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English Summary  

 The field of large-scale human population modelling has emerged as a response to 

the increasing demands for actionable, consistent and comparable population data needed 

to support a large number of sustainable development applications . Nowadays, Earth 

Observation -derived, top -down large -scale gridded population datasets that describe the 

extent and spatial distribution of the human population  as continuous surfaces (rasters), 

are openly accepted by many governments and institutions around the world , who use 

them as an alternative source of information to complement/supplement conventional 

census/estimate-based population data. 

Given the wide range of applications where gridded population products are being 

employed, research performed to improve the accuracy and spatial resolution of large -

scale population models has become of utmost importance. For the last decade, the 

scientific community has constantly leveraged the increasing availability of Earth 

Observation data, the improvements made on Remote Sensing techniques and the 

developments made on the field of Machine Learning, to produce large-scale gridded 

population datasets with higher usability and reliability. For example, some of the most 

accurate and spatially explicit products available at a global scale are produced mainly by 

harnessing the inclusion of remotely -sensed derived proxy layers with improved thematic 

and spatial resolution, especially those describing the characteristics of the built -up 

environment  such as built-area layers and building footprint datasets, respectively.  

However,  notwithstanding these advancements, a systematic literature review 

undertaken within this PhD research has revealed that existing top -down large -scale 

population models still suffer from a number of limitations that affect the final accuracy 

and usability of their corresponding derived population datasets. In particular, it has been 

identified that existing models used to produce large-scale gridded population maps are 

still affected by a) the quality and recency (currentness or age of the data) of the underlying 

census/estimate-based population data on the one hand; and by b) the still low spatial 

resolution of the geospatial proxies used for disaggregation, c) the persistent inaccuracy 

in identifying populated areas from remotely -sensed data, and d) the lack of information 

on the functional use and 3D characteristics of the built-up environment, on the other 

hand. Overall, it has been concluded that if some of these limitations still exist in the field, 

it is because data and methods that can help overcome these issues at very localɬscales 

(e.g. national models) are yet not available or transferable to large-scale applications  (e.g. 

continental or global  models). 

In this context, this PhD thesis explores the capabilities and effectiveness of the new 

World Settlement Footprint (WSF) suite in the production of a large -scale gridded 

population model that allows improving the accuracy and spa tial resolution of end-user 

populatio n datasets. In detail, it presents a methodological framework that explores how 

and if each of the WSF-layers, namely the WSF2015, the WSF2019 and the WSF3D can 

overcome the limitations listed above, in particular limit ations b), c) and d).  Thereinafter, 

each WSF-layer was evaluated in terms of  1) their ability to improve population estimates 

compared to binary -dasymetric models, 2) their ability to produce consistent and 

comparable accuracies across large territorial extents, 3) their ability to produce accurate 

population estimates acting as single proxies for population modelling, 4) their ability to 
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reduce the technical complexities of multi -layer weighed -dasymetric models, 5) their 

ability to discriminate large ind ustrial areas using a simple and spatially transferable 

machine learning approach, and finally 6) their ability to improve population estimates 

through the integration of volume and settlement use information.   

Within this methodological framework, a compr ehensive set of spatial and statistical 

analyses were designed to evaluate the uncertainties of large a number of population 

distribution maps at local, national and continental scale. For a robust assessment, 

population models were produced at varying cur rencies, qualities and spatial scales of the 

input census-based population data, with the purpose of analysing how the differences in 

the level of spatial granularity of the available administrative boundaries and the 

variability in the morphology of built -up landscapes influence the accuracy of each WSF 

layer.  

Overall, the main findings of this PhD thesis demonstrate that the WSF-layers are 

capable of tackling some of the main limitations identified in the field of large -scale 

population modelling. First,  the independent weighting framework provided by the non -

binary WSF-layers allowed outperforming the mapping accuracies of widely employed 

binary -dasymetric models and reduce the technical complexities of (multi -layer) weighted 

dasymetric models. Second, as single proxy layers used for dasymetric disaggregation, 

each WSF-layer was also capable of delivering consistent and systematic accuracies across 

large territorial extents (e.g. continent and region -wide) ; where the robustness of each 

layer was consistent under varying qualities and spatial resolutions of the input 

population data.  Finally, spatial metrics derived solely from the WSF3D dataset showed 

to be extremely effective at classifying the built -up environment into industrial and non -

industrial land-uses, which ultimately , allowed  incorporating  for the first time ever , 

settlement use and settlement volume information into large -scale models of population 

disaggregation.   

In view of these promising results, the main contributions of this PhD researc h can 

be summarised as follows:  

1. Quantitative and qualitative demonstration of how employing the WSF -suite for 

population modelling overcomes some of the most prominent limitations  in the 

field.  

2. First in -depth quality assessment aimed at evaluating the effectiveness and 

suitability of each WSF-dataset as proxy layer for large-scale population 

modelling.  

3. Design and implementation of the Settlement Size Complexity (SSC) index as a 

robust metric to evaluate the uncertainty of population models based on built -

up area layers. 

4. (Ô×ÙÖÝÐÕÎɯ ÜÕËÌÙÚÛÈÕËÐÕÎɯ ÖÕɯ ÛÏÌɯ ɁÍÐÛÕÌÚÚɯ ÍÖÙɯ ÜÚÌɂɯ ÖÍɯ ÓÈÙÎÌ-scale gridded 

population datasets. 

5. The development of a highly accurate, semi-automatic and globally transferable 

method for the identification of industrial and non -industrial area s using only 

the WSF3D dataset in combination with a Machine Learning approach.   
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6. First time delivery of large -scale population datasets produced on the basis of 

the WSF-layers, to serve as actionable data for a large number of ongoing-

projects.  
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Deutsche Kurzfassung  

Der Forschungsbereich der großflächigen Bevölkerungsmodellierung hat sich als 

Folge des zunehmenden Bedarfs an verwertbaren, konsistenten und vergleichbaren 

Bevölkerungsdaten entwickelt, die für eine Vielzahl von Anwendungen im Kontext der 

nachhaltigen Entwicklung benötigt werden. Heutzutage werden aus 

Erdbeobachtungsdaten abgeleitete, großflächige Bevölkerungsdaten im Rasterformat, die 

das Ausmaß und die räumliche Verteilung der menschlichen Bevö lkerung als 

kontinuierliche Flächen beschreiben, von vielen Regierungen und Institutionen auf der 

ganzen Welt offen akzeptiert. Diese nutzen die Bevölkerungsdaten als zusätzliche 

Informationsquelle, da sie die konventionellen, auf Volkszählungen sowie Schä tzungen 

basierenden Daten auf wertvolle Weise ergänzen. 

In diesem Zusammenhang und angesichts des breiten Spektrums von 

Anwendungen, bei denen gerasterte Bevölkerungsprodukte zum Einsatz kommen, sind 

Forschungsarbeiten zur Verbesserung der Genauigkeit und räumlichen Auflösung 

großflächiger Bevölkerungsmodelle von größter Bedeutung. In den letzten zehn Jahren 

haben Wissenschaftler zunehmende Verfügbarkeit von Erdbeobachtungsdaten, die 

Verbesserungen der Fernerkundungsmethoden und - in jüngerer Zeit - die Entwicklungen 

bei den Algorithmen des maschinellen Lernens genutzt, um großflächige  

Bevölkerungsdatensätze mit einer höheren Nutzbarkeit und Zuverlässigkeit als je zuvor 

zu erstellen. Heute werden einige der genauesten und räumlich explizitesten Produkte, 

die auf globaler Ebene verfügbar sind, durch die Einbeziehung von aus der 

Fernerkundung abgeleiteter Indikatoren mit verbesserter thematischer und räumlicher 

Auflösung erstellt. Diese umfassen insbesondere solche, die urbane Strukturen 

beschreiben, wie z. B. Datensätze zu bebauten Flächen oder Gebäudeumrisse.  

Eine im Rahmen dieser Doktorarbeit durchgeführte systematische 

Literaturrecherche hat jedoch ergeben, dass die bestehenden großflächigen 

Bevölkerungsmodelle nach wie vor einige Einschränkungen aufweisen,  die die 

Genauigkeit und Verwendbarkeit der entsprechend abgeleiteten Bevölkerungsdatensätze 

stark beeinträchtigen. Insbesondere wurde festgestellt, dass bestehende Techniken zur 

Erstellung großflächiger Bevölkerungsschätzungen nach wie vor durch die Quali tät und 

Aktualität der zugrundeliegenden, auf Volkszählungen sowie Schätzungen basierenden 

Bevölkerungsdaten beeinträchtigt werden. Andererseits haben die nach wie vor geringe 

räumliche Auflösung der für die Disaggregation verwendeten räumlichen Indikatore n, 

die  resultierenden Ungenauigkeiten bei der Klassifikation von besiedelten Gebieten 

anhand von Fernerkundungsdaten, der Mangel an Informationen über die funktionale 

Nutzung sowie die fehlende vertikale Information der bebauten Umgebung negative 

Auswirku ngen auf die modellierten Bevölkerungsdaten . Insgesamt wurde der Schluss 

gezogen, dass einige dieser Einschränkungen weiterhin bestehen  und dies darauf 

zurückzuführen ist, dass Daten oder Methoden, die dazu beitragen können, diese 

Probleme auf sehr lokaler oder feiner Ebene zu überwinden oder auf das Fehlen, noch 

nicht verfügbar oder in großem Maßstab übertragbar sind (z. B. kontinentale oder globale 

Ebene). 

 



Deutsche Kurzfassung 

VII  

 

Um diese Herausforderungen zu bewältigen, untersucht diese Doktorarbeit die 

Möglichkeiten und die  Effektivität der neuen World Settlement Footprint (WSF) Produkte 

bei der Erstellung eines großflächigen und rasterbasierten Bevölkerungsmodells, das die 

Verbesserung der Genauigkeit und der räumlichen Auflösung bestehender 

Bevölkerungsdatensätze ermöglicht. Im Detail wird ein methodisches Framework 

vorgestellt, das die Effektivität jeder WSF-Layer, nämlich des WSF2015, des WSF2019 und 

des WSF3D, in Bezug auf ihre Fähigkeit, 1) Bevölkerungsschätzungen im Vergleich zu 

binär-dasymetrischen Modellen zu verbessern, 2) konsistente und vergleichbare 

Genauigkeiten über große territoriale Ausdehnungen zu erzeugen 3) genaue 

Bevölkerungsschätzungen zu erstellen, die als einzelne Näherungswerte für die 

Bevölkerungsmodellierung dienen, 4) die technische Komplexität von gewichteten-

dasymetrischen Modellen zu verringern, 5) große Industriegebiete mit Hilfe eines 

einfachen und räumlich übertragbaren maschinellen Lernansatzes zu unterscheiden, und 

schließlich 6)  Bevölkerungsschätzungen durch die Integration von Informatione n über 

Volumen und Siedlungsnutzung zu verbessern.  

Innerhalb dieses methodischen Frameworks wurden umfassende räumliche und 

statistische Analysen durchgeführt, um die Unsicherheiten einer großen Anzahl von 

Bevölkerungsverteilungskarten auf lokaler, nation aler und kontinentaler Ebene zu 

bewerten. Für eine robuste Bewertung wurden Bevölkerungsmodelle mit 

unterschiedlicher Aktualität, Qualitäten und räumlichen Maßstäben der eingegebenen 

Bevölkerungsdaten erstellt, um zu analysieren, wie die Unterschiede in der räumlichen 

Auflösung der verfügbaren Verwaltungsgrenzen sowie die Variabilität in der 

Morphologie bebauter Landschaften die Genauigkeit der einzelnen WSF-Layer 

beeinflussen. 

Die wichtigsten Erkenntnisse dieser Doktorarbeit zeigen, dass die WSF-Layer in der 

Lage sind, die aufgezeigten Beschränkungen im Bereich der großflächigen 

Bevölkerungsmodellierung zu überwinden. Erstens konnte durch die unabhängige 

Gewichtung, die durch die nicht -binären WSF-Layer ermöglicht wird, einerseits die 

Zuordnungsgenauigkeit der häufig verwendeten binär -dasymetrischen Modelle 

übertroffen und andererseits die technische Komplexität der (mehrschichtigen) 

gewichteten dasymetrischen Modelle verringert werden. Zweitens war jeder WSF -Layer 

als einzelner Proxy, der für die dasymetris che Disaggregation verwendet wird, auch in 

der Lage, konsistente und systematische Genauigkeiten über den gesamten Raum hinweg 

zu liefern, wobei die Robustheit jedes Layers konsistent war. Diese wurde unter 

verschiedenen Qualitäten und räumlichen Auflösung en der eingegebenen 

Bevölkerungsdaten getestet.  Schließlich erwiesen sich räumliche Metriken, die 

ausschließlich aus den WSF3D-Datensätzen abgeleitet wurden, als äußerst effektiv bei der 

Klassifizierung von Informationen über die Siedlungsnutzung im gesam ten Raum, was 

letztlich die Einbeziehung von Informationen über die Siedlungsnutzung und das 

Siedlungsvolumen - zum ersten Mal überhaupt - in groß angelegte Modelle der 

Bevölkerungsdisaggregation ermöglichte.   

In Anbetracht dieser vielversprechenden Ergebnisse können die wichtigsten 

Beiträge dieser Doktorarbeit wie folgt zusammengefasst werden: 
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1. Quantitative und qualitative Demonstration, wie der Einsatz der WSF -Produkte 

für die Bevölkerungsmodellierung die bestehenden Beschränkungen auf diesem 

Gebiet überwindet.  

2. Erste eingehende interne Qualitätsbewertung, die darauf abzielt, die Effektivität 

und Eignung jedes WSF-Datensatzes als Proxy-Layer für die großflächige 

Bevölkerungsmodellierung zu evaluieren.  

3. Entwurf und Implementierung des Siedlungsgrößenkom plexitätsindex (SSC) 

als robuste Metrik zur Bewertung der Unsicherheit von Bevölkerungsmodellen.  

4. 5ÌÙÉÌÚÚÌÙÜÕÎɯËÌÚɯ5ÌÙÚÛåÕËÕÐÚÚÌÚɯËÌÙɯȬÍÐÛÕÌÚÚɯÍÖÙɯÜÚÌɁɯÝÖÕɯÎÙÖŏɯÈÕÎÌÓÌÎÛÌÕɯ

gerasterten Bevölkerungsdatensätzen. 

5. Die Entwicklung einer hochpräzisen, halbautomati schen und weltweit 

übertragbaren Methode zur Identifizierung von Industrie - und Nicht -

Industriegebieten unter ausschließlicher Verwendung des WSF3D-Datensatzes 

in Kombination mit Algorithmen aus dem Bereich des Maschinellen Lernens.    

6. Erstmalige Lieferung  von Bevölkerungsdatensätzen auf der Basis der WSF-

Layer, die als verwertbare Daten für eine Vielzahl von laufenden Projekten 

dienen. 
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Chapter 1 

 

1. Introduction  

1.1 The importance of improving large -scale gridded population 

models 

When the main objective of this PhD research was conceptualised at the end of the 

year 2017, the world population was reaching the 7.6 billion mark. Four years later, this 

number has reached the 8.0 billion m ark, which indicates that on average, 100 million 

people were added to the global population per year. According to the United Nations 

(UN) (UN, 2019; UNFPA, 2021), if the world population should continue to grow at its 

present rate, the number of humans on Earth could reach the 9.8 billion mark by the year 

2050, and increase up to 11.2 billion by end of the century.  

Natural ly, while population growth and other population dynamics such as 

urbanisation, migration and population aging can pose challenges as well as opportunities 

for a given country, over the past decade, abrupt changes in these population processes 

have mainly acted as a break on social, economic and environmental development. This 

ÌÍÍÌÊÛɯÏÈÚɯÉÌÌÕɯÔÖÙÌɯ×ÙÖÕÖÜÕÊÌËɯÐÕɯÛÏÌɯÞÖÙÓËɀÚɯÓÌÈÚÛɯËÌÝÌÓÖ×ÌËɯÊÖÜÕÛÙÐÌÚȮɯÞÏÌÙÌɯÛÏÌɯ

current policies and economies are not well established to deal with the rapid population 

changes (Twinoburyo et al., 2019; UN, 2018). For example, owing to the increasing 

unplanned urbanisation, severe climate change and land degradation has led nearly 39% 

of the Asia and Pacific region exposed desertification, which in return, has increased food 

insecurity and hunger. Today, about 351 million people residing in these reg ions are 

estimated to be undernourished, which is about 51% of the total amount at a global scale 

(FAO et al., 2021). Comparably, in most  Sub-Saharan African countries, services such as 

education, health care, electricity, water and decent network infrastructures are severely 

over stretched as a result of the rapid population and urbanisation growth rates reported 

every year (~2.4% and ~3.4%, respectively) (Tuholske et al., 2019). Here, approximately 

60% of the Sub-African youth between ages fifteen and seventeen are not in school 

(UNESCO, 2021), 76% of the population do not have access to safe drinking water 

(UNESCO, 2019) and around 490 million people in live in extreme poverty (UNCTAD, 

2021)  

Under these circumstances, in an era when we are trying to achieve a global 

sustainable and  inclusive future, the human population has to be considered as one the 

most important numbers in the sustainability equation (Rosling et al., 2018). The reason 

for this is that  the varying patterns of population growth, composition (e.g. size, density, 

age, gender, ethnicity, race, income) and distribution of population, influence the patterns 

of consumption, producti on, employment and income at global, regional, national and 

local scales (Aguirre, 2002; National Research Council, 1994). This means, that efforts that 

remain disassociated from the knowledge and policy options linked to population 

processes are, and will be destined to fail, as all measures aiming at eliminating poverty, 
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hunger, land degradation, water pollution, climate c hange, etc., can  only be successfully 

implemented if they take into account the size, composition and distribution of the 

populations they target (Herrmann et al., 2012). 

In this context , to promote more sustainable pathways of global development and 

to implement policies that integrate population dynamics into development plans; 

governments, organisations, policy-makers, and researchers alike, need to have access to 

timely and reliable population data. Existing international frameworks for development, 

including the Sustainable Development Goals (SDGs) (UN, 2022b), the Sendai Framework 

for Disaster and Risk Reduction (Sendai FDRR) (UNDR R, 2015), the Paris Agreement (UN -

Climate Change, 2022) and the UN-New Urban Agenda (UN -Habitat, 2022), for example, 

rely greatly on the availability of population data which are used 1) as denominator in 

calculating different metrics and indic es, 2) as a primary resource to support decision-

making, and 3) as main input to design, implement and fine -tune policies aiming at global 

sustainability (Qiu et al., 2022; Sankoh, 2017; UN, 2021).  

For most countries, the traditional form of collecting population data is through 

national populati on or housing censuses where information on the number of people and 

their main characteristics are collected approximately every 10 years. According to the 

UN, to this day censuses are the most accurate and rich source of population data, as they 

gather information using  the lowest geographical divisions (e.g. household or building 

level), covering small areas up to the national and international scales (UN -Statistics 

Divisio n, 2022). In this framework, however, when population totals are made openly 

available to the public, they are typically aggregated to large administrative units (e.g. 

census blocks, neighbourhoods, municipalities, etc.) to protect the privacy of the citizens. 

While this aggregation process is quite standard, it limits the usability of the data, 

especially in the context of different analytical purposes. For example, census-based 

population data are collected at different time intervals and are made avai lable using 

different administrative units among and within countries  which makes it difficult to 

compare population distributions in a consistent and methodological way (Wardrop et al., 

2018). At the same time, the administrative units used to aggregate population totals do 

not correlate with any other geographical phenomena, restricting  the integration of 

census-based population data with other geospatial datasets. Finally, as population counts 

are aggregated from building level to coarser un its, there is  a loss of spatial detail which 

affects the overall accuracy of any subsequent analyses where the data is used.  

On this basis, to be of value population data has to be spatially explicit and 

comparable within and across countries (UN, 2021). Standardised and precise information 

on where and in what  density humans live is essential not only to implement location -

based policies, but also to develop local-to-global initiatives that consider populations 

located in rural and urban settings across the world (POPGRID, 2021). Here, spatially 

explicit and globally -standardised population data provide the foundation for 

investigating geographic variations in policy -performance, thus allowing answering 

questions such as: Where are sustainable policies over- or underperforming? or Does performance 

vary across space (e.g. between and within countries or regions)?   

To produce more spatially explicit and globally comparabl e population data, the 

scientific community has increasingly invested in two main overarching efforts: 1) the 

development of initiatives to collect, harmonise, and temporally -adjust census-based 
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population counts (e.g. production of estimates and projectio ns) and cartographic 

administrative boundaries at a global scale (Doxsey-Whitfield et al., 2015; Freire et al., 

2018) and 2) the development of methods to create alternative, global-scale population 

datasets that provide more precise spatial representations of the population distribution 

at moderate-to-high -spatial resolutions (Balk et al., 2006). For the last thirty years, these 

two efforts have been combined with the increasing advances in Remote Sensing (RS), 

Geographical Information Systems (GIS) and Artificial Intelligence (AI) techniques, 

ÈÓÓÖÞÐÕÎɯÛÏÌɯÊÙÌÈÛÐÖÕɯÈÕËɯ×ÙÖÓÐÍÌÙÈÛÐÖÕɯÖÍɯÎÌÖÙÌÍÌÙÌÕÊÌËɯËÈÛÈɯ×ÙÖËÜÊÛÚɯÒÕÖÞÕɯÈÚɯɁÛÖ×-

down large -ÚÊÈÓÌɯÎÙÐËËÌËɯ×Ö×ÜÓÈÛÐÖÕɯËÈÛÈÚÌÛÚɂȭ 

Concisely, large-scale gridded population datasets provide estimates of the total 

population as a continue surface or raster at near-global to global scale (Leyk et al., 2019). 

They are produced using different top -dow n disaggregation techniques and auxiliary 

data, in which global census-based population counts, estimates or projections are 

redistributed from v ector-format administrative boundaries to raster pixels of a given 

spatial resolution. Population allocation is commonly based on a weighting layer that 

restricts or calculates how many people are allocated per pixel, where the pixel-weights 

are extracted through simple or complex statistical approaches that investigate the 

relationships between population densities and different geophysical variables or 

geospatial proxies (e.g. built-up areas, distance to main roads, services or amenities, 

elevation, climate, etc.). 

As such, top-down gridded population datasets do no replace census/estimate-

based population data but rather supplement or complement the information by 

improving its spatial resolution and interpretation capabilities (Anderson et al., 2017). In 

its raster format, population data can be more easily integrated with other global gridded 

datasets such as environmental, economic, or agricultural geodatasets, allowing a deeper 

understanding of human -environment interrelationships from an increased spatial 

perspective. At the same time, the data can be aggregated to arbitrary spatial units such 

as hazard zones, climate zones, risk areas, etc., thus facilitating spatial and statistical 

analyses. Furthermore, gridded population data provid e consistent and comparable 

information across space, allowing implementing cross -comparison analyses within and 

across regions (Wardrop et al., 2018). 

Due to their remarkable advantages, nowadays large-scale gridded population 

datasets are greatly accepted by researchers, governments and institutions all over world, 

who consider them as invaluable sources of population data (Allen et al., 2021). State-of-

the-art products, including the Global Rural -Urban Mapping Project (GRUPM) (CIESIN, 

2011), the Gridded Population of the World (GPWv4.11) (Doxsey-Whitfield et al., 2015), 

the LandScan dataset (Bhaduri et al., 2007; Dobson et al., 2000) , the Global Human 

Settlement Population layers (GHS-POP) (Freire et al., 2016), the WorldPop datasets 

(Stevens et al., 2015b) and the High -Resolution Settlement Layer (HRSL) (Tiecke et al., 

2017) are widely used to support a large variety of research areas, including public health 

applications (España et al., 2018; Fries et al., 2021; Hay et al., 2005a), public security 

(Galway et al., 2012), urban planning and characterisation (Amoah et al., 2018; 

Dhewantara et al., 2018; Serrano Giné et al., 2016; Tuholske et al., 2019), accessibility 

analyses (Ajisegiri et al., 2019; Linard et al., 2012; Sorichetta et al., 2016), poverty mapping 

(Barbier & Hochard, 2018; Elvidge et al., 2009; Noor et al., 2008), hazard and environmental 
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risk assessments (Brown et al., 2018; Calka et al., 2017; Maas et al., 2019; Maroko et al., 

2019; Mohanty & Simonovic, 2021; Smith et al., 2019; Tellman et al., 2021), and 

humanitarian relief applications (Kellenberger et al., 2021). They also support the 

monitoring and implementation of the SDGs (Kavvada et al., 2020; Kuffer et al., 2020; Qiu 

et al., 2022; Tuholske et al., 2021), and most recently, with the emergence of the Corona-

Virus (COVID -19) pandemic, these datasets have further demonstrated their utility by 

providing  estimates of people exposed or at risk of transmission due to crowding (Rader 

et al., 2020), as well as to measure assess to vaccines (Rader et al., 2021). 

With that being said, the sensitivity of these applications highlights how important 

it is for large -scale gridded population datasets to be as accurate as possible. These 

datasets serve not only as empirical evidence, but also as a critical component to better 

target and allocate financial resources towards vulnerable populations (Aubrecht et al., 

2013), where inaccuracies in the estimates can prevent governments and organisations to 

reach those in more need. Under the UN-ÔÖÛÛÖɯÖÍɯɁ+ÌÈÝÌɯ-Öɯ.ÕÌɯ!ÌÏÐÕËɂɯ(UN, 2022a), 

accurate gridded population datasets ensure including populations located even in most 

remote and reclusive areas of the world. 

In this regard, among the many advances done in the field of large-scale top-down 

gridded population modelling, one of the most notable sources of improvement has been 

the use of Earth Observation (EO) satellite-based geospatial layers, which through the 

years, have become increasingly more precise and accurate (Leyk et al., 2019). Here, the 

development of highly accurate datasets describing the extent and spatial distribution of 

human settlements and building footprints has played a crucial role, as these proxy layers 

ÐÕɯ×ÈÙÛÐÊÜÓÈÙȮɯÏÈÝÌɯ×ÙÖÝÌÕɯÛÖɯÉÌɯɁÛÏÌɯÚÐÕÎÓÌɯÔÖÚÛɯÏÐÎÏÓàɯ×ÙÌËÐÊtive indicators of human 

ÏÈÉÐÛÈÛÐÖÕɂɯ(Nieves et al., 2017; Reed et al., 2018; Stevens et al., 2020). State-of-the-art built -

area layers such as the Global Urban Footprint (GUF) (Esch et al., 2017), the Global Human 

Settlement Layer (GHSL) (Pesaresi et al., 2016), the WorldPop growth built -up models 

(Nieves et al., 2020b) and building patterns (Nieves et al., 2020a), the Ecopia/Maxar (Maxar 

Technologies, 2020), Microsoft (Heris et al., 2020) and Google building footprints (Sirko et 

al., 2021) have help refined large-scale top-down  gridded populat ion models, by 

improving the identification of human settlements, particularly in rural areas.  

Regrettably, even though major qualitative and quantitative improvements have 

been reported through the years, contemporary research aimed at assessing the accuracy 

of state-of-the-art large-scale top-down  gridded population datasets has revealed that a 

series of limitations still affect the usability and accuracy of all existing  products.  These 

limitations are not unique to any particular existing product, but rather limitations that 

affect the underlying population models that are used/employed to produce them. 

Overall, the main challenges that need to be addressed to produce datasets with higher 

accuracy and usability can be summarised as follows: 

1. Improved spa tial resolution:  Most of the currently available large -scale top-down 

gridded population datasets are produced at spatial resolutions of 100m, 250m and 

1km at the Equator adhering the original or modified spatial scale of the proxies used 

for disaggregation (Lloyd et al., 2019). Different studies deem this as sub-optimal, first 

because the data cannot be directly integrated with other geospatial layer of higher 

spatial granularity leading to analytical challenges (Calka & Bielecka, 2020; Smith et 

al., 2019), second, because population counts extracted for very local areas result in 
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highly inaccurate counts (Thomson et al., 2021a), and third, because the coarse spatial 

resolution affect the identification of all potential populated areas (Marconcini et al., 

2020). As such, to refine the spatial granularity of future datasets, there is a need to 

develop population models that can leverage and handle th e inclusion of global -scale 

proxies with higher spatial resolutions (e.g. 10m, 12m or 30m at the Equator).  

 

2. Improved comparability and replicability: In general, population models that 

employ multiple proxies for population disaggregation have shown to ha ve higher 

qualitative and quantitative accuracies than those models that employ no ancillary 

data, or just one proxy (Stevens et al., 2015b; Su et al., 2010). In the context of large-

scale top-down  population modelling, however, these models can show local quality 

variations, which are difficult to account for in the framework of cross -comparison 

analyses (Schug et al., 2021). Furthermore, due to the employment of a large number 

of proxy layers, multi -layer models suffer from endogeneity issues as well as 

transferability restrictions in space  and time (Balk et al., 2006). Therefore, future 

research should focus on the development of population models capable of delivering 

systematic patterns of quality across space, leveraging global proxies with comparable 

spatio-temporal quality. Optimally, these models should also allow for replicability 

and transferability, and rely on proxies that provide a  direct physical relationship with 

population densities without statistical modelling (e.g. built -up densities). 

 

3. Integration of use and 3D information of the built -up environment:  State-of-the-art 

large-scale top-down gridded population datasets are produ ced with population 

models that do not integrate the functional (residential vs non -residential) and three-

dimensional (3D) information (e.g. volume or floor -space) on the built-up 

environment. This limitation has led to large error of underestimations in highly dense 

urban areas with high -rise buildings (Thomson et al., 2021a) , and large errors of 

overestimation in non -residential areas (e.g. industrial and commercial centres) 

(Palacios-Lopez et al., 2019; Palacios-Lopez et al., 2021) which affects the accuracy of 

sub-sequent analyses. While meaningful evidence exists on the advantages of 

integrating such information into population models (Biljecki et al., 2016; Grippa et al., 

2018; Huang et al., 2021b; Schug et al., 2021; Shang et al., 2021; Ural et al., 2011), current 

research mainly focuses on local to regional-scale analyses due to the lack of geospatial 

datasets with global-scale coverage. Therefore, future research should focus on the 

development of global -scale proxies that describe the functional and 3D -characteristics 

of the built -up environment , as well as on exploring how these datasets can be 

efficiently used to refine large -scale population estimates. 

 

4. Improved quality, recency and scale of the input census -based population data 

counts and boundaries :  National population and housing census es are considered by 

far the most reliable source of population data. How ever, in countries which are 

mainly located in low -income regions or in areas of conflict, censuses have not been 

collected some times for more than 40 years (Wardrop et al., 2018). This means that for 

a given number of countries, top-down population datasets are being modelled with 

outdated or incomplete data ; shortcomings that propagate to derived population grids 

and the applicat ions  where they are used (Kuffer et al., 2022) . In this context, w hile 
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reinforcing the economic, political and statistical capacities of countries should remain 

a major priority to collect up -to-date population counts and boundaries, future 

research should also focus on exploring and reinforcing alternative method s of 

producing population estimates . In particular, investigating ɁÉÖÛÛÖÔ-Ü×ɂɯ×Ö×ÜÓÈÛÐÖÕɯ

modelling approaches should be of interest, which are methods being developed to 

bridge this gap at local and national scales (Darin et al., 2021a; Schug et al., 2021; Weber 

et al., 2018).  

1.2 Research Motivation and Focus  

Based on this theoretical background, the main motivation of the present thesis is to 

respond to the identified challenges in the  field through the development of population 

models capable of generating large-scale datasets with improved accuracy and spatial 

resolution.  Here, we specifically focus on providing large-scale solutions for  the first three 

limitations mentioned in the pr evious section, presenting a methodology based strictly on 

ɁÛÖ×-ËÖÞÕɂɯÔÌÛÏÖËÚɯÖÍɯ×Ö×ÜÓÈÛÐÖÕɯËÐÚÈÎÎÙÌÎÈÛÐÖÕȭɯFor completeness, however, we also 

present a discussion on how the methods and data developed here could potential ly  

contribute to address the fourt h limitation , although the latter is out of the scope of the 

main research.  

Concisely, this thesis focuses on developing and evaluating the effectiveness of top-

down population models that rely solely on the novel World Settlement Footprint (WSF) 

suiteɬɬa set of global layers that describe the extent, location, characteristics and spatial 

distribution of human settlements at with unprecedented accuracies and spatial 

resolutions . The main hypothesis is that each layer that compose the WSF-suite, namely 

the WSF2015 (binary and density layers), the WSF2019 (binary and imperviousness layers) 

and the WSF3D, respectively, has the potential to address one or multiple limitations 

affecting large-scale top-down gridded popul ation models today; thus, allowing 

generating population distribution maps with higher accuracy than existing models.  

This hypothesis is built  upon four premises: First, that compared with any other 

built -area dataset available today, the new WSF-suite presents great accuracy in terms of 

settlement identification, both in urban and rural areas. Second, that compared with any 

other built -area dataset available today, the WSF-suite is produced at unprecedented high 

spatial resolutions of 10m and 12m at the Equator. Third, that compared with any other 

built -area dataset available today, the WSF-suite is one of the first datasets to offer 3D-

information on the built -up environment, with accuracies comparable to very high -

resolution products (e.g. Light Detectio n and Ranging (LiDAR) data). And fourth, that 

compared with highly accurate building footprint datasets which are only available for a 

limited number of countries, the WSF -suite offers global coverage.  

In this framework, to test the proposed hypothesis, t he design, theoretical and 

practical approach of this PhD research follows a series of evolving and systematic 

analyses that are inheritably linked to the chronological release of each layer. Accordingly, 

different research questions and objectives are addressed, covered in the three stand-alone 

peer-review publications that form the cumulative part of this thesis. These are 

summarised as follows: 
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1.3 Research Objectives and Research Questions  

¶ Research Article 1: Palacios-Lopez, D., Bachofer, F., Esch, T., Heldens, W., Hirner, A., 

Marconcini, M., Sorichetta, A., Zeidler, J., Kuenzer, C., & Dech, S. (2019). New 

perspectives for mapping global population distribution using world settlement 

footprint products. Sustainability, 11(21). https://doi.org/10.3390/su11216056 

The first release within the WSF-suite included the WSF2015 and the WSF2015-

Density layers. Both layers describe the extent, location and distribution of human 

settlements at a global scale for the year 2015; the first as a binary layer, and the second as 

a continuous layer depicting the PIS within built -up pixels. Following the premise that 

binary built -area datasets are by far the most informative proxy layers used for predicting 

population densities  and distributions, and extending on previous local -scale research that 

have demonstrated that impervious surfaces are highly correlated to population counts, 

the first objective of this PhD research is to demonstrate if quality and accuracy 

improvements i n population disaggregation can be achieved with the WSF2015-Density 

layer compared to the already established binary-dasymetric approach employed by other 

population dataset and the baseline built -area layers. The main research question is 

formulated as follows:  

How effective is the WSF2015 -Density layer in improving the accuracy of large -

scale population models compared to the WSF2015 layer?  

From this main research question, the following sub -questions are kept in focus: 

1. What are the reported accuracies of population distribution maps produced on the 

basis of the WSF2015-Density compared to those produced on the basis of the 

WSF2015 layer? 

2. How does changes in the spatial granularity of the available administrative units 

affect the accuracy of population models produced on the basis of the WSF2015-

Density and the WSF2015 layers? 

3. What is the quantitative relationship among the number of identified settlement 

pixels, the amount of population that needs to be distributed and the accuracy of 

the final populatio n models produced with the WSF2015 layers?   

4. What are the characteristics of the built-environment in which population models 

produced on the basis of the WSF2015-Density layer outperform those produced 

on the basis of the WSF2015 layer? 

5. What advantages does the WSF2015-Density layer offer in support of large -scale 

population modelling in comparison to existing population models?  

6. What are some of the remaining limitations affecting the qualitative and 

quantitative accuracy of population models produced on t he basis of the WSF2015-

Density layer? 

To answer these questions the WSF2015 and WSF2015-Density layer are 

incorporated with sub -national census/estimate-based population data, to produce and 

validate high -resolution population datasets for nine low, middl e and highly urbanised 

countries located across the four macro-regions of the world.  

¶ Research Article 2: Palacios-Lopez, D., Bachofer, F., Esch, T., Marconcini, M., 

MacManus, K., Sorichetta, A., Zeidler, J., Dech, S., Tatem, A. J., & Reinartz, P. (2021). 

https://doi.org/10.3390/su11216056
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High -Resolution Gridded Population Datasets: Exploring the Capabilities of the 

World Settlement Footprint 2019 Imperviousness Layer for the African Continent. 

Remote Sensing, 13(6), 1142. https://doi.org/10.3390/rs13061142  

The second release within the WSF-suite included the WSF2019 and the WSF2019-

Imperviousness layer (WSF2019-(Ô×Ȯɯ×ÙÌÝÐÖÜÚÓàɯÙÌÍÌÙÙÌËɯÛÖɯÈÚɯɁ#ÌÕÚÐÛàɂȺȭ These layers 

represent an improvement over the 2015 products in relation to their production 

framework, which has led to a more accurate detection of settlement pixels and PIS 

calculation. Hence, building upon the limitations the WSF2015 layers and following the 

premise that the WSF2015-Density outperformed the qualitative and quantitative 

performance of population models produced with the b inary WSF2015, the second main 

objectives of this PhD research are to demonstrate if the WSF2019-Imp is capable of 

producing systematically comparable population estimates under extremely varying 

spatial resolutions of the input population data, and to det ermine whether or not the layer 

can be used as single proxy for large-scale population models, reducing the complexities 

of multi -layer models (e.g. WorldPop and LandScan). The main research question is 

formulated as follows:  

How effective is the WSF2019 -Imp layer as a single proxy for population 

modelling in a continental -scale framework?  

From this main research question, the following sub -questions are kept in focus: 

1. Is the performance of the WSF2019-Imp as a single proxy layer for population 

modelling c onsistent within and across countries at a continental scale?  

2. What are the spatial patterns of accuracy and how are these linked to the 

characteristics of the built-up environment and the population density?  

3. What improvements can be reported over populat ion maps produced on the basis 

of the WSF2015-Density layer? 

4. What advantages does the WSF2019-Imp layer offer in support of large -scale 

population modelling in comparison to existing population models?  

5. What current limitations are persistent in the final p opulation models produc ed 

on the basis of the WSF2019-Imp layer? 

To answer these questions the WSF2019-Imp is incorporated with an open archive 

of sub-national census/estimated-based population data to produce and validate high -

resolution population maps f or the entire African continent.  

¶ Research Article 3:  Palacios-Lopez, D., Esch, T., MacManus, K., Marconcini, M., 

Sorichetta, A., Yetman, G., Zeidler, J., Dech, S., Tatem, A. J., & Reinartz, P. (2022). 

Towards an Improved Large -Scale Gridded Population Dataset: A Pan-European 

Study on the Integration of 3D Settlement Data into Population Modelling. Remote 

Sensing, 14(2), 325. https://doi.org/doi.org/10.3390/rs14020325  

The final release within WSF-suite pertaining to this PhD research included the 

WSF3D dataset. This dataset is integrated by a set of layers depicting the area, height, 

volume and fraction of the built -up environment at a global scale. Following the premis e 

that volume and land -use information improve the qualitative and quantitative accuracy 

of population models, the third and fourth main objectives of this PhD research are to 

develop a novel and fully automatic framework for settlement -use classification solely 
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based on the WSF3D layer, and to demonstrate how the inclusion of our derived 

settlement-use layers and volume information improve the accuracy of population models 

compared with -so far- 2D population models (e.g. all existing large -scale gridded 

population datasets). The main research questions are  formulated as follows: 

How effective is the WSF3D for the classification of industrial and non -

industrial settlements in the framework of population modelling?  

How accurate are population maps that inco rporate settlement use and volume 

information derived solely from the WSF3D?  

From these main research questions, the following sub-questions are kept in focus: 

1. Can the spatial metrics derived solely from the WSF3D layers be used to classify 

the built -up environment into industrial and non -industrial areas using a Random 

Forest (RF) algorithm? 

2. What are the classification accuracies delivered by the WSF3D dataset compared 

to existing methods that rely on Very High  Resolution (VHR) data? 

3. Are the RF-models produced on the basis of the WSF3D dataset transferable across 

space? 

4. What are the reported accuracies of population maps that integrate volume and 

settlement use information and how the final accuracy correlates with the quality 

of the classified maps? 

5. How does the WSF3D dataset allow addressing limitations reported in population 

maps produced on the basis of the WSF2019-Imp, and the WSF2015-Density layer? 

6. What advantages does the WSF3D layer offer in support of large-scale population 

modelling in comparison to existing population models?  

7. What current limitations are persistent in the final population models produced 

on the basis of the WSF3D layer? 

To address these questions the WSF3D  dataset is incorporated with 

census/estimate-based national population data to produce high -resolution binary 

classification maps and population maps at the Pan-European scale.  

1.4 Thesis outline  

This is a cumulative dissertation which is organised as follows:  

¶ Chapter 1 provides a brief introduction into the  scientific relevance of human 

population data, explaining how large -scale gridded population datasets have 

emerged as a solution to the increasing demands of spatially explicit, high-resolution 

and comparable population datasets. Moreover, it presents a short summary of the 

current limitations of state -of-the-art large-scale gridded population models, 

describing the key challenges that should be addressed in future research (sub-chapter 

1.1). Subsequently, it outlines the main research motivation and goal (sub-chapter 1.2), 

and finalises with a summary of the research  objectives and questions of this PhD 

thesis (sub-chapter 1.3). 

¶ Chapter 2 describes important theoretical background regarding the main purpose of 

gridding population data (sub -chapter 2.1). This is followed by a review of the most 

employed top -down population disaggregation techniques used in the context of 
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large-scale population modelling (sub -chapter 2.2), and a brief description of the state-

of-art large-scale gridded population datasets (sub-chapter 2.3). It also focuses on the 

revision of current studies that have employed large -scale gridded population datasets 

with the aim of identifying the main research gaps and challenges that need to be 

addressed in the field (sub-chapter 2.4). Findings from this theoretical background 

were used as the basis for the selection of methods and to outline the objectives of this 

PhD thesis.   

¶ Chapter 3 provides an introductory review of the fundamental characteristics of the 

WSF suite employed in this PhD thesis. It examines the methods, data and validation 

results reported for each dataset, namely the WSF2015 (binary and density), WSF2019 

(binary and imperviousness) and WSF3D.  

¶ Chapter 4 to Chapter 6 comprise the core research of the cumulative thesis presented 

in terms of three stand-alone manuscripts that have been published in international, 

peer-review journals.  

¶ Chapter 7 presents a summary of the technical and practical achievements of this 

thesis and its contributions to the field of large -scale population modelling. 

Furthermore, it provides an outlook into the remaining limitations and opportunities 

for the short and long -term future of large -scale population modelling.  
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2. Theoretical Background  

The following chapter is an extended version of the theoretical literature review 

introduced in the three peer -review publications in chapters four, five and six. It focuses 

specifically on introducing the concept of Ɂgridding ɂ population data (sub -chapter 2.1), 

presenting specifically  the main top -down population disaggregation techniques 

currently employed the field of large -scale top-down  gridded population modelling ( sub-

chapter 2.2), describing the main characteristics of state-of-the-art top-down large-scale 

gridded population datasets ( sub-chapter 2.3) and summarising the remaining limitations 

and challenges found the field (sub-chapter 2.4). In this context, this chapter does not 

address the long history of gridded population modelling which dates ba ck to ca. 1936 

(Wright, 1936), nor introduces/describes ɁÉÖÛÛÖÔ-Ü×ɂɯÔÌÛÏÖËÚɯÖÍɯ×Ö×ÜÓÈÛÐÖÕɯËÐÚÛÙÐÉÜÛÐÖÕɯ

(see sub-section 7.2 for more details). For a thorough literature review  on these topics, 

publications by Leyk et al. (2019) , Gregory (2002) and Wardrop et al. (2018) are suggested. 

2.1 3ÏÌɯÊÖÕÊÌ×ÛɯÖÍɯɁÎÙÐËËÐÕÎɂɯ×Ö×ÜÓÈÛÐÖÕɯËÈÛÈ 

As outlined in Chapter 1.1, for most countries the traditional form of collecting 

population data is through national population or housing censuses, where information 

on the number of people and their main characteristics are collected approximately every 

10 years. According to the UN, to this day censuses are the most accurate and rich source 

of population data, gathering information from the lowest geographical divisions (e.g. 

household or building level), covering small areas up to the national and inter national 

scales (UN -Statistics Division, 2022). However, even when census-based population data 

provide countries with the most complete demographic information, from an ana lytical 

point of view there are a series of limitations that affect their usability and effectiveness 

for a large number of applications. For example, census-based population datasets are 

hardly ever released with the same spatio-temporal detail as they were collected. In many 

countries, before being released to the public, population counts collected at the household 

or building level are aggregated and linked to larger administrative boundaries (e.g. 

enumeration areas, blocks, municipalities, districts) t o protect the privacy of citizens. This 

aggregation process on its own, comes with a number of disadvantages. First, the recency, 

quality, size and number of administrative units used to report population counts vary 

substantially across and within countri es. For example, Figure 2-1 illustrates the number 

of years since the last reported census used (compared to the year 2022) and the number 

of administra tive units that were used/collected in the production and modelling of the 

GPWv4.11 (see sub-chapter 2.3 for more detail s)1. As observed, across countries the 

                                                      
1 The GPWv4.11 is used here simply to exemplify  the variability  that might exist in terms of the census-

year and number of reported administrative units across countries. The data presented corresponds strictly  to 

that collected during the production of the GPWv4.11, which means that for some countries the last conduc ted 

census and number of administrative  might differ from other official sources.   
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number of administrative units can vary from as little as 1 administrative unit  up to 

10,535,212, whereas the last reported census year could be as old as 25 years. A lack of 

standardisation of this type affects mainly the implementation of robust comparat ive 

analyses at local, national and global scales needed for a large number of applications. 

Second, population data aggregated to large administrative units assume a uniform 

distribution of the population across space. Here, the information on the true sp atial 

patterns of the population distribution are lost, hiding the real heterogeneity and possible 

disparities that may exist among areas that report the same population characteristics, 

which consequently, affect the accuracy of subsequent analyses. Finally, as large 

administrative boundaries do not normally correlate with other geographical factors (e.g. 

natural hazards), census-based population datasets cannot be easily integrated with other 

datasets, limiting their overall usability for a large variety of studies. 

 

To overcome the limitations o f such aggregated and inconsistent data and to better 

characterise the distribution of populations, much research has been done around the 

ÊÖÕÊÌ×ÛɯÖÍɯɁÎÙÐËËÐÕÎɂɯ×Ö×ÜÓÈÛÐÖÕɯËÈÛÈȭɯ'ÌÙÌȮɯÛÏÌɯÔÈÐÕɯÖÉÑÌÊÛÐÝÌɯÐÚɯÛÖɯ×ÙÖËÜÊÌɯÈÓÛÌÙÕÈÛÐÝÌɯ

representations of the population distribution as continuous surfaces, where population 

counts from the administrative units are transferred to grids of a given spatial resolution 

(e.g. pixels) using different techniques (Langford, 1991). This gridding process has several 

advantages: First, in their raster format, gridded population counts can be more easily 

integrated with other gridded data such as environmental geospatial datasets, allowing a 

deeper understanding of human -environment i nterrelationships. Second, gridded 

population counts can be aggregated to arbitrary spatial units, including hazard zones, 

Figure 2-1. The following maps depict the years since the last reported census and available number of 

administrative unit s used in the production of the  GPWv4.11. 



Chapter 2: Theoretical Background 

13 

 

climate zones, risk areas, etc., facilitating spatial and statistical analyses. And third, 

gridded population datasets provide consis tent and comparable data across space, 

allowing implementing cross -comparison analyses within and across regions. 

2.2 Top-down population disaggregation approaches  

Before the development of the first global gridded population dataset in the mid -

1990s (Tobler et al., 1997) many top -down methods to disaggregate population counts 

from spatially -coarse source units (e.g. polygons of irregular shape) into spatially -fine 

target units (e.g. a regular grid), had already been proposed in the literature, focusing on 

the production of local -level population grids (Goodchild et al., 1993; Langford, 1991; 

Wright, 1936). In the field of large -scale gridded population modelling, however, only two 

main approaches or techniques have largely dominated the field, namely areal-weighting 

and dasymetric modelling. These are presented in Figure 2-2, and described as follows: 

 

 

Figure 2-2. Schematic representation of the different top -down population disaggregation techniques: a) 

example of input census-based population data for the area of New Haven, USA with a 500m grid overlay, b) 

AW: areal-weighting output, c) BD: binary dasymetric output restricted by e.g. built-up areas and d) WD: 
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weighted dasymetric output considering e.g. l and-use densities. Figures produced using the open code 

published by  Comber and Zeng (2019). 

2.2.1 Areal-weighting 

Areal weighting is one of the simplest modelling techniques in which population 

counts from the source units (e.g. administrative units) are spatially reallocated into target 

units (e.g. pixels) using as weight the proportion of the area that overlaps between the two 

units (Goodchild & Lam, 1980), as illustrated in Figure 2-2(b). Population models that 

employ areal-weighting techniques produce a volume -preserving, homogeneous or 

proportional real location of population counts. This means that all the target units within 

a source unit allocate the same number of people, and the sum of population counts from 

all target units adds-up to the original population total of the source unit.   

According to multiple researches, this disaggregation method reports two main 

advantages. On the one hand, it is easy to operate and has high calculation efficiency. On 

the other hand, as it does not rely on any additional data (e.g. other geospatial datasets), 

the output population datasets do not suffer from endogeneity problems. This means that 

in terms of applicability restrictions, the final population datasets can be integrated with 

any other geospatial datasets, without limitations or complex uncertainties (Balk et al., 

2006). At the same time, as this method is only based on the geometrical properties of the 

source and target units, the accuracy of the output population datasets produced through 

this method is only linked to the accuracy and spatial resolution of the input population 

data (Doxsey-Whitfield et al., 2015; Hall isey et al., 2017; Sadahiro, 2000; Thomson et al., 

2021a).  

However, even when areal weighting is a straightforward method its main 

limitation is the implicit assumption of a homogenous population distribution within each 

source unit, which is rarely true in the real world. The lack of spatial patterns together 

with  the strong discontinuities between administrative boundaries , has also shown to 

affect both the qualitative and quantitative accuracy of the final population datasets , 

limiting their usability for subsequent analyses (Fisher & Langford, 1996). Here, efforts to 

smooth transitions between administrative boundaries using  a pycnophylatic interpolation 

algorithm s (Tobler, 1979), for example, have been employed as a post-processing solution. 

However, these type of methods have not been largely adopted, as they do not draw on 

information about real population distribution (Kim & Yao, 2010). 

2.2.2 Dasymetric modelling   

To respond to the limitations of the areal -weighting technique, dasymetric 

modelling is a disaggregation technique that refines population distributions by 

ÌÔ×ÓÖàÐÕÎɯÈɯɁÙÌÚÛÙÐÊÛÐÝÌɂɯÈÕËɤÖÙɯɁ×ÙÖÉÈÉÐÓÐÛàɂɯÓÈàÌÙɯȹÏÌÙÌÐÕÈÍÛÌÙɯÙÌÍÌÙÙÌËɯÛÖɯÈÚɯÞÌÐÎÏÛÐÕÎɯ

layer), that defines the amount of population counts that need to be allocated in each grid 

cell within a source unit. This weighting layer is derived from single or multiple ancillary 

datasets (often referred to as geospatial covariates or proxy layers), that are presumably 

related to population presence and densities (Goodchild et al., 1993; Langford, 1991; 

Mennis, 2003). Depending on the method used to derive this weighting layer, dasymetric 

modelling techniques can range from binary -dasymetric, to more complex weighted -

dasymetric techniques.  
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Binary dasymetric techniques employ one or more proxy layers that simply restrict 

the redistribution of population to a limited set of areas inside the source units. The most 

commonly employed proxies include mainly binary datasets repre senting built -areas, 

building footprints, restricted or protected areas, and water bodies datasets (Langford & 

Unwin, 1994). As exemplified in Figure 2-2c, population models that rely on binary 

dasymetric techniques produce a volume-preserving, homogenous or proportional 

reallocation of population counts, in which all the target units within a source unit allocate 

the same number of people.  

Compared with the areal -weighting techniques,  binary -dasymetric techniques are 

also simple to implement but suffer from the quantitative and qualitative restrictions of 

delivering a proportional allocation of population counts. For example, in any given 

population model that relies only on binary bui lt -area layers (e.g. built-up vs non-built -

up) to redistribute populations, it is assumed that urban areas and rural areas allocate the 

same proportion of the population, which is generally inaccurate. This leads to either great 

errors of overɭ and underestimation in the final population grids , which overall affect 

their usability for subsequent analyses. At the same time, the reallocation accuracy of these 

population models is highly dependent on the spatial resolution and quality of the 

employed built -area layers. Here, the proper identification and classification of 

Ɂ×Ö×ÜÓÈÛÌËɂɯÈÙÌÈÚȮɯÐÕɯ×ÈÙÛÐÊÜÓÈÙȮɯÐÚɯÖÍɯ×ÈÙÈÔÖÜÕÛɯÐÔ×ÖÙÛÈÕÊÌȮɯÈÚɯÈÕàɯÔÐÚÊÓÈÚÚÐÍÐÊÈÛÐÖÕɯ

resulting in predicting no population in a particular area may be quite undesirable for 

many application s (e.g. emergency responses) (Stevens et al., 2020).  

Weighted dasymetric techniques rely on one or more proxy layers to produce a 

probability scheme that determines the amount of population to be allocated in each grid 

cell within a source unit (Su et al., 2010). These weights represent a measurement of the 

presumed relationships that might exist between the amount of population that needs to 

be allocated and the geographical factors represented by each proxy. Depending on the 

simplicity of the relationships, th e weights needed to redistribute populations can be 

directly derived from the geospatial covariates (e.g. using the percent of built -up density), 

or can be derived through other more complex methods like empirical sampling (Mennis, 

2003), regression analyses (Mennis & Hultgren, 2006) , machine learning or deep learning 

approaches (Stevens et al., 2015b). In case of the latter, weighted-dasymetric techniques 

are commonly referred to as intelligent dasymetric techniques, in which the most commonly 

employed geospatial proxies include a combination of built -up density layers, urban/rural 

extents, topographic layers, climatic factors, environmental datasets, land-use and land-

cover datasets, infrastructure data (e.g. roads, points of interest, transportation network) 

and night -time lights imagery.  

As seen from Figure 2-2d, population models that use a weighted dasymetric 

technique produce a volume-preserving, heterogenous reallocation of population counts, 

in which the target units allocate different amounts of population. From a comparative 

point of view, this can be considered as one of their  main advantages, as not only the 

spatial distribution of the population adheres more to the reality, but the accuracy of 

population estimates reported in the final population grids has also shown to be more 

accurate that those produced by areal-weighting and binary dasymetric techniqu es 

(Mennis & Hultgren, 2006; Palacios-Lopez et al., 2019; Palacios-Lopez et al., 2021; Stevens 

et al., 2015b; Su et al., 2010). In this context, however, i t is important to mention that one 
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of the main limitations of weighted dasymetric models is that it is frequently challenging 

to acquire geospatial covariates with the same quality in terms of spatial resolution, and 

temporalɭand spatial coverage. Furthermore, it has been found that the use of multiple 

proxy layers can reduce the applicability of the final population grids, due to the increased 

probability of endogeneity issues (Nagle et al., 2014).  

2.3 State-of -art top-down  large-scale gridded population datasets  

Today, there are six state-of-the-art, top-down large-scale gridded population 

datasets that are commonly used in academic research, and which have been produced to 

support governments, organisations and institutions around  the world (Allen et al., 2021; 

Freire et al., 2018). These datasets include2: 

1. The Gridded Population of the World, version 4 (GPWv4.11)  produced by CIESIN, 

Columbia University (Doxsey-Whitfield et al., 2015).  

2. The Global Rural-Urban Mapping Project (GRUPM) produced by CIESIN (CIESIN, 

2011). 

3. The Global Human Settlement Population layer (GHS -POP; R2015A and R2019A) 

produced by the European Commission Joint Research Centre (EC-JRC) in 

collaboration with CIESIN (Freire et al., 2016). 

4. The High -Resolution Settlement Layer (HRSL) produced by Facebook 

Connectivity Lab, in collaboration with CIESIN (Tiecke et al., 2017).  

5. The LandScan dataset produced by the Oak Ridge National Laboratory (ORNL) 

(Bhaduri et al., 2007; Dobson et al., 2000) . 

6. The WorldPop datasets produced by the WorldPop project; University of 

Southampton (Stevens et al., 2015b).    

The primary characteristics of the latest versions of these datasets, including the 

population model employed to produce them (input data + disaggregation technique), 

their spatio -temporal resolution and population concept are presented in Table 2-1. These 

can be briefly summarised as follows: 

GPW4.11 

The GPW4.11 population datasets are the only grids that are produced using an 

area-weighting technique, relying simply on a water mask to ensure that population 

counts are only assigned to land pixels. The final datasets represent the residential 

population (e.g. people counted at their place of living) either as population counts (people 

per pixel) or population density (people per km 2) for the years 2000,2005,2010,2015 and 

2020, respectively. The datasets are available at a global scale and are produced at a spatial 

resolution of 30 arc-seconds, which corresponds to ~1km at the Equator. The datasets are 

published and made available in WGS1984 geographic coordinate system in ASCII, 

GeoTiff and NetCDF formats.  

 

                                                      
2 The large-scale top-down gridded population dataset s presented here are constantly evolving and 

different versions have existed through time . The thesis describes those which were available at the time of 

writing.  
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GRUMP  

The GRUMP datasets are based on population data collected from the GPW, version 

3. They are produced using a binary dasymetric technique to allocate population 

according to rural or urban gradients, derived ɬɬin partɬɬon night -light imagery. The final 

datasets represent the residential population, either as population counts or population 

densities for the years 1990, 1995 and 2000, respectively.  The datasets are available at a 

global scale and are produced at a spatial resolution of 30 arc-seconds, which corresponds 

to ~1km at the Equator. The datasets are published and made available in WGS1984 

geographic coordinate system in ASCII, BIL and GRID formats. 

GHS-POP (R2015A, R2019A) 

The GHS-POP datasets are produced using a density weighted  dasymetric 

technique that relies on the distribution of population counts from administrative units 

into settlement pixels describing built -up density, as defined by  the GHS- BUILT datasets 

(R2015B, R2018B) (Pesaresi et al., 2016; Pesaresi et al., 2013) (see Table 2-2). The population 

data are reallocated in one of three ways: if the administrative area is large enough to 

generate 250 m grids and contains built-up areas, then the population for that 

administrative area is assigned in proportion to the density of the built -up areas. If the 

administrative area is large enough to generate 250 m grids but does not contain any built-

up areas, then the population is allocated using an area-weighting technique. If a cell is 

located on the border of an administrative area, it is assigned to the administrative area its 

centroid falls in. And finally, if the administrative area is smaller than a 250 -m grid cell, 

then a centroid is generated for the area and the population of all centroids found within 

a cell is added (Archi la Bustos et al., 2020). The final datasets represent the residential 

population, either as population counts or population densities for the years 1975, 1990, 

2000 and 2015, respectively.  The datasets are available at a global scale and are produced 

at a spatial resolution of 250m and 1km at the Equator. The datasets are published and 

made available in a World Mollweide projection in GeoTiff format.  

HRSL 

The HRSL is produced using a binary dasymetric technique that redistributes 

population from adminis trative units to built -up areas as defined by proprietary 

settlement layer produced using high resolution (0.5m at the Equator) satellite imagery 

from Digital Globe (Tiecke et al., 2017). The final datasets represent the residential 

population, people per pixel, for 2015.  The datasets are currently available for 140 

countries and are produced at a spatial resolution of 1 arc-second, which corresponds to 

~30 at the Equator. The datasets are published and made available in WGS1984 geographic 

coordinate system in GeoTiff format.  

LandScan 

The LandScan population datasets are produced using a weighted intelligent 

dasymetric technique that consists of dynamically adaptable algorithms used to generate 

a weighting layer based on statistically-derived relationships among multiple proxy 

layers. As seen from Table 2-2, some of the most commonly employed geodatasets are 

available from open and free sources, however, it is known that other commercial and 

local data are also employed, especially to manually fine-tune the accuracy of the grids. 
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So far, the methods employed to produce the LandScan datasets are not publicly available, 

and the population grids are only free for researchers and students. The final datasets 

represent the ambient population (e.g. population at the place of work) as population 

people per pixel, for the years 2000-2018. The datasets are available at a global scale and 

are produced at a spatial resolution of 30 arc-seconds, which corresponds to ~1km at the 

Equator. The datasets are made available in WGS1984 geographic coordinate system, in 

GRID and binary raster formats.  

WorldPop  

The WorldPop population datasets are produced using a weighted intelligent 

dasymetric technique that consists of locally modelled RF algorithms used to generate a 

weighting layer based on the relationships between population densities and multiple 

proxy layers (see Table 2-2). Here, redistributions are done in two ways, first where 

population counts are redistributed to all g rid cells or pixels (unconstrained), and second, 

where population counts are redistributed only within areas identified as settlements 

(constrained).  In the case of the latter, different built -area layers are employed depending 

on the location. For Africa , for example, satellite-derived building footprint data from 

Maxar/Ecopia (Maxar Technologies, 2020) are used, whereas for the rest of the countries a 

novel built settlement growth model is employed (Nieves et al., 2020a; Nieves et al., 

2020b), derived from other built -area layers such as the GUF (Esch et al., 2018a; Esch et al., 

2017),  the GHSL and the European Space Agency (ESA) CCI land cover 300m (ESA, 2015) 

(see Table 2-2). The final datasets represent the residential population as people per pixel, 

for the years 2000-2020. The datasets are available at a global scale and are produced at a 

spatial resolution of 3 arc-seconds, which corresponds to ~100m at the Equator. The 

datasets are made available in WGS1984 geographic coordinate system in GeoTiff format.  

Input data: population data and geospatial proxies  

According to the information presented in Table 2-2, each gridded population 

dataset is produced using different sources of input population data and proxy layers. For 

example, most datasets employ as input population data, population totals adjusted to the 

UN -Population Division (UNPD) estimates and projections produced by CIESIN. The 

only exception are the Land-Scan datasets, which are produced using United States (USA) 

Census global population estimates, respectively.  

Concisely, CIESIN collected census data at the highest spatial detail available from 

the results of the 2010 round of Population and Housing Censuses, which occurred 

between 2005 and 2014. CIESIN data include two types of population estimates: census-

based and UN-adjusted, both estimated for the years 2000, 2005, 2010, 2015 and 2020. 

Initial population estimates were derived for each administrative unit by means of an 

exponential model fitted on at least two census counts for each country (Doxsey-Whitfield 

et al., 2015). However, to allow for global comparisons, CIESIN adjusted the census counts 

to the target year of 2010, which were then then interpolated and extrapolated to produce 

the UN-adjusted estimates with the objective to correct for over- or under estimations 

(CIESIN, 2018b; Doxsey-Whitfield et al., 2015). For the vector data or boundaries, the 

global administrative area s version 2 (GAMv2) was used to ensure consistent alignment 

between countries. For more details in the production of the CIESIN database, the 

following literature is suggested: Doxsey-Whitfield et al. (2015); (Freire et al., 2018) . 
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Finally, in terms of the most commonly employed openly -available proxies, each 

dataset uses either single proprietary layers (e.g. GHSL by GHS-POP or Digital Global -

based settlement layer by HRSL), or a combination of multiple remotely -sensed datasets, 

including land -cover/land-use layers, topographic data, night-time-imagery and OSM 

data. Table 2-2 presents a list of datasets that are available at large-scales, however, other 

proxy layers which are available at country -by-country basis are also employed, 

especially in the production of the WorldPop and LandScan datasets. As explained in the 

previous paragraphs, each population model used to produce each one the gridded 

population dataset will process these geospatial proxies in different ways, resulting in 

varied outputs, especially at the local level (Archila Bustos et al., 2020; Chen et al., 2020). 

For a visual assessment,  Figure 2-3 compares all of datasets for a small area near Puerto 

Vallarta, Mexico.  

 

 

Figure 2-3. Visual comparison of five large-scale gridded population  datasets for an area close to Puerto 

Vallarta, Mexico. Each dataset has been resampled to a 1km by 1km grid. Values represent population per pixel 

for the year 2015. Images have been produced using the PopGRID Viewer available at: 

https://sedac.ciesin.columbia.edu/mapping/popgrid/comparison -view/, from which the GRUMP dataset is not 

available for visualisation. 
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GPWv4.11 CIESIN x       x x AW  1 km 
2000;2005;2010; 

2015;2020 
Global Residential 

GRUMP CIESIN  x    x   x x WD 1 km 1990;1995;2000 Global Residential 

GHS-POP 
EC-JRC and 

CIESIN 
x   x      WD 

250m  

1km  
1975;1990;2000;2015 Global Residential 

HRSL 
Facebook 

Connectivity 

Lab; CIESIN 

x   x      BD 30m 2015;2018 
140 

countries 
Residential 

LandScan ORNL x x x x x x x x x 

WID based on 

statistical 

modelling  

1 km  
annual releases  

2000-2020 
Global Ambient  

Wor ldPop 

(constrained & 

unconstrained) 

WorldPop; 

University of 

Southampton 

x x x x x x x x x 
WID based on 

RF 
100 m 2000-2020 Global Residential 

 

Table 2-1. Main characteristics of state-of-the-art gridded population d atasets. BD: Binary Dasymetric. WD: Weighted Dasymetric, WID: Weighted Intelligent Dasymetric. 



Chapter 2: Theoretical Background 

21 

 

Proxy layers Used by Proxy layers Used by 

Population Data  Nighttime lights  

CIESIN-UN Adjusted  

GPWv4.11; GRUMP; 

GHS-POP; HRSL; 

WorldPop  

Defence Meteorological 

Program-Operational 

Line-Scan System 

(DMSP-OLS) 

WorldPop  

Country's best available LandScan 

Visible Infra -red 

Imaging Radiometer 

Suite (VIIRS) 

WorldPop  

Built -area layers or Building Footprints  Land-Cover 

Global Human 

Settlement Layer (GHSL 

R2015B, R2018A) 

GHS-POP 

WorldPop  

National Land Cover 

Database (NLCD) 
LandScan 

Digital Global-based 

settlement layer 
HRSL 

Digital Chart of the 

World (DCW) -

Landcover 

LandScan 

Global l Urban 

Footprint (GUF)  
WorldPop  

500m Moderate 

Resolution Imaging 

Spectroradiometer 

(MODIS) Land Cover  

LandScan 

Built -Settlement Growth 

Model  

WorldPop -2020 

Constrained 

Global Land Cover 

Characterisation 

(GLCC) 

LandScan 

Ecopia-Maxar Building 

Footprints  
WorldPop -2020 Africa 

ESA-Climate Change 

Initiative (CCI -300m) 

Land Cover 

WorldPop  

Elevation  OpenStreetMap (OSM) Data  

Viewfinder Panoramas - 

Shuttle Radar 

Topography Mission 

(SRTM) 

WorldPop  
Infrastructure, POI's, 

Transportation Network  
WorldPop; LandScan 

2.4 Current limitations in the field of top-down large-scale 

population modelling  

Over the last decade, the field of large-scale gridded population modelling has seen 

several advances that have allowed producing population datasets with increased spatial 

resolution and improved qualitative and quantitative accuracy. According to the 

inf ormation presented in the review of Leyk et al. (2019), the most important  advances 

influenc ing the field include:  

1. The increased availability of more accurate, updated, and spatially refined 

census-based population data for many countries.  

2. The increased availability of spatially refined remotely sensed satellite imagery 

needed to derive proxy lay ers for disaggregation. 

Table 2-2: Most commonly employed proxy layers used in the production of state -of-the-art large-scale 

gridded population datasets, available at large-scales. 
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3. The increased computing power which has allowed scaling the production of 

proxies, and thus, population datasets from local to global scales. 

4. The development of more sophisticated methods to a) extract and classify 

populated land (e .g. development of accurate built-area and building 

footprints datasets), and b) estimate population distributions which, 

nowadays, include machineɬ and deep learning algorithms.  

However, even when the latest versions of existing state-of-the-art products have 

leveraged these recent developments and do report drastic qualitative and quantitative 

improvements , most datasets still report extreme limitations and estimation errors that 

affect the accuracy and precision of subsequent analyses. These limitations are mainly still 

derived from issues in the quality of the input census -based population data (e.g. recency, 

completeness, reliability) , but also from the shortcomings of the input proxy layers used 

for disaggregation and the employed modelling methods. I n this context, focusing only 

on the limitations that are strictly derived  from the employed modelling frameworks (e.g. 

areal-weighting, binary or weighted -dasymetric techniques), as well as from the 

qualitative and quantitative characteristics of the pro xy layers used for disaggregation 

(e.g. scale, accuracy, thematic representation)3, some of the most noticeable challenges 

documented in contemporary studies are presented in the following paragraphs.  

In a general assessment done to evaluate the accuracy of different global built -area 

layers for large-scale population modelling (e.g. GUF, GHSL, 500m MODIS Land Cover 

and ESA CCI land cover 300m), Stevens et al. (2020) and Reed et al. (2018) demonstrated 

that population models that only employ built -area layers for disaggregation (e.g.  based 

on binary techniques) or not at all (e.g. based on areal-weighting), are less accurate than 

those that combine these proxies with other geospatial layers (e.g. based on weighted 

techniques) . The authors argue, that while the integration of these proxy layers is crucial 

to produce accurate population distributions, the use of single binary layers leads to 

qualitatively less detailed population distributions on the  one hand, and less 

quantitatively accurate estimates in rural areas, on the other, as most built-area layers used 

today fail to identify small settlements.  

Contrastingly, in the studies presented by Schug et al. (2021) and Balk et al. (2006), 

the authors argue that weighted -approaches that rely on multiple proxy layers (e.g. 

WorldPop and LandScan models) suffer for quality biases that are introduced by 

inconsistencies on the input data and modelling frameworks. Schug et al. (2021) and Nagle 

et al. (2014) add to these conclusions, expressing that the physical relationships between 

population and multiple ancillary datasets are hard to quantify when multiple layers are 

ÌÔ×ÓÖàÌËȮɯÈÕËɯÛÏÈÛɯÞÌÐÎÏÛÌËɯÓÈàÌÙÚɯËÌÙÐÝÌËɯÍÙÖÔɯɁÐÕÛÌÓÓÐÎÌÕÛɯÛÌÊÏÕÐØÜÌÚɂɯȹÌȭÎȭ RF-based) 

can be regionally specific leading to differences across space. Balk et al. (2006) additionally 

argue that the use of multiple layers for population modelling can lead endogeneity issues, 

and that overall, the collection of multiple proxy layers with large -extent coverage and 

                                                      
3 Limitation or errors in large -scale gridded population dataset are also linked to the quality of the 

input population data, however, in the framework of their validation the input population data is normally 

conÚÐËÌÙÌËɯɁÈÊÊÜÙÈÛÌɂɯÈÚɯÐÕËÌ×ÌÕËÌÕÛɯ×Ö×ÜÓÈÛÐÖÕɯËÈÛÈɯÛÖɯÝÈÓÐËÈÛÌɯÛÏÌÐÙɯÈÊÊÜÙÈÊàɯÐÚɯÕÖÙÔÈÓÓàɯÕÖÛɯÈÝÈÐÓÈÉÓÌȭ A 

broader discussion of this is presented in the subsequent sections. 
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spatio-temporal agreement is an exhaustive task that makes producing frequent updates 

infeasible.           

While the aforementioned studies focused more on comparing the underlying 

population models employed to produce large -scale gridded popula tion datasets, the 

conclusions reached by these authors have been reinforced in other more practical or 

applied studies. For example, in the research presented by Doll and Pachauri (2010) , the 

authors show that the equal or proportional di stribution of population produced by the 

GPW4.11 and GRUMP datasets is sub-optimal to quantify rural population without access 

to electricity. The author showed that d ue to the equal distribution  (e.g. proportional 

allocation), the density of population th at should be found in highly luminous areas was 

greatly underestimated by the datasets.  

 Accordingly, in an assessment carried out to evaluate the accuracy of population 

counts in slums and deprived areas in Kenya (Nairobi) and Nigeria (Lagos and Port 

Harcourt), the authors of Thomson et al. (2021a) reported that different large -scale gridded 

population datasets, including the GPWv4.11, the GHS-POP, the HRSL, the WorldPop 

(constrained & unconstrained) and the LandScan datasets, respectively, vastly 

underestimate the total populations, with the most severe errors reported in the most 

populous and densest slums. As explained by the authors, reasons for this 

underperformance is attributed to the use of binary proxy layers which limits the highest 

population value that  can be assigned to a cell (e.g. the homogeneous distributions of 

GPWv4.11, HRSL and GHS-POP), and the poor detection of slum areas (e.g. omission of 

settlements), which coupled with the lack of information on settlement use, building 

heights and building densities, produces underestimations in these highly dense areas.  

De Mattos et al. (2020) add on the same topic, where the authors report that the 

coarse spatial resolution of the LandScan datasets (e.g. 1 km) affected the extraction of 

accurate populations living  in slums in a selected area of Brazil. Here, the WorldPop 

datasets with their 100m spatial resolution  reported less drastic underestimations; 

however, they still produced some critical errors due to the omission of built structures in 

slums.  

Comparably, in the research presented by Smith et al. (2019), it was demonstrated 

that the homogeneous distribution of the GHS -POP and HRSL datasets was insufficient 

for analyses aimed at extracting populations at risk of flood -hazards. The authors argue 

that the restriction of allocating the same number of people per grid does not only affect 

the quantitative estimations of people at risk, but also produces unrealistic distributions 

of the populations around different river basins. In the same study, the authors also argue 

that the coarse spatial resolution of the WorldPop and LandScan datasets (e.g. 100m and 

1km, respectively) restricts the integration of the population data with other high -

resolution datasets such as flood hazard data available at 90m at the Equator. The authors 

show how coarsening the resolution of the hazard data to match that of the population 

data can lead to critically overestimated population counts, and suggest not to pre-process 

the data but rather to found solutions to improve the spatial resolution of existing gridde d 

population datasets.  

The same conclusions were reached in the studies presented by Calka and Bielecka 

(2019) and  Calka and Bielecka (2020), where the authors demonstrated that the coarse 
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spatial resolution of the GH S-POP and LandScan datasets (e.g. 250m and 1 km) produces 

erroneous population counts, that become larger as the size of spatial unit used for 

analysis becomes smaller. Overall, the authors reported that for densely populated regions 

the GHS-POP underestimates the population numbers, while for thinly populated regions 

it overestimates.  

Finally, moving from the limitations derived from the spatial resolution, accuracy of 

the proxy layers (e.g. identification of settlements) and the employed modelling 

framework , another major limitation affecting all existing large -scale population models 

is that none of them integrate proxy layers that provide information on the built -up 

environment in terms of use (e.g. residential or non-residential) and heights of buildings 

(Schug et al., 2021). Inclusion of this type of informati on has shown to increase the 

accuracy of population models at local-scales, but the methods that are employed at this 

scale are still not transferable to large-scale models. Hence, in current large-scale 

population datasets, the lack of settlement use information has led to large overestimation 

errors in industrial and commercial centres on the one hand, while the lack of height 

information has led to large underestimation errors in high -rise building areas, on the 

other (Huang et al., 2021b; Thomson et al., 2021a; Thomson et al., 2021b). 

To consolidate the aforementioned information, Table 2-3 presents a summary of the 

current limitations affecting large -scale gridded population models. Specific focus is 

placed on models based on dasymetric modelling techniques, to reflect on the limitations 

derived both from the technique as well as from the shortcomings  of the employed proxy 

layers. 

Limitation  Affected large -scale population models  

 Binary-Dasymetric Weighted-Dasymetric 

Low spatial resolution  X X 

Omission and commission of settlement areas X X* 

Homogeneous representations of population distributions  X  

Endogeneity issues  X 

Difficult transferability and replicability   X 

Quality inconsistency across-space  X 

Exclusion of building use and building height information  X X 

Bad quality of the input -population data (e .g. recency) X X 

*For multi -layer models that use built -area layers to constrain population distributions.  

 

Table 2-3. Summary of the limitations affecting large -scale gridded population models based on dasymetric 

modelling techniques. 
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3. The World Settlement Footprint suite  

Improving the quality and accuracy of geospatial datasets describing the built -up 

environment at global scales has important scientific applications. One such application is 

estimating where and in what density human s live across the world, information ɬthat on 

its ownɬ is of great value for many research fields (Stevens et al., 2020). As such, over the 

last two decades, mapping the built -up environment with unprecedented spatial detail 

and accuracy has been facilitated by the increasing availability of free and open, high-

resolution remotely sensed imagery and the continuous development of image processing 

methods. Here, the advantages made through time have led to the proliferation of many 

global (to near-global) built -up area datasets which have evolved from low  resolution (1 

km -500m at the Equator) to medium resolution (100m at the Equator) to high resolution 

(30m to 10m at the Equator); and from which the most representative ones have been used 

to refine gridded population datasets at near -global extents.  As described in Table 2-2, 

some of the most widely employed built -area datasets, used in field of large-scale 

population modelling include the GUF (Esch et al., 2018a; Esch et al., 2017),  the GHSL 

(Pesaresi et al., 2016; Pesaresi et al., 2013), the Digital Global -based settlement layer (Tiecke 

et al., 2017), the WorldPop growth built -up models (Nieves et al., 2020b) (Nieves et al., 

2020a) and the Ecopia/Maxar (Maxar Technologies, 2020). 

Concisely, the particular focus placed on built -area datasets for population 

modelling arises from the fact that this type of datasets have frequently proven to be 

stronger predictors of population inhabitation in comparison with other geospatial layers 

such as land-cover, elevation, slope and nightlight imagery (Linard et al., 2011; Nieves et 

al., 2017; Reed et al., 2018; Stevens et al., 2020; Tatem et al., 2007). Different research has 

demonstrated that when built -area datasets are used to model/restrict the distribution of 

population, the final products deliver better qua litative and quantitative results in 

comparison to those models where the datasets were not included (Reed et al., 2018; 

Rubinyi et al., 2021; WorldPop, 2020). More recently, it has been shown that when a given 

built -area dataset is accurate and coherent enough with population densities, it has the 

potential to be used as a single proxy for population modelling, overcoming some of the 

limitations of simple areal -weighting or multivariate techniques (Stevens et al., 2020) 

However, despite the emergence of more accurate and detailed built-area layers, 

existing state-of-the-art large-scale gridded population  models still suffer from qualitative 

and quantitat ive limitations derived in part from the inaccuracy of the geospatial datasets 

used to distribute population across space (see sub-chapter 2.4). The most prominent 

limitations related to the currently employed built -area layers (in either binary- or 

weighted -dasymetric models) include their inability to map fine -scale population 

distributions from their coarse resolution (e.g. 500m MODIS Land Cover and  ESA CCI 

land cover 300m), the poor identification of human settlements in rural settings (or 
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misclassification errors in general), and the lack of integration of settlement use and 

settlement 3D information, respectively (Archila Bustos et al., 2020; Schug et al., 2021) . 

On the one hand, as stated by Marconcini et al. (2020), the consistent low 

classification accuracy reported in existing built -area products is linked to  their employed 

processing frameworks which, ɬso farɬ, still rely on the exclusive use of either optical (e.g. 

GHLS and HRSL) or radar imagery (e.g. GUF). This has led to errors of commission and 

omission, first because the spectral information in optical images tend to confuse built-

areas with other bare land classes (e.g. in arid and semi-arid regions, second, because 

extreme topologies produce high backscattering comparable with  built -areas, and third, 

because the resolution of currently employed optical  imagery, is not enough to identify 

small settlement located in cliffs, valleys or complex topographies (e.g. Landsat-8 30m at 

the Equator).  

On the other hand, if information on building use/type has not yet been integrated 

into modern large -scale population models because appropriate data to derive this 

information at/for large extents (e.g., national, continental, global) does not exist. 

Currently, contemporary research that focuses on extracting use and volumetric semantic 

information of built -up struct ures employ a combination of regionalized building 

footprints, cadastral data, LiDAR data, social media data, aerial imagery and/or 

commercial (and frequently expensive) very high -resolution imagery (e.g. < 5m optical 

data or orthoimage) (Du et al., 2015; Jochem et al., 2021; Lloyd et al., 2020; Ma et al., 2015; 

Stéphane et al., 2020; Zhang et al., 2017a), which restricts the implementation of the 

developed methods to the specific areas where these data are available, reliable, replicable 

and - more importantly - complete. Similarly, efforts to derive building heights at national 

or continental scales are either limited to specific regions (e.g. mainly Europe, North 

America or Asia), or their spatial resolutions are still quite coarse (>100m at the Equator) 

(Falcone, 2016; Frantz et al., 2021; Li et al., 2020). 

To overcome these limitations, the German Aerospace Centre (DLR) in collaboration 

with the ESA and the Google Earth Engine (GEE) team has been working on the 

development and open-release of the WSF suite, which includes a set of high-resolution 

datasets describing the extent, location, PIS and 3D characteristics of the built-up 

environment at global scales. This product represents a follow-ÖÕɯËÌÝÌÓÖ×ÔÌÕÛɯÛÖɯ#+1Úɀɯ

previous global built -area dataset ɬthe GUFɬ developed by Esch et al. (2013). Currently, 

the WSF suite is composed of three main layers: the WSF2015, the WSF2019 and the 

WSF3D dataset, respectively. Each of these layers has been developed using novel and 

robust methodologies that jointly exploit, ɬ for the first time everɬ, open and free multi -

temporal optical and radar data.  

The following sub -chapters present a brief summary of the characteristics of each 

WSF layer used in this PhD research. The author of this thesis actively contributed to the 

qualitative and quantitative validation of the followi ng layers, as well as to the preparation 

of their respective peer-review papers and delivered reports.  
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3.1 The WSF2015 and WSF2015-Density Layer  

¶ Main Reference: Marconcini, M., Metz -Marconcini, A., Üreyen, S., Palacios-Lopez, D., 

Hanke, W., Bachofer, F., Zeidler, J., Esch, T., Gorelick, N., & Kakarla, A. (2020). 

Outlining where humans live --The World Settlement Footprint 2015. Sci Data, 7(242). 

https://doi.org/10.1038/s41597-020-00580-5  

The WSF2015 is a binary mask that describes the extent and location of human 

settlements at global scale at an unprecedented spatial resolution of 10m at the Equator 

for the year 2015. It was processed using a novel and robust methodology that relied on 

multi -temporal statistics extracted from ~107,000 and ~217,000, 2014-2015 Sentinel-1 (S1) 

and Landsat-8 scenes, to produce a binary classification of settlement and non-settlements 

based on an advanced machine learning approach.  

The main rationale followed in the production of the WSF2015 is rooted in the 

assumption that the temporal dynamics of human settlements, compared with other non -

settlement classes, remain constant over time. This means that over time, the spectral and 

backscatter characteristics that differentiate built -up structures from other features are 

consistent over time, allowing a proper classification of these structures on the ground. 

Following this premise, the processing framework of the WSF2015 can be divided in four 

main steps:  

First, for a selected target region of interest, S1 and Landsat-8 images were acquired 

for a period of ~1 year, from which key temporal statistics were extracted, forming two 

separate feature stacks, respectively. From the S1 images, five temporal statistics were 

extracted, including the minimum, maximum, mean, standard deviation a nd mean slope 

of the backscattering values. The coefficient of variation (COV) of the temporal mean 

backscattering and the total and the number of available scenes per pixel were also 

calculated, resulting in a 7-feature stack. From the Landsat-8 imagery a set of indices were 

extracted including the Normalised Difference Build -Up Index (NDBI), the Modified 

Normalised Difference Water Index (MNDWI), the Normalised Difference Vegetation 

Index (NDVI), the Normalised Difference Middle Infrared (NDMIR), the Norm alised 

Difference Red Blue (NDRB) and the Normalised Difference Green Blue (NDGB). 

Accordingly, for each of the 6 indices, the same 5 temporal statistics used for the S1-

imagery were also extracted, including the COV of each of the derived 6 temporal mean 

indices. This led to a final 37-feature stack. 

Second, training and label data for the settlement and non-settlement classes were 

generated by setting thresholds to 3/44 features based on an extensive empirical analysis 

against Google Earth VHR imagery, carried over more than 450 tiles of 1x1 degree. 

Concisely, a given point sample x, would be classified as either settlement or non-

settlement if it satisfied a number of conditions within these thresholds. To compensate 

for the variations derived from differ ent climate zones, the thresholds for each class were 

fine-tuned in relation to the 30 climate types of the Köppen Geiger scheme (Peel et al., 

2007). 

Third, using the training data, a binary classification bas ed on Support Vector 

Machine (SVM) with Radial Basis Function (RBF) Gaussian Kernel was separately applied 

to the optical and radar -based feature stacks to classify the remaining scenes. Considering 
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that a large number of training points exist, a total of 1000 random points are used per 

every 1x1 degree tile. This operation was repeated 20 times in an ensemble of SVM 

classifiers, from which the majority vote is used to define the final class.  

Fourth, as optical and radar stacks were processed separately, a post-processing 

phase was then applied to properly combine the Landsat 8ɬ and S1-based classification 

maps, and automatically identifying and deleting false alarms.  

The validation of the WSF2015 was performed using a thorough protocol that 

consisted in collecting reference data for ~900,000 sample points using Google Earth VHR 

satellite/areal imagery. This was done through visual assessment and an established 

crowdsourcing collaboration between Google and DLR. The results of this validation 

campaign indicat ed that in comparison with the GUF, the GHSL (R2015) and the GLC30 

layers, respectively, the WSF2015 exhibited the best percentage average accuracy; reaching 

a value of 86.37%, which represented a mean increase of +6.24%, +15.28% and +18.58% 

over the rest of the layers. Alongside, it resulted in an average Kappa coefficient of 0.68, 

which represented an increase of +0.07, 0.23 and 0.29 over the GUF, GHLS and GLC30, 

respectively.  

The WSF2015-Density is one of the first experimental developments of the WSF suite 

and service portfolio, aiming at enhancing the semantic and thematic scope of the 

WSF2015; in particular, the layer describes the PIS within areas categorised as settlements 

in the WSF2015. Effectively mapping the PIS is of high importance to assessɭamong 

othersɭthe risk of urban floods, the urban heat island phenomenon as well as the 

reduction of ecological productivity. Furthermore, it is generally considered as an effective 

proxy for the housing density, thus making it particularly suitable for supp orting spatial 

population distribution (Azar et al., 2010; Li & Weng, 2005; Lu et al., 2006). The current 

processing methodology follows the approach originally described by Marconcini et al. 

(2015) and is based on the assumption that a strong inverse relation exists between 

vegetation and impervious surfaces (i.e., the higher the presence of vegetation is, the lower 

the corresponding imperviousness is). Accordingly, the core idea is t o compute and 

analyse for each pixel the temporal maximum of the Normalised Difference Vegetation 

Index (NDVI), which depicts the status at the peak of the phenological cycle. To this 

purpose, the NDVI available from the TimeScan dataset (Esch et al., 2018a; Esch et al., 

2018b) has been used, which has been derived globally from Landsat-8 scenes acquired 

during 2014ɬ2015. Figure 3-1 shows different subsets of the WSF2015 binary and Density 

layers for ÛÏÌɯÊÐÛÐÌÚɯÖÍɯ'ÈÐɯ/ÏÖÕÎȮɯ5ÐÌÛÕÈÔȮɯ ÉÐËÑÈÕȮɯÐÕɯ"ĠÛÌɯËɀ(ÝÖÐÙÌɯÈÕËɯ!ÌÙÓÐÕȮɯ&ÌÙÔÈÕàȭɯ

For the WSF2015 layer values are either 0 or 1 for settlement and non-settlement areas, for 

the WSF2015-Density layer values range between 0 and 100, with red and green tones 

highlighting high and low PIS, respectively.  
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3.2 The WSF2019 and the WSF2019-Imperviousness  

¶ Main Reference: Marconcini, M., Metz -Marconcini, A., Esch, T., & Gorelick, N. (2021). 

Understanding Current Trends in Global Urbanisation -The World Settlement 

Footprint Suite.GI-Forum 2021 (1) https://doi.org/  10.1553/giscience2021_01_s33 

The WSF2019 and the WSF2019-Imp layers represent follow -on products to the 

WSF2015 and the WSF2015-Density datasets; however, they are produced using different 

input data and a slightly modified processing framework. The WSF2019 settlement layer, 

unlike the WSF2015 layer, is produced by means of a novel methodology that jointly 

exploits multi -temporal ~286,000 S1-radar imagery and ~2,000,000 Sentinel-2 optical (S2) 

images. The processing method is based on the same rationale employed in the production 

of the WSF2015, following a set of processing steps briefly described as follows: 

First, key temporal statistics were extracted from the S1 and S2 dataset, using a 

selected target region during a time period where no significant  changes could be expected 

to the settlement environment (e.g. a 1x1 degree tile, in a 1-year period). From the S2-

imagery a total of 455 features were extracted, obtained from calculating approximately 

55 normalised indexes (e.g. water, vegetations, soils/desert, snow, etc), and their 

corresponding mean, media, standard deviation and 5 th and 95th percentiles, together with 

the original 10 band that integrate the dataset. From the S1 images, temporal statistics such 

as the mean, median, standard deviation, and the 5th and 95th percentiles were extracted 

from the backscattering, together with additional values corresponding to the sum of the 

total backscattering of all polarisation chann els and the intensity difference. This led a total 

of 21 from the sentinel datasets. 

Figure 3-1. Subsets of the WSF2015 and WSF2015-Density layers for the cities of Hai Phong, Vietnam; Abidjan, 

���n�S�D���C�“�����U�N�H�Q�D���@�M�C�����D�Q�K�H�M�~���
�D�Q�L�@�M�X���O�Q�N�C�T�B�D�C���V�H�S�G���@��spatial resolution of 10m at the Equator. PIS values are city 

dependent.  




























































































































































































