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Abstract—In this work we introduce a framework to study the
trade-off between the undetected error rate (UER) and overall
frame error rate (FER) of CRC-concatenated polar codes in
the short blocklength regime. Three approaches to improve the
tradeoff under successive cancellation list (SCL) decoding are
outlined. Two techniques are based on the optimum threshold
test introduced by Forney in 1968, whereas a third technique
partitions the CRC code parity bits in two sets, where one set is
used to prune the SCL decoder list, and the other set is used for
error detection. The performance of the three schemes is analyzed
via Monte Carlo simulations, and compared with a finite-length
achievability bound based on Forney’s random coding bound.

I. INTRODUCTION

In the past years, interest in short codes has been renewed
due to a set of emerging applications which require the use
of relatively small data units [1], [2]. A prominent example
is the 3GPP 5G cellular standard. Among its application
scenarios, the 5G standard targets enhanced mobile broadband
(eMBB) communications, massive machine-type communica-
tion (mMTC) systems, and ultra-reliable low-latency commu-
nications (URLLC). Short packet transmission is relevant for
all three use classes. While for eMBB small data units are
mostly relevant for the control channel, mMTC envisions a
large number of devices which regularly transmit small amount
of data. For URLLC, delay constraints require the use of
short, well-protected data packets. URLLC covers mission-
critical applications, e.g., in the context of intelligent mobility,
industry automation, and wireless telecommand systems (see
e.g. [3] [4, Ch. 4]). On the physical layer of communication
systems, reliability is measured by the frequency of decoding
errors. In some cases, decoding errors can cause undesired
system behaviors [5]. This can happen, for instance, when the
decoder outputs a codeword different from the transmitted one
and the system is not aware of this incorrect decision. Such
undetected errors can be harmful, in particular for mission-
critical applications. Hence, the code design may not only aim
at controlling the overall frame error rate (FER), but also at
keeping the undetected error rate (UER) low.

When long packets are used, an error detection capability
is typically ensured by protecting a packet with a cyclic
redundancy check (CRC) code, prior to encoding with the error
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correction code. The CRC code is here used to provide an error
detection capability after channel decoding. The addition of the
CRC code parity bits causes, for long packets, a negligible
rate loss. On the contrary, the use of a CRC code as an
error detection code is unappealing for short packets, since
acceptable error detection capabilities come at the expense
of non-negligible rate losses. An alternative approach to the
use of CRC codes can be obtained by embedding an error
detection mechanism in the decoding algorithm of the error
correcting code. In fact, all incomplete decoders [6, Ch. 1]
provide naturally an error detection capability. An optimum
incomplete decoding algorithm was introduced and analyzed
in [7]. The approach of [7] can be seen as the application of
(complete) maximum likelihood (ML) decoding, followed by
a post-decoding threshold test. The test is used to either accept
or discard the ML decoder decision. A criterion to discard the
decision, based on the Neyman-Pearson theorem, was derived
and analyzed in terms of error exponents [7], showing its
optimality in the sense of minimizing the UER for a given FER
(and viceversa). The evaluation of the metric used for the test
can be done efficiently for certain classes of linear block codes
(e.g., for terminated convolutional codes [8], [9]) or it can
be well approximated with limited complexity for other code
classes (e.g., for codes based on compact tail-biting trellises
[10], [11]). A performance analysis of code ensembles under
the generalized decoding rule of [7] was presented in [12].
Sub-optimum post-decoding tests were proposed and analyzed
in [13], [14], where they were compared with the performance
of the optimum criterion. Heuristic threshold tests were in-
troduced in [15] for the special case of CRC-concatenated
polar codes [16], [17] under successive cancellation list (SCL)
decoding [18].

In this work, we consider approaches to improve the error
detection capability of short CRC-concatenated polar codes.
The focus on this code class stems from its excellent perfor-
mance in the short block length regime with low-complexity
SCL decoding [19]. Two error detection methods are based
on the threshold test of [7], adapted to SCL decoding. A third
approach relies on “splitting” the parity bits of the CRC code:
A portion of the bits is used to prune the SCL decoder list,
whereas the remaining parity bits are used for error detection.
The FER and UER performance of short CRC-concatenated
polar codes under the three approaches is analyzed, and



compared on a finite-length achievability bound based on the
Gallager-type random coding bound (RCB) derived in [7].

The rest of paper is organized as follows. Section II pro-
vides preliminary definitions. Forney’s generalized decoding
rule is discussed in Section III, where an achievable finite-
length signal-to-noise ratio (SNR) threshold for a given tar-
get UER/FER pair is presented. Error detection strategies
for CRC-concatenated polar codes under SCL decoding are
introduced in Section IV. Numerical results comparing the
performance achievable by short concatenated polar codes
with the SNR threshold of Section III are illustrated in Section
V. A discussion on the role of code design is also outlined.
Concluding remarks follow in Section VI.

II. PRELIMINARIES

We denote vectors by small bold letters, e.g., x =
[x1, ..., xN ]. Matrices are denoted by capital bold letters, e.g.,
G, sets by capital calligraphic letters, e.g., L. We use F2 to
denote the binary finite field with elements {0, 1}. Consider
transmission over a biAWGN channel with an (N,K) binary
linear block code C with rate R = K/N . The channel input
alphabet is X = {−1,+1}, the noise variance is σ2, and the
channel SNR is given by Eb/N0 = 1/(2Rσ2) where Eb is the
energy per information bit and N0 is the single-sided noise
power spectral density. Denote by c ∈ FN

2 a codeword of C.
The corresponding “modulated codeword” that is input to the
biAWGN channel is x with xi = B(ci) for i = 1, . . . , N
where B(ci) := 1−2ci denotes the binary antipodal mapping.
With a slight abuse of notation, we will write x ∈ C when x
is a modulated codeword.

A. Polar Codes

Let the binary polar transform be defined by the N × N
matrix

GN =

[
1 0
1 1

]⊗n

(1)

where the superscript ⊗n denotes the n-fold Kronecker product
and n = log2 N . For an (N,KI) polar code, the KI infor-
mation bits are copied to KI positions of a length-N input
vector u. Let the indices of the KI information bits in u
be A and the complementary set of frozen bit indices be
Ac = {1, ..., N} \ A. The input vector u can be split into
a vector uA of information bits and uAc

of frozen bits. For a
given channel, the set A is the set of bit coordinates in u with
highest reliability under genie-aided successive cancellation
(SC) decoding [17], and it can be determined via density
evolution (DE) analysis [20]–[22]. A polar code codeword is
obtained as x = B (uGN ).

B. CRC-Concatenated Polar Codes

In CRC-concatenated polar codes [18] an outer (shortened)
CRC code CO(NO,K) is serially concatenated with an inner
polar code CI(N,KI) with KI = NO. Let the length-K
information word at the input of the CRC encoder be w and
the length-NO CRC code codeword be v = wGO, where GO is

the outer CRC code generator matrix. We assume systematic
encoding, i.e., v = [w|d] where d is the length-(NO − K)
vector of parity bits introduced by the CRC encoder. We
denote by m = NO − K the number of parity bits of the
CRC code. The rate of the outer code is RO = K/NO and the
code rate of the concatenated scheme is R = RORI = K/N .
CRC generator polynomials can be described in hexadecimal
notation. For instance, x7 + x3 + 1 is denoted by 0x9. We
denote the operator that maps the input of the CRC encoder
w ∈ FK

2 onto the input of the polar encoder u ∈ FN
2 as

ϕ(·), i.e., u = ϕ(w). The ϕ-operator is the composition of
the linear CRC encoding step v = wGO and of the mapping
v 7→ u through frozen bits insertion. SCL is typically used
to decode CRC-concatenated polar codes [18]. In particular,
an SCL decoder with list size L is used to decode the inner
polar code. The output list L is pruned by imposing the outer
CRC code constraints, resulting in the list LP. If LP turns to
be empty, a decoding failure is declared. Otherwise, the final
decision is taken by means of a ML search within LP. The
concatenated scheme is illustrated in Figure 1. In the figure,
the block ‘Insertion’ refers to the generation of the length-N
input sequence u out of the length-KI vector v by inserting
N −KI frozen bits. The inverse operation on the decoder side
is called ‘Frozen Bit Removal’. The block ‘Polar Mapping’
performs both polar transform in (1) and the mapping onto
the channel the channel input alphabet via the function B.

III. FORNEY’S GENERALIZED DECODING RULE

ML decoding of an (N,K) binary linear block code C
reduces to

x̂ML = argmax
x∈C

p(y|x). (2)

In (2), p(y|x) is the channel output conditional probability
(density) given the channel input x. The rule (2) defines a
complete decoder. In [7], Forney introduced a generalized
decoding rule, which relies on a threshold test that – depending
on the choice of the threshold – modifies (2) resulting either
in a list decoder (a decoder that outputs a set of decisions)
or in an erasure decoder (an incomplete decoder that outputs
a single decision or an error flag). Restricting our attention
to the latter, the decoding rule of [7] can be cast as follows.
Initially, ML decoding is performed according to (2). Let

Λ(y,x) :=
p (y|x)∑

x′∈C\x p (y|x′)
.

The ML decoder output is tested by comparing Λ(y, x̂ML)
with a threshold. In particular, the ML decoder output x̂ML

is accepted if
Λ(y, x̂ML) ≥ 2NT (3)

whereas the decision is rejected (returning an error flag) if
(3) is not satisfied. Note that in (3) the threshold parameter
T is positive. The threshold T regulates the tradeoff between
FER and UER. In fact, if T is set to a large value, the test in
(3) will reject a decision with high probability, resulting in a
large FER and a low UER. On the contrary, if T is set close
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Fig. 1. Reference model describing the encoding with a CRC-concatenated polar code, transmission over the biAWGN channel, and SCL decoding.

to zero, most of the ML decisions will be accepted, resulting
in a reduced gap between FER and UER.

A. Bounds on the Error Probabilities

Denote by ϵU the undetected error probability, by ϵD the
probability of detected errors, and by ϵE = ϵU + ϵD the overall
error probability. Remarkably, the test (3) is optimal in the
sense that, for a given ϵE, it minimizes ϵU (and viceversa) [7].
A characterization of the achievable (ϵE, ϵU) pairs under (2)-
(3) over a discrete memoryless channel (DMC) was provided
in [7] through a random coding error exponent analysis. In
particular, it was shown that there exists a block code of length
N and rate R that under (2)-(3) simultaneously satisfies

ϵE < 2−NE1(R,T ) (4)

ϵU < 2−NE2(R,T ) (5)

where the error exponents E1(R, T ) and E2(R, T ) are

E1(R, T ) := max
0≤s≤ρ≤1,q

[E0(s, ρ, q)− ρR− sT ]

E2(R, T ) := E1(R, T ) + T

with

E0(s, ρ, q) := − log2
∑
j

(∑
k

qkq
1−s
jk

)(∑
k′

qk′q
s/ρ
jk′

)ρ

where q is the vector of input symbol probabilities. Moreover,
qjk is the DMC transition probability. Note that the considered
biAWGN channel has a continuous output alphabet. For the
evaluation of the upper bounds (4) - (5) we uniformly quantize
the channel output with 1024 quantization levels, yielding a
binary-input output-symmetric DMC with channel transition
probabilities qjk.

With reference to the biAWGN channel, by leveraging on
(4) - (5) we can derive finite-length limits on the (undetected)
error probability achievable by a code. In particular, consider
the case where a system requires the overall error probability
to be at most ϵ⋆E , and the undetected error probability to be
not larger than ϵ⋆U . For a given block length N and rate R, we
introduce the notion of SNR threshold.

Definition 1 (SNR threshold). Given a block length N , a
rate R, and a channel SNR Eb/N0, denote by PN,R(Eb/N0)
the set of achievable pairs (ϵE, ϵU) according to (4) - (5). For
the target error probabilities ϵ⋆E and ϵ⋆U , the SNR threshold is
defined as

γ(ϵ⋆E , ϵ
⋆
U) := min

{
Eb

N0

∣∣∣∣ (ϵ⋆E , ϵ⋆U) ∈ PN,R(Eb/N0)

}
. (6)

The SNR threshold yields an upper bound on the minimum
SNR for which a length-N , rate-R code can attain ϵE ≤ ϵ⋆E
and ϵU ≤ ϵ⋆U . Figure 2 depicts the SNR threshold γ(ϵ⋆E , ϵ

⋆
U) for

ϵ⋆E = 10−3 and ϵ⋆U = 10−5 as a function of K = RN for
rate-1/2 codes.

IV. ERROR DETECTION STRATEGIES FOR
CRC-CONCATENATED POLAR CODES

In this section, we describe four strategies to embed an
error detection capability for CRC-concatenated polar codes
under (CRC-aided) SCL decoding. The first strategy consists
of the plain application of SCL decoding, which yields a
detected error when the pruned list is empty. For a given CRC-
concatenated polar code, this approach does not allow to vary
the trade-off between the FER and the UER. We will adopt this
approach as a reference for three more sophisticated strategies
that will be outlined next.

A. SCL Decoding with Threshold Test
The first approach is inspired by the threshold test (3)

to improve upon the error detection capability of the SCL
decoder. Consider SCL decoding followed by the CRC check.
We must distinguish three cases:

i. If the pruned list is empty, the decoder declares a decod-
ing failure.

ii. If the pruned list contains only one element, the decoder
outputs the only element of LP as final decision.

iii. If the pruned list cardinality is larger than 1 (|LP| > 1),
the decoder selects the information vector w that maxi-
mizes the likelihood

ŵ = argmax
w∈LP

p(y|x(w)) (7)

where we use the shorthand x(w) for B (ϕ(w)GN ). Let
x̂ = B (ϕ(ŵ)GN ) (i.e., the codeword corresponding to
the decision) and

ΛSCL(y,x(w)) :=
p (y|x(w))∑

x′=B(ϕ(w′)GN)
w′∈LP\w

p (y|x′)
.

The decision (7) is accepted if

ΛSCL(y, x̂) ≥ 2NT (8)

and it is discarded otherwise, declaring a decoding failure.
Note that this strategy is an approximation of the rule (3),
which becomes increasingly tight as the list size grows. In the
limiting (and impractical) case where |LP| = 2K , i.e., when
the SCL decoder outputs the entire code book, (8) coincides
with (3).



B. Augmented SCL Decoding with Threshold Test

Intuitively, the approach of Section IV-A may provide
limited gains on the reference approach (plain SCL decoding,
followed by list pruning) when the list size is small. In fact,
in this case we expect the pruned list to contain with high
probability at most one element, reducing the number of
occurrences of case (iii) above. The second approach tries
to circumvent the problem by enforcing a larger list after
applying the CRC constraints at the decoder side. We refer
to this approach as augmented successive cancellation list
(ASCL) decoding. Recall that for the outer code we adopt
systematic encoding, i.e., with reference to Figure 1 (see also
Section II-B) we have v = [w|d]. Moreover, assume for
simplicity that the bits composing d, that is, the last m bits
in v are mapped onto the last m coordinates of u.1 ASCL
decoding works as follows. SCL decoding is performed for the
inner polar code, up to the bit index ℓ := N−m. With a slight
abuse of notation, we denote by L the set of K-bits vectors
produced by the truncated SCL decoder, after removing the
frozen bits. We construct an augmented list

LA =
{
x = B (ϕ(w)GN )

∣∣w ∈ L
}
.

that contains all the modulated codewords associated with the
K-bit information vectors in L. It is easy to verify that this
list contains all the codewords associated with the information
vectors in the pruned list of the standard SCL decoder. The
cardinality of LA is equal to L (i.e., the cardinality of L). The
decoder selects first the ML codeword in LA yielding

x̂ = argmax
x∈LA

p(y|x). (9)

Denote by

ΛASCL(y,x) :=
p (y|x)∑

x′∈LA\x

p (y|x′)
.

The decision (9) is accepted if

ΛASCL(y, x̂) ≥ 2NT

and it is discarded otherwise, declaring a decoding failure.
Observe that the bit values of d depend on the information bits
corresponding to u. Therefore, ASCL decoding is equivalent
to SCL decoding of a polar code with dynamic frozen bits
[23] defined by the CRC code constraints.

C. SCL Decoding with Split CRC

The third approach departs from the idea of introducing a
threshold test to accept/reject the decision of the SCL decoder,
and it relies solely on the error detection capability inherent
to the outer CRC code. In particular, we partition the parity
vector d introduced by the CRC code into two subvectors d1

and d2 where the length of d1 is m1 and the length of d2 is
m2 (with m1 +m2 = m). The parity bits in d1 are then used

1The case where some coordinates of u in [N −m+ 1, N ] are allocated
to frozen bits can be accommodated with minor, notationally tedious modifi-
cations.

to prune the list produced by the SCL decoder. The resulting
pruned list is either empty, or it contains one or more vectors
with length K +m2. We distinguish the two cases:

i. The resulting pruned list LP is empty. In this case, the
decoder declares a decoding failure.

ii. The pruned list is nonempty. The decoder computes

ẑ = argmax
z∈LP

p(y|x(z)) (10)

where we make use again of the shorthand x(z) to denote
the modulated codeword associated with z. The decision
ẑ is finally checked through the remaining m2 CRC code
constraints (i.e., the ones associated with the bits in d2).
If the constraints are satisfied, then the decision (10)
is accepted and the decoder outputs ŵ = [ẑ1, . . . , ẑK ].
Otherwise the decision is rejected, declaring a decoding
failure.

Observe that for m1 = m the approach reduces to the
reference scheme. For m1 = 0, |LP| is equal to |L| and
all CRC code constraints are dedicated to error detection.
Intermediate values of m1 can be used to achieve a different
tradeoff between the FER and the UER.

V. NUMERICAL RESULTS

In this section, we compare the performance of the decod-
ing strategies outlined in Section IV with the finite-length
benchmark provided by the SNR threshold of Definition 1.
We consider the case where ϵ⋆E = 10−3 and ϵ⋆U = 10−5,
and we focus on rate-1/2 codes. We fix two reference polar
code designs: A (64, 32) CRC-concatenated polar code based
on a 6-bit CRC code (i.e., m = 6) with polynomial 0x3,
and a (128, 64) CRC-concatenated polar code based on a
7-bit CRC code (i.e., m = 7) with polynomial 0x9. The
inner polar codes were designed by means of DE analysis
with Gaussian approximation [24], [25] setting as target SNR
Eb/N0 = 7 dB. Two list sizes are used, L = 8 and L = 32.
For each of the three strategies of Section IV an optimization
was carried out with the objective of minimizing the SNR
for which the decoder achieves simultaneously ϵE ≤ ϵ⋆E and
ϵU ≤ ϵ⋆U . The optimization was over the threshold T for the
SCL/ASCL decoding with threshold test ( Section IV-A and
Section IV-B), and over the split CRC parameter m1 for the
strategy of Section IV-C. The optimum values of the threshold
T and of the parameter m1 are reported in Table I, and they
were obtained by estimating the decoder performance through
Monte Carlo simulations. Figure 2 compares the Eb/N0 values
for which the different strategies achieve the target error
probabilities with the SNR threshold of Definition 1.

Observe that SCL decoding with threshold test performs
well for both codes. In particular, when the information length
is small (K = 32), SCL decoding with additional threshold
test performs notably better than the other strategies for both
L = 8 and L = 32. In the former case, the gain over the
reference SCL decoding scheme is around 0.5 dB, while in
the latter it is approximately 0.8 dB. At K = 32, the best
strategy allows to attain an Eb/N0 for ϵ⋆E = 10−3 and ϵ⋆U =



TABLE I
VALUES OF OPTIMIZED PARAMETERS. ϵ⋆E = 10−3 AND ϵ⋆U = 10−5 . TT

STANDS FOR THRESHOLD TEST.

(N,K) L SCL with TT ASCL with TT Split CRC

(64, 32)
8 T = 0.1442 T = 0.1948 m1 = 1
32 T = 0.1039 T = 0.1197 m1 = 3

(128, 64)
8 T = 0.1904 T = 0.2597 m1 = 3
32 T = 0.1096 T = 0.1211 m1 = 3

10−5 that is visibly lower than the SNR threshold (6). The
result can be explained by a lack of tightness of (4)-(5) at very
short blocklengths. A similar behavior can be observed also
for other bounds based on error exponents. For example, in
the short blocklength regime Gallager’s RCB can be improved
over various DMCs by employing tighter bounding techniques
[26]. Still, the performance achieved by SCL decoding with
threshold test is remarkable. The result is confirmed for the
case of K = 64, although here no strategy allows to operate at
an Eb/N0 lower than the SNR threshold. The best performance
is also here achieved by SCL decoding with threshold test,
when L = 32. For K = 32 and L = 32, ASCL decoding
with threshold test shows to be competitive, too. The result
is nevertheless not replicated in the other settings (smaller list
size and/or longer blocks). The SCL decoding with split CRC
performs poorly at very short blocklength, while for K = 64
and L = 32 the performance is remarkably close to the bound.
With K = 64 and L = 8, the split CRC approach yields the
best performance, closely approached by other methods.

The analysis presented so far aims at gaining insights on the
performance achievable, in terms of FER and UER, by a CRC-
concatenated polar code under various decoding strategies.
The study relied on fixing a CRC-concatenated polar code,
and testing its performance under the algorithms outlined
in Section IV. An interesting question arises on whether
concatenated polar code designs tailored to provide good FER
vs UER tradeoffs may yield further gains. While deriving a
universal criterion to construct concatenated polar codes for
a given target (ϵ⋆E , ϵ

⋆
U) would provide a general answer to the

question, we focus here on a special case and show that a
careful design may yield visible gains.

We consider a (64, 32) CRC-concatenated polar code under
SCL with L = 8, targeting again ϵ⋆U = 10−3 and ϵ⋆U = 10−5.
We performed a wide search based on Monte Carlo simula-
tions for the outer CRC code parameters, and for the design
SNR to be used by the DE analysis to fix the inner polar
code frozen bit positions. The search returned a 9-bit CRC
code with polynomial 0x33 and frozen bits selected by DE
analysis setting as target SNR Eb/N0 = 4 dB.

The UER and FER versus Eb/N0 are depicted in Figure 3.
Under SCL decoding (reference approach) the code attains the
target error probabilities at Eb/N0 ≈ 4.65 dB, with about 0.4
dB gain over the analogous decoding strategy for the (64, 32)
code reported in Figure 2. By introducing the threshold test
the required Eb/N0 drops to ≈ 4.4 dB, with a slight gain over
the corresponding performance reported for the (64, 32) code
based on a 6-bit CRC in Figure 2.
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VI. CONCLUSIONS

We presented different error detection strategies for CRC-
concatenated polar codes and evaluated their performance in
terms of undetected error rate (UER) and (overall) frame
error rate (FER). For some polar code designs we observed
that successive cancellation list decoding with a subsequent
threshold test can significantly improve the performance. This
holds in particular when the blocklength is small and the
list size is sufficiently large. With growing block size, the
error detection capability obtained by splitting the CRC bits
in two parts, where a part is dedicated to error detection
only, becomes increasingly competitive. An interesting open
problem is to derive code design guidelines that, under one of
the discussed error detection strategies, allow to optimize the
performance for a target UER/FER pair.
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