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ABSTRACT

In the present work, the Tensor-Train decomposition algorithm is applied to reduce the memory
footprint of a stochastic discrete velocity solver for rarefied gas dynamics simulation. An energy-
conserving modification to the algorithm is proposed, along with an interleaved collision/convection
routine which allows for easy application of higher-order convection schemes. The performance of
the developed algorithm is analyzed for several 0- and 1-dimensional model problems in terms of
solution error and reduction in memory use requirements.

Keywords Boltzmann equation · discrete velocity method · tensor decomposition · tensor train · rarefied gas · low-rank
approximation

1 Introduction

The motion of gas or fluid can be successfully described by a set of partial different equations under a wide range of
conditions of interest. However, in rarefied regimes, when the ratio of the molecular mean free path to the characteristic
length scale becomes large, the continuum approaches no longer apply, and instead, the full Boltzmann equation
describing the evolution of the velocity distribution function due to advection, external forces, and collisions, has to be
solved. It is a complicated integro-differential equation, with a 6-dimensional integral (the collision operator) appearing
on the right-hand side. Numerous approaches have been developed over the years to tackle the equation. These include
stochastic approaches, such as the Direct Simulation Monte Carlo (DSMC) method [1], and deterministic approaches,
such as discrete velocity methods [2] and spectral methods [3, 4].

The family of discrete velocity methods (DVM), which is the main focus of the present work, operates by discretizing
the velocity distribution function on a grid in velocity space, and obtains a system of partial differential equations for
the values of the distribution function at each grid node. A significant advantage offered by discrete velocity methods is
the noticeable reduction in noise compared to particle-based methods, which is needed to better understand the small
time-scale dynamics of complex rarefied flows, especially in unsteady scenarios [5, 6, 7].

Within the discrete velocity framework, the complex collision operator is often replaced with a simple relaxation
term [8, 9]. Such relaxation terms include the Bhatnagar–Gross–Krook (BGK) model [10] and its extensions, the
ellipsoidal-statistical BGK model (ES-BGK) [11] and the Shakhov model (S-model) [12]. However, the correct
incorporation of complex collisional physical phenomena, such as chemical reactions, transitions of internal energy,
and complicated scattering laws within the framework of these model equations is still an open question and a topic
of active research [13, 14, 15]. Despite these drawbacks of the linear models, they offer advantages in terms of being
scalable to dense regimes [16, 17].

Another subfamily of the discrete velocity methods does not resort to substituting the collision operator with a simplified
model relaxation term, and instead models the full collision process, utilizing remapping procedures to re-distribute
post-collisional mass onto the discrete velocity grid [18, 19]. These approaches have been shown to be capable of
simulating more complex collisional processes, such as internal energy relaxation [20, 21], chemical reactions [22], and
ionization [23, 24], and can make use of state-specific cross-sections and anisotropic scattering laws.
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However, the necessity of selecting a sufficiently accurate velocity grid remains a significant issue in the application
of discrete velocity methods [7]. The associated memory cost can also be a significant detriment. An example of
an approach that aims to remedy the issue is the velocity-space octree grid developed in [25]. Another family of
approaches, which has been receiving increased attention, is the use of (dynamic) low-rank methods, which project
the equations of interest (not necessarily restricted to gas dynamic equations) onto a lower-dimensional manifold.
The area has seen significant development, with recent work focusing on improving the adaptivity via efficient error
estimates [26], ensuring conservation of mass/momentum/energy [27, 28], and applying low-rank methods to the
continuum regime in the presence of discontinuities [29]. Such low-rank methods are of significant interest not only
due to the reduced computational and memory cost, but also due to their potential for use in machine learning-based
Boltzmann solvers [30, 31], where the lower input dimensionality can simplify the reduced-order model architecture
and reduce its computational cost. They can also be of use as a storage reduction technique for simulation restarts [32].

In [33, 34], the Tensor Train representation [35] was used to obtain a reduced-order representation of the velocity
distribution function, with the approach differing from most other works in that the reduced-order representation of the
velocity distribution function was stored independently for each cell on the physical space grid, which allows for the use
of unstructured grids, whereas in previous studies [36, 37, 27], the decomposition was applied to the multi-dimensional
Cartesian product of the (structured) physical and velocity domains. A similar approach was utilized later on in
[38] for the Vlasov–Maxwell equations, with low-rank decomposition applied only in velocity space and not the full
6-dimensional physical and phase space.

However, the algorithm, as developed in [33, 34], has several deficiencies: 1) as it operates directly on the reduced-order
representation of the distribution function, it is restricted to simple model collisional terms 2) the tensor decomposition
might introduce errors in the conserved quantities (number density, momentum, energy) 3) due to constraints on the
tensor representation, the algorithm cannot compute the exact numerical flux needed for convection, and issues arise
with the implicit time-stepping scheme. Finally, a more comprehensive numerical analysis of the errors introduced by
the application of tensor decomposition was also not carried out. Other low-rank approaches also usually consider either
a model collision term, or collisionless plasma flows; as such, their applicability to simulations of collisional flows with
more complex Boltzmann collision terms has not been thoroughly investigated. In a recent paper [39], the fast spectral
method [40] was used to compute the full collision operator; however, the work relied on a coupled physical/phase
space low-rank decomposition, and did not consider the impact of violation of conservation laws. In addition, the
evaluation of the full collision term (even with a fast spectral method) is computationally expensive; as such, one might
resort to the use of stochastic approximations, which introduce noise into the simulation, and it is not clear how the
fidelity of low-rank representations is affected by the presence of numerical noise in the velocity distribution function.

Thus, in the present work, a variation on the tensor decomposition idea is developed. Instead of a model equation,
the full Boltzmann collision operator is computed, using the Quasi-Particle Simulation (QUIPS) discrete velocity
method [21]. Whilst this requires reconstructing the full velocity distribution function, an interlaced collision-convection
algorithm is proposed, which not only allows to maintain reduced memory usage (compared to a DVM solution without
the use of tensor decomposition), but also allows for correction of errors in the number density and energy introduced
by the tensor decomposition.

The paper is organized as follows. In 2, a description of the discrete velocity-based quasi-particle simulation method is
given. Then in 3 the reduced-order representation of the velocity distribution function via the Tensor-Train decomposi-
tion and the associated modifications of the discrete velocity-based kinetic solver are presented. Numerical results and
their analysis are presented in 4 for model 0-dimensional and 1-dimensional flows. Finally, conclusions and discussion
of future work follow in 5.

2 Discrete velocity quasi-particle method

2.1 Discretization

Let us denote by f(x,v, t) (and hereafter refer to as the velocity distribution function) the density of the mathematical
expectation of the number of particles in an element of phase space (x,x+ dx), (v,v + dv) at time t, where x is the
vector corresponding to the spatial coordinate, and v is the vector corresponding to the velocity of the particles.

The Boltzmann equation for a monoatomic gas (without internal degrees of freedom) without external forces reads as
follows (omitting the spatial coordinate x and time t for brevity):

∂f(v1)

∂t
+ v1 · ∇xf =

∫
[f(v1

′)f(v2
′)− f(v1)f(v2)] gσd

2Ωdc2. (1)
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Here v2 is the velocity of the collision partner, g = |v1 − v2| is the magnitude of the relative collision velocity,
σ = σ(g) is the collision cross-section, d2Ω is the solid angle into which the post-collision relative velocity vector is
scattered, and primed variables denote the post-collisional quantities.

Within the framework of the discrete velocity method, the velocity distribution function is assumed to be defined only
at a discrete set of points D ∈ R3. While the choice of the discrete velocities D is, generally speaking, arbitrary, for
practical purposes D is often assumed to be a simple Cartesian product of velocity grids defined independently for each
of the three components:

D = Dx ×Dy ×Dz. (2)
In the present work, only uniform grids with equal numbers of points Nv and equal velocity spacing ∆v in each velocity
direction are considered:

D = {vijk}i,j,k=Nv

i,j,k=1 , (3)

where
vijk = (vx,min + i∆v, vy,min + j∆v, vz,min + k∆v) = (vx,i, vy,j , vz,k) . (4)

Here vx,min, vy,min, vz,min are the minimum values of the x-, y-, and z-velocities at which the distribution function is
defined.

Then, the discrete velocity distribution function can be defined as follows:

f̂ijk(x, t) = (∆v)3f(x,vijk, t), i, j, k = 1, . . . , Nv, (5)

and the Boltzmann equation (1) re-written in discrete form:

∂f̂i1j1k1

∂t
+ vi1j1k1 · ∇xf̂i1j1k1 =

∫ ∑
i2j2k2

[
f̂i′1j′1k′

1
f̂i′2j′2k′

2
− f̂i1j1k1 f̂i2j2k2

]
gσd2Ω. (6)

Of course, even in such a form, the integration over the possible scattering angles Ω remains to be defined, since the
post-collision velocities need to lie on the grid points. Thus, given the initial coordinates (in velocity space) i1, j1, k1
and i2, j2, k2 of the colliding velocities, an algorithm is required to compute the indices of the post-collision velocities
i′1, j

′
1, k

′
1 and i′2, j

′
2, k

′
2.

2.2 Collisions

A conceptually simple way to compute collisions is to restrict oneself to post-collision velocities which lie directly on
grid nodes [41]. However, such a procedure not only becomes increasingly complicated as internal energy transitions
are taken into account (as collisions no longer conserve translational energy and the magnitude of the post-collision
velocity vector is altered), but also suffers from a slow convergence rate [9].

An alternative approach is the use of remapping (also referred to in literature as “interpolation”) procedures [18, 42, 43,
44], in which the post-collision velocity is not restricted to the discrete velocity grid, but after a collision is performed,
the remapping/interpolation procedure is used to update the velocity distribution function at the neighbouring grid
points, ensuring mass, momentum, and energy conservation. Thus, the first step collision process is performed akin
to DSMC — a post-collision velocity vector is computed based on the specific cross-section used, and only after the
collision has been performed, the remapping procedure is applied. In the present work, the remapping procedure
developed in [43, 44, 19], and later extended to non-uniform velocity grids [21], is used. It allows for easy incorporation
of internal energy transitions [21], chemical reactions [45, 22] and anisotropic scattering laws [24]. Here, a brief
overview of the remapping procedure is given for points lying inside the domain bounded by D; for a more detailed
description, including the treatment of velocities that fall outside of the domain bounded by D and generalization to
non-uniform grids, the reader is referred to [21]. Given a post-collision velocity c′ =

(
c′x, c

′
y, c

′
z

)
and a number density

n0 at that velocity, the indices i, j, k of the closest velocity grid point are computed:

i = int

(
c′x − vx,min

∆v

)
, j = int

(
c′y − vy,min

∆v

)
, k = int

(
c′z − vz,min

∆v

)
. (7)

Here int denotes rounding to the nearest integer. Then, the velocity relative to the found grid point is calculated:
∆c′ = c′ − vijk =

(
∆c′x,∆c′y,∆c′z

)
. Next, the indices for the so-called “internal” remapping points are computed:

iint = i+ sign(∆c′x), jint = j + sign(∆c′y), kint = k + sign(∆c′z), (8)

as well as indices for the “external” remapping points:

iext = i− sign(∆c′x), jext = j − sign(∆c′y), kext = k − sign(∆c′z). (9)
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After these indices have been computed, the number density is redistributed amongst 7 points defined by these indices:

(i, j, k), (iint, j, k), (i, jint, k), (i, j, kint), (iext, j, k), (i, jext, k), (i, j, kext). (10)

As only 5 conservation laws (one for mass, three for momentum, and one for energy) need to be satisfied, an additional
constraint is imposed: the number density redistributed to the external points is assumed to be split equally. However,
other constraints can be imposed, for example, conservation of directional second-order moments (and not just the full
energy). The number density to be distributed to each of the points is found by solving the following linear system:

1 1 1 1 3
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 1 1 1 3




nor

nint,x

nint,y

nint,z

next

 = n0


1

∆c′x/∆v
∆c′y/∆v
∆c′z/∆v(

(∆c′x)
2 + (∆c′y)

2 + (∆c′z)
2
)
/(∆v)2.

 (11)

Here, nor is the number density to be added to the point (i, j, k), nint,x, nint,y, nint,z are the number densities to be
added to the internal remapping points, and next is the number density to be added to each of the external points.

Finally, in the present work, a stochastic scheme is used to evaluate the summation that appears in the right-hand
side of Eqn. (6), as a direct summation leads to an extremely high computational cost of order O

(
N6

v

)
. Instead,

importance sampling is performed to select two pre-collision velocities on the grid, with the probability of selection
being proportional to the value of

∣∣∣f̂ ∣∣∣ at those grid nodes. The value of the distribution function at those nodes is

depleted by a quantity δf̂ , and only this (small) quantity δf̂ is collided and subsequently remapped. The value of δf̂ is
computed as

δf̂ = (∆v)3
∆t

2Nc
(n− 2n−)

2gσ(g)sign(f̂1f̂2). (12)

Here ∆t is the timestep, n is the number density in the current computational cell, n− is the negative number density
in the current computational cell (see below for a discussion on the presence of negative values of the distribution
function), f̂1 and f̂1 are the values of the velocity distribution function at the velocity grid nodes chosen for collision,
and Nc is the number of collisions performed. The quantity Nc is computed as

Nc =

⌊
∆t

2CRMS

(
n− 2n−

n

)2
1

(∆v)3

(
2kT

m

)2

exp

[(
mv2max

2kT

)α]
nrσr +R

⌋
. (13)

Here σr is a reference cross-section evaluated at a reference temperature Tr, nr is a reference number density, vmax is
the maximum speed possible on the velocity grid, CRMS is a user-adjustable parameter that governs the amount of
numerical noise in the simulation due to the computation of collisions, and α is a parameter that governs how strongly
the changes in the temperature and/or velocity grid extent affect the number of collisions performed. R is a random
number uniformly distributed between 0 and 1, and the brackets denote rounding down to the nearest integer.

As in [22], the value of Nc is computed taking into account the minimum value of the equilibrium distribution function

on the defined grid (via the presence of the exp
[(

mv2
max

2kT

)α]
factor). However, in [22], α was taken to be 1. Assuming

a fixed velocity grid with a vmax =
√
3× 3.5

√
2kTref/m (which corresponds to the maximum speed on a cubic grid

with an extent of ±3.5
√
2kTref/m (here Tref is some fixed reference temperature), a 2-fold increase in T (compared to

the reference temperature Tref ) leads to an approximately 2×107-fold reduction in Nc. Conversely, a 2-fold decrease in
temperature compared to Tref leads to an approximately 2× 1015 increase in the number of collisions to be performed.
Obviously such extreme changes in Nc are not feasible from a computational point of view. In [22], an adaptive grid
cut-off procedure was proposed to reduce the velocity space extent when the temperature decreases, so as to avoid the
issue of the collision number blow-up. Another option is to implement a temperature-dependent CRMS value. In the
present work, the α factor is introduced, so that the impact of temperature variations is not so drastic, especially if the
grid extent is kept fixed. With α = 0.5 (the value used in the present study), a 2-fold increase in temperature leads to
just an approximately 1.5-fold reduction in the number of collisions being performed, whereas a 2-fold decrease in
temperature leads to a 3-fold increase in Nc.

Higher values of CRMS lead to higher levels of noise in the velocity distribution function (as the depletion quantity
δf̂ becomes large), but a lower computational cost (as fewer collisions are performed). One of the drawbacks of the
described algorithm is the presence of negative values of the distribution function. These occur due to 1) the remapping
procedure 2) the depletion quantity δf̂ being larger than the value of the distribution function at the node being depleted.
At extremely high values of CRMS simulations can become unstable, as the large percentage of negative number
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density leads to an increase in collisions simulated (as the quantity (n− 2n−)/n grows), which in turn leads to even
more negative number density being produced as a result of many depletion events, which leads to a runaway effect.
However, despite this shortcoming, the described algorithm has been shown to be capable of modelling of various
rarefied gas flows with a high level of accuracy, and the negative number densities can be handled in a consistent manner
by appropriately defining the depletion quantity and number of collisions. It should be noted that different definitions of
Nc are possible, as long as the quantity δf̂ is defined consistently with Nc and the negative values of the distribution
function are accounted for.

2.3 Convection

The last step requiring description is the computation of the advection of the velocity distribution function. In the present
work, a second-order finite volume scheme with a min-mod flux limiter is utilized on a Cartesian spatial grid [46]. At
boundaries, the scheme becomes a first-order one, although higher-order monotonicity-preserving discrete-velocity
schemes at the boundary can also be utilized (however, a re-formulation of the flux limiting procedure to a slope limiting
procedure is required [46]). Only 1-dimensional problems (with a spatial coordinate in the x-direction) are considered,
and a uniform spatial grid is assumed for simplicity, however, the scheme is easily extended to 2- and 3-dimensional
Cartesian physical grids.

Denoting by f̂ l,n
ijk the cell-average of the distribution function f̂ijk in cell n at timestep l, a first-order explicit timestepping

scheme reads:
f̂ l+1,n
ijk − f̂ l,n

ijk

∆t
= Q(f̂ l,n

ijk)−
F l,n+ 1

2

ijk −F l,n− 1
2

ijk

∆x
, (14)

where Q(f̂ l,n
ijk) is the approximate collision integral computed using the Monte-Carlo procedure outline above, F l,n+ 1

2

ijk

is the numerical flux at the interface between cells n and n+ 1, and ∆x is the spatial grid spacing.

The second-order flux is computed as

F l,n+ 1
2

ijk = v+x,if̂
l,n
ijk + v−x,if̂

l,n+1
ijk + |vx,i|Φ

l,n+ 1
2

ijk , (15)

where v±x,i = (vx,i ± |vx,i|)/2, and Φ
l,n+ 1

2

ijk is defined as

Φ
l,n+ 1

2

ijk = minmod
(
∆f̂

l,n− 1
2

ijk ,∆f̂
l,n+ 1

2

ijk ,∆f̂
l,n+ 3

2

ijk

)
, (16)

where ∆f̂
l,n+ 1

2

ijk = f̂ l,n+1
ijk − f̂ l,n

ijk, and the minmod function is given by

minmod(x, y, z) =

{
sign(x)min(|x|, |y|, |z|), if sign(x) = sign(y) = sign(z)

0, otherwise
. (17)

Finally, the boundary conditions are imposed via the use of ghost cells. Assuming that the actual domain is discretized
by cells with indices ranging from 1 to Nx, 4 additional ghost cells are used (2 on each side), with indices -1, 0, and
Nx + 1, Nx + 2. In the present work, only fully diffusive boundary conditions are considered (the reflected velocity
distribution function is a half-Maxwellian at a pre-defined wall temperature and velocity), and thus, one needs to
compute the incoming and outgoing fluxes at the boundaries in order to ensure mass conservation. For ghost cells with
indices -1 and Nx + 2, a zero-order extrapolation is used:

f̂ l,−1
ijk = f̂ l,0

ijk; f̂
l,Nx+2
ijk = f̂ l,Nx+1

ijk . (18)

Thus, only the values of f̂ l,0
ijk and f̂ l,Nx+1

ijk remain to be defined. For outgoing velocities (vx < 0 at the left boundary
and vx > 0 at the right boundary), a zero-order extrapolation is used:

f̂ l,0
ijk = f̂ l,1

ijk ∀i : vx,i < 0; f̂ l,Nx+1
ijk = f̂ l,Nx

ijk ∀i : vx,i > 0. (19)

For incoming velocities (vx > 0 at the left boundary and vx < 0 at the right boundary), the velocity distribution
function is computed as

f̂ l,0
ijk =

∑
jk

∣∣v−x,i∣∣ f̂ l,1
ijk∑

ijk v
+
x,i (∆v)

3 M (vy,lw, vz,lw, Tlw)
, (20)

f̂ l,Nx+1
ijk =

∑
jk v

+
x,if̂

l,Nx

ijk∑
ijk

∣∣v−x,i∣∣ (∆v)
3 M (vy,rw, vz,rw, Trw)

. (21)
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Here M denotes a Maxwellian distribution function evaluated on the discrete grid, vy,lw and vz,lw are the y- and
z-velocities of the left wall, correspondingly, Tlw is the temperature of the left wall, vy,rw and vz,rw are the y- and
z-velocities of the right wall, correspondingly, and Tlw is the temperature of the right wall.

Thus, all the necessary constituent parts of the algorithm have been touched upon: 1) the discretization, 2) the
collision selection procedure, 3) the remapping procedure, and 4) the convection scheme. In the next section, the
tensor-decomposition version of the quasi-particle simulation method will be introduced and elaborated upon.

3 Tensor decomposition-based quasi-particle simulation method

3.1 Algorithm description

In the present work, the Tensor Train reduced-order representation format [35, 47] is utilized, which approximates a
tensor Ai1,...,iD ∈ R(n

D) (assuming that 1 ≤ ik ≤ n, k = 1, . . . , D) in the following form:

Ai1,...,iD ≈ G1(i1)G2(i2) . . .GD(iD), (22)

where G1(i1) is a row vector, GD(iD) is a column vector, and Gk(ik), k = 2, . . . , D−1 are matrices. Whilst the machine
memory required for storing A is O

(
nD

)
, the memory required for storing the representation (22) is O

(
nDr2

)
, where

r is the upper bound of the ranks rk of Gk(ik). In the current work, the main focus is on the tensor decomposition of
the velocity distribution function (which is a tensor with dimension D = 3), and thus the expression above can be
simplified, also assuming that all ranks rk are equal:

f̂ijk ≈ G1(i)G2(j)G3(k), (23)

where G1(i) ∈ R1×r, G2(j) ∈ Rr×r, G3(k) ∈ Rr×1.

The computation of decomposition (22) that minimizes the quantity

ϵijk,TT =
∣∣∣∣∣∣f̂ijk − f̂ijk,TT

∣∣∣∣∣∣ (24)

requires O
(
nDr3

)
operations. Here ||M || is the Frobenius norm of a matrix M , and f̂ijk,TT is the reduced-order

tensor decomposition-based representation of the VDF f̂ijk (further this reduced-order representation of the VDF will
also be referred to as “compressed”).

3.2 Energy-conservative modified collision algorithm

In case the tensorized representation cannot represent the VDF without introducing some error (ϵijk,TT ̸= 0), mass,
momentum, and energy will not be conserved. Mass conservation is the easiest to fix: before compressing f̂ijk in
a cell n, the number density in that cell is computed and stored; when the VDF is reconstructed during the next
timestep, it is re-normalized so that the previously stored number density is recovered. In order to ensure energy
conservation, the following procedure is proposed, based on a similar idea developed for variable-weight DSMC
simulations [48]. Before the distribution function f̂ l,n in spatial cell n at timestep l is “compressed” (converted to
a tensor decomposition-based representation), the energy El,n in the cell is computed and stored. After the VDF is
reconstructed from the reduced-order representation, the post-reconstruction energy is computed El,n∗, as well as the
change in energy due to the tensor decomposition operation: ∆E = El,n −El,n∗. Then, before the computation of the
collision step, an average per-collision energy adjustment is defined as δE = ∆E/Nc. This quantity δE is added to the
post-collision translation energy in order to produce a post-collision scattering velocity with magnitude g′ computed
through the energy conservation law:

mg2

2
=

m(g′)2

2
+ δE. (25)

So if ∆E is greater than 0, the energy in the collisions will be decreased, and if ∆E < 0, the energy in the collisions
will be increased. Since Eqn. 25 may not always permit a solution g′, the quantity δE is recomputed after each collision
via keep track of the remaining number of collisions and the fraction of the already re-distributed energy ∆E.

3.3 Modified advection algorithm

Finally, advection has to be discussed. Since a number of mathematical operations can be performed on the compressed
VDF representation directly, one can continue using the usual operator splitting approach: first, compute collisions
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in all spatial grid cells (decompressing and re-compressing the VDF), and then compute the changes in the velocity
distribution function in all spatial grid cells due to convection by operating directly on the Tensor Train representation.
However, as pointed out in [33], the computation of the numerical flux F l,n+ 1

2

ijk is not exact even in the first-order
case in case of physical grid cells with normals that are not aligned with the coordinate axes, and the non-smooth
absolute value function is needed for the flux computation. As such, the numerical flux is only approximated. In
addition, some of the operations on the reduced-order tensor representations (such as addition) increase the rank of the
compressed representation, requiring periodic re-compression, and thus introducing additional error in the moments
of the distribution function, including the conserved quantities (mass, momentum, energy). The use of higher-order
schemes and the necessity of using flux or slope limiting also poses a question of the applicability of the approach of
computing convection via direct manipulation of the compressed VDF representation. In the present work, a different
approach is proposed. From the description of the convection given in 2.3, it can be seen that in order to compute the
new value of the velocity distribution function in cell n, one needs the values of the velocity distribution function in
cells n, n− 1 and n− 2 in order to compute F l,n− 1

2

ijk , and in cells n, n+ 1 and n+ 2 in order to compute F l,n+ 1
2

ijk .

Let us assume that at the start of timestep l, one only has the compressed representations of f̂ l,n
ijk. First, the values of

f̂ l,n
ijk are reconstructed in cells n = 1, 2, 3. Then the approximate collision operator Q(f̂ l,n

ijk) is computed in these cells,
and the values of the VDF in the ghost cells n = −1, 0 are also computed. This provides sufficient information to
compute f̂ l+1,1

ijk . Whilst not enough information is available to compute f̂ l+1,2
ijk (as f̂ l,4

ijk is required for the computation

of F l,2+ 1
2

ijk ), sufficient information to compute the left-side flux F l,2− 1
2

ijk is available. The VDF in cell n = −1 (as it is no
longer required) is then compressed, the VDF in cell 4 reconstructed and the quantity Q(f̂ l,4

ijk) computed. Now sufficient

information is available to complete the update of the VDF in cell 2, as the flux F l,2+ 1
2

ijk can be computed; the flux

F l,3− 1
2

ijk is also computed and stored. The VDF in cell n = 0 is then compressed and the VDF in cell 5 reconstructed.
The process (compute collisions in cell n, compute missing right-hand side flux in cell n− 2, update the VDF in cell
n− 2, and compute the left-hand side flux in cell n− 1) is repeated until the right-hand side boundary is reached. Note:
the compression/reconstruction of the VDF in the ghost cells does not actually have to be performed, as its value is
computed from the adjacent cells in the domain; however, the algorithm description presented assumes such a procedure
for the sake of consistency.

Such an approach allows to use any method for flux computation and flux/slope limiting, without introducing any
numerical error due to operating on the compressed velocity distribution function representations. The storage
requirements for such an interleaved/convection algorithm are thus

Nx ×mem(TT (V DF )) + 6×mem(V DF ), (26)

where mem(x) is the machine memory used by some quantity x, and TT (V DF ) denotes the Tensor Train representation
of the VDF. The factor of 6 comes from the fact that one needs to have access to the full distribution function in 5 grid
cells, as well as store the flux. In the case of a 2-dimensional Cartesian physical grid with Nx ×Ny cells, a similar
reasoning can be applied, but it does require the reconstruction of the VDF across a “slice” of the domain, and therefore,
the storage requirements become

NxNy ×mem(TT (V DF )) + 6×min(Nx, Ny)mem(V DF ). (27)

In the case of a 3-dimensional Cartesian grid with Nx ×Ny ×Nz cells, the storage requirements become (assuming
that the propagation direction is chosen in such a way so as to minimize memory use)

NxNyNz ×mem(TT (V DF )) + 6×min(NxNy, NxNz, NyNz)mem(V DF ). (28)

4 Numerical results

To validate and study the performance of the developed algorithm, several model problems are simulated: the BKW
relaxation, a Couette flow, and a Fourier flow. The solver was written in the Julia programming language [49] and
makes use of the TensorToolbox.jl library [50, 51] for the tensor decomposition.

4.1 BKW relaxation

The Bobylev-Krook-Wu [52, 53] relaxation problem is an unsteady spatially homogeneous model problem, widely used
for verification of Boltzmann solvers, as it provides an analytic expression for the evolution of the velocity distribution
function in time, assuming only that the interaction potential is pseudo-Maxwell; that is, σ(g) = Cσg

−1, where Cσ is

7
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a constant. The Cσ constant can be computed from the standard Variable Hard Sphere (VHS) interaction model [1]
parameters:

Cσ = 2πd2
(2kTV HS/mr)

ω−1/2

Γ(5/2− ω)
, (29)

where d is the reference VHS diameter at a given reference temperature TV HS , mr = m/2 is the collision-reduced
mass, and ω is the viscosity exponent, equal to 1 in the case of Maxwell molecules.

As the problem considered is purely abstract, the number density n, temperature T , mass m, and the cross-section
diameter d all can be taken to be equal to 1 (with respective units) without any loss of generality, in order to simplify
the following expressions. The time-dependent velocity distribution function that is the solution of the BKW problem is
given by

f(c, t) =
1

(πC)3/2
1

2C

(
5C − 3 +

2(1− C)c2

C

)
exp(−c2/C), (30)

where C = 1− 2
5 exp(−t/6) is defined for all t ≥ 0. Defining a moment of order 2l the distribution function as

M2l(t) =

∫
c2lf(c, t)dc, (31)

it is easily obtained that for the case of the BKW distribution, the analytical expression for moment M2l reads

M2l
an(t) = 2Cl−1 (2l + 2)!

4l+1(l + 1)!
(l + C(1− l)) . (32)

Scaling the moments by their corresponding values for a Maxwellian distribution (so that as t tends to ∞, the scaled
moments all tend to 1), one obtains the following expression for the scaled moment M̂2l:

M̂2l(t) = M2l(t)
(l + 1)!4l+1

2(2l + 2)!
. (33)

When performing simulations and comparing their results, several quantities of interest are considered. Due to the
stochastic nature of the collision algorithm, noise is present in the simulation, the amount of which is governed by
the choice of the CRMS parameter. However, directly comparing results obtained with the discrete velocity method
with those given by the analytic solution could conflate the noise present in the simulation with the bias present in the
simulation. The bias is due to 1) the discrete nature of the velocity function representation (i.e. grid extent and grid
spacing) 2) the remapping procedure 3) the low-rank approximation of the velocity distribution function. Therefore, in
order to separate these effects and study them separately, multiple simulations are performed for a given set of initial
parameters (grid spacing, CRMS , rank of the tensor decomposition). The values of the moments are ensemble-averaged
and compared to the analytic solution in order to study the bias in the solution, whereas the standard deviation across
the ensemble is computed in order to study the noise in the solution.

In the simulations performed below, the velocity space extent was fixed at ±3.5vth in each direction, where vth =√
2kT/m is the thermal speed. Two velocity grids were considered: a “coarse” grid with 163 points and a “fine”

grid with 323 points. The following values of the tensor rank were considered: 4,6,8,10,12 for the coarse grid, and
4,8,12,16,20 for the fine grid. 5 different values of CRMS were used for each simulation: CRMS = 1.5 · 10−3,
CRMS = 5 · 10−3, CRMS = 10−2, CRMS = 5 · 10−2, CRMS = 10−1. The timestep was taken to be equal to
0.05 of the mean collision time, given by τc = 1/ (nσrvth), where n is the number density, σr = πd2 is a reference
cross-section, and d is the cross-section diameter. Thus, 25 sets of simulations were performed using the combined
QUIPS/Tensor-Train approach for each velocity grid (5 CRMS values, 5 tensor ranks), and 5 pure sets of QUIPS
simulations were performed for each velocity grid (5 CRMS values). In order to obtain mean values and noise levels in
the unsteady simulation, ensemble averaging was used, with 250 simulations performed for each set of parameters.
Each simulation was carried out for 200 timesteps (up to a final time of 10τc).

The simulation bias (for a given set of simulations differing only in the random seed) in a moment of order 2l can be
defined as follows:

Ban

(
M̂2l

)
=

√
1

Nt

∑
ti

(
M̂2l(ti)− M̂2l

an(ti)
)2

, (34)

where Nt is the number of timesteps, ti = i∆t is the time at timestep i, and M̂2l is the ensemble average of the
moments computed with the given set of simulation parameters.
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Similarly, the noise in the simulation is defined through the Root-Mean-Square Error:

N
(
M̂2l

)
=

√√√√ 1

Nens

1

Nt

Nens∑
e=1

∑
ti

(
M̂2l

e (ti)− M̂2l(ti)
)2

, (35)

where Nens is the number of simulation in the ensemble, and the summation over e is the averaging over all the
simulations in the ensemble.
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Figure 1: Evolution of the scaled 8th moment for the BKW problem. Pure QUIPS solution denoted by “Q”,
QUIPS/Tensor-Train solution denoted by “QTT”. 323 velocity grid.

Figure 1 shows the evolution of the scaled 8th moment of the velocity distribution function in time, with the analytic
solution shown by the black dashed line, the two pure QUIPS simulations (low-noise with CRMS = 10−3 and
high-noise with CRMS = 10−1) shown by the solid and dashed blue lines, and two high-noise (CRMS = 10−1)
QUIPS/Tensor-Train solutions with different decomposition ranks shown by the dot-dashed red and grey lines. While
the presented figure does not allow for a detailed quantitative analysis and comparison of the different algorithms, it does
highlight several important features. One is that at the high value of CRMS = 10−1, the moments of the compressed
distribution function (QTT curves) exhibit significantly less noise compared to the pure QUIPS simulation (Q) curves,
even when a relatively large-rank (r = 20) representation is used, whereas even with ensemble averaging over 250
ensembles, the QUIPS curve exhibits significant noise at the highest CRMS value. For the low-rank (r = 4) case, the
solution is yet smoother, but deviates strongly from the analytic solution and exhibits a faster relaxation to equilibrium.
Therefore, the next step is to characterise the performance of the pure QUIPS and QUIPS/Tensor-Train methods in
terms of computational cost (as given by computational time and memory use) and computational error (as given by
solution noise and bias).

Figure 2 shows the average computational time per timestep plotted against noise in the 8th scaled moment for
simulations performed on a coarse 163 (left) and fine 323 (right) grid. Different QTT curves correspond to different
values of the decomposition rank r, whereas different points on the curves correspond to different CRMS values, and
“MU“ denotes the machine memory needed to store the Tensor-Train representation of the velocity distribution function
as a fraction of the machine memory used by the full (uncompressed) VDF. A “good” stochastic simulation method
can be characterized by simultaneously having low computational cost and exhibiting low noise, and a corresponding
point on the plot would thus lie in the lower-left corner. As expected, lowering the CRMS values leads to lower noise
levels for all the simulations.A reduction in noise is observed when the QUIPS/Tensor-Train algorithm instead of
the pure QUIPS approach. The lower the rank of the tensor decomposition, the lower the noise, as the lower-rank
representation effectively smooths out the stochastic fluctuations in the distribution function tails. At lower CRMS

values the effect is diminished, as the noise levels become sufficiently low so as to not hinder the effectiveness of a
lower-rank representation of the distribution function, and thus little artificial smoothing is introduced by the tensor
decomposition. At low CRMS values the computational costs are also virtually identical, as the additional overhead
introduced by the tensor decomposition and reconstruction of the full VDF from the compressed representation is
negligible compared to the overall cost of the collision computation. At high CRMS values use the QUIPS/Tensor-Train
algorithm is more expensive (compared to a pure QUIPS simulation performed with the same CRMS value), however,
for a given level of computational cost, achieving a similar noise level would require a lower CRMS value in the pure
QUIPS approach and a higher cost.
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Figure 2: Computational time per timestep plotted against noise in the 8th scaled moment. Pure QUIPS solution
denoted by “Q”, QUIPS/Tensor-Train solution denoted by “QTT”. 163 velocity grid (left), 323 velocity grid (right).
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Figure 3: Computational time per timestep plotted against bias in the 4th (left) and 6th (right) scaled moments.

Next, we are interested in the bias introduced in the simulations. Two lower-order moments (4th and 6th) are considered,
as the 8th order moment is noisy at high CRMS values even with ensemble averaging (as seen on Fig. 1), and thus
is not well-suited for analysis of bias compared to the smooth analytic solution. Figure 3 shows the bias in the 4th

(left) and 6th (right) scaled moments. The different points on the pure QUIPS curves correspond to different CRMS

values, whereas different points on the QUIPS/Tensor-Train curves correspond to different values of the decomposition
rank r, and the QUIPS/Tensor-Train results are plotted for the lowest (CCRMS = 10−3) and highest (CRMS = 10−1)
values of the CRMS parameter. For the pure QUIPS simulations (“Q” curves) it can be observed that use of a finer
velocity space grid leads to a significant reduction in the bias, whereas the value of the CRMS parameter has very little
influence on the bias in the solution. For the QUIPS/Tensor-Train results, the impact of varying the decomposition rank
r varies on the velocity grid used — for the coarse velocity grid, the lower the rank r, the lower the bias, whereas for
the fine velocity grid, the lower the rank, the higher the bias. To explain this seemingly contradictory behaviour, the
time evolution of the 8th scaled moment for both the coarse and fine velocity grids is plotted on Fig. 4. It can be seen
that use of a coarse decomposition r = 4 introduces bias compared to the pure QUIPS solution on the same velocity
grid, and that this bias is especially strong for the case of the coarse velocity grid. However, due to the bias leading to
higher computed values of the distribution function moment, it causes a reduction in the bias computed with reference
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Figure 4: Evolution of the scaled 8th moment for the BKW problem. Fixed CRMS value of 10−3.

to the analytic solution. Thus, care has to be taken when analyzing such metrics, as the role of the bias introduced by
the velocity space discretization needs to be accounted for as well. The amount of bias introduced is also affected by
the level of noise in the simulation (as governed by the CRMS value), as higher levels of noise lead to more error in the
VDF decomposition, and consequently, a higher bias in the overall solution.
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Figure 5: Bias as a function of timestep size with respect to analytic BKW solution (left) and pure QUIPS solution
(right).

Finally, we are also interested in the choice of timestep on the bias and noise in the simulations. On one hand, a larger
timestep leads to a larger error in the estimation of the collision integral. On the other hand, use of a smaller timestep in
conjunction with the tensor decomposition method will lead to more frequent compression and reconstruction of the
distribution function, and thus can be a cause of additional error, although the lower number of collisions performed
during each timestep reduces the amount of noise introduced at each timestep. In order to better quantify the impact of
varying the simulation timestep, an additional set of simulations was carried on the “fine” 323 velocity grids with a
CRMS value of 10−2, using timesteps of 0.01τc, 0.05τc, 0.1τc, 0.5τc, and 1.0τc, running all simulations up to a final
time of t = 10τc.

Figure 5 presents the bias in the 4th scaled moment as a function of the timestep used, with the bias computed with
respect to the analytic solution (left) and to the ensemble-averaged pure QUIPS solution (right). From the left subplot
it can be seen that the behaviour of both the pure QUIPS and QUIPS/Tensor-Train algorithms is very similar: use of
timesteps smaller than 0.1 mean collision time has little impact on the bias, whereas using larger timesteps leads to a
strong correlation between the bias and timestep size due to error in evaluation of the collision integral. To analyze the
impact of choice of timestep on the tensor decomposition-based algorithm, the bias with respect to the pure QUIPS
solution is plotted (Fig. 5, right subplot). The bias can be seen to be very weakly dependent on the choice of timestep as
long as the timestep is lower than 0.1 of the mean collision time; for larger timesteps some reduction in bias compared
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to the reference pure QUIPS solution can be observed, although it should be noted that the QUIPS solution itself suffers
from a large error at such large timesteps.

Thus, concluding the analysis of the presented BKW simulations, it can be stated that use of the Tensor-Train
decomposition has a smoothing effect on the distribution function, leading to a reduction of noise in the simulations,
especially at higher initial noise levels; moreover, the computational cost required to achieve similar noise levels with
the pure QUIPS approach would have been higher than when using the QUIPS/Tensor-Train algorithm. However, the
tensor decomposition introduces bias into the simulation, the magnitude of which is dependent not only the rank of the
decomposition used, but also on the level of noise in the simulation (with higher levels of noise leading to higher bias
levels). The amount of bias introduced in the simulation by the tensor decomposition was found to be weakly dependent
on the timestep as long as reasonably small timesteps (0.1 of the mean collision time or lower) were used, which is not
qualitatively different from the collision timestep restriction on the pure QUIPS simulation approach.

4.2 Couette flow

Next, a 1-dimensional Couette flow of argon in a channel with a width of 0.25 mm is considered. The wall temperatures
Tw were taken to be 300 K, and the y-velocities of the left and right wall were taken to be −500 m/s and 500
m/s, respectively. The gas number density was taken to be 1023 m−3, corresponding to a Knudsen number of
approximately 0.05. 150 cells were used to discretize the domain, and a 243 velocity grid was used, with an extent of
[−4.5vref , 4.5vref ], where vref =

√
2kTw/m, and m is the argon atom mass. The VHS (Variable Hard Sphere [1])

cross-section model was used for collisions, with a diameter of 4.11 Å and a VHS cross-section velocity exponent
ω = 0.81. The following values of CRMS were considered: 10−2, 2.5·10−2, and 7.5·10−2. The ranks of the reduced-
order representations considered were taken to be 4, 8, 12, and 16. The simulations were carried out for 50000 timesteps,
with time-averaging performed after 20000 timesteps had elapsed and the flow had reached a steady state.
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Figure 6: Time-averaged profiles of deviation of velocity from the linear profile (left) and of the temperature (right).
CRMS value of 10−2.

Figure 6 shows the time-averaged profiles of the deviation of the computed y-velocity from the linear velocity profile
given by vy,lin(x) = −500+1000x/0.25 (where x is in mm) (left) and the flow temperature (right). It can be seen that
the tensor decomposition introduces bias in both the velocity and temperature profiles, with lower-order decomposition
ranks leading to higher bias (decrease in the velocity slip magnitude and increase in the temperature), consistent with the
behaviour seen in the BKW relaxation case. As in the BKW case, it also expected that at higher CRMS values, the bias
due to the tensor decomposition will be higher due to the noise negatively affecting the lower-rank VDF representation.

Figure 7 shows the same quantities as Fig. 6, but computed with a CRMS value of 7.5 ·10−2. Thus, as predicted, a much
more significant increase in bias with decreasing r is observed. However, the r = 16 and r = 12 rank decompositions
still provide a good agreement with the pure QUIPS results, and yet require approximately 50% and 70% less memory
to store the compressed VDF, correspondingly.

Figure 8 shows the noise and bias in the different quantities: the slip velocity (left subplot, dashed lines) and temperature
(left subplot, solid lines) and maximum value of the temperature (right subplot) for different values of r and CRMS .
To compute the bias, the time-averaged pure QUIPS solution computed with CRMS = 10−2 was used as a reference
solution. Different points on the curves correspond to different CRMS values. As expected, varying CRMS has little
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Figure 8: Bias in slip velocity and temperature (left) and maximum temperature (right) plotted against noise in the same
quantities. Different points correspond to different CRMS values.

impact on the bias in the pure QUIPS results, whereas its effect becomes more pronounced as the tensor decomposition
rank r is decreased.

Finally, it is of interest to investigate which method performs better: pure QUIPS on a coarse velocity grid or
QUIPS/Tensor-Train on a finer grid with a low decomposition rank? To this extent, additional pure QUIPS simulations
were conducted, with velocity grid resolutions chosen so as to be close in terms of memory use to the compressed
Tensor-Train representations. The grid sizes chosen were 83, 123, 163, and 243.

Of course, using a coarser velocity grid discretization entails not only a decrease in the memory use, but also in the
computational cost due to both the convection and the collisions (as the velocity grid ∆v spacing enters the equation for
the number of collisions (13)). For a more consistent comparison, the CRMS values were adjusted so as to produce
approximately the same number of collisions at the start of the simulation as the pure QUIPS solution on a 243 grid
with a CRMS value of 2.5 · 10−2. Figure 9 shows the maximum (left) and mean (right) relative deviations in the
velocity (dashed line) and temperature (solid line) with respect to the QUIPS solution on a 243 velocity grid (which was
considered as a reference solution) for different grid sizes and decomposition ranks, represented on the X-axis by the
memory use (in percent) of the lower-resolution VDF compared to storing the full 243 VDF. It can be seen that at lower
CRMS values (black QTT curves) the TensorTrain-based representation performs better than pure QUIPS on a coarse
velocity grid, especially in the low memory-use cases, as the error in the temperature due to the grid discretization
becomes quite significant. However, for the error in the velocity, the pure QUIPS approach retains the lowest error of
all the results presented.
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Figure 9: Maximum relative deviation (left) and root-mean-square relative deviation (right) of velocity (dashed lines)
and temperature (solid lines) plotted against memory use with respect to the full 243 QUIPS solution.

Thus, it can be concluded that for the supersonic Couette flow test-case, the QUIPS/Tensor-Train approach can achieve
errors of less than 2% in the velocities and temperatures, whilst reducing the memory cost by 50% (r = 16) to 30%
(r = 12), provided that low CRMS values are used; however, the approach does not out-perform the pure QUIPS
approach unless the latter uses very low-resolution velocity grids.

4.3 Fourier flow

Finally, a 1-dimensional Fourier flow of argon in a channel with a width of 0.25 mm is considered, with a left wall
temperature of 300 K and a right wall temperature of 600 K. All numerical parameters were the same as the Couette
test case, except for the velocity grid extent, which was taken to be [−5vref , 5vref ], where vref =

√
2kTw,l/m, where

Tw,l is the temperature of the left wall.
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Figure 10: Time-averaged profiles of deviation of temperature from the linear profile. CRMS values of 10−2 (left) and
7.5 · 10−2 (right).

Figure 10 shows the time-averaged profiles of the deviation of the flow temperature from that given by a linear profile
Tlin(x) = 300 + 300x/0.25, where x is in mm. As in previous situations, at a low CRMS value (left subplot), all
solutions provide similar results, but as the noise level is increased, lower-rank decompositions exhibit a significant
error (right subplot). For the case of the Fourier flow, the temperature (and temperature slip at the right wall) and the
orthogonal component of the heat flux at the right wall are considered as quantities of interest. The quantities at the
colder (left) wall exhibit the same tendencies quantitatively and qualitatively as those at the right wall, and are thus not
presented.

14



Use of Tensor-Train Decompositions with a Discrete Velocity Boltzmann Solver

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Noise, %

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T s
lip

,r
, %

CRMS = 7.5 10 2Q
QTT, r=4
QTT, r=8
QTT, r=12
QTT, r=16

0.5 1.0 1.5 2.0 2.5
Noise, %

0

5

10

15

20

25

30

35

q x
,r

, %

CRMS = 7.5 10 2

Figure 11: Bias in slip temperature (left) and heat flux (right) plotted against noise in the same quantities. Different
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Figure 11 shows the bias (computed with respect to the lowest-noise pure QUIPS solution) and noise in the slip
temperature at the right wall (left) and heat flux (right). As in the case of the Couette flow, the bias is strongly dependent
on both the noise level and decomposition rank, with a stronger CRMS depends in case of stronger compression.
As could be expected, the bias is higher for the higher-order moment (heat flux), however, the rank 12 and 16
decompositions achieve results that are very close to the pure QUIPS approach.
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Figure 12: Maximum relative deviation of temperature (solid lines) and heat flux (dashed lines) (left) and root-mean-
square relative deviation of temperature (right) plotted against memory use with respect to the full 243 QUIPS solution.

Finally, as for the Couette test case, an analysis is carried out of how the low-rank tensor decomposition-based solutions
compare to the pure QUIPS algorithm on a coarse velocity grid. Fig.12 shows the error in the heat flux at the right wall
and the maximum error in the temperature (left; error in the heat flux shown with dashed lines, error in the temperature
shown with solid lines) and mean error in the temperature (right), computed with respect to the pure QUIPS solution on
a 243 grid. For the temperature, the QUIPS/Tensor-train approach provides a much lower error than the pure QUIPS
approach for both noise levels considered; and for the heat flux, at lower CRMS values, the tensor decomposition-based
algorithm also achieves a smaller error in the computed heat flux. Compared to the Couette flow test case, here, at the
lowest machine memory use values, the tensor decomposition based algorithm provides a marked improvement of the
pure QUIPS approach.
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5 Conclusions

An energy-conserving modification of the Tensor-Train tensor decomposition algorithm for rarefied gas dynamics
applications has been developed and applied to a stochastic discrete velocity-based simulation method, the “Quasi-
Particle Simulation method” (QUIPS). An interleaved collision/convection algorithm has also been proposed, that
allows for simple application of a spatially second-order convection scheme. The errors (in terms of both solution noise
and bias) introduced by the use of the tensor decomposition in conjunction with the stochastic collision evaluations have
been analyzed for the 0-D BKW relaxation, and 1-D Couette and Fourier flow problems. It has been shown that noise in
the VDF introduces additional bias when the Tensor-Train reduced-order representation is used, especially when lower
decomposition ranks are utilized. However, unless very low-rank decompositions and/or high noise levels are used, the
results obtained with the hybrid QUIPS/Tensor-Train approach can be quite accurate in terms of noise and bias, whilst
simultaneously reducing the memory cost compared to a pure QUIPS approach. The conservative Tensor-Train tensor
decomposition/collision algorithm has also been shown to introduce minimal additional computational cost, unless very
high noise levels are present in the simulation. The proposed algorithm was also shown to be weakly influenced by the
choice of timestep.

In the case of the Couette and Fourier flows, the use of decompositions with relatively high ranks provides results
very similar to those achieved by the pure QUIPS approach, whilst allowing for 50% to 70% reduction in the storage
requirements for the VDF in a single physical cell. For stronger compression (lower decomposition ranks), the
QUIPS/Tensor-Train approach provides less error than the pure QUIPS approach does for the same memory cost. As
such, the energy-conserving QUIPS/Tensor-Train algorithm has been shown to be a viable approach to the reduction of
memory costs in rarefied flow simulations, even in the presence of stochastic noise in the solution.

Possible future extensions to the method include 1) extension to multi-species flows 2) extension to molecular flows with
ro-vibrational distributions [21], where the potential memory savings would be even larger 3) extension to distributions
defined on spherically cut-off velocity grids [22] (or in general, extension to non-Cartesian velocity space coordinate
systems) 4) inclusion of conservative projection methods and 5) combination with machine-learning based methods for
faster evaluation of the collision integral.
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