
THE POWER OF MODULAR TREE-BASED AMR
RESOLVING HANGING NODES AND
CUTTING HOLES

Johannes Holke, SIAM CSE23 02.03.2023

DLR Institute for Software Technology (SC)

High-performance Computing | Scalable adaptive mesh refinement (AMR)

Knapp, David; Dreyer, Lukas; Elsweijer, Sandro; Ünlue, Veli; Burstedde, Carsten; 

Markert, Johannes; Lilikakis, Ioannis; Boeing, Niklas; Becker, Florian; Gassner, Gregor



Disclaimer

2

This talk has 99% mesh handling

1% PDEs



Modular tree-based AMR

We have seen a lot of AMR so far,

much was tree-based

using space-filling curves:

▪ Memory efficient

▪ Fast

▪ p4est standard: All AMR algorithms in <1 Second

3

Caviedes-Voullieme, Gerhard, Sikstel, Müller



Modular tree-based AMR

Historically these were limited to quads/cubes (with some notable exceptions)

We extend tree-based AMR to all* element shapes.

4



Modular tree-based AMR

5

Mesh Adapt

Mesh Partition

Mesh 2:1 Balance

Mesh Iterate

Mesh Search

Mesh face neighbor

…

High-Level Algos

Element level

Element Refine

Element Parent

Element Neighbor

Element Shape

…

Low-Level Algos

Call when needed

Implement these once Implement these for each

• Shape (tri, tet, quad, hex, prism, …)

• Refinement pattern/SFC (Morton, Peano, …)



Modular tree-based AMR

Example: refining the mesh.

Instead of:

We do:

6



Modular tree-based AMR

7

Thus, we can take the same algorithms, and operate on any element shape

and also mix element shapes in the same mesh.

All with the performance and scalability of tree-based AMR.



t8code („tetcode“)

8

▪ Parallel management of adaptive meshes and data

▪ C/C++ and MPI

▪ Tree-based/semi-structured with space-filling curves

▪ Vertex, Line, Quad, Tri, Hex, Tet, Prism, Pyramid

▪ Modularly extandable

▪ Scales up to 1 mio. MPI ranks (with >90% efficiency),

▪ >1 Trillion elements

▪ Complex geometries (comparable to unstructured meshes)

▪ Curved meshes



And now, some cool stuff

We were forced to make the high-level algorithms more flexible and robust

(changing number of children, changing shape of elements, etc.).

This allows us now to implement „non-standard“ features.

9



Cutting holes

10

• Embedding obstacles in the mesh

• Rectangular domain with single tree

• Coarsening arbitrary data (for visualizing or compressing)

Basically we are doing:



Cutting holes

No „virtual elements“ of weight 0 or similar constructs.

No memory needed for unused elements.

11



Cutting holes

Challenge: How to coarsen a mesh with holes?

12

New is_incomplete_family Check



Cutting holes

13

▪ The mesh with holes is just a normal AMR mesh now

▪ Can refine/coarsen/load-balance it etc. 

▪ No need to: fill the holes, coarsen, redo the holes

Multi tree, hybrid mesh



Even cooler stuff - subelements

14

▪ One application of subelements is resolving hanging nodes:

This is a tree-based mesh with a space-

filling curve.

We see one single tree.



Subelements

15

▪ We could do different refinement patterns, but…

▪ We cannot change behavior at will

„A level X element with Index Y allways has to refine the same way“

With standard elements



Subelements

With standard elements

▪ We must continue refinement

16



Subelements

17

Idea of Subelements:

▪ For one level you can do whatever you want

▪ Before you refine, remove subelements



Subelements

▪ Subelements have same SFC index as their „parent“ element plus an 

additional subelement ID

▪ Subelements look like elements to the outer world

▪ They implement a subset of low-level algorithms

▪ Iteration, ghost elements, etc.

18



Subelements – Resolve hanging nodes

▪ 2:1 balance your mesh

▪ For each element with a hanging face use one of 15 subelement patterns:

19



Subelements

20

We implemented full hanging node resolution for 2D quads with it:

3D hexes and other element shapes currently work in progress



Subelements – What next?

21

Your imagination is the limit!

▪ Anisotropic refinement

▪ Uniform subgrids for GPUs

▪ Boundary layers

▪ Your ideas? 

Donna Calhoun et. Al.

https://www.comsol.fr/blogs/your-guide-to-meshing-

techniques-for-efficient-cfd-modeling/



22

t8code – www.github.com/dlr-amr/t8code

Holke, Johannes, Burstedde, Carsten, Knapp, David, Dreyer, Lukas, 

Elsweijer, Sandro, Uenlue, Veli, Markert, Johannes, Lilikakis, Ioannis, 

Boeing, Niklas, & Becker, Florian. (2023). t8code (v1.1.0). Zenodo. https://doi.org/10.5281/zenodo.7681843

Becker, Florian (2021) Removing hanging faces from tree-based adaptive meshes for numerical simulations. 

Master‘s Thesis, Universität zu Köln. 

Lilikakis, Ioannis (2022) Algorithms for tree-based adaptive meshes with incomplete trees. 
Master‘s Thesis, Universität zu Köln. 

More on t8code 

at

IMR23!

http://www.github.com/dlr-amr/t8code
https://doi.org/10.5281/zenodo.7681843

