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Multimodal Grasp Planner for Hybrid Grippers in
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Abstract—Grasping a variety of objects is still an open problem
in robotics, especially for cluttered scenarios. Multimodal grasp-
ing has been recognized as a promising strategy to improve the
manipulation capabilities of a robotic system. This work presents a
novel grasp planning algorithm for hybrid grippers that allows for
multiple grasping modalities. In particular, the planner manages
two-finger grasps, single or double suction grasps, and magnetic
grasps. Grasps for different modalities are geometrically computed
based on the cuboid and the material properties of the objects in
the clutter. The presented framework is modular and can leverage
any 6D pose estimation or material segmentation network as far as
they satisfy the required interface. Furthermore, the planner can
be applied to any (hybrid) gripper, provided the gripper clearance,
finger width, and suction diameter. The approach is fast and has a
low computational burden, as it uses geometric computations for
grasp synthesis and selection. The performance of the system has
been assessed with an experimental campaign in three manipula-
tion scenarios of increasing difficulty using the objects of the YCB
dataset and the DLR hybrid-compliant gripper.

Index Terms—Grasping, grippers and other end-effectors,
perception for grasping and manipulation.

I. INTRODUCTION

AUTONOMOUS and reliable robotic grasping is a desirable
functionality in robotic manipulation, as it is required for a

broad range of applications including pick and place in service
robots [1], manufacturing [2], and logistics [3]. Autonomous
grasping of a variety of objects is a complex problem due to
its multidisciplinary nature, involving end-effector design, per-
ception, planning, and control to guarantee a reliable and robust
grasp of the target object. Manipulating objects with different
shapes, sizes, surface properties, and weights using a single
end-effector is not a trivial problem. The dominant end-effectors
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Fig. 1. Examples of different grasping modalities offered by DLR HCG. First
row: two-finger grasp, two-finger grasp on a wide object, single suction grasp.
Second row: double suction grasp on a single heavy object, double suction grasp
on two different objects, magnetic grasp.

used in industry are suction and parallel-jaw grippers, due to their
simplicity, precision and low control complexity [4]; however,
each modality has its own drawbacks. A promising venue is the
design of an end effector combining multiple grasping modali-
ties, which would allow handling different kinds of objects.

After the success obtained during the Amazon Picking Chal-
lenges (APC), where the top placing teams used a combination
of suction and parallel jaw approaches [5], the idea of using
multiple grasping modalities gained popularity. However, even
if multimodal grasping has been recognized as an interesting
strategy to improve manipulation capabilities, robust integration
of such modalities with multimodal grasp planning is scarce.
Moreover, most such grasp pipelines exploit a single-stage net-
work that embeds some parameters of the gripper, thus making
it difficult to apply them to a different gripper. Other useful
capabilities of hybrid grippers, for instance, grasping two objects
simultaneously with the use of two suction cups, are also not
addressed within planning frameworks so far.

This work presents a novel multimodal grasp planning frame-
work for hybrid grippers that exploits only geometrical (3D
bounding box) and material information of the objects. The
grasping pipeline takes as input the RGB and depth images, and
outputs the best grasp among the possible grasping modalities,
depending on the arrangement of the objects in the scene.
The main novelties and properties of the proposed approach
compared to other multimodal grasp planners are:
� modularity: the planner performs the geometrical compu-

tation starting from the 3D bounding box and the material
information of the objects. Thus, the 6D pose estimation
and the material segmentation networks can be changed
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to use the latest advances in computer vision, adapted to
satisfy the required module interface, i.e., the cuboid (8
points) for the detection module and a mask for the material
segmentation one that should be able to identify metallic
objects;

� generality: it is not restricted to a specific (hybrid) gripper
but can be easily adapted by providing the required gripper
information such as gripper clearance, finger width, suction
cup diameter, or the Unified Robot Description Format
(URDF) for multi-DoF (Degrees of Freedom) grippers, in
order to solve the IK for the joint positioning;

� new grasping modalities: besides the two-finger and single
suction grasps present in existing literature, double suction
modality for big and/or heavy objects and magnetic grasps
for metallic objects (Fig. 1) are considered;

� effectiveness: as it is based on geometrical computation, it
does not require huge training datasets that are critical for
learning-based approaches.

An experimental campaign has been conducted to assess the
performance of the proposed planning framework on the objects
of the YCB dataset [6]. For the experiments, the DLR Hybrid
Compliant Gripper (HCG) has been used as a gripper, the Deep
Objects Pose (DOPE) network as a pose estimation network, and
GoogLeNet opportunely modified as a material segmentation
network that can recognize metallic objects. In particular, the
grasp pipeline has been tested in several scenarios: structured
tabletop with sparse clutter, dense clutter, and bin-cluttered
scenes. Each of the three scenarios introduces a different level
of difficulty to test the ability of all components in the grasp
pipeline. Other scenarios for the simultaneous suction grasp of
two objects were considered to show additional capabilities of
the grasping pipeline.

The remainder of the letter is organized as follows: Section II
introduces the related work in the field of multimodal grasp
planning and hybrid grippers; Section III describes in detail the
proposed approach, explaining the building blocks of the grasp
planner; Section IV presents the experimental evaluation and
results; and Section V concludes the letter.

II. RELATED WORK

Most current manipulation systems, especially in the indus-
trial sector, use a manipulator equipped with a single gripper
capable of providing a unique grasping modality. Such systems
have difficulties for grasping a wide range of objects with
different shapes, sizes, surface properties, weights, and poses.
In recent years, the use of multiple grasping modalities has been
proposed to improve the manipulation capabilities of robotic
systems. Dex-Net [7] is a popular solution that employes a
dual-arm manipulator equipped with a parallel-jaw gripper and
a suction gripper, thus achieving a system capable of multimodal
grasping. For each gripper, a GQ-CNN is trained on synthetic
images generated from 3D object models, and uses the expected
wrench resistance as a quality metric to select the best grasp
from a depth map of the current scene. Such an approach can be
expensive, as it requires using two manipulators, and does not
exploit the synergy between the two types of grasping modali-
ties. Our proposed approach, instead, can exploit the capabilities
of hybrid grippers that allow multiple grasping modalities within
the same end-effector.

During the APC, several teams successfully exploited two-
finger parallel grasp and suction grasp modalities simultane-
ously, using hybrid grippers. The work proposed in [8] uses a
hybrid gripper with two fingers, each with a scooping spatula
as a distal segment and a passively rotating suction cup on the
side. The gripper allows for parallel grasp, suction grasp, and
scooping using the spatula. The vision system uses an in-hand
camera to estimate the 6D pose of the objects by collecting
multiple RGB-D views of the scene, passed through a Fully
Convolutional Network that returns a probability distribution
of the object classes for each pixel in the image. A high-level
motion planner chooses the best grasp based on human-trained
heuristics and analytical quality metrics. This design evolved
into a gripper with a single retractable suction cup on the side
of the gripper and replaced the in-hand camera with multiple
separated cameras [9]. The grasping pipeline uses a learned
affordance score to find the best contact points for each grasping
primitive (suction down, suction side, grasp down, flush grasp)
and chooses the best grasp among all options. However, both
approaches are not generic, as they were designed taking into
account the particular gripper structure.

Other hybrid gripper designs are proposed as proof of con-
cepts and do not include any sensors or have no advanced
planning capability for real-world grasping [10], [11].

Recently, soft hybrid grippers have been investigated, since
passive compliance allows an intuitive adaptation to the shape
of the target object. For example, the gripper in [12] has four
flexible fingers actuated through tendons, each with a suction
cup on the fingertip, and exploits a deep reinforcement learning
algorithm to select between three grasping modes (enveloping,
sucking, and enveloping and sucking). The policy function is
designed to use the enveloping and sucking grasping modality
as often as possible to grasp more than one object at the same
time by first caging one target with the fingers and then looking
for a flat planar surface to apply the suction on the second target.
The inherent bias towards one grasp modality (enveloping and
sucking grasp modality) might not be suitable for all scenarios.
Rather, a grasp modality decision based on the current object sce-
nario (low or high clutter, neighborhood) is much more versatile.

Differently from other approaches that are designed for a
specific (hybrid) gripper or that train an end-to-end network
combining different stages like object pose estimation and grasp
planning into one stage, including gripper-specific parameters,
the presented framework is general and modular, having the
advantage of allowing replacement of one module without af-
fecting the others, and is applicable to different hybrid grippers.
The planner has been developed for dense clutter and bin-picking
scenarios and exploits a neural network for obtaining the 6D
pose (translation and orientation) of the objects in the scene and
another network to infer the surface properties of the objects
using an RGB-D image. Any pose estimation networks that give
as output a 3D bounding box or material segmentation methods
that provide the 2D mask of the metallic objects can be used.
The advantage of the proposed solution is that the method is
general and can exploit the latest improvements in computer
vision by just changing the backbone modules. Furthermore, it
does not need specific training to be adapted to other grippers.
In addition, as the grasping pipeline uses only geometrical
information provided by the pose estimation module, it has a
low computational cost, and is fast compared to other grasp
pipeline approaches. In contrast to other works, our approach
considers finger joint configuration in the planning framework,
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Fig. 2. Block diagram of the grasping pipeline for two-finger, suction, and magnetic grasp modes. The diagram shows the modularity of the design and flow of
information. The input images (RGB and depth) are fed to the two backbone networks for pose estimation and metallic segmentation. Optionally, depending on
the employed networks, a pose estimation adjustment and the mask check can be applied, respectively. Then, the grasps are computed. The two-finger grasps are
refined using the available CAD models of the object or the raw depth information. The two-finger and suction grasps are filtered based on some feasibility criteria.
Finally, after a scoring stage, the best grasp candidate is selected. It is worth noticing that for better visualization, two different image scenes are shown for the
two-finger and suction grasps and for the magnetic grasp.

in case that the gripper offers multi-DoF fingers, allowing it to
adapt for grasping objects of different sizes even in cluttered
scenarios.

III. GRASPING PIPELINE

The proposed grasp pipeline (Fig. 2) takes as input the RGB
and depth images, the 3D bounding boxes of the detected objects
as given by a pose estimation network, the mask of the metallic
objects as given by a material segmentation network, the URDF
of the gripper, and optionally, the CAD models of the objects
for precise filtering of grasps. Using the CAD models as prior
for the detection is useful for complex scenarios such as dense
clutter and bin-cluttered scenes, where space for grasping might
be very restricted.

For the explanation of the pipeline, we assume that the
CAD models are available unless otherwise specified. It is also
assumed that the employed pose estimation network directly
returns for each detected object a 3D bounding box, or that it
is possible to reconstruct for each object a cuboid combining
the outputs of the network. Therefore, each detected object is
modeled as a set of 9 points: 8 corners and the centroid. Each
point is represented as a 3-dimensional vector �p c = (x, y, z) in
the camera frame (Oc). Hereafter, if the superscript is not speci-
fied, the point is considered to be in the camera frame to reduce
notation complexity. Fig. 4 depicts the cuboid, together with the
camera and world frames. The extrinsic camera parameter T c

o
(obtained by a calibration procedure) is used to transform a point
expressed in the camera frame to the world frame and vice-versa,
and the intrinsic camera parameter K is used to project the 3D
point in the image frame and vice-versa.

For the cuboid, each face can be defined as a set of 4
points, where the face center for object i is computed as �c ik =
1
4

∑4
j=1 �p

i
kj , with k representing a face of the cuboid. The

faces relevant for grasping are the ones that are visible from
the camera’s viewpoint. Therefore, for a generic object i, it is

Fig. 3. DLR Hybrid Compliant Gripper, with overlayed representation of
the rotation matrix expressed as the three orthonormal vectors: axis, binormal,
approach.

possible to define a set of upward faces that satisfy the following
condition: Fi

u = {f i
k : θik < η} where k = 1, 2, . . ., 8, and θik is

the angle between the vertical vector −�z and the face normal
(Fig. 4). The condition is satisfied if the angle is below a given
threshold η (which has been set to 30◦ for the experiments). The
normal �n i

k is computed as �v i
k1 × �v i

k2, where �v i
k1 = �p i

k4 − �p i
k1

and �v i
k2 = �p i

k2 − �p i
k1 (Fig. 4). Thus, after normalizing the nor-

mal �n i
k =

�n i
k

||�n i
k ||

, θik is obtained as arccos (�n i
k · −�z).

A. Grasp Synthesis

Each upward face is then sampled to find potential two-fingers
grasps and suction grasps. A two-finger grasp can be defined as a
set of a translation vector, rotation matrix, and the required grip-
per opening needed for grasping the target object. The rotation
is represented as a 3x3 matrix where the column vectors are the
axis, binormal, and approach orthonormal vectors (see Fig. 3).
Therefore, with Fig. 4 as reference, for a two-finger grasp,

�approach
i

ks = −�n i
k and �axis

i

ks =
�v i
ks

||�v i
ks||

. The binormal is the

cross product between the other two vectors: �binormal
i

ks =

�axis
i

ks × �approach
i

ks. The subscript s = 1, 2 represents the two
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Fig. 4. Left: 6D bounding box representation of an object i. The points �pij ,

j = 1, . . ., 8 are the vertexes expressed in the camera frame Oc and f i
k , k =

1, . . ., 6 are the faces that constitute the cuboid. Right: Facek of an object cuboid
i, composed of 4 points. The two dimensions of the face are dimi

k1 and dimi
k2.

The vectors �vi
k1

and �vi
k2

are used to compute the vector normal to the face �ni
k

.

sides of the face, since the two-finger grasp can potentially occur
along both axis directions. Thus, both sides are sampled starting
from the center of the face along the axis direction with a given

stride d = gλ, where g = {0, 1,−1, 2,−2, . . .,
dimi

k

2 ,−dimi
k

2 :

dimi
k < ξ}. λ has been set to 10 mm for the experiments, while

ξ is the maximum gripper clearance. Hence, the translation
vector of a possible two-finger grasp is derived as �t ik(d) =

�c ik + d · �axis
i

ks. It is worth noticing that a side of an upward face
is sampled only if the dimension dimi

k of that side is smaller
than the gripper opening, and the openingik is set to dimi

k. Be-

ing Ri
ks =

[
�axis

i

ks
T �binormal

i

ks
T �approach

i

k
T

]
, the set

of all the possible two-fingers grasp is defined as F
i
a =

{�t ik(d), Ri
ks, opening

i
k}.

A suction grasp can be defined with a translation vec-
tor and an approach direction. The set of possible suction
grasps is computed by sampling the upward face in a cir-
cular manner starting from the center (�c i

k ). The translation
vector of a possible suction grasp is derived as: �t ik(r, γ) =
�c i
k + r cos (γ)�v i

k1 + r sin (γ)�v i
k2, with r = mδ and γ = nρ(r),

where m = 0, 1, 2, . . ., min(dimk1,dimk2)
2 , δ is a fixed quantity

set to 10 mm in the experiments, n = 0, 1, 2, . . ., 360, and
ρ(r) = 60

r , defined as function of r to have an homogeneous
sampling independent of the distance to the center. Also for
suction grasps, the approach direction is opposite to the normal

of the face: �approach
i

k = −�n i
k. The set of all possible suction

grasps is formed as: Sia = {�t ikg, �approach
i

k
T }.

B. Refinement and Filtering

Depending on the arrangement of the objects in the scene,
not all the predicted grasps are feasible, and up to now, the
grasps are generated considering the dimension of the cuboids
and not the actual size of the objects. Therefore, a refinement
process to match the actual size of the objects in the grasp
positions and a filtering stage to keep only the feasible grasps
are needed. By using the depth information and silhouette of
the object, more accurate gripper contact points touching the
surface of the objects can be estimated, and the z position of the
objects provided by the pose estimation network can be adjusted.
The feasibility stage removes grasps that belong to parts of the

Fig. 5. Result of the visibility computation process. In the left image, the
Cheez-it box is occluded by the tomato soup can, the Spam meat, and the Mustard
bottle. This occlusion is reflected in the right image, obtained by projecting the
CAD model in the depth image for the computed 6D pose. White pixels are
considered visible for the next steps in the pipeline.

Fig. 6. Grasp feasibility check. Left: example of the process that checks if
there is enough space for the two fingertips (represented as two black and white
rectangles) to afford in depth. Right: an example of the process that checks if
there is enough space for the suction cup (represented as a circle) to completely
adhere to the object surface.

object that are invisible to the camera and are occluded by other
objects in the scene. In order to compute the visible region of an
object, the CAD model is projected in the depth image through
a render pass knowing the object’s 6D pose and the camera’s
intrinsic parameters. The pixels of the projected mask that are
near the corresponding values of the depth image within a given
threshold, which can be tuned depending on the accuracy of the
depth sensor, are considered visible. Fig. 5 gives an example
result of the procedure.

A two-finger grasp can be executed only if the gripper can
move deep enough along the approach direction to make contact
on the object’s side. Therefore, performing a feasibility check to
verify if there is enough space for the fingers without colliding
with the surrounding objects is crucial. The depth required for
a successful grasp, referred as the affordance depth daff , is
chosen as the minimum between a given value that depends on
the fingertip size (3 cm for HCG) and 2/3 of the height of one
of the two faces perpendicular to the object’s upward face along
the approach direction. By considering the new location of the
two fingers, after the refinement process, a square rectangle,
5 mm bigger than the dimension of the fingertip of the gripper
to account for the noise of the depth sensor and the camera
calibration, is projected in the depth image using the intrinsic
camera matrix K. If 70% of the pixels within the rectangles
have a depth difference with respect to the depth of the face
central point larger than daff , that grasp is considered feasible.
Fig. 6 graphically explains the feasibility concept. Fi

r is the
resulting set of available grasps removing the non-feasible
grasps discarded by the visibility factor and the grasps for
which there is not enough space for the fingers.

For suction grasps, unlike finger grasps, there is no need to
refine the gripper opening, and the feasibility check to ensure
enough space for the fingers is also not applicable. However, a
feasibility check is required to verify that the suction cup can
adhere to and seal completely on the object’s surface. This is
achieved by checking if a circle with a radius of the suction
cup adequately fits inside the visible silhouette of the object.
The feasibility filtering stage concerning occlusion parts of the
object is the same as for two-finger grasps. Sir is the resulting
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set of available grasps removing the set of non-feasible grasps
discarded by the visibility factor and the set of grasps for which
the suction cup does not fit completely on the object surface.

C. Grasp Selection

Each object in the scene can be defined as O
i =

{�t i, Ri,Fi
u,�c

i
k,F

i
r, S

i
r, CADi}. After computing the two-finger

grasps and suction grasps, it is possible to assign a score to
objects and grasps based on desired heuristics to select the
grasp for execution. Each score is a numerical value between
0 and 1. The scoring for objects is based on the depth, the
visibility percentage, and the number of collisions with other
objects. In particular, all N objects are first sorted by depth
O =

⋃N
i=1 O

i : depth(Oi) < depth(Oi+1), and then the depth
score is assigned as follows:

σi
depth = 1.0− depth(O1)− depth(Oi)

depth(O1)−max(depth)
, (1)

i = 1, 2,..., N. By doing so, in cluttered scenes, objects at the
top are preferred, as they are less occluded by other objects. The
visibility score of an object takes into account how much it is
visible in the clutter by considering the percentage of visible
pixels,

σi
visibility =

pixel(mask(CADi(�t i, Ri)))

pixel(projection(CADi(�t i, Ri)))
. (2)

Finally, the collision score considers for each object the
number of collisions with other objects, privileging the ones
that have fewer collisions:

σi
collisions = 1.0− collision(Oi)−min(collisions)

max(collisions)−min(collisions)
,

(3)
where collisions = {#ci} i = 1, . . ., N is the set containing
the number of collisions for each object. To quickly compute
collisions among objects, the separated axis theorem [13] is
used by exploiting the cuboid vertices. All scores are combined,
weighting each heuristic differently depending on the impor-
tance they should receive, and the weighted average is computed
to get the final score:

σi
total =

w1 σ
i
depth + w1 σ

i
visibility + w3 σ

i
collisions

w1 + w2 + w3
. (4)

In the experiments, the depth score is weighted more to make
the planner give the highest importance to the object on the top.
Therefore, the target object for grasping is chosen as the object
having the highest total score: target = O

∗ : max(σi
total).

For assigning a grasping score, the relevant metrics for both
two-fingers grasp and suction grasp are the distance to the
barycenter and the numerosity. The first is meant to privilege
grasps that are near the center of the object, to improve the
stability of the grasp: σ∗

baricenterk = 1.0− ||�c ∗k − �t ∗(d)||, for
two-finger grasp, and,σ∗

baricenterk = 1.0− ||�c ∗k − �t ∗k(r, γ)|| for
suction grasp. The numerosity is included considering that if
one grasping mode has very few feasible grasps even with a
poor barycenter score, then maybe it is possible that also the
remaining ones are not so robust, thus, it is better to prefer the
other modality. Such a score is simply obtained as the cardinality
of the resulting feasible grasps over the total number of grasps,
as follows:σ∗

numerosityk
= #F

∗
r

#F∗
a

andσ∗
numerosityk

= #S
∗
r

#S∗a
. This

Fig. 7. Fingertip positioning with the double suction single object modality.
After the cuboid detection (left figure), being dim the dimension of the principal
axis of the upward face, the fingertips are placed equidistant from the center by
a factor of dim

4 to guarantee a stable grasp aligned with the principal axis of the
face.

metric is optional and should be considered carefully because a
nonuniform sampling between the two grasping modalities can
lead to a bias for the one with the highest cardinality. In addition,
for the two-finger grasps, it is also possible to add a preference
score for selecting the smaller side to grasp, in case it is not too
far from the barycenter. Therefore, the total score for two-finger
grasps is

σ∗
totalk =

w4 σ
∗
baricenterk + w5 σ

∗
numerosityk

w4 + w5
, (5)

and for suction grasps is

σ∗
totalk =

w6 σ
∗
baricenterk + w7 σ

∗
numerosityk

w6 + w7
. (6)

It is possible to assign different weights w to the metrics,
but for the experiments, they are all considered unitary. The
selected grasp is the one that has the highest total score among
the two modalities and belongs to the target object (in case
there is a specific object to be grasped): grasp† = g† : g† ∈
{F∗

r ∪ S
∗
r} s.t. σ∗

totalk = max(σ∗
totalk). If there are no feasible

grasps for the target object, the best grasp for the next highest
object is considered.

Besides the normal suction grasp mode, where only one
suction cup is used, the planner also considers using both suction
cups at the same time for heavy or big objects. In that case, the
translation vector of the grasp pose coincides with the center of
the upward face, and the rotation matrix is built similarly to the
two-finger grasp mode; in such a way the binormal is parallel to
the major axis of the face, the approach is opposite to the face
normal, and the axis is derived as the cross product between
the other two. Then, the suction cups are placed on the surface
with an approach perpendicular to the object, having a distance
of dim/4 from the center on each side, as shown in Fig. 7.
If the two suction cups lay on a visible portion of the object,
such a grasping mode is preferred over the single suction mode.
For grippers with multi-DoF fingers, such as the DLR HCG, an
inverse kinematic (IK) is required for positioning the fingertips
at the desired pose or, for the two-fingers grasp, for getting the
specified opening. Kinematic feasibility is an additional filter
used to eliminate non-feasible grasps.

The magnetic mode is meant for thin metallic objects, and
is selected when the height and size of the metallic object
fulfills a predefined threshold. The metallic mask provided by
the material segmentation network is double-checked with the
contours of the object retrieved in the depth image to have a
better segmentation mask. Indeed, it is not an easy job deriving
the material properties of an object from an RGB image, and
the accuracy of the existing methods is not so high (around
70%) [14]. The centroid of such a refined mask is re-projected
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Fig. 8. Magnetic grasp pipeline. The initial RGB image (left) is fed to the
segmentation network that provides a mask of the metallic objects, which
is double-checked with the depth information to have more accurate masks
(center). The centroids of the masks constitute potential magnetic grasps, as
depicted in the right image by the points on the scissor and the spoon.

from the 2D image to the 3D camera coordinate system using
the intrinsic matrix, and is used as the translation vector for the
magnetic fingertip. Fig. 8 depicts graphically the pipeline used
for the magnetic grasp modality.

When a suction cup is available on each finger, such as in
the DLR HCG, it is also possible to grasp at the same time two
objects using the two suction cups even if the two target objects
have different heights, compensating for such a difference with
the DoF of the fingers. In this case, the translation vector of the
grasp pose is the middle point between the two center points of
the two upward faces involved in the task. The rotation matrix
has the binormal computed as the normalized difference vector
between the two center points, the axis as the cross product
between the binormal and the approach vector of the suction
grasp in the face center point, and the approach the cross product
between the other two. The fingertip placement is handled by
the IK solver, which also checks if the configuration is feasible
or not. A separate scenario is arranged in the experimental
campaign to show such a capability.

The proposed grasping pipeline is general and can be adapted
to other hybrid grippers changing the URDF, and the associated
parameters such as gripper opening, fingers’ width, and allowed
grasping modalities. Furthermore, other equivalent backbone
networks can be employed as long as they implement the re-
quired functionalities.

IV. EXPERIMENTAL VALIDATION AND DISCUSSION

Four manipulation scenarios of increasing difficulty are cre-
ated using the YCB objects. The robot should grasp the items
from a table and transport them to a storing area. Demonstration
videos can be found at https:// github.com/ SalvatoreDAvella/
Multimodal-grasp-planning.git.

A. Hardware Description

The proposed multimodal grasp pipeline has been tested using
the HCG gripper (Fig. 3) mounted as end-effector of a DLR LWR
robot. The HCG has 8 DoFs and each finger is equipped with a
suction cup at the fingertip and an electromagnet at the side of the
fingertip, providing four grasping modalities. Its finger design
is based on the thumb modules of the DLR CLASH hand [15],
which has variable passive stiffness. Each finger has three DoF
(1-DoF distal interphalangeal and 2-DOF metacarpophalangeal
joint), and the finger stiffness can be controlled independently
of the position. The fingers are mounted on a base that provides
an additional DoF per finger to tilt them away from the palm,
enhancing the grasp span up to 260 mm. The maximum object
weight for pinch grasp is about 1.5 kg (for friction coefficients
above 0.75), and about 500 g for one suction cup. A Realsense

TABLE I
EXPERIMENTAL RESULTS FOR THE FOUR DIFFERENT SCENARIOS

D435 RGB-D camera looking down at the objects has been
employed for the vision system.

B. Backbone Networks for Object Detection and Segmentation

The grasp pipeline leverages Deep Object Pose (DOPE) [16]
for extracting the bounding boxes and 6D poses of the objects
involved in the scene for computing two-fingers grasps and
suction grasps. DOPE is a model-based approach that only uses
an RGB image as input. First, it estimates the belief maps of
2D keypoints of all the objects in the image coordinate system,
and then the 6D pose of each object instance with a standard
perspective-n-point (PnP) algorithm on the peaks extracted from
these belief maps. The final step uses the detected projected
vertices of the bounding box, the camera intrinsic parameters,
and the object dimensions to recover the final translation and
rotation of the object with respect to the camera. All detected
projected vertices are used as long as at least four vertices of the
cuboid are detected. The network can be trained on synthetic and
photo-realistic data without the need for handcrafted labels on
real data, and provides satisfactory results on real objects thanks
to the domain randomization technique.

For magnetic grasps, metallic objects should be detected and
segmented. For this purpose, the Material In Context (MINC)
dataset is used for training the network, and the approach
presented in [14] is implemented. A GoogLeNet [17] is con-
verted into a sliding CNN without average pooling in order to
densely classify a grid across the image. The last fully connected
layers are modified into convolutional layers to obtain a fully
convolutional network for classifying images of any shape. In
post-processing, the dense connected Conditional Random Field
(CRF) model [18] is used to predict a label at every pixel, thus
achieving material segmentation.

Other equivalent backbone networks can be employed as long
as they provide the 6D pose or the bounding box (cuboids) for
the objects for the pose estimation stage (e.g. [19] or [20], which
is even agnostic to the identity of the objects), and the mask that
identifies metallic objects, required for the magnetic grasps.

C. Results

Table I summarizes the results obtained during the experi-
ments for the different scenarios, presented below. The table
reports the grasping success rate taking into account all the sys-
tem’s components, starting from the grasp pipeline prediction to
the execution of the grasping action by the gripper and the move-
ment of the robotic arm, in order to measure the performance of
the pick and place robotic system. For the conducted tests, the
planner always provided the correct target and grasp according to
the selected metrics when the vision module detected an object.
The average object pose estimation time required by the selected
vision module DOPE is 1.1 s, while the average time required by
the grasp planner for returning the grasping pose and modality
for the next target is 1.8 s in scenes containing ten objects.

https://github.com/SalvatoreDAvella/Multimodal-grasp-planning.git
https://github.com/SalvatoreDAvella/Multimodal-grasp-planning.git
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Fig. 9. Some scenes used for the tabletop structured clutter scenarios.

The first scenario is a tabletop structured clutter scenario,
where the objects are disentangled and arranged on the working
table to cover at least 70% of the area (Fig. 9). With this scenario,
we used a custom vision module that is different from the DOPE
network used in the other more complex scenarios. In partic-
ular, such a computer vision module considers the following
assumptions: a full 6D pose estimation with the detection of the
upward faces is not required, as only the top of the object can be
included in the grasp synthesis; the CAD model is not necessary
since it can be substituted by the raw depth information; no
occlusions and collisions have to be handled. Furthermore, the
grasping approach can always be top-down, and some rules
based on the geometrical properties of the objects are used to
drive the grasping selection by considering the characteristics of
the gripper. For example, the curvature of the top surface of the
object has to be estimated in the depth image to prevent applying
the suction grasps on curved surfaces, very big objects should be
grasped with the double suction grasp modality, round objects
must prefer two-finger grasps, or objects with a flat surface and
a low height need to be handled with suction, as the two-finger
grasps are more prone to errors in this condition. This shows the
modularity of the designed grasp planner in terms of the vision
module and is applied to unknown objects.

Ten different scenes with six or seven objects taken randomly
from 48 YCB objects are tested. All the objects are selected at
least once and then repeated with different poses in the subse-
quent scenes. From the YCB dataset, only the objects that were
too heavy, big, or small and, thus, not feasible for the HCG were
discarded. The system achieved a success rate of 97%. The main
errors were related to the slippage of thin round objects during
the transportation to the placing area. The errors can be explained
by the inaccuracies in the final position of the gripper and in
the joint control of the HCG fingers, still under development,
ending up in a grasping position that is slightly different from
the one commanded by the grasping pipeline. Such behavior is
critical for thin round objects for the two-fingers grasp mode
and narrow objects grasped with the suction modality. For the
latter case, a recovery procedure, consisting in trying small
positional variations in the area near the one computed by the
grasping pipeline, has been implemented to compensate for such
placement inaccuracy. It has been shown during the experiments
that the recovery strategy helped increase the success rate of task
execution. In order to show the generality of the planner for other
grippers, the same experiments were conducted using the Franka
Emika Panda robot equipped one time with its parallel-jaw
gripper achieving a success rate of 47%, and another time with
the Schmalz suction gripper achieving a success rate of 36%. The
Panda parallel-jaw gripper has a clearance of 8 cm and is not
suitable for many of the involved objects. However, the gripper
successfully grasped all those objects for which the grasping
pipeline found a feasible grasp. The Schmalz suction gripper

Fig. 10. Some scenes used for the dense clutter scenarios.

Fig. 11. Some bin scenes for the bin picking scenarios.

has a diameter of 3 cm, and it is not suitable for the curved
objects involved in the scenes. However, the gripper successfully
grasped all those objects for which the grasping pipeline found a
feasible grasp. Note that the performance of the single modality
grippers is already much lower than the multimodal gripper in
the first scenario, which is the simplest one, therefore such a
comparison is not repeated for the remaining test scenarios.

The second manipulation scenario presents densely cluttered
scenes where the objects can collide, are subject to occlusion,
and present challenging poses (Fig. 10). In these cases, all the
steps of the grasping pipeline explained in the previous section
are required. The complete 6D pose estimation is necessary, and
the DOPE network has been trained for seven objects presenting
different shapes, sizes, weights, and surface properties. Seven
scenes with six objects arranged in different poses have been
tested. The proposed system still performs well even for tricky
situations where the objects require a particular grasping pose,
are on top of each other, or are arranged in such a way that there
is limited space to position the fingers. In order to avoid possible
robot collisions with the objects during the motion, we move the
robot from the starting position to a pre-grasp pose, which is the
same as the grasp pose but shifted vertically along the z-axis
in the tool center point (TCP) frame so that the affordance for
grasping is purely vertical along the approach direction. The
system achieved a success rate of 87.5%. The main failures, as
in the previous scenario, were related to the slippage of objects
during the transportation to the placing area, especially for
the suction grasping modality. However, the grasping pipeline
provided correct grasping candidates.

The last scenario is a heavily cluttered bin, where the objects
are randomly piled on top of each other (Fig 11). In this setup,
the objects suffer from heavy occlusions that pose problems to
the vision system. In addition, the very small size of the bin
can penalize the movement of bulky grippers, and the objects
strongly overlap with each other, making two-finger grasps very
difficult. Three trials have been executed. The performance of
the system decreased with respect to the previous scenarios, and
the system could grasp five, eight, and six objects in the three
trials. The main problems are related to the 6D pose estimation
network that in a heavy clutter scene with the transparent bin
does not detect at all some objects or makes the wrong estimation
of the orientation, and to the collisions with the bin walls. The
environmental constraints of the bin walls are considered in the
space filtering check for the two-finger grasps, which leaves
few feasible grasps for final selection. The approach is always
to try to grasp the highest object, which is less occluded. To
increase the estimation accuracy of the network, the depth image
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is cropped with a virtual plane located 5 cm above the bottom
of the bin, and an RGB image constituted just from the pixels
above that plane is fed to the network. When the cuboids of the
objects are computed correctly, the grasping pipeline generates
a suitable grasp for the complex scenario. We are using a state-
of-the-art algorithm in the pipeline for the 6D pose estimation,
and thanks to the modularity of the system, we could upgrade the
pipeline by changing the backbone network with future solutions
without affecting the overall planning approach.

The fourth scenario is meant to show the capability of the grip-
per in combination with the grasping pipeline to grasp multiple
objects at the same time with the suction cups mounted at the
fingertips. In particular, several scenes with six objects having
even different heights are created. Using the IK solver, it is
possible to check the feasibility of the grasping and compensate
for the height difference between the two target objects. The
bottom right picture of Fig 9 depicts one of such scenarios. With
such a grasping modality, it is possible to half the cycle time of
the pick and place task.

V. CONCLUSION

Autonomous grasping of a variety of objects is still an open
problem in robotics, especially for cluttered scenarios. After the
success obtained during the Amazon Picking Challenges, multi-
modal grasping has been recognized as an interesting strategy to
improve the manipulation capabilities of robotic systems. This
work presented a novel multimodal grasp panning algorithm
for hybrid grippers that allow multiple grasping modes. The
presented framework is general as it can be used for other hybrid
grippers, and it is also independent of the networks used for the
6D pose estimation and material segmentation. The performance
of the system has been assessed with an experimental campaign
in different manipulation scenarios on the objects of the YCB
dataset: structured tabletop sparse cluttered scenes, densely
cluttered scenes, and heavily cluttered bin scenes. The results
showed high success rates for the first two setups and decay
of the performance for the last one, which could be improved
by using a future 6D pose estimation network that can better
handle cluttered scenes. Future work will be focused on using the
properties of the objects from the known CAD models, learning
such properties directly from the RGB images, and exploiting
environmental constraints in the grasp planner.
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