
ARTICLE IN PRESS
Journal of Quantitative Spectroscopy &
0022-4073/$ - se

doi:10.1016/j.jq

�Correspond
E-mail addr
Radiative Transfer 103 (2007) 193–208

www.elsevier.com/locate/jqsrt
An efficient inversion algorithm for atmospheric remote sensing
with application to UV limb observations

Adrian Doicu�, Franz Schreier, Siegfried Hilgers, Albrecht von Bargen,
Sander Slijkhuis, Michael Hess, Bernd Aberle

DLR, German Aerospace Center, Remote Sensing Technology Institute, Oberpfaffenhofen, 82234 WeX ling, Germany

Received 4 May 2006; accepted 6 May 2006
Abstract

In this paper we present a retrieval algorithm for atmospheric remote sensing. The algorithm combines Tikhonov

regularization and the iteratively regularized Gauss–Newton method and is devoted to the solution of multi-parameter

inverse problems with simple bounds on the variables. The basic features of the algorithm: the solution of the bound-

constrained minimization problem, the selection of the optimal regularization parameter, the derivation of the global

regularization matrix and the characterization of the solution (error analysis) are discussed in detailed. The inversion

algorithm is applied to ozone retrieval from SCIAMACHY limb scatter measurements in the ultraviolet spectral range.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Several satellite instruments measure radiation scattered or emitted from the Earth’s limb to monitor
vertical profiles of atmospheric gases or temperature. A sequence of observations (limb scans) corresponding
to different tangent altitudes are used for atmospheric retrieval. Two recently launched instruments employing
this technique are the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the
SCanning Imaging Absorption SpectroMeter for Atmospheric ChartographY (SCIAMACHY) aboard the
ENVISAT satellite. The MIPAS instrument [1] observes thermal infrared (IR) emission and provides
information about temperature, ozone (O3), nitrogen family (NO2, HNO3, N2O, etc.) and dynamic tracers
(H2O, CH4). The SCIAMACHY instrument [2] measures scattered solar radiation in the ultraviolet (UV) to
near IR range and reveals information about the Earth’s atmospheric composition with respect to O3 and
other minor constituents such as NO2 and BrO.

Inverse problems arising in atmospheric remote sensing are usually nonlinear and ill posed. Moreover, we
are frequently dealing with multi-parameter problems, i.e., several atmospheric profiles are retrieved together
e front matter r 2006 Elsevier Ltd. All rights reserved.
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with a set of auxiliary parameters. Quadratic and inequality constraints have to be imposed on the state vector
in order to obtain realistic solutions.

The benefits of using a bound-constrained algorithm stem from two observations about most practical
problems. Firstly, the restriction on the expected size of the variables is frequently encountered in atmospheric
remote sensing. Secondly, even if no bounds are active at the solution, their presence can prevent the objective
function from being evaluated at nonphysical points during the iterative process. This kind of inverse
problems can be solved by using a multi-parameter regularization method with simple bounds on the
variables.

In this paper we present the main features of an inversion algorithm for atmospheric remote sensing [3–5].
The algorithm incorporates two regularization methods: Tikhonov regularization [6] and the iteratively
regularized Gauss–Newton method [7] and has been employed for MIPAS [8] and SCIAMACHY limb
radiance measurements. The data model is semi-stochastic in contrast to the optimal estimation method (or
the Bayesian approach) which assumes a stochastic data model [9].

The organization of our paper is as follows. Section 2 describes the basics of the algorithm and gives all key
formulas. The application of the technique to SCIAMACHY limb measurements is discussed in Section 3.
Section 4 summarizes our results.
2. Inversion algorithm

The main steps of the retrieval algorithm are: the derivation of the discrete data model, the formulation and
the solution of the bound-constrained minimization problem, the selection of the regularization parameter, the
derivation of the global regularization matrix for multi-parameter problems and the error analysis depending
on the setting in which the problem is treated.
2.1. Discrete data model

The discretization of the radiative transfer equation leads to the data model:

y ¼ FðxÞ,

yd ¼ yþ d, ð1Þ

where the mapping F: Rn ! Rm represents the forward model, y 2 Rm is the exact data vector, x 2 Rn is the
state vector to be estimated, yd 2 Rm is the noisy data vector and d 2 Rm is the measurement error.

The inverse problem x ¼ F�1ðyÞ is solved in the least-squares sense by imposing simple bounds on the
variables to obtain a physically meaningful solution, i.e.,

lpxpu. (2)

For a multi-parameter problem, the state vector x has several components zi (with not necessarily equal
lengths),

x ¼ ½z1; z2; . . . ; zP�
T, (3)

where zi stands for a discretized atmospheric profile or the set of auxiliary parameters, and P is the number of
components, cf. Section 2.4.

In our analysis we consider a semi-stochastic data model in the sense that the exact solution bx is
deterministic but the measurement error d is stochastic with zero mean and the covariance matrix
Sd ¼ Efd � dTg ¼ ð1=mÞ Im, where E is the expected value operator and Im is the identity matrix (of rank m).
In general, if the measurement error is described by a symmetric and positive definite covariance matrix Sd,
we can obtain a ‘‘normalized’’ data model with identity covariance matrix by using the prewhitening
technique [9].
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2.2. Bound-constrained minimization problem

The ill-posed problem is solved in the least-squares sense by means of regularization methods. The
corresponding bound-constrained minimization problem is of the form:

min
x2Rn

FðxÞ ¼ min
x2Rn

1

2
kFðxÞ � ydk2 þ l2LðxÞ
� �

subject to the simple bounds lpxpu, ð4Þ

where l is the regularization parameter, L is the global regularization term and the symbol k � k denotes the
Euclidian norm. The regularization term adds a priori knowledge about the solution to the information
coming from the measurement. In general, L is a quadratic term,

LðxÞ ¼ kHðx� xaÞk
2, (5)

where xa is the a priori state vector, the best beforehand estimator of x̂, and H is the global regulariza-
tion matrix. The derivation of the global regularization matrix for multi-parameter problems is discussed in
Section 2.4.

The bound-constrained minimization problem can be formulated as a standard least-squares problem
FðxÞ ¼ 1

2
kf ðxÞk2; where f is the generalized residual vector

f ðxÞ ¼
FðxÞ � yd

lHðx� xaÞ

" #
. (6)

Iterative methods for nonlinear least squares can then be employed to solve the minimization problem
(cf., e.g., [10]). A Gauss–Newton method with a simplified version of an active-set algorithm [11] and a trust-
region method with a local active-set strategy to select the step [12,13] are implemented in our code.

In the Gauss–Newton algorithm, the variables remain free during the iterative process, while in the trust-
region algorithm, the variables can be fixed on their bounds. Note that the second algorithm is more
sophisticated but more efficient than the first algorithm.

2.2.1. Gauss– Newton method

For this algorithm, the process of finding the new iterate can be summarized as follows:
(1)
 compute the step direction pk by solving the unconstrained problem

min
p2Rn

f T
ðxd

klÞKf ðx
d
klÞpþ

1

2
pTKf ðx

d
klÞ

TKf ðx
d
klÞp

� �
, (7)

where k is the iteration step, Kf ðxÞ ¼ f 0ðxÞ denotes the Jacobian matrix of f evaluated at x and xd
kl is the

actual iterate,

(2)
 compute a, the maximum positive feasible step along pk, i.e., lpxd

kl þ apkpu for all a with 0oapa,

(3)
 determine a positive step-length ak for which it holds that

Fðxd
kl þ akpkÞoFðxd

klÞ

and akpxa, where xo1, and take xd
kþ1;l ¼ xd

kl þ akpk .
2.2.2. Trust-region method

For the trust-region method, we take xd
kþ1;l ¼ xd

kl þ pk, where pk is the solution of the trust-region problem

min
p2Rn

f T
ðxd

klÞKf ðx
d
klÞ pþ

1

2
pTGðxd

klÞp

� �
subject to the simple bounds lpxpu

and the trust-region constraint kpkprk. ð8Þ
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Here, rk is the radius of the trust region and Gðxd
klÞ is some approximation to the Hessian of F computed at

xd
kl. G can be computed in the framework of a Gauss–Newton model as G ¼ KT

f Kf , or in the framework of a
quasi-Newton model as G ¼ KT

f Kf þ S, where S is a secant approximation to the second-order part of the
least-squares Hessian [13]. The algorithm starts with S0 ¼ 0. With this choice, the first iteration is equivalent
to an iteration of the Gauss–Newton method. If the Gauss–Newton step is too long the trust region is shrunk
repeatedly to obtain a feasible xd

kþ1;l.

2.3. Regularization parameter selection

The Gauss–Newton step is equivalent to the minimization of the regularized function

Flinear
k ðxÞ ¼ kFðxd

klÞ � yd þ Kðxd
klÞðx� xd

klÞk
2 þ l2kHðx� xaÞk

2, (9)

for the linear subproblem

FðxÞ ¼ Fðxd
klÞ þ Kðxd

klÞðx� xd
klÞ þ Rðxd

kl;xÞ, (10)

where KðxÞ ¼ F 0ðxÞ is the Jacobian matrix of F evaluated at x and Rðxd
kl;xÞ is the linearization error. The

regularized function for the corresponding linear subproblem can be written in standard form as

Flinear
k ðuÞ ¼ kKku� wd

kk
2 þ l2kHuk2, (11)

where u ¼ x� xa, Kk ¼ Kðxd
klÞ and wd

k ¼ Kkðx
d
kl � xaÞ � rdkl. The residual vector at the iteration step k is given

by rdkl ¼ Fðxd
klÞ � yd.

Because at each iteration we are dealing with a linear problem, we summarize the most important
parameter-choice methods for linear problems. These parameter-choice methods will be extended to the
nonlinear case in Section 2.3.6. We begin by recalling the main quantities of interest. The Tikhonov solution

to the minimization problem is ud
kl ¼ K

y

klw
d
k, where K

y

kl is the regularized (generalized) inverse or the gain

matrix and xd
kþ1;l ¼ ud

kl þ xa. The linearized residual is given by rlinear;dkl ¼ Kkud
kl � wd

k, while the linearized

constraint vector is slinear;dkl ¼ Hud
kl. The linearized predictive error is defined as plinear;d

kl ¼ Kkud
kl � wk, where

wk ¼ Kkðx
d
kl � xaÞ � rkl and rkl is the residual vector at the iteration step k in the noise-free case given by

rkl ¼ Fðxd
klÞ � y. The linearized total error gives the discrepany between the regularized solution and the exact

solution and is defined as elinear;dkl;total ¼ ud
kl � bu, where bu ¼ bx� xa.

Assuming that the linearity relation (10) holds at x ¼ bx, we have

plinear;d
kl ¼ ðbAkl � ImÞKkðbx� xaÞ þ

bAkld, (12)

and

ud
kl � bu ¼ ðAkl � InÞbuþ K

y

kld, (13)

where bAkl is the influence matrix and Akl is the averaging kernel,bAkl ¼ KkK
y

kl,

Akl ¼ K
y

klKk.

The error in û can be expressed as a sum of the linearized smoothing error and linearized noise error,

elinear;dkl;total ¼ ðAkl � InÞbuþ K
y

kld

¼ elinearkl;smooth þ elinear;dkl;noise. ð14Þ

Because the smoothing error increases with increasing l and the noise error decreases with increasing l, the
total error has a minimum for an optimal value of l. Due to the linearity relation plinear;d

kl ¼ Kke
linear;d
kl;total, we may

assume that the linearized predictive error also possesses a minimum for an optimal value of l. Except for the
L-curve selection criterium, the parameter-choice methods discussed in this subsection select the regularization
parameter by analyzing the linearized predictive error plinear;d

kl or the linearized total error elinear;dkl;total. In the first



ARTICLE IN PRESS
A. Doicu et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 103 (2007) 193–208 197
case the analysis is performed in the data space (y), while in the second case, the analysis is carried out in the
state space (x).

The following parameter-choice methods are implemented in our code.

2.3.1. L-curve method

The L-curve method consists in the analysis of the graph of the curve obtained by plotting the norm of the
constraint vector kslinear;dkl k versus the norm of the residual krlinear;dkl k in log–log scale [14]. This curve exhibits a
typical ‘‘L’’ shape, and the optimal value of the regularization parameter is at the corner of the ‘‘L’’. The
solution corresponding to the corner of the L-curve balances the constraint and residual norms. Moreover,
a solution near the L-curve’s corner tends to balance the smoothing and noise errors [14]. The corner of the
L-curve is defined as the point on the graph with maximal curvature. Because the residual and constraint
norms can be computed analytically, function minimization routines can be used to compute the maximum of
the curvature [15].

In the optimal estimation method, the expected values of the constraint and residual norms are known as
the degree of freedom for signal and noise, respectively [9]:

ds ¼ Efkslinear;dkl k2g,

dn ¼ Efkrlinear;dkl k2g.

The degree of freedom for signal ds is a decreasing function of the regularization parameter, while the degree
of freedom for noise dn is an increasing function of the regularization parameter.

2.3.2. Generalized cross-validation method

The generalized cross-validation (GCV) [16,17] is a predictive method which seeks to minimize the
linearized predictive risk kplinear;d

kl k2. Since plinear;d
kl is unknown, the GCV method works instead with the GCV

function

V ðlÞ ¼
krlinear;dkl k2

trace2fIm � bAklg
. (15)

The linearized residual is an increasing function of l and the GCV method seeks to locate the transition point
where the linearized residual changes from a very slowly varying function of l to a more rapidly increasing
function. The denominator in the above equation is a monotonically increasing function of l, such that V

has a minimum. The term tracefIm � bAklg can be regarded as an estimate of the degree of freedom for noise
(Eq. (12)) and V is an estimate of l which balances the degree of freedom for noise against model fit.
Unfortunately, the unique minimum of the GCV function can be very flat, thus leading to numerical
difficulties in computing the minimum of V.

2.3.3. Unbiased predictive risk estimator method

In analogy to the GCV method, the unbiased predictive risk estimator (UPRE) method seeks to minimize
the linearized predictive risk [18]. Instead of using the GCV function, we consider the linearized UPRE
U linear;d

kl ,

U linear;d
kl ðlÞ ¼ krlinear;dkl k2 þ

2

m
tracefbAklg � 1. (16)

Since

Efkplinear;d
kl k2g ¼ EfU linear;d

kl g,

we see that U linear;d
kl is an unbiased estimator for the expected value of the linearized predictive risk. The

linearized residual is an increasing function of l, while the second term trace fbAklg (which can be regarded as
an estimate of the degree of freedom for signal, Eq. (12)) is a decreasing function of l. The UPRE possesses a
global minimum and the optimal value of the regularization parameter is chosen as the minimizer of U linear;d

kl .
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2.3.4. Minimum bound method

Squaring the total error Eq. (14) and applying the expected value operator yields

Efkelinear;dkl;totalk
2gp2ðkelinearkl;smoothk

2 þ Efkelinear;dkl;noisek
2gÞ. (17)

Note that the smoothing error is a deterministic quantity, while the noise error is a stochastic quantity. The
expected value of the linearized noise error is given by

Efkelinear;dkl;noisek
2g ¼

1

m
tracefKyklK

yT
kl g, (18)

while an estimator of the linearized smoothing error vector is

elinear;dkl;smooth ¼ ðK
y

kl � K
y

kÞw
d
k, (19)

with K
y

k ¼ ðK
T
kKkÞ

�1KT
k being the generalized inverse. The optimal value of the regularization parameter will be

determined by minimizing the estimator of the bound of the total error [19,20]. Two aspects are relevant for
our analysis:

1. In order to simplify our presentation we neglected the model parameter error. The uncertainties of the
forward model can be regarded as an additional ‘‘measurement’’ error. This error together with the ‘‘true’’
measurement error determine the total observation uncertainty. Denoting by b the model parameters
comprising those quantities which influence the measurement and by ba the best estimate of the model
parameters, we define the ‘‘effective noise’’ caused by the model parameters as db ¼ Kkbðb� baÞ with
Kkb ¼ qF=qb, and the total measurement error as dt ¼ db þ d. Assuming that b� ba is a stochastic quantity
with zero mean and known covariance matrix

SðbÞ ¼ Efðb� baÞðb� baÞ
T
g,

we see that the total measurement error is stochastic with zero mean and covariance matrix

SðdtÞ ¼ Kkb SðbÞK
T
kb þ ð1=mÞ Im.

Consequently, for the linearized noise error elinear;dkl;noise ¼ K
y

kldt, we have

Efkelinear;dkl;noisek
2g ¼ tracefKykl SðdtÞK

yT
kl g. (20)

2. The estimator of the linearized smoothing error depends on the noisy data vector and for real data with
significant noise level, the linearized smoothing error norm given by Eq. (19) is overestimated. In this case we
can estimate the variation of the linearized smoothing error by computing a ‘‘theoretical’’ bound of the
linearized smoothing error, i.e.,

kelinear;thkl;smoothkpkAkl � InkFkbx� xak, (21)

where k:kF is the Frobenius norm and kbx� xakprkxak. The scalar r determines the radius of the sphere
centered at xa within the exact solution is assumed to lie. Information about the influence of the noise level on
the solution can be obtained from the discrete Picard condition [14]. Assuming H ¼ In and considering the
singular value decomposition (SVD) of the matrix Kk, Kk ¼ USVT, we can express ud

kl as

ud
kl ¼

Xn

i¼1

f il
hui;wd

ki

si

vi, (22)

where f il ¼ s2i =ðs
2
i þ l2Þ are the filter factors, si are the singular values and ui and vi are the left and right

singular vectors of Kk. The singular values si decrease monotonically (by definition), while the absolute value
of the Fourier coefficients jhui;wd

kij also decay, on the average, until they settle at a level tw determined by the
errors in wd

k. If the coefficients jhui;wd
kij level off at tw for i4iw before the si level off, we can roughly recover

the first iw SVD components of the solution, while the remaining n� iw components are dominated by the
errors. For data with significant noise level, the level off index iw is small. Note that in order to guarantee small
regularization errors, the absolute value of the Fourier coefficients must decay faster than the singular values
(discrete Picard condition). For a regularization matrix HaIn, the singular values si are replaced by the
generalized singular values gi and the plots of the generalized singular values gi, Fourier coefficients jhui;wd

kij,
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and Picard coefficients jhui;wd
kij=gi indicate if Tikhonov regularization is able to produce a useful regularized

solution.

2.3.5. Noise error criterium

In contrast to the smoothing error, the noise error can be computed accurately and a simple parameter-
choice method can be formulated. The idea is simply to choose the regularization parameter l ¼ lðDÞ such
that the noise error is equal to an a priori upper bound, i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Efkelinear;dkl;noisek
2g

q
¼ Dkxd

klk, (23)

where typically D ¼ 0:05; . . . ; 0:1.

2.3.6. Extension to the nonlinear case

The expressions of the predictive and total errors have been derived under a strong linearity assumption.
Therefore, the regularization parameter computed at the first iteration can be used for the subsequent
iterations only for nearly linear problems. In this specific case, the above selection criteria appear as a priori
parameter-choice methods. For nonlinear problems we have two options: the regularization parameter can be
kept constant or it can be variable during the iterative process. In the first case, the regularization method is
the Tikhonov regularization [6], while in the second case, the regularization method is the iteratively
regularized Gauss–Newton method [7].

2.3.6.1. Tikhonov regularization. For Tikhonov regularization, the above criteria are reformulated as a
posteriori parameter-choice methods. The nonlinear minimization problem is solved for a set of regularization
parameters l, and for each l, the convergence of the sequence of iterates ðxd

klÞ is used as stopping rule.
Denoting by xd

l the limit of the sequence of iterates, i.e., xd
kl! xd

l as k!1, we may compute the optimal
value of the regularization parameter by using the above parameter choice methods with xd

l in place of xd
kl and

rdl in place of rlinear;dkl , where rdl ¼ Fðxd
lÞ � yd. It should be mentioned that the nonlinear L-curve method has

been introduced by Eriksson [21], the GCV method has been extended to the nonlinear case by O’Sullivan and
Wahba [17], while the minimum bound method has been originally formulated in a deterministic setting by
Raus [19] and in a discrete, semi-stochastic setting by Lukas [20]. Because the numerical realization of
Tikhonov regularization with an a posteriori parameter-choice method requires to solve the nonlinear
minimization problem several times for different regularization parameters, this strategy is time consuming
and is not appropriate for the operational usage of a retrieval processor.

2.3.6.2. Iteratively regularized Gauss– Newton method. This method can be regarded as a Tikhonov
regularization with a variable regularization parameter, i.e., ðlkÞ is a monotonically decreasing sequence. The
following recursive procedures are used to construct the sequence of iterates [3]:

lk ¼ bloptk þ ð1� bÞlk�1 with 0pbp1, (24)

or

lk ¼ bklmin þ ð1� bkÞlk�1 with bk ¼
rdk;l

rdk�1;l
and r ¼ krk. (25)

In the first case, the parameter b controls the decay rate of the sequence of iterates and loptk is the optimal value
of the regularization parameter computed with an appropriate parameter-choice method. In the second case,
the upper and lower bounds of the sequence of regularization parameters lmax and lmin have to be chosen in
advance and the decay rate is given by the ratio of the residuals at two consecutive steps. For bk � 0 (large
reduction of the residual), the new value of the regularization parameter is close to the previous value, while
for bk � 1 (small reduction of the residual), the regularization parameter is considerably decreased towards
lmin. This parameter-choice method allows enough regularization to be applied at the beginning of the
iterations and then to be gradually decreased. A specific choice of lmax and lmin is discussed in Section 3.
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Convergence results for solving nonlinear ill-posed problems by using the iteratively regularized
Gauss–Newton method have been given by Blaschke et al. [22], Hohage [23], and Deuflhard et al. [24].

2.4. Global regularization matrix

Due to the multi-parameter character of the problem, specific constraints have to be imposed on each
component zi of the state vector x, cf., Eq. (3). The global regularization term is expressed as a linear
combination of regularization terms corresponding to each component, i.e.,

LðxÞ ¼
XP

i¼1

nikLiðzi � zaiÞk
2 ¼ kHðx� xaÞk

2, (26)

where Li is the ith regularization matrix corresponding to zi and the global regularization matrix H has the
block structure

H ¼

ffiffiffiffiffi
n1
p

L1 0 ::: 0

0
ffiffiffiffiffi
n2
p

L2 ::: 0

..

. ..
. . .

.
0

0 0 :::
ffiffiffiffiffi
nP
p

LP

2666664

3777775. (27)

The regularization matrices Li are chosen in accordance with the pecularities of the solutions zi. For
atmospheric profiles, regularization matrices accounting for the smoothness of the solution (discrete
approximations of the first and second derivatives or a priori covariance matrices) are used, while for auxiliary
parameters, diagonal matrices controlling the magnitude of the solution are appropriate.

The weighting factors ni satisfy the normalization condition
P

ini ¼ 1 and give the contribution of each
regularization matrix Li to the global regularization matrix H. They are computed at the first iteration. For
this purpose, we consider the set of one-parameter regularized function

Flinear
0i ðxÞ ¼ kF ðx0Þ � yd þ Kðx0Þðx� x0Þk

2 þ l2i kHiðx� xaÞk
2, (28)

with i ¼ 1; 2; . . . ;P. Here, Hi is the ith extended regularization matrix

Hi ¼

di1L1 ::: 0

..

. . .
. ..

.

0 ::: diPLP

2664
3775, (29)

dik is the Kronecker symbol and li is the regularization parameter for the one-parameter regularized function
Flinear

0i . In fact, each one-parameter regularized function contains a regularization term corresponding to one
component of the state vector. A possible choice of the weighting factors is

ni ¼
ðlopti Þ

2PP
j¼1ðl

opt
j Þ

2
, (30)

where lopti is the optimal regularization parameters for the one-parameter regularized function Flinear
0i . In

practice, lopti can be computed by using the GCV method or the L-curve method. Note that the GCV method
has been used for the linear multi-parameter case by Brezinski et al. [25]. If the weighting factors are specified
and the global regularization matrix H is derived, the minimization algorithm can be used to compute the
approximate solution.

2.5. Error analysis

The accuracy of a retrieval method can be characterized by the discrepancy between the approximate
solution xd

l and the exact solution bx. The approximate solution xd
l is defined as the limit of the sequence of

iterates whether the regularization parameter is kept constant or varies during the iterative process.
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Considering the linearization around xd
l and assuming that the linearity relation holds at x ¼ bx, yields the total

error as a combination of smoothing and noise error

edl;total ¼ xd
l � bx

¼ ðAl � InÞðbx� xaÞ þ K
y

ld

¼ el;smooth þ edl;noise. ð31Þ

Since the smoothing error is a deterministic quantity, xd
l is always a biased estimator of bx [14]. An estimator

for the smoothing error vector is

edl;smooth ¼ Kyrdl (32)

while the covariance matrix of the noise error is

Sðedl;noiseÞ ¼ ð1=mÞK
y

lK
yT
l .

For data with significant noise level,

edl;smooth ¼ ðAl � InÞðx
d
l � xaÞ

can be used as an alternative estimator of the smoothing error vector.

3. Ozone retrieval from SCIAMACHY limb measurements

3.1. Observed data and retrieval setup

In this section we consider the retrieval of O3 profiles from UV limb scatter measurements made with the
SCIAMACHY grating instrument. The forward model for SCIAMACHY limb radiance simulation is a
single-scattering code, where the multiple scattering effect is taken into account by using look-up table
corrections [26]. The model does not include the boundary condition at the Earth’s surface and the rotational
Raman scattering. For satellite-based UV-visible measurements, rotational Raman scattering contributes to
the Ring effect [27]. The Ring effect is taken into account by adding a Ring reference spectrum to the
simulated radiance. Under these circumstances, the surface albedo and the Ring parameters (multiplicative
factors of the Ring reference spectra) are auxiliary parameters which have to be retrieved together with the
atmospheric O3 profile.

SCIAMACHY measurements recorded on 5 February 2004 at latitude 48� south and longitude 45� east are
used for the retrieval. These observations consist of 17 limb spectra covering tangent heights from 10.35 to
62.76 km in steps of about 3 km. The zenith and azimuthal angles of the line of sight (at top of atmosphere) are
about 63� and 192�, respectively, while the solar zenith and azimuthal angles are about 48� and 64�,
respectively.

For our retrieval, only 15 spectra for tangent altitudes between 13.65 and 59.55 km have been used. An
altitude retrieval grid with 21 grid points between 14 and 100 km is considered. The grid is uniform between 14
and 59 km with 3 km steps. The spectral domain of analysis is a window of 323.4–333.4 nm in channel 2 of the
SCIAMACHY instrument.

The a priori and initial gas profiles were assumed to be identical and were chosen from the US standard
atmosphere. The initial value of the surface albedo is 0.3, while the initial Ring parameters are chosen such
that the average Ring spectrum (over each scan) is 15% from the simulated radiance. The deviation of the
atmospheric profile with respect to the a priori profile is assumed to be smaller than 30%, the surface albedo is
considered to be bounded by the reference values 0.2 and 0.8, and we impose that the Ring spectrum will not
exceed 30% from the simulated radiance.

The regularization matrix for ozone is the Choleski factor of an a priori covariance matrix, while the
regularization matrix for the auxiliary parameters is a diagonal matrix. Considering the one-parameter
regularized functions (28) and computing the optimal values of the regularization parameters by the L-curve
method yields nO3

¼ 0:98 and naux ¼ 0:02. The global regularization matrix is then computed according to
Eq. (27).
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3.2. Results

In Fig. 1, we compare the regularization parameter choice methods at the first iteration. The L-curve (a) has
a pronounced corner that can be efficiently detected by an algorithm based on the maximization of its
curvature. The optimal value of the regularization parameter is lLCR0 ¼ 8:04� 10�1. On the contrary, the
GCV function (b) is very flat and its minimum cannot be correctly localized. The optimal value of the
regularization parameter predicted by the L-curve method is close to the transition point where the GCV
function (15) changes from a very slowly varying function of l0 to a more rapidly increasing function.

The failure of the GCV method is accompanied by the failure of the UPRE method (c) and the minimum
bound method (Fig. 1d). The linearized UPRE (16) has a similar behavior as the GCV function. The curve
shows that the influence of the noise is significant, i.e., the linearized residual (which is an increasing function
of l) dominates the degree of freedom for signal (a decreasing function of l). The linearized smoothing error
norm (19) is strongly overestimated and the linearized total error does not possess a global minimum. In fact,
the estimator of the linearized smoothing error (expressed in terms of the linearized residual wd

0) is inaccurate.
The influence of the noise on the solution can be analyzed by plotting the generalized singular values, the

Fourier and the Picard coefficients (jhui;wd
kij=gi) at the first iteration. The results are shown in Fig. 2. The
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ARTICLE IN PRESS
A. Doicu et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 103 (2007) 193–208 203
Fourier coefficients level off at iw � 15, i.e., we cannot recover the generalized singular value components of
the solution for i415 (more than 75%) because the Fourier coefficients are dominated by noise. If the
regularization parameter decreases, more singular values are effectively included in the regularized solution.
As a consequence, the noise error increases and we expect that the noise errors will dominate the regularized
solution for l � g15 ¼ 2:5� 10�2.

In Fig. 3 we plot the theoretical bound of the linearized smoothing error given by Eq. (21) and the
corresponding linearized total error. For the radius r we considered the values 0:02 and 0:05. In both cases,
the linearized total error possesses a minimum which balances the smoothing and noise errors. Because the
computation of the smoothing error is inaccurate we compute the regularization parameter according to
the noise error criterium (23). For D ¼ 0:1 we found lnoise0 ð0:1Þ ¼ 6:02� 10�6, while for D ¼ 0:05,
lnoise0 ð0:05Þ ¼ 5:52� 10�2.

The above analysis shows that the GCV method, UPRE method and minimum bound method are not able
to predict a reliable value of the regularization parameter. The total error is too large and these parameter-
choice methods fail. Therefore, we choose the L-curve method and the noise error criterium as parameter-
choice methods and consider three schemes for regularization parameter selection. In the first scheme, the
regularization parameter is constant during the iterative process and is given by l ¼ lLCR0 . In the second and
third schemes, the regularization parameter is variable and is computed according to Eq. (25). We choose
lmax ¼ lLCR0 . For the second scheme we set lmin ¼ lnoise0 ð0:05Þ, while for the third scheme we choose
lmin ¼ lnoise0 ð0:1Þ. In view of the Picard analysis, we expect that the third solution will be dominated by noise
errors. Setting lmin ¼ lnoise0 we intend to guarantee that the noise error remains bounded at the (approximate)
solution. The errors at the solution are shown in Fig. 4. Below 50 km, the smoothing errors are smaller than
7� 10�2 for the first scheme, 3:5� 10�2 for the second scheme and 5� 10�4 for the third scheme. For the
same altitude range, the noise errors are of about 2:2� 10�3 in the first case, 5� 10�2 in the second case and
5� 10�1 in the third case. It should be observed that the noise errors reach a maximal value which exceeds the
tolerance D. Note that D is the tolerance of the norm of the noise error vector for all components of the state
vector (including auxiliary parameters). Certainly, the regularization parameter lnoise0 ðDÞ can be computed for
a specific atmospheric profile or a user required altitude range.
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The best trade-off between the smoothing and noise errors appears to be given by the second scheme. For
the first scheme, the solution is oversmoothed and is dominated by smoothing errors, while for the third
scheme, the solution is underregularized and is dominated by noise errors. The averaging kernels plotted in
Fig. 5 give an impression of the smoothing errors.

The retrieved profiles are plotted in Fig. 6. Clearly, the solution given by the first scheme is closer to the a
priori than the other two solutions. It should be observed that the solution obtained by the third scheme is
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smooth and no oscillations are visible. This peculiarity of the solution is typical for the iteratively regularized
Gauss–Newton method that avoids oscillating solutions by decreasing the regularization parameter in a
safe way.

In contrast, Tikhonov regularization with a constant regularization parameter may lead to unsmoothed
solutions. Small oscillations are visible in Fig. 7 for the Tikhonov solution with l ¼ lnoise0 ð0:1Þ. Because the
averaging kernel and the regularized generalized inverse are almost insensitive to small variations of the state
vector, these solutions are characterized by the same resolution (averaging kernels), smoothing and noise
errors. In this case, the smoothness of the solution, defined as the constraint norm kL2ðx

d
l;O3
� xa;O3

Þk, can be
used as an additional diagnostic tool.

The histories of residuals, iterates and regularization parameters reveal some interesting aspects of the
iterative process. The results plotted in Fig. 8 correspond to the third regularization scheme. After five
iterations, the residual level off at tr. At this stage of our analysis we recall an important stopping criterium for
regularization methods: due to the inherent instability of ill-posed problems, an iteration method has to be
stopped appropriately to guarantee stability of the iterates [6]. This requirement can be achieved by using the
discrepancy principle as stopping rule, i.e., the iteration is stopped at the first index for which the residual is

smaller than an upper bound of the measurement error t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Efkdk2g

p
. In practice, other type of errors (model

parameter errors, systematic and random errors) contribute to the ‘‘total’’ or ‘‘effective’’ measurement
error and tr4t. Therefore, the convergence of the iterates has been chosen as stopping rule and the ratio tr=t
can be regarded as a measure of the degree of ‘‘total’’ errors. For the iteration steps k ¼ 5; 6; 7, the changes
of the residual and state vector are small and we may conclude that these points belong to the corner region
of the nonlinear L-curve. At k ¼ 8, the state vector changes significantly, while the residual decreases
slowly. In this case, the underregularized region of the nonlinear L-curve (the vertical part) is attained.
The small changes of the state vector for k ¼ 8; 9; 10 are due to the small variations (convergence)
of the regularization parameter. Note that the second regularization scheme selects the solution corresponding
to k ¼ 6.
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4. Conclusions

An inversion algorithm for atmospheric remote sensing has been presented. The algorithm incorporates the
Tikhonov regularization and the iteratively regularized Gauss–Newton method into a common shell and is
devoted to the solution of multi-parameter and bound-constrained inversion problems. The bound
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constrained minimization problem can be solved by using a Gauss–Newton method with an active-set
algorithm or a trust-region method with a local active-set strategy to select the step. Several parameter-choice
methods as for instance the L-curve method, the GCV approach, the UPRE method, the minimum bound
method and the noise error criterium are implemented in the code. These methods guarantee an optimal choice
of the regularization parameter; for the applications presented in this paper, the L-curve criterion appears to
be the superior method. Diagnostic tools such as the discrete Picard condition and the histories of iterates and
residuals offer additional information about the iterative process. The error analysis and inversion is
performed in a semi-stochastic setting and consists of the computation of the smoothing and noise errors at
the (approximate) solution. All these features lead to an efficient and robust inversion algorithm for
atmospheric remote sensing.
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