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Many error sources influence the calibration experiment of 4-quadrant sun sensors, making the calibration 
of sun sensors cumbersome and its accuracy difficult to improve. Any continuous function on a bounded 
closed set can be approximated by a deep neural network. This paper uses the deep neural network model 
to approximate the error model. The data-driven training network is adopted to continuously modify the 
model parameters to fit the error compensation model and ensure that the accuracy reaches the target 
requirements after calibration. Considering that the deep neural network model needs a considerable 
amount of data, the neural network model training is divided in 2 stages. In the preliminary stage, cubic 
surface fitting is used to generate a dataset, which is small in size and controllable. After the completion of 
the initial training, the experimental data are used to fine-tune the model to achieve error compensation. 
The accuracy can be improved from 1° (1σ) to 0.1° (1σ) after the incident angle of the sun sensor is 
corrected. The error compensation model eliminates the loss of accuracy caused by the distortion of 
light spots at the edge of the field angle and provides a favorable condition for the expansion of the field 
angle of the 4-quadrant analog sun sensor.

Introduction

A spacecraft can estimate the attitude state by comparing exter­
nal measurements from attitude sensors with reference infor­
mation. Attitude sensors include Earth sensors, magnetometers, 
sun sensors, star sensors, etc. With the development of CubeSat 
technology, sun sensors have played an important part in the 
CubeSat attitude control system.

Sun sensors, which obtain the attitude information by mea­
suring the sun vector, can be divided into analog and digital 
sensors. Digital sun sensors generally use changed couple device 
or charge-coupled device as photosensitive components, with 
accuracy up to 1″. A 4-quadrant detector or position-sensitive 
device is used in most analog sun sensors, with an accuracy of 
0.15 to 2° [1,2]. Compared with digital sun sensors, analog sun 
sensors generally have lower accuracy, but have simpler struc­
ture and logic, and have advantages in volume, weight, power 
consumption, and cost [3,4]. CubeSats tend to use analog sun 
sensors because of the limitation of satellite volume and pay­
load. The 4-quadrant analog solar sensor has the advantages 
of extremely low power consumption, minimal volume, low 
complexity, low cost, and high reliability. Various types of sun 
sensors have been developed and used in satellite missions 
[5–11].

Researchers have done a lot of analytical modeling work for 
4-quadrant analog sun sensors. The Northwestern Polytechnical 
University [12] and the Delft University of Technology in the 
Netherlands jointly developed the low-cost micro wireless auto­
matic sun sensor. The sensor implements a 4-quadrant detector 
as a photosensitive component and has an accuracy of up to 

0.5° (1σ), achieved using a 5-order surface fitting equation to 
calibrate the sensor. However, the calibration experiment only 
uses the horizontal and vertical points of the photosensitive 
surface of the solar sensor, without considering assembly errors 
and spot distortions. Yousefian et al. [13] report the design, 
fabrication, and error analysis of a sun sensor array composed 
of 6 photodiodes. The sensor estimates the direction of the sun 
using a linear least-squares method. The performance of the 
sensor is deteriorated by 3 major sources: fabrication errors, 
scattered environmental light, and inexact modeling of photo­
diodes. Using a calibration procedure and modeling the uni­
form component of the environmental light, it is possible to 
mitigate the first 2 errors and importantly reduce the root mean 
square error from 2.63° to 0.83°. The calibration method in­
volves many error models and requires accurate modeling of a 
photodiode.

Wang et al. [14] aim to measure errors introduced by assem­
bly deviation. The main error sources (center offset, rotation 
and tilt between the aperture and silicon cell, and inclination 
of the optoelectronic component) are analyzed quantitatively, 
providing the basis for improving the accuracy of the sun sen­
sor. However, the machining error is not analyzed, and the 
complete compensation method and process are not shown. 
On the basis of numerical simulation, Xu et al. [15] established 
and analyzed the influence model of the unconformity in the 
responsivity of each cell quadrant and the voltage conversion, 
amplifier, analog-to-digital conversion, and dark current for 
each quadrant photocurrent. The calibration and compensation 
of such error sources were proposed, leading to an improve­
ment of the measuring accuracy of the sun sensor from 2.05° 
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(α axis, 3σ) and 1.94° (β axis, 3σ). However, this method adopts 
an experimental measurement method in each link of the test 
process, which requires high precision of the equipment.

Deng et al. [16] proposed a high-precision error compen­
sation method for the 4-quadrant analog sun sensor to improve 
the accuracy of the micro-nano satellite attitude determination 
system. The average accuracy before compensation was 3.072° 
(1σ) within ±40° of the incident angle, and the average accuracy 
was 0.177° (1σ) after compensation. However, this calibration 
scheme introduces a considerable number of parameters and 
has too many kinds of errors to be considered. Adnane et al. 
[17] present a novel geometry, called 3D shape, of a sun sensor 
array that contains 3 structures: pyramidal structure in the top, 
cube structure in the middle, and inverted pyramidal structure 
in the bottom. The structure aims to increase the field of view 
(FOV) of the sun sensor by selecting an appropriate tilt angle 
for the ambient light sensors. This design improves the sun 
sensor FOV but does not significantly improve its measurement 
accuracy. Porras Hermoso et al. [18] propose a methodology 
that allows the calibration and determination of the expected 
performance of photodiodes in the direct polarization zone for 
any light spectrum without requiring any specialized equip­
ment. However, this method is used to calibrate the specific 
response curve of photodiodes. The author does not show the 
measurement accuracy analysis of the sun sensor.

In recent years, artificial intelligence methods, typically rep­
resented by deep learning, are widely used in the aerospace 
field. Deep learning provides new ideas for solving traditional 
aerospace problems [19–21]. The various error sources affect­
ing the calibration of the 4-quadrant sun sensor lead to a com­
plicated process of compensation model establishment. This 
paper presents the application of the deep neural network 
model to fit and approximate the error model of the sun sensor. 
The data-driven method is adopted to approximate the error 
compensation model. A deep neural network is a feedforward 
network with many hidden layers. Universal approximation 
theorem [22] shows that a feedforward network with a single 
hidden layer, the simplest form of the multilayer perceptron, 
containing a finite number of hidden neurons, is a universal 
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Fig. 2. Working principle of the 4-quadrant detector.
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Fig. 1. Calibration experiment flow chart of the sun sensor.

Fig. 3. Four-quadrant analog sun sensor.
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approximator among continuous functions on compact subsets 
of Rn, under mild assumptions on the activation function. 
Similarly, the derivative of the feedforward network can arbi­
trarily fit the derivative of the function [23]. This shows that 
any continuous function on bounded closed sets can be approx­
imated by using neural networks, which provides theoretical 
support for fitting the error compensation model of the sun 
sensor with a deep neural network.

On the basis of the universal approximation theorem, this 
paper proposes a method to calibrate sun sensors by deep learn­
ing, which not only is able to integrate the influence of various 
errors but also avoids the need of analyzing and modeling every 
single error. The training of a deep neural network model 
requires a large amount of data, as the network cannot converge 
when the dataset is not large enough. On the other hand, the 
measurement data size is limited by the calibration experiment. 
Therefore, the neural network model training is divided into 2 
stages. The process is shown in Fig. 1. In the first stage, the sun 
sensor cubic surface fitting model was used to generate a sim­
ulated dataset, and the size of the dataset could be specified. 
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Fig. 4. Solar ray vector angle diagram.

Fig. 6. The calculated incident angle is compared with the theoretical value.

Fig. 5. The calibration and testing platform of the sun sensor.
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The neural network model is trained with this simulated data­
set. In the following stage, the actual measurement data are 
used to fine-tune the model to approximate the actual error 
model. The incident angle accuracy of the sun sensor is 1° (1σ) 
before correction. After the correction of the neural network 
model, the accuracy is improved to 0.1° (1σ).

The remainder of this paper is organized as follows. The 
“Principle of 4-quadrant analog sun sensor” section introduces 
the principle of the four-quadrant analog sun sensor. The 
“Cubic surface fitting” section explains the calibration process 
of sun sensor based on cubic surface fitting. In the “Deep net­
work model” section, the algorithm of the training network is 
introduced. In the “Deep network model training and result 
analysis” section, the performance of the proposed algorithm 
is verified using experimental data. Finally, the conclusions 
are summarized in the “Conclusion” section.

Principle of 4-Quadrant Analog Sun Sensor
The sun sensor can measure the vector direction of the solar 
rays, which can be used to determine the attitude of the space­
craft. The output of analog sun sensors is an analog signal, 
current, or voltage. The incident angle and azimuth angle of 
the solar ray vector on the satellite surface will be different when 
the satellite is in a different attitude. The sun sensor used in the 
integrated attitude measurement unit system is an analog one 
based on the 4-quadrant detector.

The 4-quadrant detector contains 4 square photodiodes with 
side length L. The performance of the 4 photodiodes is identi­
cal. The photodiodes are arranged in a 4-quadrant system and 
combined into a photoelectric detection array. To analyze the 
solar vector information, a 2-dimensional rectangular coordi­
nate system XOY can be established on the surface of the detec­
tor, with the center of the photodetector as the origin and the 
intersection of the 4 photodiodes as the X and Y axes.

Fig. 7. Fitting value and actual value of incident angle.
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Fig. 8. The simplest neuron structure.

Table 1. Incidence parameters.

Parameter Value Parameter Value

q00 2.7277 q10 −0.5326

q01 1.1320 q20 0.7169

q11 0.1975 q02 −0.7268

q30 0.0692 q21 −0.2623

q12 −0.0076 q03 0.0791
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As shown in Fig. 2, a square light hole is left directly above 
the detector. The sides of the hole (also of length L) are aligned 
with the X axis and Y axis, and the center point is adjusted to 
the perpendicular line of the detector surface passing through 
the origin O. H is the distance between the light hole and the 
4-quadrant detector surface. Through geometric analysis, the 
FOV of the sun sensor can be obtained as:

In the 4-quadrant analog sun sensor, the side length of the 
photodiode and the side length of light hole L = 5 mm, and the 
distance between the through-light hole and the detector surface 
H = 1.4 mm. The FOV of the sensor can be calculated as ±60°.

(1)FOV = 2arctan

(

L

2H

)

 Incidence
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HHW

HOW

   Incidence after calibration

Fig. 9. Deep neural network model.

Calculated incident angle and theoretical values 
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Generate the fitting dataset 
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Deep network model final training

Fig. 10. Generate datasets and model training flow.
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Fig. 11. Schematic diagram of model training and testing.

Table 2. Structural parameters of feedforward neural network.

Parameters Structure Details Parameters Structure Details

Layers Input 1 Activation function Input ReLU

Hidden 6 Hidden ReLU

Output 1 Output Linear

Nodes Input 2 Learning - Adam

Hidden 35 Training Epochs 500

Output 1 - - -
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As shown in Fig. 2, spots will be formed in the 4 quadrants 
of the detector when the solar ray vector passes through the 
light hole. The photodiode outputs a 4-way current signal when 
it is illuminated by light. When the solar ray is not vertically 
incident, the 4-way output current will also change according 
to the deviation of the spot center. By analyzing the geometric 
relationship, the incidence λ and azimuth υ of the solar vector 
(see Fig. 4) can be expressed as:

where dx and dy are the coordinates of the central point of 
the spot. The incidence λ is the angle between the incident 
solar ray and the positive direction of the OZ axis. The azi­
muth υ is the angle between the projection of the incident 
solar ray in the XOY plane and the OX axis, which is positive 
counterclockwise. The 4-quadrant analog sun sensor is shown 
in Fig. 3.

The 4 photodiodes of the detector have the same nominal 
performance. The output current of the photodiode is related 
to the area illuminated on the photodiode (assuming the same 

light intensity). I0 is the output current when sunlight illuminates 
the photodiode completely and from a vertical direction. I1, I2, 
I3, and I4 are the output currents of the 4 photodiodes, and S1, 
S2, S3, and S4 are the spot areas of the 4 photodiodes. δ repre­
sents the angle between the solar incident ray and the surface 
normal of the 4-quadrant detector. The output current of the 
4-quadrant detector is expressed as follows:

Through geometric analysis, it can be obtained that the posi­
tion relation between S1, S2, S3, and S4 and the spot is:

Therefore, the 4-way current output by the photodiode can 
be expressed as follows:

(2)
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Fig. 12. Training loss of network initial training set and test set.
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The coordinates of the center of the illuminated area can be 
expressed as:

The 4-quadrant detector outputs the current signal. To enable 
the system to collect signals, the current signal needs to be 
converted into a voltage signal. In this paper, the method of 
access sampling resistance is used for signal conversion, one 
end of the resistance is connected to the current output end 
and the other end is connected to the ground. The operational 
amplifier circuit amplifies the voltage signal at the current output. 
The output voltage of the amplifier can reflect the photocurrent 
by connecting the digital–analog converter. Therefore, the coor­
dinate of the central point of the spot can be expressed as:

Cubic Surface Fitting
As shown in Fig. 5, the calibration and testing platform of the sun 
sensor includes a solar simulation light source, high-precision 
2-axis turntable, and servo controller. The solar simulation light 
source is a space steady-state solar simulator satisfying the AM0 
index. The control accuracy of the turntable is less than 0.001°.

In the experiment of data measurement, a high-precision 
2-axis turntable with a step length of 3° rotates along with the 
horizontal and vertical directions of the photosensitive plane 
of the sun sensor within the whole FOV of the sun sensor. The 
theoretical values of solar ray incidence λ and azimuth υ at each 
attitude test point can be obtained from the angle of the turn­
table. The solar simulator and biaxial turntable were used for 
data acquisition, and preliminary calculations and error anal­
ysis were carried out to analyze the results.

From the test results, there are large errors in the calculation, 
up to 3°. These errors have a direct effect in the attitude deter­
mination. Therefore, calibration experiments are necessary to 
eliminate errors.

To calibrate the analog sun sensor, a surface fitting scheme is 
adopted to process the measured data to fit the relationship between 
the solar vector information measured by the sun sensor and 
the actual value. The sun sensor surface fitting formula is [24]:

pij and qij are related to the performance of the sun sensor. vr 
and λr are the actual values of the azimuth and incidence of the 
sun vector. s is the parameter defining the order of the fitting 
polynomial. v and λ are the output value of the sun sensor. In 
this paper, the value of s is 3.

Extending the previous equation, it can be shown that:

(7)
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Fig. 13. Error of deep network calibration and cubic surface fitting result.
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where

Inverting this expression leads to:

The measured data and theoretical values of the analog sun 
sensor are then substituted into the model. The final parameters 
are shown in Table 1.

The output value of the analog sun sensor is corrected by 
the cubic surface fitting model, and the result is seen in Fig. 7.

From the fitting results, it can be concluded that the error is 
effectively reduced. However, when the spot is close to the edge 
of the 4-quadrant solar cell, the spot distortion and the limit of 
the FOV lead to a larger error. This is due to uneven illumination 
near the edge of the FOV, which is related to the mechanical 
structure of the sun sensor. Therefore, to analyze the error 
model, it is necessary to establish a structural model and analyze 
the mechanical error, which is a cumbersome process.

Deep Network Model
There are many error sources in analog sun sensors, which 
bring difficulties to the establishment of an error model. 
Therefore, a deep neural network model is adopted to fit the 
error correction model, which is able not only to improve the 
precision of the sensor but also to avoid tedious modeling work. 
The deep neural network model adopts data-driven learning 
and training. After learning and training, the deep neural net­
work model approximates the actual error model, which is used 
for error correction.

Deep feedforward neural network
Deep feedforward neural network is a kind of neural network 
model with feedforward characteristics. The most represent­
ative example of a feedforward neural network is the model of 
multilayer perception. In the calibration experiment of the 
analog sun sensor, the deep feedforward neural network is 
selected to fit the error model.

The feedforward neural network model is forward. There is 
no connection between the output of the model and the model 
itself, thus no feedback. The basic unit of the artificial neural 
network is the “neuron,” which is usually a nonlinear element 
with multiple inputs and a single output. A neural network is an 
error backpropagation multilayer feedforward neural network 
and adopts an error backpropagation learning algorithm.

Figure 8 shows the simplest neuron structure. The neuron 
unit implements the function of summing and weighting all 
inputs and outputs. ω is the weight, which is the parameter of 
the neuron. For the final output Y to better match the label of 
X, neural networks usually involve some optimization pro­
cesses, adjusting the value of the weights. In addition, it is 
effective to add activation functions to linear models to achieve 
delinearization. In the sun sensor calibration network model, 
ReLU (linear rectification function) is selected as the activation 
function.

After the ReLU function, the output of a neuron unit can be 
calculated as follows:

Full connection and partial connection are the connection 
modes between 2 adjacent layers in a neural network model. 
In full connection mode, all units of the current network layer 
are connected to each unit of the upper network layer. In the 
case of partial connection, the units in the current layer of the 
network are only connected to some of the units in the upper 
layer of the network. The main purpose of using a partial con­
nection is to reduce the number of network parameters. In the 
calibration experiment of the sun sensor, the parameter scale 
is not large. Therefore, the deep network model adopts a full 
connection mode.

The deep neural network model structure is shown in Fig. 9. 
There is parameter coupling between azimuth angle and inci­
dent angle. Therefore, when the incident angle is calibrated, the 
input layer of the deep neural network model is the output azi­
muth and incident angle of the sun sensor (X = [λ, ν]T), and the 
output layer is the incident angle after calibration (Net(Xi; ω)).

An important aspect of deep neural network design is the 
selection of the loss function. In essence, the calibration of the 
sun sensor is a regression problem, which aims at predicting 
a specific value. The neural network usually has only one out­
put node to solve the regression problem, and the output value 
of this node is the predicted value. For regression problems, 
the most commonly used loss function is the mean square 
error (MSE) loss function,

where ̂�i is the expected value (theoretical value) of the ith sample 
in a batch and f(λi; ω) is the predictive value of the neural 
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Fig. 14. Deep network model error and surface fitting error in the initial stage.

Fig. 15. Deep network model error and surface fitting error.
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network. The notation N denotes the number of samples that are 
randomly chosen from the training dataset in each training iter­
ation. The Adam algorithm is employed to minimize the MSE.

Model optimizing
In general, the training process of the neural network can be 
roughly divided in 2 stages. In the first stage, the predicted value 
is calculated by each network node. In the second stage, the 
backpropagation algorithm is used to calculate the gradient of 
the loss function for each parameter.

Gradient-based optimization can be used to optimize the 
value of a function. For example, ω is the input parameter of 
the function and L(ω) is the function that needs to be optimized, 
and gradient-based optimization means defining ω to minimize 
L(ω). The gradient descent method varies ω along the negative 
direction of the gradient of the function to obtain a smaller L(ω). 
The function that needs to be minimized is the target function. 
In the calibration and correction network of the sun sensor, ω 
generally refers to the parameters in the neural network, and 
L(ω) represents the loss function on the training dataset. The 
general idea of using gradient descent optimization networks is 
to find a parameter ω that minimizes the loss function L(ω).

�

��
L(�) is the gradient of the function L(ω) with respect to 

the parameter ω. In addition, a learning rate (σ) is needed to 
define the magnitude of each update. The update formula can 
be obtained as follows:

The gradient descent algorithm optimizes the value of a sin­
gle parameter, while the backpropagation algorithm is a scheme 
that efficiently uses the gradient descent algorithm on all 

parameters. The backpropagation algorithm propagates the 
information of the loss function backward through the network 
to calculate the gradient [25]. The Adam algorithm (proposed 
by Kingma and Ba in 2014 [26]) is a learning rate-adaptive opti­
mization algorithm further improved based on the RMSProp 
algorithm. First, it assumes a global learning rate σ, and expo­
nential decay rates of moment estimation are ρ1 and ρ2 (the value 
range is [0,1)). Then, it initializes the parameter ω as a small 
constant δ (default value δ = 10−8) created for numerical ro­
bustness. The first-order moment and second-order moment 
variables s and r, with initial values of 0, as well as the time count t, 
repeat the following steps until the stop condition is met [26].

Step 1: A small batch of data containing m samples was taken 
from the training dataset {X1, X2, X3, ⋯Xm}. The target corre­
sponding to the data is represented by �̂i.

Step 2: The gradient was calculated according to the following 
formula based on small-batch data:

Step 3: Update:

Step 4: Update the first-order biased moment estimation:

Step 5: Update the second-order biased estimator, ⊗ means 
multiplying elements of the same coordinate:

(15)�n+1 = �n − � ⋅

�

��
L(�)

g ←
1

m
∇�

∑
i

L
(
Net

(
Xi;�

)
,�̂i

)

t ← t + 1

s ← �1 ⋅ s +
(
1 − �1

)
⋅ g

r ← 𝜌2 ⋅ s +
(
1 − 𝜌2

)
⋅ g ⊗ g

Fig. 16. The errors with a normal distribution.
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Step 6: Correct the deviation of the first moment:

Step 7: Correct the deviation of the second moment:

Step 8: Calculate the number of parameter updates:

Step 9: Update parameters according to Δω:

Results and Discussion
This section introduces how the deep network model can be 
created for the calibration experiment of a simulated sun sen­
sor. The calibration experiment of simulated sun sensor based 
on deep learning includes 3 parts: feedforward neural network 
construction, neural network training, and neural network 
fitting test. After analyzing the model, the structure of the feed­
forward neural network can be determined according to the 
characteristics of the data. The computer CPU is an i7-12700F 
4.9 GHz and the RAM is 32 GB, and the computer GPU is an 
RTX3060 and the RAM is 12GB.

Data preprocessing
A deep neural network model needs a dataset for training and 
learning. However, it is difficult to get enough data because it 
takes a considerable time to obtain experimental data in the 
calibration experiment of the sun sensor. This dataset limitation 
may lead to the phenomenon of non-convergence or overfitting 
of network model training. Therefore, the training of the net­
work model is divided into 2 stages. In the initial training stage, 
the dataset is generated by the cubic surface fitting model 
(instead of using experimental data). The deep neural network 
model uses this dataset for learning and training. When the 
loss function of the network model converges to the minimum 
region, it indicates that the learning of the initial training of 
the network is completed. In the final training stage, the deep 
network model adopts the measured data for learning. Al­
though the scale of measured data is small, the network param­
eters at this time are close to the actual model, so it is easy to 
converge in the training process.

Considering that the FOV range of the analog sun sensor is 
60°, the incidence angle ranges from 0° to 60°, and the azimuth 
angle ranges from −180° to 180°. The dataset generated by the 
cubic surface fitting model contains 40,000 sets of data. Then, 
training data should be randomly divided into a training set 
and a testing set. The proportions of these sets can be adjusted 
for specific problems. In this work, the proportions are set to 
80% and 20%, respectively.

Before deep neural network training, learning data should 
be normalized. The data normalization process is to convert all 
data into data between 0 and 1, which is to eliminate the order 
of magnitude difference of data of various dimensions and 

avoid large network prediction errors caused by a large order 
of magnitude difference in input data. The data normalization 
method in this paper is the max–min method.

Xk is a set of input data, and k is the serial number of the datum. 
Xmax and Xmin are the maximum and minimum values of cor­
responding data. The value range of incidence and azimuth is 
(0°,60°) and (-180°,180°), respectively.

Model training
The modeling of analog sun sensor calibration algorithm based 
on deep learning includes 3 parts: feedforward neural network 
construction, neural network training, and neural network 
fitting test. The flow chart of the algorithm is shown in Fig. 10. 
After analyzing the model, the structure of the feedforward 
neural network can be determined according to the character­
istics of the data. Table 2 shows the structural parameters of 
feedforward neural network.

Figure 11 shows the schematic diagram of model training 
and testing. In the initial training stage of the feedforward neu­
ral network model, the dataset is constructed by the least cubic 
surface fitting model. The learning rate parameter is set to 0.01, 
batch size to 1,000, and epochs to 100.

Figure 12 shows the loss training curves for the training 
dataset (blue) and the test dataset (red). The training time is 
about 52 min (3,120 s). With the increase in training times, the 
loss training converges to a fixed area with an approximate 
value of 3.1 × 10−5. The test set curve fluctuates near the blue 
line during each process, indicating that the deep network has 
good generalization performance.

After network learning in the initial stage, the error between 
the output of the network model and the estimated value of the 
cubic surface fitting model is concentrated within 0.02°, indi­
cating that the deep network model at this time can better map 
the cubic surface fitting model. Figure 13 shows  the error of 
deep network calibration and cubic surface fitting result.

To test the training effect of the initial stage, 50 groups of 
test data were randomly selected and input into the deep net­
work model and surface fitting model for prediction. The 
results are compared with the theoretical incident angle. Figure 
14 shows the errors of the 2 prediction models. After the initial 
training of the network model, the model parameters have con­
verged to the “optimal value.” Therefore, the measured dataset 
is used to further adjust and correct the network parameters. 
The measured dataset contains 900 sets of data. In the final 
stage of the feedforward neural network model, the dataset is 
collected using an experimental equipment. The learning rate 
parameter is set to 0.00001 and the batch size to 100.

To test the training effect of the final stage, 50 groups of test 
data were randomly selected and input into the deep network 
model and cubic surface fitting model for prediction. Figure 
15 shows the errors of the 2 calibration models. From the exper­
imental results, the prediction effect of the deep network model 
is significantly better than that of the surface fitting model, 
which indicates that the training is effective. As shown in Fig. 
16, after the correction training with the experimental dataset, 
the calibration error of the incident angle can reach 0.1° (1σ) and 
0.25° (3σ), which greatly improves the calibration effect of the cubic 
surface fitting model. Meanwhile, the error distribution is rela­
tively uniform. Even near the edge of the FOV, there is no large 

ŝ ←
s

1 − �1
t

r̂ ←
r

1 − �2
t

Δ� = − �
ŝ√
r̂ + �

�← � +Δ�

(16)Xk =
Xk − Xmin

Xmax − Xmin
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error. This shows that the method can effectively eliminate deter­
ministic errors, including spot distortion and assembly errors.

Conclusion
The error sources of the 4-quadrant analog sun sensor include 
assembly error, light spot distortion, and signal characteristics 
of electronic devices, which make the calibration of the sun 
sensor cumbersome and limit the accuracy. In this paper, by 
establishing a deep neural network, a fitting of the error model 
is conducted, using preliminary and correction training. The 
incident angle accuracy of the sun sensor is 1° (1σ) before cor­
rection, while after applying the neural network model, the 
accuracy is improved to 0.1° (1σ). Moreover, the error com­
pensation model can eliminate the distortion of the light spot 
at the edge of the FOV, improving the accuracy, which provides 
a favorable condition for the FOV expansion of the 4-quadrant 
analog sun sensor. There are some open points for improve­
ment in this paper. First, the method used is a data-driven 
method based on deep learning. To achieve error elimination, 
each sun sensor requires “data collection,” “cubic surface fit­
ting,” and “deep model training.” In general, large datasets facil­
itate deep model learning. However, the size of experimental 
datasets on a sun sensor is limited, due to the huge cost of 
experiment time. In this case, increasing the depth of the model 
to improve the accuracy may lead to “overfitting.” Therefore, 
the limited data scale brings a negative influence on the further 
improvement of sun sensor accuracy. In this paper, the deep 
model training stage is divided into “initial training” and “final 
training,” which is an attempt aimed at overcoming the limited 
data. The validation experiment proves the effectiveness of this 
method. In future studies, more ideas and methods will be explored 
to break through the problems brought by limited data.
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