ the robot moves the part while the user adjusts the insulating layer
stack. Step➄ the usermoves away the paper sheet. The actionsmarkedwith light green are taken over by the human operator. The actionsmarked in
pink are taken over by the robot.
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operate safely with the robot. Finally, Section 2.5 describes the

experiment and the procedure for gathering data from the user study.

2.1 Task description and envisioned
interaction

To efficiently produce parts that require sintering processes,

batch production is applied. Therefore, stacks composed of

several insulating layers and parts must be prepared before

thermal sintering (Verlee et al., 2012). However, due to the

fragility of some parts, this process is often performed

manually, resulting in production errors and strain for human

operators (Murrell, 1961; Hansen et al., 2003).

Tointegrat

Considering these values, and the limitations found in

SMEs where application of CAE modeling and robot offline

programming like in (Baizid et al., 2016) is limited, the

following twofold approach has been selected. A human

collaboration approach was chosen to alleviate operators’

efforts and CV to identify where the robot should pick up

parts and give operators the freedom to customize the task.

Therefore, the envisioned interaction was composed of two

parts. First, a teach-in phase where the user could exert

autonomy by placing parts at preferred location. Second,

the collaboration for fulfilling the task of stack creation.

The final task workflow is shown in Figure 1.

2.2 Posture evaluation

To investigate the influence of human decisions on

posture, an evaluation method was necessary. As pointed

out previously, an approach based solely on expert

observation can carry errors. Therefore, an approach based

on convolutional neural networks (CNNs) and CV was

FIGURE 2
Example for the evaluation of the operator angles using front and side views. The view from the front is necessary to get information about the
upper limbs, and the view from the side is necessary to get information about lower limbs and trunk position. The calculation of the angles is
performed between adjacent limbs (A). In case no adjacent limbs were present, a reference line had to be selected to create a fictitious line for the
calculation (B).

TABLE 1 Key points used for the RULA evaluation using the side view. The first column specifieswhich RULA criteria is considered. The second column
explains which key points from the OpenPose output were considered for the angle calculation. Finally, the last column identifies which
reference line was taken to create the fictitious line in case the relevant key points were not adjacent.

RULA criteria Relevant key points of
limbs

Reference line

Upper arm position Shoulder—elbow Trunk

Shoulder raise Neck—shoulder Trunk

Lower arm position Elbow—wrist Trunk

Wrist position Wrist—palm Elbow—wrist

Neck position Neck—ear Trunk

Trunk position Trunk Perpendicular line to the ground

Frontiers in Robotics and AI frontiersin.org04

Pantano et al. 10.3389/frobt.2022.943261

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org
https://doi.org/10.3389/frobt.2022.943261


selected. The method was integrated via the pretrained limb

detection algorithm OpenPose (Cao et al., 2017) and a

calculation library for joint angles. These two tools were

used to evaluate the operator’s distances to the workspace

and the exposure to ergonomic risk factors related to

musculoskeletal disorders (MSDs) following the Rapid

Upper Limb Assessment (RULA) method (McAtamney and

Nigel Corlett, 1993), due its better performance in calculating

risks ranging from low to high (Yazdanirad et al., 2018).

To implement the RULA calculation, a similar approach to the

one used by (Makrini et al., 2019) was used. Therefore, the operators

were monitored from two points of view via different cameras, one

for recording information of the upper limbs (front) and one for the

lower limbs (side). Afterward, the views were synchronized, and all

relevant limb positions were extracted and evaluated as shown in

Figure 2.More precisely, to calculate RULA relevant angles, the limb

end points according to Table 1 were used and angles were

calculated using Eq. 1 (nomenclature refers to labels in Figure 2;

the numerator is the dot product of the two vectors representing two

adjacent limbs and the denominator is the multiplication of the

lengths of the two limb vectors).

θ � cos−1
�a · �b

‖ �a‖‖ �b‖ (1)

Finally, the physical ergonomics score was calculated

according to the RULA criteria using lookup tables to

convert the quantitative limb angle information into the

ordinal data needed for RULA (this conversion assumed that

a constant load under 0.5 kg and non-repetitive actions due to

the task structure were present). More precisely, the angles

calculated using Eq. 1 were used to give intermediate risk levels

for all the different limbs (e.g., upper arm). Then, the

intermediate risk levels were used to define target rows and

columns in the RULA tables. Finally, the cell identified by the

row and column gave the final MSD risk level. For the sake of

clarity, an example is presented here. The example is composed

of two steps following the RULA evaluation. On one side, there

is an intermediate MSD risk level for the wrist and arm, and on

the other side, there is an intermediate MSD risk level for the

neck, trunk, and legs. First, if the upper arm had an angle

between +20+ and -20+, the lower arm was bent for more than

100+, and the wrist was parallel to the ground and without

twisting, an intermediate limb risk level equivalent to 1, 2, 1,

and 1 was obtained. Therefore, this yielded an intermediate risk

level of 2 for the wrist arm. Second, if the neck and trunk were

straight and the legs were supported, an intermediate limb risk

level equivalent to 1, 1, and 1 was obtained. Therefore, this

yielded an intermediate risk level of 3 for the neck, trunk, and

legs. Finally, by combining the results of the first and second

steps, the final MSD risk level was obtained by looking at the

second row and third column of the RULA evaluation table3,

which, in this case, results in a final MSD risk level of 3.

In addition to the main RULA assessment, the posture

assessment was supplemented with a measurement of the

distance between the robot’s work area and the operator to

get an overview of work area utilization. Therefore, another

CV method was applied. The pipeline was as follows. Initially,

the output from OpenPose was taken, and the front view was

selected to calculate the average operator distance using shoulder

and hip positions with the L2 norm as show in Eq. 2.

avgPos �
����������������������
shoulderPose2 + hipPose22

√
(2)

Afterward, the boundary between the working areas (table

edge) was identified. Finally, the distance between the boundary

FIGURE 3
Coordinate transform problem. For the robot to be able to
handle the parts, the transformations marked with �P

C

1 ,
�P
C

2 ,
�P
R

1 ,
�P
R

2 ,
and r �Tc are needed. The first two points ( �P

C

1 ,
�P
C

2 ), marked in green
in the figure, define the position of the parts in the camera
coordinate system, and they are obtained through a CNN
algorithm. The second two ( �P

R

1 ,
�P
R

2 ), marked in pink in the figure,
define the position of the parts in the robot coordinate system, and
their position is necessary for the robot to handle the parts. To get
this last information, the transformation between the robot and
camera (r �Tc), marked in orange above, was obtained via the
Perspective-n-Point algorithm (Lepetit et al., 2009).

3 https://ergo-plus.com/wp-content/uploads/RULA.pdf
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and the operator was calculated using the L2 norm, and an

average value was calculated using Eq. 3.

avgDist � ∑N
i�0

�����������������������
boundaryPose2i + avgPose2i

2
√

N
(3)

To perform these evaluations during the experiment, the

information was processed using a script written in Python and

run on a Linux computer that had access to camera video streams

and robot status using the robot operating system (ROS)

middleware. The source code for performing these evaluations

has been made available4.

2.3 Adaptive robot control architecture

To achieve a level of robot control which could be easily adapted to

the requirements of the operator, a distributed cyber-physical system

had to be conceived. The system consisted of four main parts: an

application controller, a manipulator trajectory planner and executor,

an object detector, and a low-level end-effector controller. The

requirements for this structure were determined by the necessity of

handling objects placed at user-defined locations. Therefore, capability

for adaptation had to be considered. In this case, flexibility was

integrated through a parametrizable solution of the robot IK via

target coordinate frames. For the sake of clarity, the problem is shown

in Figure 3. The pipeline to solve the IK started from the object

detector, which initially analyzed the images and identified the

different objects via an appropriately trained CNN (Redmon et al.,

2015). Afterward, the identified objects’ pixel coordinates were

transformed to the camera coordinate system by knowing the

camera intrinsic parameters and assuming a pinhole camera model.

This was achieved using Eq. 4 (ui, vi are the pixel coordinates of the

identified projected object, cx, cy are the coordinates of the principal

point of the camera frame in the image center, andfx,fy are the focal

lengths of the camera expressed in pixels).

PC
i � ⎡⎣ (ui − cx)

fx

(vi − cy)
fy

1 1 ⎤⎦,∀i (4)

Next, having the coordinates of the object in the camera

coordinate system, the coordinates in the robot coordinate

system were needed. To obtain those, the homogeneous

transformation matrix between the camera and robot frame

(r �Tc in Figure 3) was calculated through the Perspective-n-

Point algorithm (Lepetit et al., 2009) was obtained via a

camera calibration routine5. The obtained transformation is

expressed by Eq. 5 (N is the number of singular values

obtained from different camera poses, βi are initial

coefficients, and vi are the right singular vectors).

r �Tc �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ∑N

i�1βivi (5)

Finally, point-to-point trajectories were generated

for reaching the target positions calculated through Eq. 6 by

solving the robot’s IK problem (s is the scaling factor dependent

on the camera, and xR
i , y

R
i , z

R
i are the coordinates of the objects

in the robot coordinate frame).

PR
i �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
xR
i

yR
i

zRi
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � r �TcpPC
i ps,∀i (6)

2.4 Cyber-physical system
implementation

To ensure a safe collaboration between the robot and the

operator, the implemented cyber-physical system had to

consider the current safety regulations. Hence, the ISO/TS

15066 (International Organization for Standardization,

2016) and the ISO 12100 (International Organization for

Standardization, 2010) were followed. Therefore, the safety

modality known as power and force limiting (PFL) was

selected to reduce the risks identified by the hazard

analysis conducted according to ISO 12100 (2010). For

allowing the implementation of the modalities, a safe

Programmable Logic Controller (PLC) Siemens® S7-1500

together with a Sick® microScan3 were used with a

network topology as shown in Figure 4. Moreover, to

consent to the integration of PFL, a robot with ISO10218-

1 (International Organization for Standardization, 2011)

certification had to be selected, in this case, a Universal

Robot® UR10 was used. Finally, to complete the

integration of PFL, a custom gripper for the needs of the

use case was developed and collision tests were performed to

determine a safe operating speed as proposed by (Pantano

et al., 2021). The final workcell with the implemented

features is shown in Figure 5.

To coordinate the collaboration and consent the

transferring of information, the SHOP4CF6 architecture

was adopted to design and execute the scenario

(Zimniewicz, 2020). More precisely, the Task data model7

4 https://github.com/matteopantano/human-ergonomic-module

5 https://ros-planning.github.io/moveit_tutorials/doc/hand_eye_
calibration/hand_eye_calibration_tutorial.html

6 https://shop4cf.eu/

7 https://github.com/SHOP4CF/data-models
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and the Manufacturing Process Management System

(MPMS) component (Erasmus et al., 2020) were employed

to coordinate the robot controller and the operator. On

one hand, the MPMS provided a process modeler to

design the process models and a process engine to

automatically execute these models. On the other hand,

the Tasks were published and monitored in a shared

Context Broker (CB), allowing the robot controller to

receive triggers on when to perform actions and send to

the MPMS Human Machine Interface (HMI) triggers on

operator actions. The sequence diagram depicting the

interaction among these components is shown in Figure 6.

By adopting this architecture, it was possible to integrate

operator inputs while ensuring safety and coordination with

cyber-physical system components.

2.5 Experiment design

To test the hypotheses, an experiment following the

SHOP4CF guidelines for user studies was created (Aromaa

and Heikkilä, 2020). The study was designed to compare

interactions between a priori defined parts’ positions and

operator-defined parts’ positions. Therefore, a 2 × 2 mixed

design with two subsequent balanced randomized user

interactions was used. Through this design, two variables

were manipulated: the positioning of the parts (user defined

vs. a priori defined) and the degree of familiarity with the

application (first interaction vs. second interaction). To

distinguish across the experiments, the following

abbreviations are used: std for the test with a priori part

positioning and usr for the test with operator-defined part

FIGURE 4
Network topology. The connections within the cyber-physical system allowed the implementation of speed and separation monitoring (SSM)
and other risk reductionmeasures. The implemented hardware was Siemens

®
S7-1500, Sick

®
microScan3, Universal Robot

®
UR10, Siemens

®
Unified

Control Panel, and an ethernet camera to get the images of the part displacement. Moreover, to control the different systems, the SHOP4CF
architecture was adopted, employing the Manufacturing Process Management System (MPMS) component and the Task data model.

FIGURE 5
Implemented cyber-physical system and the gripper. The cyber-physical system is an ensemble of safety devices to guarantee safe cooperation
and actuators for handling the parts of the use case. The robot is placed on one side of the table and the user had to stand in front of it to have a clear
view of the robot motions (A). Moreover, the laser scanner was placed in front of the table so that it could promptly measure the presence of
operators in the workspace and drive the robot to a slower operating speed. The specially designed gripper tested for safe human–robot
collaboration was made using 3D printing and implemented mechanical principles which allowed grasping of the components in the use case (B).
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positioning, and Interaction I for the first interaction and

Interaction II for the second interaction.

With this design, the experiment procedure carried out by

the authors was as follows; nomenclature and visual

representation are shown in Figure 7. Initially, between

times t0 and t1, the users were presented with the robotic

cell, and a short explanation of the robot’s safety was given.

Afterward, a script describing the human–robot interaction

was read, and a video describing the collaboration in the

experiment was presented. Then, at time t1, informed

consent and general user demographics, technology fitness

and level of trust in automation (Jian et al., 2000) were

collected. Second, between t1 and t2, Interaction I was

performed. During the interaction, the position of the

operator was monitored and evaluated as outlined in

Section 2.2 for identifying data regarding H2. This second

part concluded at t2 with the user replying to the section of the

work design questionnaire (WDQ) (Morgeson and

Humphrey, 2006) related to task autonomy for properly

identifying data for H1. Finally, between t2 and t3,

Interaction II was performed, and similarly to Interaction I,

the position of the operator was monitored. The experiment

concluded at t3 with the user replying to the section of the

WDQ related to task autonomy.

FIGURE 6
Sequence diagram for the interaction of the different technological components. The user could execute the task through the MPMS interface.
Afterward, theMPMS is taking care of publishing andmonitoring the tasks in the FIWARE context broker for either the operator or the robot controller
(ROBOT CTRL.). The same is done by the robot controller which waits for triggers on when to execute certain actions. This included moving the
robot, gathering position data from the camera, and controlling the gripper.

FIGURE 7
Experiment structure. Between t0 and t1, the user was presented with the robot cell and the experiment was explained. Afterward, at t1, the trust
level wasmeasured alongwith user demographics and informed consent. Between t1 and t2, the user was then performing the first interaction, which
ended at t2 with the WDQ. Then, between t2 and t3, the user was performing the second interaction, which ended at t3 with the WDQ.
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3 Results

This section reports the results collected during the study.

The analysis has been conducted on the collected datasets during

the experiments. Some of the datasets are made available in the

Supplementary Materials of this article.

3.1 User demographics

The user group taking part in the study was composed of

17 individuals, not trained in physical ergonomics, M age =

33.05 years SD = 12.89, M height = 180.11 cm SD = 9.26.

Within this group, the technology fitness measured in

average hours per week spent with electronic devices was

M = 31.15 h, (SD = 8.38), and the group expressed an average

trust in automation of M = 4.87 (SD = 1.02) on a scale from

1 to 7. Out of the 17 test subjects, the task was

performed correctly by 16 participants. Therefore, one test

was discarded.

3.2 Task autonomy

To measure the task autonomy, the WDQ criteria were as

follows: Criteria 1 (“The system gives me a chance to use my

personal initiative or judgment in carrying out the work”) and

Criteria 2 (“The system provides me with significant autonomy in

making decisions”). The responses to these criteria were monitored

after each trial, and the results are shown in Figure 8. It is possible to

denote that Criteria 1 and Criteria 2 have different ratings; moreover,

the usr shows a higher rating. Therefore, aMann–WhitneyU test was

performed after having identified that the homogeneity of variance

assumption for the t-test did not hold true, and the Levene test

reported p < 0.05 (CI = 95%). From these results, it is possible to see

that p < 0.05 (CI = 95%) for both Criteria 1 and Criteria 2. Therefore,

a statistically significant difference among std and usr responses for

the criteria is found, and the usr scored better than std.

3.3 Operators’ posture

To measure the operators’ posture, the RULA assessment

was monitored. As long as the RULA assessment was calculated

for each frame in each test, the average MSD risk level was used

to analyze the change between std and usr. The calculated risk

levels among the trials are shown in Figure 9. Looking at the

figure it is possible to see that there are similar risk levels among

FIGURE 8
Histogram plots showing the outcomes to the WDQ evaluation collected in the Criteria 1 (A) and the Criteria 2 (B). In blue, the USR interaction,
and in pink, the STD interaction. The figures show that both criteria received a better rating in the case of the USR interaction.

FIGURE 9
Histogram plot representing MSD risk levels for the two tests
calculated through the RULA assessment, the USR in blue and the
STD in pink. The figure shows that the STD interaction had a larger
number of samples classified with the risk level 6 when
compared to the USR interaction. Moreover, the USR interaction
reported more samples with risk level 7.
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usr and the std. To check any similarity among the two

distributions, a Mann–Whitney U test was performed after

having identified that the homogeneity of variance assumption

for the t-test did not hold true, and the Levene test reported p <
0.05 (CI = 95%). The outcome of the Mann–Whitney U test was

p > 0.05 (CI = 95%); therefore, a significant difference between

the MSD risk level in std and usr is not found. Therefore, the

hypothesis of statistically significant difference must be

rejected, and the samples should be considered to have a

similar distribution.

Furthermore, tomeasure the usage of the workspace during the

experiment, the distance between the robot workspace and

operator position was used. As long as the distance was

calculated for each frame, the average value was monitored. The

measured distance among the trials is shown in Figure 10. Looking

at the figure, it is possible to detect similar distances in usr and std.

A Mann–Whitney U test was performed after having identified

that the homogeneity of variance assumption for the t-test did not

hold true, and the Levene test reported p < 0.05 (CI = 95%). The

outcome of the Mann–Whitney U was p < 0.05 (CI = 95%);

therefore, a statistically significant difference between the samples

is found. Since the distance in stdM=275.05 cm, SD= 46.88 and in

usr M = 277. cm, SD = 44.75, the distance in usr is found to be

larger than the one in std.

3.4 Robot performances

To measure the performance of the task, the time taken for

completing the collaboration was monitored. The times taken are

shown in Figure 11. The figure shows that usr completion times are

bigger than std completion times. To prove this assumption, a

Mann–Whitney U test was performed after having identified that

the homogeneity of variance assumption for the t-test did not hold

true, and the Levene test reported p < 0.05 (CI = 95%). The result of

the test led to p > 0.05 (CI = 95%). Therefore, the hypothesis of

statistically significant difference must be rejected, and the samples

should be considered to have a similar distribution.

4 Discussion

4.1 Task autonomy

The responses to the WDQ criteria highlighted that

leaving operators to decide where to place the parts can

lead to higher task decision autonomy. Therefore, we can

conclude that allowing this decision can create a good mental

model for task autonomy and H1 can be accepted. This is

aligned with what (Tausch and Kluge, 2020) discovered in

their review of performing user tests without real robots.

Consequently, we can infer that leaving the decision to the

operator on robot tasks is beneficial to the perceived

autonomy from the operator.

4.2 Posture of the operators during the
tests

The results of the analysis of the operators’ postures show

that the level of MSD risk in usr is slightly higher, Δ = +0.05,

FIGURE 10
Boxplots representing the distances for the two tests, the
means in green and the medians in orange. The means and
medians between the two interactions are similar. However, the
STD interaction displays a slightly smaller mean, meaning that
on average, the users were closer to the robot workspace in the
STD interaction.

FIGURE 11
Boxplots representing the time necessary to complete the
whole test, the means in green and the medians in orange. The
figure displays that the time to complete the activity with STD
interaction was shorter than that of USR.
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and this is not statistically significant. This outcome is against

the hypothesis that higher autonomy should lead to lower

level of MSD risk. Therefore, H2 needs to be rejected.

However, no statistical significance was found between the

tests, thus suggesting that operators’ decisions did not

influence the MSD risk level. Despite this, the risk level

measured in both the tests is medium according to the

RULA assessment (McAtamney and Nigel Corlett, 1993).

To further investigate the results of the RULA ergonomic

assessment and identify any shortcomings, an experiment was

performed to compare the calculated MSD risk level values with a

ground truth. To do so, the angular values of the main arm joints

calculated using the method explained in Section 2.2 were

compared with the angular values of an arm simulation model

developed in Matlab™. To achieve this comparison, a positional

tracking experiment was performed. An operator was placed in

front of the cameras and, holding the tracker on the hand,

performed different arm positions. Afterward, the dataset was

used to simulate the arm angular values through an IK algorithm,

and the results were compared with the angles calculated using the

method outlined in this work. The comparisons are reported in

Figure 12. Although differences exist in the values, the trend

between the two measurements is similar. Considering both

that RULA uses the thresholds of 20° and 45° for the upper

arm and that the relative difference between the two tests was

measured, we can consider the evaluation through our method

good enough for the estimation of the risk levels as also identified

by (Kim et al., 2019), thus eliminating the hypothesis of a wrongly

performed ergonomic assessment. Consequently, we can conclude

that leaving the decision of where tomove the parts to the operator

does not result in an increased level of MSD risk in situations

similar to the experiment conducted.

In addition, the results showed that operators in usr kept a

larger distance from the robot than those in std. Therefore, this

suggests that operators learn the robot’s behavior better (the

further away, the faster) when they had higher task autonomy.

Unfortunately, this did not reflect in different completion times as

shown in Section 3.4. Therefore, further studies are necessary to

investigate why users did not move farther away from the robot.

4.3 Robot performances

The tests showed that std led to lower competition times than

usr. However, this difference was not found to have a strong

impact due to the non-statistical significance (p > 0.05). Therefore,

further tests should be conducted to investigate the matter.

4.4 Influences of task familiarity on the
interaction

For further investigating if the autonomy had additional

implications with other factors in the experiments, a

correlation analysis using the Pearson correlation coefficient

was conducted on the available measures for the two groups.

FIGURE 12
Comparison between the OpenPose angular values and the IK ones for the upper arm. Although differences exist, if the threshold values of the
RULA assessment are considered (20° and 45°), the trend between the two evaluations is comparable. Therefore, the final MSD risk level calculated
with the two approaches can be considered similar.
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TABLE 2 Correlation analysis among the metrics gathered during the experiment for the group which performed the std as Interaction I calculated
with the Pearson correlation coefficient. Themeaningful correlations (p < 0.05) are highlighted in bold. The following abbreviations are used: Dist.
is used for Distance, Erg. for physical ergonomics, and Aut. for autonomy

M SD Trust
scale

Tech.
fitness

Dist.
std

Dist.
usr

Erg.
std

Erg.
usr

Time
std

Time
usr

Aut.
std

Aut.
usr

1 Trust
scale

5.00 1.19 -

2 Tech.
fitness

34.0 6.21 0.50 -

3 Dist.
std

295.22 35.49 0.24 0.12 -

4 Dist.
usr

276.06 38.05 −0.27 -0.23 0.66 -

5 Erg.
std

5.57 0.60 0.04 0.03 -0.22 −0.35 -

6 Erg.
usr

5.69 0.54 −0.30 -0.39 0.70 −0.60 0.59 -

7 Time
std

129.13 17.63 −0.64 -0.15 −0.76 −0.37 -0.16 0.53 -

8 Time
usr

123.50 23.29 −0.15 -0.08 -0.68 −0.80 0.52 0.86 0.59 -

9 Aut.
std

2.75 1.06 −0.11 −0.03 −0.11 −0.12 0.49 0.02 -0.17 0.29 -

10 Aut.
usr

3.50 0.72 0.21 0.32 0.29 0.01 0.02 −0.36 −0.38 −0.05 0.70 -

TABLE 3 Correlation analysis among the metrics gathered during the experiment for the group which performed the usr as Interaction I calculated
with the Pearson correlation coefficient. Themeaningful correlations (p < 0.05) are highlighted in bold. The following abbreviations are used: Dist.
is used for Distance, Erg. for physical ergonomics, and Aut. for autonomy. For the sake of readability, the usr and std rows have been swapped
compared to Table 2 to show differences between interaction I (usr) and interaction II (std).

M SD Trust
scale

Tech.
fitness

Dist.
usr

Dist.
std

Erg.
usr

Erg.
std

Time
usr

Time
std

Aut.
usr

Aut.
std

1 Trust
scale

4.75 0.88 -

2 Tech.
fitness

28.31 9.67 0.40 -

3 Dist.
usr

276.42 50.39 −0.22 0.09 -

4 Dist.
std

254.30 47.41 −0.21 0.52 0.82 -

5 Erg.
usr

5.92 0.70 −0.35 −0.15 −0.04 −0.11 -

6 Erg.
std

5.83 0.52 −0.25 −0.26 −0.32 0.06 0.09 -

7 Time
usr

127.63 20.80 −0.08 −0.02 −0.31 −0.67 −0.62 0.30 -

8 Time
std

118.00 16.10 −0.23 −0.54 −0.64 −0.78 0.07 0.23 0.66 -

9 Aut.
usr

4.41 0.44 0.02 −0.05 0.37 0.28 −0.22 0.13 −0.21 0.11 -

10 Aut.
std

3.91 0.88 −0.08 −0.25 0.12 0.16 −0.05 0.40 0.15 0.13 0.60 -
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The results for the group which performed std as Interaction I are

depicted in Table 2. The results for the group which performed

usr as Interaction I are depicted in Table 3.

When looking for similarities across the two groups, the

following can be noted. In both cases, the average distance

from operator to robot workspace always decreased in the

second interaction (see averages of Dist. std and Dist. usr in

Tables 2, 3). Similarly, in both cases, the average time to

complete the task decreased in the second interaction (see averages

of Time std and Time usr in Tables 2, 3). This is related to the fact

that error-free robot interaction, which, in this case, is always

Interaction II, leads to a better acquaintance and familiarity, as also

identified by (Miller et al., 2021). Another important factor is the

time taken to complete the task. In both scenarios, the time was

negatively correlated with the distance kept by the operator when

the std unfolded. This means that the users correctly learned the

robot safety strategy, which adopted slower speeds when they were

closer, only when the stdwas active, therefore suggesting a need for

the users to interact with a standard configuration at first before

allowing the operator to customize its own interaction for learning

the safety operation modality. Last, the MSD risk level is

always slightly higher in the case of usr being active

independently on the interaction order, as also shown in

Section 3.3.

Then, when looking for differences across the groups, the

following can be identified. First, in usr as Interaction I (Table 3),

the distance kept by the operator in Interaction I (usr) is positively

correlated with the distance kept in Interaction II (std); this

indicates that the distance kept in the first interaction has

influenced the second interaction. This might be connected to

the higher feeling of task autonomy given by the location selection

in the first collaboration instance. Second, in std as Interaction I

(Table 2), the MSD risk level in Interaction II (usr) is positively

correlated with the time elapsed in the Interaction II (usr),

meaning the more time, the worse the MSD risk level.

Moreover, the distance in the Interaction II (usr) is

negatively correlated with the time taken. Considering these

two points, it is possible to note a connection between the table

distance, the time, and the level of MSD risk. This can, on one

hand, be connected to the programming of the robot where the

closer the users, the slower the robot, as identified in the

paragraph before. On the other hand, we see that a closer

distance to the table might have led to uncomfortable positions

for the users, which prolonged the time in usr, thus leading to

an overall worse scoring of the physical ergonomics in usr.

This is similar to what was discovered by (Kar et al., 2015),

where faster movements led to lower operator risk. However,

this held true in just one scenario, and the overall analysis

yielded that operators in usr were, on average, farther away, as

shown in Section 3.3. Therefore, further tests will be necessary

to investigate this last finding, also considering that no

statistical significance was found on the difference of

competition times between std and usr.

4.5 Study limitations

During the study, some limitations were observed. In this

section, the two main drawbacks are explained.

The experiment script read to the test participants contained a

detailed step-by-step description of the experiment in the following

order. First, how std worked. Second, how usr worked and how the

parts’ positioningmight influence the user. Finally, how the robot was

programmed (i.e., the closer, the slower). Therefore, no other goals

other than completing the activity were assigned to users. During the

tests, this resulted in a high variability on the part displacement. Some

users placed the parts closer to the robot and some users placed them

farther away from the robot. The authors always asked in an open-

ended question why that was the case and some of the answers

were as follows: “I placed the part closer to the robot so I can be

faster although this leads to a bad position for me” or “I placed

the parts closer to me so I can handle them better” or “I like the

parts in the center of the table, and they are easy to handle.”

Considering these observations, it is possible to denote that

not having a clear objective on what to optimize for (i.e., robot

speed, safety, or physical ergonomics) was having some degree

of impact. Therefore, users had the choice to select randomly

what to optimize for, and this was probably influenced by

different individuals’ backgrounds, as already identified by

(Miller et al., 2021). This might have led to the unexpected

results observed in this study like the increase in the time

necessary to complete the task with usr. Therefore, the results

of this study should be considered only in situations where the

users are requested to accomplish a pick-and-place task

without any clear objective on what to focus apart from

completing the activity.

Aside from this, it is important to underline that the

employed methodology for the calculation of the MSD risk

levels was the RULA assessment, through a software pipeline

which analyzed images. The software pipeline has been

developed by the authors and despite proving to be accurate,

as described in Section 4.2, some limitations might still be present

due to the CV approach based on OpenPose. Other literature

using the same approach as the study by (Kim et al., 2021)

reported that the approach could be affected by the placement

and resolution of the cameras. Despite this, considering that the

same software pipeline has been used both for usr and std, the

delta differences in the physical ergonomics between the two

groups should still be valid.

5 Conclusion

In this work, a study to investigate the influence of task

autonomy on operator physical ergonomics and robot

performances in industrial human–robot collaboration via a

user study has been presented. The results yielded that higher

task autonomy can be achieved by letting an operator decide
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the position of handled parts, and this does not lead to

statistically significant differences in the overall task

efficiency, nor an increase in the MSD risk level. However,

this result might have been influenced by two drawbacks in the

experiment design. First, it was observed that a clear objective

for the task was not communicated to the participants.

Therefore, users might have optimized for different aspects

(e.g., posture or speed), leading to the observed results.

Second, the estimation of the MSD risk level based on

RULA might have been affected by the camera resolution

of the camera displacements as identified by previous

literature. Therefore, the measured risk level might not

have been correct. Despite these limitations, this study

highlighted that robotic systems able to let the operators

decide about some task parameters like the parts’

positioning can be beneficial and that the SHOP4CF

architecture allows us to integrate such scenarios. However,

proper consideration should be taken to understand how users

decide for certain application aspects, and further research is

needed to ensure user wellbeing on this aspect. Therefore, with

the published open-source software and dataset for the

physical ergonomics, the authors would like to encourage

other researchers to further study on the topic.
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