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Abstract

The fusion of sensors is a major need in order to create a wider spectrum for environmental
perception. Using laser range scanners and cameras, the distance of detected objects of interest
within the image can be determined by merging the sensor data properly. On real-time systems
like unmanned aerial vehicles, it is important to make simple calculations and keep the merging
process cheap in terms of computational time. This paper develops an appropriate fusion
method based on ray tracing techniques. The proposed method is rather simple, making it
possible to create slim implementations. In order to widen the area of application in which this
method can be used, variations of it on different parts are introduced. To verify this method,
but also to possibly reveal weaknesses, it is tested in a simulation environment and through
experimental tests and analyzes.

Zusammenfassung

Die Fusion von Sensoren ist ein wichtiger Bestandteil für die Erweiterung der Umgebungs-
wahrnehmung. Durch die Nutzung von Laserscanner und Kamera kann die Entfernung eines
Objektes im Bild nur bestimmt werden, wenn die Sensordaten richtig zusammengeführt wurden.
Auf Echtzeitsystemen, wie beispielsweise unbemannte Luftfahrzeuge, ist es wichtig, die Berech-
nungen einfach zu halten. Diese Arbeit entwickelt ein entsprechendes Fusionsmodell basierend
auf Raytracing. Das vorgestellte Methode ist simpel gehalten, was eine effiziente Implementation
ermöglicht. Zusätzlich werden Anpassungsmöglichkeiten an verschiedenen Stellen der Methode
für die Nutzung in mehreren Bereichen aufgezeigt. Es werden in Simulationsumgebungen und
Testversuchen auf einem Drohnentestbett sowohl die Funktionsweise überprüft, als auch auf
mögliche Schwachstellen untersucht.



Contents

1 Introduction 5

2 State of the Art 5

3 Theory on Sensor Fusion 7

3.1 Sensor Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Ray Tracing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Relative Sensor Translation and Rotation . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Direct Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Calibration with an Inertial Measurement Unit . . . . . . . . . . . . . . . . 14

3.3.2.1 Relative Rotation between Camera and IMU . . . . . . . . . . . . 15
3.3.2.2 Relative Rotation between Laser Scanner and IMU . . . . . . . . . 15

3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Implementation 19

4.1 Software Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Image Feature Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Performance-Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Model Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Covering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Distribution of Calculation Time per Pixel . . . . . . . . . . . . . . . . . . 28

4.4 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Experimental Results on Feature Distance Determination 31

6 Conclusions and Future Directions 37

Abbreviations 38

References 39

Appendix A: Depth Maps 42

Appendix B: Error Maps 46

Appendix C: Time Maps 50

Appendix D: Experiment Setups 54

Appendix E: Analysis Results 57

Appendix F: Experiment Setups Statistics 59



1 Introduction

Evaluating sensors of a system separately would provide information only derivable from the
physical properties the measurements of a sensor represents. Combining different sensors, or similar
sensor which are for example placed on different positions, makes it possible to derive other physical
quantities and properties from the dataset created by the sensor data fusion. This process of sensor
fusion is done to combine the advantages and different representation of an environment of single
but also similar sensors. Especially in the field of range and visual measurements, the combination
of these two sectors can lead to much bigger and more valuable environment representations. The
laser scanner and camera, which are representing these fields, are used to gather distances for a
specific direction and to gain intensive images of one or more spectra of electromagnetic radiation,
respectively. The correlation of these two datasets has many application areas. Depending on
the actual use case and available resources, a variety of approaches are already made by different
people in different fields. This work starts by presenting some of these approaches in section 2.
Using a laser scanner and a gray scale camera on a drone, presented in section 3.1, a fitting fusion
method is being developed. Since this setup platform is a real-time environment and thus limited
computation resources, a theoretical model built on ray tracing is developed in detail. Described
in section 3.2, this model accepts an image coordinate, i.e. of a detected feature on the image,
and calculates a corresponding distance from the camera to this point in the environment by
only having one dataset of laser scanner and camera each. Since the model expects an already
known relative position and rotation between the sensors, the determination of these is discussed
in section 3.3. After that, in section 3.4 this model is implemented in a simulation environment
and is validated with synthetic sensor data. Verified in the simulation, the fusion model is ready
to be implemented in the software framework on a drone platform. After presenting the actual
platform software environment, a performance-error analysis of this implementation is done through
various scenarios with synthetic data. In the section 4, this analysis shows some cases this model
is limited by the resolution of the laser scanner and can return misleading distances, but also
due the structure of the model. Also, to increase the performance by simplifying the model in
different ways, benchmarks are performed in connection with the error rate the simplifications
increase. Finally, experimental tests and their results are presented in section 5 in order to verify
the model, but also to uncover possible weak points. Some specific constellations producing wrong
distances are successfully reconstructed and evaluated, which were already shown in the simulation.
The appendix is showing data in form of visualizations and tables from simulation, analysis and
experimental tests for all setups and configurations used in this work, which are discussed in the
corresponding sections.

2 State of the Art

Previous works, specifically on camera-LiDAR (Light Detection and Ranging) fusion, show many
different approaches to the problem to merge sensor data, depending on what is going to be the
desired achievement.
The data of both sensors represent the scanned or captured environment but in a different context.

The camera gains intensive images of one or more spectra of electromagnetic radiation. Most of
them, as they are built into smartphones, capture light with the wavelengths of red, green and blue
color. Since this is a passive sensor, no sources of energy are built-in. This is making the sensor
more simple and it is possible to easily implement cameras with higher resolutions. The laser
scanner, however, is an active sensor. This means, it sends out laser rays as a form of energy and
captures the reflections of the environment within the wavelength of the sent out laser. Although
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(a) View of scanner. (b) 3D view.

Figure 1: Colorized point cloud by Klimentjew et al.[1].

this makes the sensor relatively more complex, its data describe depth information for specific
directions being a completely different context of the same environment.
In the fusion process, it is important to map objects from the image data to objects of the laser

scan data. These could be represented by features, segments or single data points. In a static case,
in which the sensors are placed at fixed positions in the environment over time, assigning color
values from the camera image to single data points of the point cloud is a good approach. In this
way, 2D laser scanners can be used for 3D laser scanning by e.g. changing the angle of the 2D
laser plane as for example done by Klimentjew et al.[1]. Forkuo and King[2] match image and laser
scanning data by generating a “Synthetic Camera Image” out of the 3D point cloud from a laser
scanner. This image represents the view of the camera within the 3D point cloud, which makes it
possible to find correlating objects or features by various matching methods.
In dynamic configurations, i.e. moving vehicles which have to avoid obstacles, other approaches

have to be considered. One way to do this is to generate states of the environment out of prior scan
iterations (multiple time epochs) and migrate the new scan into the last known state. Stiller et al.[3]
present an obstacle detection by building an obstacle map through the fusion of multiple different
sensors with overlapping fields of view. This map is a good representation of the environment.
With a Kalman filter, the current state of the vehicle within the obstacle map is being determined.
The paper of Stiller et al.[3] also describes a high reliability of the detection system because of the

(a) Image captured by the camera. (b) Synthetic view of the 3D point cloud in position
of the camera.

Figure 2: Images by Forkuo and King[2].
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(a) Image captured by the camera with scan line of the
laser scanner.

(b) Segmentation of the parts of interest from the laser
scan.

Figure 3: Images by Garcia-Alegre et al.[6].

high redundancy through the use of many different sensors. Becker et al.[4] achive this multiple
epoch obstacle determination by detecting and tracking an object with each sensor individually.
This way, the data is filtered prior to the actual sensor fusion. Also, before the fusion process
starts, the different objects and their states are compared with each other and it will be detected if
an object seen from one sensor corresponds to an object seen from the other sensor. Now, the data
of each object can be merged into a whole state model, e.g. with the help of Kalman filters. Also,
presented by Baltzakis et al.[5], two different visual datasets with a single data set of a 2D laser
scanner can be used for approximately determine obstacles. This is possible due region detection
within the images and extrapolating of the registered depth information.
If the resources, e.g. processing power or memory capacity, are limited, the maintaining of

states of single objects or a whole obstacle map is not always possible. In this case, the distance
determination of an object has to be acquired within a single time epoch. To classify objects in
outdoor environments, Garcia-Alegre et al.[6] use a segmentation algorithm on the visual color
image and merge them on a horizontal line of the laser data. With this method, the segments can
be assigned with depth information and thus dynamic objects can be classified. The segmentation
method reduces the processing time by minimizing the area-of-interest. But this technique is only
available for sensors being positioned on the ground because there is only one 2D laser data set
evaluated per epoch, which limits the sensor positioning and orientation within the environment.
To acquire depth information e.g. from the air and detect how far objects are on the ground,

another way has to be approached. This thesis solves this problem using a multi-line laser scanner.
In this way, there are almost no constraints regarding the vehicle-environment constellation.

3 Theory on Sensor Fusion

The following sections develop a fusion method merging data of the laser scanner and camera.
Based on spatial ray tracing, it only needs a few mathematical operations to determine distances
from a single data set of each sensor.

3.1 Sensor Setup

As sensors, an AVT Prosilica GT 1380 camera[7] and Velodyne VLP-16 multi-line laser scanner[8]
are used. They are rigidly mounted on the same rack with their view pointed in the same direction
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(a) CAD model. (b) Mounted on superARTIS drone.

Figure 4: Setup of the Camera and Laser Scanner.

as it is displayed in figure 4. In this way, also shown in figure 5, the most area of the image field of
view (FOV) is covered by the one of the laser scanner, which is needed to acquire distances for as
many pixels of the image as possible.
With this configuration, the translation between the two sensors has to be considered in the

model. But more importantly, the relative rotation has to be included too. Otherwise, both sensors
have to be exactly oriented to the same direction. In addition, this makes it possible to apply the
resulting model to a more complex sensor configuration, such as mounting the sensors on different
independent racks. This would also give an option to dynamically rotate the camera can be with
the use of the 360° width of the FOV of the used VLP-16 laser scanner. Both, the translation and
rotation values have to be known and can be determined for example through calibration, which is
discussed in section 3.3.

3.2 Ray Tracing Model

To assign a distance to each pixel of the camera image (or at least within the overlapping FOV’s),
a spatial solution is approached. The laser scanner radiates the laser rays as shown in figure 6.
With each scanning line having a different Φ angle, a mirror in the device is rotating, so that

with each laser burst the Θ angle is changing. In this way, the distances are gathered with their
elevation and azimuth coordinates within a spherical coordinate system. For simplicity, this system
is used to represent the laser pixels in the three-dimensional room of the model. With the values of
azimuth Θ and elevation Φ as the center points at the measured distance R, each pixel is projected

camera FOV

laser
scanner

FOV

(a) Sensors pointing in different directions.

camera FOV

laser
scanner

FOV

(b) Both sensors pointing in the same di-
rection.

Figure 5: Overlapping FOV’s of camera (blue) and laser scanner (red).
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side view
Z

YX
Φ

X

ZY

Θ
top view

Figure 6: Laser scanner angle coordinates.

in a spherical coordinate system. This point gets stretched into a 2D plane which lies as a concave
surface in the 3D model room described through a minimum and maximum set of Θ and Φ values,
which are defined as follows:

Θmin/max = Θmeasurement ∓ 0.5 ·Θresolution

Φmin/max = Φmeasurement ∓ 0.5 · Φresolution

(1)

Where Xmeasurement is the actual measured value and Xresolution is the resolution of the laser
scanner at this specific coordinate axis. The resulting laser pixel plane now represents each distance
measurement within its Θ and Φ limits.
The camera is placed in the model room with the same relative translation and orientation to

the laser scanner, as in the real world. Since the laser scanner lies in the origin of the models
coordinate system and its orientation towards the positive x-axis, the camera can be positioned
with the same (X,Y, Z) and (R,Θ,Φ) values1 for the relative translation and rotation, respectively.
The mathematical relation between the Cartesian and the spherical coordinate system used in the
model room will be derived later over the course of the following paragraphs.

1These values have to be obtained e.g. through calibration. Different ways to archive this are discussed in
section 3.3.

(a) Simulation result with laser pixel
planes.

CAM

p
ixel ray

LS

LS planes

(b) Image coordinate ray hits a plane gap
(2D visualization).

Figure 7: Example with laser pixel as planes. The camera position at the top right of the laser scanner.
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CAM
LS

pixel ray

Figure 8: Case with an image pixel ray going between the corners of two laser pixel cubes.

As an example, the camera was positioned slightly at the top right of the laser scanner, which
results in a view within the model room as shown in figure 7. The example scan data originates
from a simulation environment, discussed in section 3.4.
As can be seen in figure 7a, there are gaps between the laser pixels from the view of the camera.

If a ray from a camera pixel coordinate lies just in this gap as shown in figure 7b, no distance can
be acquired. To counteract this, the laser pixel plane will be stretched into a volume by defining
an additional minimum and maximum value of the distance R coordinate:

Rmin = Rmeasure

Rmax = Rmeasure +RMDN +Rmargin
(2)

Whereas RMDN is the distance between the Rmin values of the current laser and the most distant
direct neighbor pixel. If all direct neighbor pixels are closer to the laser scanner (smaller Rmin)
than the current pixel, then RMDN equals zero. The Rmargin value acts as small additional depth
to be sure to get a ray hit in case the camera pixel ray just hits exactly the corners between the
front of the more distant pixel and the back of the closer one as shown in figure 8. The ray tracing
actually used is discussed in the next few paragraphs.
With each laser pixel volume having a minimum and a maximum value for each coordinate

representing a “cube” in the spherical coordinate system, ray tracing is used as the method to get
a distance of each camera image pixel. A ray is defined by the camera position as origin ~O and the
direction ~D, which results from the current pixel in the image. ~D, however, is defined as:

~D = R× ~DP (3)

or




Dx

Dy

Dz



 =





R11 R12 R13

R21 R22 R23

R31 R32 R33



×





DP
x

DP
y

DP
z





whereas





DP
x

DP
y

DP
z



 =





FocalLength

(Iwidth · 0.5)− PXX − 0.5
(Iheight · 0.5)− PXY − 0.5





(4)

with R being the rotation matrix from the center view of the laser scanner to the one of the camera,
~DP the direction vector from the pixel within the image, PXX/Y the pixel coordinates with the
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Figure 9: Ray lines in Cartesian and spherical coordinate system.

origin in the top left corner of the image, and Iwidth/height the image dimensions. Note that the

FocalLength is given in 1·[pixel] instead of 1·[mm]. Also, the ~D vector has to be normalized since
it represents a direction only.
With the normalized direction vector ~D, a point ~P on the pixel ray can be described as follows:

~P = ~O + t · ~D (5)

or




Px

Py

Pz



 =





Ox

Oy

Oz



+ t ·





Dx

Dy

Dz



 (6)

To check whether a ray hits a laser pixel cube or not, the pass through each cube side is calculated,
which are two calculations for each coordinate axis. The closest pass, if any, is considered as a ray
hit. This is done by calculating the t values of the corresponding passes, which end up being in the
limit values of each coordinate axis as the cube sides. But since these limits are defined in spherical
coordinates and the direction of the rays is a straight line defined in Cartesian coordinates (see ray
line comparison in figure 9), the spherical coordinates for a point of the ray depending on the t

value has to be determined. It is known how to get the spherical coordinates of a point defined
with (Px, Py, Pz):

R =
√

P 2
x + P 2

y + P 2
z

Θ = arctan

(

Py

Px

)

Φ = arctan





Pz
√

P 2
x + P 2

y





(7)
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(a) Constant R-coordinate. (b) Constant Θ-coordinate.
(c) Constant Φ-coordinate.

Figure 10: 3D surfaces at constant spherical coordinates.

Inserting equation 6 into eq. 7 results in:

R =
√

(Ox + t ·Dx)2 + (Oy + t ·Dy)2 + (Oz + t ·Dz)2

Θ = arctan

(

Oy + t ·Dy

Ox + t ·Dx

)

Φ = arctan

(

Oz + t ·Dz
√

(Ox + t ·Dx)2 + (Oy + t ·Dy)2

)

(8)

As the sides of the laser pixel cubes are defined as spherical coordinate values (left-hand side of
the equations 8), it is only needed to isolate the t values for each spherical coordinate.

tR =
1

D2
x +D2

y +D2
z

·
(

−Dx ·Ox −Dy ·Oy −Dz ·Oz ±

√

(Dx ·Ox +Dy ·Oy +Dz ·Oz)2 − (D2
x +D2

y +D2
z) · (O

2
x +O2

y +O2
z −R)

)

(9)

tΘ =
Ox · tan(Θ)−Oy

Dy −Dx · tan(Θ)
whereas Ox ·Dy 6= Oy ·Dx (10)

tΦ =
1

(D2
x +D2

y) ·G−D2
z

·
(

Dz ·Oz −H ·G±

√

G ·
(

D2
z · (O

2
x +O2

y)− 2 ·Dz ·H ·Oz + (D2
x +D2

y) ·O
2
z − (Dy ·Ox −Dx ·Oy)2 ·G

)

)

with G = tan2(Φ) and H = Dx ·Ox +Dy ·Oy

(11)

Both the t equations of the R and Φ coordinates (eq. 9 and 11) have two solutions, since a straight
ray line can hit a sphere (constant R coordinate, figure 10a) and a cone (constant Φ coordinate,
10c) twice. If the square root discriminant is negative, the ray misses the sphere or cone. Otherwise,
the ray only touches them at one point on the surface with the discriminant being zero.
To check for hits, the t value(s) of each side of the laser pixel volume have to be calculated.

However, these values only represent hits of the current minimum or maximum R, Θ or Φ coordinate
of the pixel cube, this t value was calculated for. These surfaces are a sphere, a vertical plane
or a cone (or horizontal plane), respectively (figure 10). The equations 8 calculate the hit point
coordinates. With the minimum and maximum values of the other coordinate axes of the pixel
cube (eq. 1 and 2) the current t value is not calculated from, it can be checked if the coordinates
of this t value are in the range of the laser pixel volume. Notice that a very small margin value2

is added to the maximum and subtracted from the minimum values of each coordinate in the

2The magnitude of this margin value depends on the floating-point precision the implementation uses.
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Figure 11: Hit by ray tracing applied to a spherical cuboid. X-axis scaled.

range checking to prevent floating-point precision errors in the algorithm implementation later on.
Without doing so, some hit points would be wrongly considered as not lying within the ranges.
After this, the smallest t value of the remaining ones is chosen to be the hit, while negative t values
are not considered since the ray is radiated forwards. There are cases where negative t values can
occur, e.g. if the ray origin lies in the laser pixel volume itself. If no t value remains after the
range check, the ray does not hit the laser cube. Figure 11 shows a spherical cuboid with the ray
of the measurement and the ray of the image pixel and its two ray hits in the front and the back.
To check a ray hit of an image pixel in the whole model world, it is only needed to iterate through

all cubes and choose the smallest t value as a hit, if any value is available. Figure 12 shows a
visualization of the ray hits in a 2D model room.

CAM
LS

pixel ray

Figure 12: Ray tracing model as 2D visualization.
blue: ray hits of the coordinate axis surfaces of the most right cube, but invalid due

range check
green: first ray hit within the cube-range
red: ray hits with greater t values than the first valid hit
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3.3 Relative Sensor Translation and Rotation

The translation between the laser scanner and the camera will be measured by hand in each axis
of the Cartesian coordinate system they lie in. In the use case of a drone, this should be precise
enough since a misalignment in the millimeter level should not affect measurements which are 20
meters and upwards away. The relative rotation between these two sensors, however, has to be
determined much more precisely, since every degree of error will be quadratically amplified by the
radius, or the distance, the measurement points are away.

3.3.1 Direct Calibration

If the two sensors, laser scanner and camera, are considered without any context, a direct calibration
between these can be applied. The only constraint is, that these sensors are rigidly connected to
each other; or if not, every change of their relative translation and rotation has to be known or
determined somehow.
There are different ways to calibrate this constellation. The most common way is, to use a

checkerboard, or at least a plane with a checkerboard-like texture. This way, the camera can
determine its position to the board through its scale and distortion within the image, while the
laser scanner position can detect the plane and its relative position through several sensor-board
constellations. Although this is common, many different ways to improve the accuracy or to
simplify the calibration procedure itself have been already developed. See Chai et al.[20], Kassir
and Peynot[21], Zhang and Pless[22], Krause and Evert[23], Bi and Lu[24] for reference.
Besides this way, there are also techniques of having no calibration object from Scaramuzza

et al.[25] or having other sensor constellations, like a stereo camera system which have to be
calibrated with a laser scanner by Aliakbarpour et al.[26] . It is also possible to have some rough
parameters from a less precise calibration already and improve these in another step afterwards.
The technique of Peynot and Kassir[27] improves these parameters iteratively over time, so that
the values diverge to the true relative rotation of the sensors. Rönnholm and Haggrén[28] are
doing this too, but instead, they interactively change the exterior orientation parameters of one
sensor. The final relative rotation is determined by calculating the misalignments through these
small parameter changes.

3.3.2 Calibration with an Inertial Measurement Unit

The most applications with laser scanner and camera merged into one system are robotic systems
or drones. But these applications very likely have a built-in inertial measurement unit (IMU).
Therefore, besides the relative rotation between the laser scanner and camera, also these between

Figure 13: Checkerboard calibration pattern with its plane normal oriented to the gravitational vector.
Picture from Hol et al.[29].
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the IMU and the other two sensors have to be known to correctly relate and fusion their data. An
indirect approach for the calibration between the visual and range sensor is to separately calibrate
the camera-IMU and the laser scanner-IMU constellation, and combine the results to the final
relative rotation between them.

3.3.2.1 Relative Rotation between Camera and IMU

As it is common to use a checkerboard for calibrating the orientation of laser scanner and camera,
it is for calibrating the orientation between camera and IMU too. There are different approaches:
either the checkerboard is oriented to the gravitational vector of the IMU as shown in figure 13, or
the delta positions and delta IMU measurements between short time points are used to determine
the relative rotation of these sensor frames. See Hol et al.[29], Kleinert and Stilla[30] for references.
There are also more stable methods of calibrations, as Rehder and Siegwart[31] are also considering

a possible misalignment between individually placed accelerator axis sensors within the IMU. On
another side, Li and Mourikis[32] take the variation of the time of arrival for each sensor into
account, since either the calibration process or the online fusion of the sensors need accurately
aligned timestamps to function properly.
The method used in this thesis is a toolbox from Lobo and Dias[33]. With several different poses of

the rigidly mounted sensor configuration and therefore different views of a size-defined checkerboard,
this toolbox written in MATLAB can determine the relative orientation between the camera and
the IMU. It uses the advantage of having the checkerboard placed along the gravitational vector,
but needs human interaction of the interface to select corners of the checkerboard for each captured
pose. This interaction is part of the Camera Calibration Toolbox[34] used by Lobo and Dias[33].

3.3.2.2 Relative Rotation between Laser Scanner and IMU

The relation of the laser scanner and the IMU is difficult because the range of the laser scanner is
only a 2D plane in a 3D world, where the distance measurements are located for each horizontal
angle. Even, a multi-line scanner like the Velodyne VLP-16[8] used in this thesis has only a very
low vertical scanning resolution. This makes it difficult to actually create enough data points
needed for the calibration. Consequently, there is not much work done yet related to this topic.
There are related papers, e.g. from Talaya et al.[35] who include the known position over time,

or trajectory, to perform a proper calibration. Baglietto et al.[36] for example use an extended
Kalman filter to calibrate the relative rotation between the laser scanner and the IMU, but also to
evaluate and assign data points in the model world.
With the laser scanner used in this thesis, the point cloud of one scan contains only around

7200 data points. If large objects are scanned, their surfaces could be reconstructed. In this way,
the gravitational vector can be determined for each scan and the same continuing principle as
with the oriented checkerboard can be applied to gain the relative orientation. A very simple
way is to use walls or their edges. Ensured the walls of a considered edge are oriented along the
gravitational vector, a similar method as by Rabbani and Van Den Heuvel[37] can be applied.
Reconstructing the surface normals of the point cloud by e.g. k-nearest neighbor search, they can
vote through Gaussian spheres as Hough transform spaces for all directions which are orthogonal
to their surface vector. In this way, in the Hough space is a peak, which should be a cross point
of the two walls, that can be considered as a direction of interest for the subsequent calibration
procedure. Visualizations of an example can be seen in figure 14 as presented in their original
paper.
Analogue to this idea, and more close to the paper of Rabbani and Van Den Heuvel[37], a cylinder

can be hanged up, which then points along the gravitational vector. Using the method in the
named paper, the direction can be directly extracted. This method is stable to outliers, like any
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(a) Model as 3D point cloud. (b) Surface normals at each point.

(c) Surface normals plotted at
Gaussian sphere.

(d) Each normal vector votes ev-
ery orthogonal direction on an-
other Gaussian sphere. Peaks
to be considered as possible
cylinder directions.

Figure 14: Created Gaussian sphere as Hough transform space by Rabbani and Van Den Heuvel[37].

other object in the scene would produce. However, no other cylinder-like object can be in the
scanned scene, because otherwise a wrong direction vector would be determined.
An alternative method from Eberly[38] fits one cylinder to all given points in the point cloud.

Therefore all points not representing the cylinder have to be excluded though e.g. classification
algorithms applied to the raw point cloud. Once fitted, the direction of the center axis of the found
cylinder can be extracted as the vector which is searched.
Having several poses, in each of them the gravitational vector is measured by the IMU and the

laser scanner. In other words: in each frame there are several pairwise-related known vectors,
describing a Wahba’s problem[39]. This can be solved either by the q-method[40] or in time-critical
systems through QUEST[41].

3.4 Simulation

To easily verify the ray tracing model discussed in the prior section, the Unity game engine version
2018.2.3f1[9] is used as simulation environment. With virtually created objects shown in figure 15
representing a real environment and the built-in ray casting function of the Unity game engine,
the laser scans can be simulated. The same laser scanner and camera setup as described in section
3.1 is used. Thus it is simulated a 16 line laser scanner with an adjustable horizontal resolution
and a camera with adjustable pixel resolution and FOV.
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(a) Look from the side. Camera as green
and laser scanner as red sphere.

(b) Look from camera view.

Figure 15: View of the simulation environment.

Figure 16 shows the laser scanner hits in the simulation environment as small red spheres. The
distance and angle information of the ray hits are transformed into the model coordinate system
as it would be in the real setup later on.

(a) Look from the side.

(b) Look from camera view.

Figure 16: Hit points of the laser scanner.

For visualization purposes, the edges of the front surface of the laser pixel cubes are shown in
figure 17. Notice that for simplicity only the corners got connected instead of redrawing the actual
edges.
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(a) Fronts of the laser scanner cubes dive
into the surface of the actual objects.

(b) Fronts of the laser scanner cubes only,
forming approximately the simulated
world.

Figure 17: Visualization of the front surfaces of the laser pixel cubes.

Now the model algorithms are executed with each pixel of the simulated camera view (here 24x24
[pixel]) as a ray for the ray tracing model. The resulting pictures in figure 18 show the pixel rays
and their hits as green, while keeping the laser scanning hit points as red spheres.

(a) Look from the side.

(b) Look from camera view.

Figure 18: Executed ray tracing model.

With a 512x512 [pixel] camera view, the corresponding depth or distance map is generated, as
shown in figure 19. The camera FOV was 80x80° whereas the one of the laser scanner was 60x30°.
More distant ray hits are represented as brighter pixel. The black areas around the laser scanned
field are in the FOV of the camera – but without laser pixel cubes of the laser scanner available to
get distance information from.
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(a) Camera view image. (b) Depth map.

Figure 19: Simulation results.

As noticeable on the top, bottom and right side of the non-black area, there are white fades.
These are ray hits of the camera pixel, which hit laser cubes positioned at the edges of the cube
field. This results in hitting the side surfaces way beyond the fronts of the cubes and thus a greater
distance. This effect is reduced by make a laser pixel only as depth as the most distant direct
neighbor pixel as described earlier, but it can not completely avoided. Its occurrence is further
discussed in section 4.3.

4 Implementation

To prove the functionality of the fusion model developed in the sections before, it is implemented
into a software framework, which runs on the drone testbed ARTIS.

4.1 Software Framework

The framework the ray tracing model is implemented in is a Tasking Framework developed by the
German Aerospace Center (DLR), which was originally developed on a management system based
on RODOS[10].[11] It is designed to easily model e.g. sensor inputs and processing algorithms
as tasks. This way, for instance, one task can wait for input updates before running. To trigger
tasks, not only by ready inputs, events are used to provide a processing-on-demand behavior. By
not simply clock these tasks at a fixed rate the real-time processing requirements are going to be
fulfilled. The used operating system is CentOS release version 7.5.1804[12], where the Tasking
Framework got migrated to. Figure 20 shows this as a block diagram.
First used in the DLR’s Autonomous Terrain-based Optical Navigation (ATON) project[13],

the Tasking Framework proved itself as real-time capable. But the module architecture of single

Figure 20: Tasking Framework. Figure from Rittweger et al.[14].
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DocumentationSource-Code

Model

Unit-Tests

(a) MDSD overview (b) Code generation from a template

Figure 21: Model-Driven Software Development. Figures from Rittweger et al.[14].

software parts brought the problem of the interfaces between them, which are hard to maintain
especially when changes in existing source code have to be made or incompatibilities occur. Because
of this, Model-Driven Software Development (MDSD) was introduced (figure 21a). This makes
it possible to build up the whole software architecture as a model, for instance, with a visual
diagram editor. UML and SysML are used as a combination to build up the program in models,
which can be connected through ports among themselves. Source code can be generated out of
these models with exact interface definitions. These ensure a global compatibility between the
interface variables and the conversions between them and individual model variables. Figure 22
shows the whole model structure of the framework used in this thesis. Small changes can be
adjusted in the models, and to project these changes into the source code only a regeneration is
needed instead of manually reviewing the source code. For individual algorithm implementations
generation gap patterns are used. A subclass of the corresponding module is generated one-time
and its generated base class accesses this subclass (which derives from the base class) running the
individual algorithms. All this improves the collaboration between developers, which work in very
different fields especially in large projects. This is because interfaces between the modules are well
defined, and incompatibilities are uncovered immediately. [14][15]
The used MDSD technique has also some other features. One advantage is, that the model

can be generated in every programming language desired with the help of generation patterns
(figure 21b). They completely disconnect developers from the need to stick with a specific language
and thus possible system limitations. Besides the generation of the source code itself, MDSD
also generates documentation files and unit tests. These documentations, created as LaTeX files,

Figure 22: Overview of the model structure of the used software framework. Figure from Rittweger
et al.[14].
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contain descriptions of the used elements and type definitions of input and output parameters.
Unit tests are added in order to check for unsupported UML/SysML elements, but also to check
the compatibility between interfaces of the modules. An additional generation of a configuration
manager makes it possible to read in pre-configuration files the modules get initialized with. It is
easier to just adjust the configuration files instead of working with the whole module every time.
The MDSD is doing this job by adding the parsing source code into the software project. In the
end, appropriate building scripts will be generated too. Each module gets its own building script
containing corresponding include- and source files. [14][15]
One important feature is the possibility of using recorded sensor logs as sensors itself. This way

real flight data can be replayed on a stationary system, or even without hardware sensors, and
perform tests as a real flight would be performed.[14][15] Before the ray tracing model is executed
in a real event, sensor logs of a test flight are going to be fed into the model software framework
and, subsequently, its behavior verified. Also, simulation data will be prepared in the same format
as the sensor logs for the performance-error analysis later on. In this way distance deviations
because of the model or its simplifications, and at which level, can be verified.

4.2 Image Feature Detection

The ray tracing model needs X and Y pixel coordinates of the camera image in order to create
a ray (equation 4) and determine to the depth of this particular pixel, if covered by the laser
scanner. These coordinates are the image position of an AprilTag, which are used in the software
implementation for feature detection. These tags are two-dimensional binary tags, and the
determination system allows a fast and robust six degree of freedom localization of these with a
single image.[16][17] The AprilTag software module will be fed with rectified images of the camera
and returns the position of the center of the tag features as image coordinates to the data fusion
module. In there the ray tracing module determines the distance from the camera to this feature
tag. See an example in figure 23.

Figure 23: AprilTags in a real environment.
One tag with determined distance.
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4.3 Performance-Error Analysis

In the following sections the time performance of the implementation is analyzed. To further
increase this performance, different model simplifications are done which, however, increase the
error rate of the model results.

4.3.1 Model Simplifications

To get an idea of the accuracy and the performance of the model algorithm, evaluations of these
parameters in different configurations have to be made. Also, problems occurring by applying this
model to different environment constellations, which are scanned by the sensors, will be explained.
These can cause minor, but also major misinterpretations of the digitalized environment.
Starting with the correlation of the performance with the inaccuracy level of the model, it gets

simplified in different ways. This is to get better performances at the costs of a higher inaccuracy of
the distance measurements. For comparable results, the tests are performed on an ADLQM87PC
system[18], which is used throughout this thesis. It consists of an Intel i7-4700EQ processor running
at 2.40GHz and a random access memory of 8GB. The whole software framework is multi-threaded,
but the algorithm for the sensor data fusion run only in a single thread.
Instead of acquiring the distances of several AprilTags, all pixels of the camera image are used,

creating a whole depth map. In this way, if the true distances from the camera are known, an
error map can be created which represents the difference between the resulting depth map and
the true distances. However, the true distances of a real environment are hard to obtain. Even if
obtained, they are afflicted with errors of a minor level at least. To counteract this problem, data
of the simulated environment is used. The same camera and laser scanner have properties as the
real sensors. These are the fields of view and the resolutions. This means, exact true distances
can be acquired to create the error map. In turn, because of the performance analysis, the model
cannot be run at the simulation itself, but have to be executed on the hardware system with the
software framework. Since this framework provides a replay feature (section 4.1) it is possible to
feed it with sensor data generated out of the simulation and run the ray tracing model on the ADL
hardware system. With this method, the correlation between the performance and the inaccuracy
level of the model will not be disconnected.
The camera and the laser scanner were placed in the simulation environment in four different

configurations. The laser scanner is on the same position rotated the same way in each configuration.
Table 1 shows the relative position and the direction of view of the camera as normalized vector.
x = 1 equals to the front of the laser scanners view, y = 1 to the left and z = 1 to the top. So if
both sensors are on the same position, the relative position vector of the camera would be (0, 0, 0)T .
The laser scanner points always to the front, so it has a direction vector of (1.0, 0, 0)T . If they are

C rel. position direction of view note

1 (0, 0, 0)T (1.0, 0, 0)T same position and direction
2 (0,−0.7, 0.15)T (1.0, 0, 0)T changed position, but same direction
3 (0.2, 0.9,−0.1)T (0.866,−0.5, 0)T changed position and direction (30°to the

right)
4 (0.6,−1.6, 0.4)T (0.951, 0.309, 0)T changed position and direction (18°to the

left)

Table 1: Sensor configurations used for analysis. Relative position and direction of view
of the camera only, since they are relative to the laser scanner.
Values represented as vector (x, y, z)T .
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Figure 24: True distances from the camera of configuration 1.

pointing in the same direction, the vector of the camera would be (1.0, 0, 0)T too. The unit of the
values is 1 meter.
Each configuration is ray traced with six different steps of model simplification, which are the

following:

0. step (M0): no simplification / full model

1. step (M1): only use the front planes of each laser pixel cuboid / no stretching into a volume
(see figure 7)

2. step (M2): laser pixel volume, but 5 horizontal neighbor cuboids got merged into one (depth
got averaged)

3. step (M3): laser pixel plane, with 5 horizontal merged cuboids

4. step (M4): laser pixel volume, with 20 horizontal merged cuboids

5. step (M5): laser pixel plane, with 20 horizontal merged cuboids

The goal of merging horizontal cubes into one in step 3 to 6 is to greatly increase the performance
of the model algorithm – but for the cost of increased inaccuracy of the depth determination.
For the calculation time needed, each ray trace of a pixel gets measured and averaged. To also

give an uncertainty of this averaged value, the Welford algorithm is applied, which calculates the
variance of a running stream of values.[19] This online variant of variance calculation removes the
need of saving all values in the memory, which is a lot with 1024x1024 [pixel] at 64bit (8 bytes)
each.
The inaccuracy of the current model and configuration setup is classified in two different directions:

one direction in which the model determined a depth too far (positive values), the other in which it
is determined too close (negative values). For each setup an error map is produced, indicating the
amplitude of each wrong determined depth of a pixel. All error amplitudes greater than 1 meter
are colored in the maximum color value, making it possible to look closer to the errors between -1
and +1 meter. Negative values are shown in red, whereas positive ones in the green color. Blue
indicates that the model couldn’t determine a distance at this pixel, because either the field of
view of the laser scanner is too small or it just did hit a gap between two laser pixel planes, shown
in figure 7b.
Following discussions regarding visualized maps are only for the specifically named and shown

model-configuration setups. See Appendix B: Error Maps for the visualizations of all other setups.
As all error maps, figure 26 is generated by subtracting the true depth values, which are generated

from the simulation, from the depth map determined by the model. This makes depth values,
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(a) C1: Same position and direction. (b) C2: Changed position, but same direc-
tion.

(c) C3: Changed position and direction
(30°to the right).

(d) C4: Changed position and direction
(18°to the left).

Figure 25: Visualized sensor configurations. Laser scanner as red and camera as green sphere. Colored
lines represent directions of view.

which are determined too close, negative – thus values determined too far are positive. The error
map of M0C1 (Configuration 1 in the Model simplification step 0) has high variations at the
edges of the environment objects in front of the walls. The reason for this are the laser scanner
pixels (volumes, particular in M0) being bigger than an image pixel would be in the environment.
This means these laser pixel volumes stick out of the actual object shape from the point of view of
the camera, indicating the negative areas around the objects. On the other hand, there are also
laser pixels sticking in, which are depth determinations from the walls behind the objects. On the
ground and the top side of the cube object there are stripes of small negative and positive delta
values observable. Since the center points of the laser pixels mapped in the environment are the
actual depth measurements — meaning at these points the delta of depth is zero — and the front
of each laser pixel looking to the position of the laser scanner, the edges of them are somewhat
rotated away from the plane actually measured in the environment. Especially the top and bottom
edges of the pixel of the ground plane are showing this constellation. If a vertical plane would be
measured, of which the surface is not pointing to the laser scanner, vertical stripes of delta values
would be observable. Also, if a measured surface is exactly oriented to the laser scanners position,
the laser pixel have the least error rate integrated over the whole laser pixel front, but the corners
still would indicate only negative values, since the front of the pixel in the ray tracing model is
concave.
Figure 27 shows the error map of the M0C4 setup. The same variations occur at the edges of

the environment objects as in the M0C1 setup. Additionally to this, there are red steps at the
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Figure 26: Error map of configuration 1 in model simplification step 0.

right side of the environment cube object, which are fading out to zero (black) to the right. These
steps are laser pixel volumes. Their depth measurements of the laser scan are at the front of the
cube object. But since the laser scanner is placed more to the left, the laser pixel volumes are
scaled in depth to the right side direction. This big incorrect depth determination emerges from
the idea and setup of the actual ray tracing model. More problems occurring in the same ways are
discussed later in section 4.3.2.
Going on with the first model simplification step, figure 28 clearly shows gaps within the laser

scanned area of the environment. For instance, in place of the red steps described in the M0C4
setup, there is now only a no-depth determined area, which derives from the simplification of the
laser pixel being planes instead of scaled volumes. Also observable, there are positive delta depth
values between the front laser pixel planes of the environment cube object. At these points, the
depth of the laser pixels behind the the front of the cubes is determined, whereas the true depth
values are these of the font itself. This means, that there is a chance of mistakenly determining a
distance from an object behind the one, which actually is wanted to be determined.
If the first model simplification step is simplified furthermore by averaging horizontal neighbor

laser pixels, another effect occurs. The M3C4 setup shows emerging laser pixels in the no-depth
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Figure 27: Error map of configuration 4 in model simplification step 0.
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Figure 28: Error map of configuration 4 in model simplification step 1.

area to the right of the environment cube object, as it can be seen in figure 29. This happens,
because pixels of this particular cube and pixels of the objects behind the cube get averaged
together to a depth value. This results in the averaged laser pixels lying in between this two pixel
groups. This also happens with a bigger laser pixel averaging, as applied in the two last model
simplification steps.
Putting these error maps in numbers, table 5 in Appendix E: Analysis Results provides four

values for each M C setup. The first two values are the separate averages of the positive and
negative error values. For the third value, the positive and negative values got combined with their
signs, of which the average is calculated. The fourth value represents in percent, how much pixels
have no depth assigned because of the current model simplification step (blue pixels in the error
maps). Notice, that the standard deviation of the average values is always much bigger because of
some few error values which are relatively huge regarding the average itself.
There are some other relations in the table. Looking at the first configuration, the equality of each

value within the M0-M1, M2-M3 and M4-M5 pairs can be seen. This is because the camera and the
laser scanner are placed at the same position, thus making the model simplification step from laser
pixel volumes to planes (as within these M pairs) indifferent. For the other configurations, the M
with laser pixel planes have always a higher percent of pixels with no determined depth within the
named pairs, which come from the resulting gaps between these planes. Also, the amplitudes of
the positive and negative errors of the M with laser pixel volumes are always higher than these
from M with laser pixel planes, since there are more pixels with distances determined. The rays
of these pixels are hitting the sides of these volumes, which have at the end in average a higher
error value. That making this error values describing more content (cuboid fronts and sides) than
the error values describing only laser pixel planes.
Also presented in Appendix E: Analysis Results, table 3 lists the average time per pixel needed

for the depth calculation plus the minimum and maximum time (all in [µs]). The latter time,
however, has no specific meaning in this analysis, since the ray tracing software run at a Linux
operating system, where other tasks are running at the same time and thus elevating the time
measurements for some short periods, which in turn is reflected in the maximum time measured.
Also, the CPU clock speed plays a role here, since it can vary due thermal throttling. See section
4.3.3 for a visualization of this effect.
Also, within the time values some relations can be found. First of all, the time values for each

M1, M3 and M5 simplification step are very similar for all configurations. Since all configurations
for each M have no different setups with the laser pixel planes, the time values have to be in
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Figure 29: Error map of configuration 4 in model simplification step 3.

the same area. In the other three M , this is only the case for the last three configurations. The
reason is the in the models used laser pixel volumes. Whereas the camera of C1 sees these volumes
exclusive only from the front, which triggers some conditions to skip calculations for the sides of
the volumes (see section 3.2), the cameras of the other three configurations have a full view of the
laser pixel volumes including their sides.
Regarding the actual model simplification steps, the significant time reductions cannot be missed.

Ignoring the special camera position of the first configuration, the time reduction from the full
model (M0) to the simplification with laser pixel planes inclusive merging of 20 laser pixels (M5) is
nearly one hundred fold. Comparing the error values between M0 and M43, the average errors of
measured distance are not that significantly bigger as the corresponding calculation time is smaller.
With this being said, a model simplification can be considered already if the performance is only

slightly more important than the depth accuracy in the horizontal axis (which is reduced with the
merging of horizontal laser pixels).

4.3.2 Covering Problem

As stated earlier, a big misinterpretation of the measured environment can happen in the ray
tracing model, when using laser pixel volumes. Suppose, there is a tree in the environment-sensor
constellation as shown in figure 30a. The laser scanner will capture this tree, and the ray tracing
model generates laser pixel cuboids out of it. Figure 30c shows the resulting model distances as a
map from the view of the camera. As it can be seen, cuboids of the scanned tree get stretched
into depth as defined (100 [meter]). However, these stretched cuboids cover empty space behind
the tree, which does not represent the actual scanned environment. As a result, also indicated by
the error map (figure 30d), there is a big area of very wrongly determined distances in the named
empty space.
A possibility to counteract this is to mount an additional laser scanner to the other side of the

camera, and only consider overlapping laser pixel volumes (considered with their depths). Thus if
there is space from the view of one laser scanner, but a cuboid stretched into th space from the
view of the other one, this cuboid’s depth has to be reduced. However, this could lead to false (or

3Comparisons of error values between model simplification steps with laser pixel volumes and laser pixel planes
have no significance – since, in place of the gaps (missing depth determination) in the plane’s model, there are big
error values in the volume’s model. Thus making the average of the error values very different regarding the actual
representing content.
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(a) Sensor-Tree constellation.
(b) True distances from the view of the

camera.

(c) Depth map acquired with the ray
tracing model.

(d) Error map between true distances and
model depth map.

Figure 30: The covering problem. Sensor configuration C3 is used with a tree like object in the simulation
environment.

oversized) space-detections and thus laser pixel depth reductions if a laser measurement point hits
a small gap in the environment.
On the other hand, with realistic sensor configurations, this covering problem will not occur very

often as with abnormal configurations like C3 or C4. If the sensors are placed far away like in
these configurations, this ray tracing model has a high error rate anyway (see prior section 4.3.1).

4.3.3 Distribution of Calculation Time per Pixel

Table 3 in Appendix E: Analysis Results only lists the average time needed per pixel for the ray
tracing model for each M C setup. To give an idea of how much more or less time a pixel actually
needed concerning the other pixels, a time map for each setup is generated. In this grayscale image,
every pixel represents the same pixel position as in the final depth map of its setup. The brighter
the pixel, the more time it needed to process the distance determination. To see structure more
easily, the time values got mapped into the grayscale colors in a way, that the lowest and highest
time value equals full black and full white respectively.
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Figure 31: Time map of the M3C3 setup.

It is remarkable, that this crosslike texture as in figure 31 for the M3C3 setup can be seen in
all the other ones, which have laser pixel planes included in their used model simplification step.
Look in Appendix C: Time Maps for the time maps of all setups. This texture comes from the
range check if a calculated t value is in the range of the laser pixel currently considered. This is
done by calculating the point, which this t value is describing with its direction (equation 6), and
transform these Cartesian coordinates in spherical ones, which in turn is needed for the range
check of the R, Θ and Φ coordinates. The transformation to the spherical coordinate system
produces this crosslike texture, since the square root and arcus tangens operations from the used
C++ standard library need a characteristic time pattern to calculate the results. Note that the
GNU libc version 2.17 is used on the CentOS release version 7.5.1804, since the mathematical
function implementations vary by library version, processor architecture and operating system.
But also in the setups with laser pixel volumes, the C1 configuration has the same pattern. This

is, because in this configuration the camera and the laser scanner are on the same position, thus
triggering some breaking conditions which prevent to even produce t values for the sides of the
cuboid. And this way, only positions of t values from the front of the laser pixel volume will be
transformed into spherical coordinates, producing the same cross texture.
At the time maps of the other configurations with M having laser pixel volumes, other character-

istic textures occur. This is because of the same principle mentioned above. But if looking close
enough, the cross textures can still be seen, as there are always range checks of t values resulting
from the fronts of the cuboids.
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(a) Separately generated time map. Cam-
era as in C1 configuration.

(b) Separately generated time map. Cam-
era as in C2 configuration.

Figure 32: Execution of extracted code of the ray tracing model

For convincing, the detected part of code of the model got extracted to a separate independent
C++ program, where only laser pixels with a distance of 4 [meters] (R coordinate) and no Θ or Φ
constraints are given. Together with this, the used directions are used as the pixel coordinate as it
would produce in the actual model software, and the time measured is then placed in a similar
time map. The results can be seen in figure 32 with camera positions relative to the laser scanner
as in the C1 and C2 configuration.
Another artifact in the time maps are the vertical white stripes. They indicate a slower calculation

for some amount of time, and also do not occur systematically. The software framework with the
model executed runs on a Linux distribution. With Linux being a multiuser and multiprocess
operating system this software framework is plainly running at, there are other background tasks
which have to be done. Therefore, these stripes within the time maps indicate a higher CPU
usage at this time period, temporally degrading the available computation power and thus the
performance for the ray tracing calculations.

4.4 Standard Deviation

As the software framework expects the fusion algorithm to provide a standard deviation for a
returned distance, the following method is applied. The framework passes the image coordinate
of a feature to the algorithm, whereas the coordinate lies in the center of a pixel. But since the
pixel, which the feature relies on, is actually an area rather than a point, the whole pixel has to be
considered. This can be approximated by applying the ray tracing model to each point on a, for
example, 9 by 9 grid within the pixel. Out of this dataset of distances a weighted average and a
weighted standard deviation are calculated, whereas the weight is defined as follows:

wi = max(0.0, 1.0− dci ) (12)

with dci being the Euclidean distance of the point i to the pixel center. Both the weight definition
and the size of the grid within the pixel can be adjusted as needed. The weighted average and the
weighted standard deviation is then calculated as follows:

avgw =

∑N
i wi ∗ d

ray
i

∑N
i wi

(13)

30



stdw =

√

√
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√

√
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(N − 1)

∑N
i wi

N

(14)

with N being the amount of points of the pixel grid and d
ray
i the distance calculated through the

ray tracing model for point i.
Another idea is to use the Euclidean distance of the actual hit of the pixel ray at a laser pixel

cube to the center of the front of this cube within the model room. This definition of standard
deviation should be more meaningful, since this center point represents a true measurement of the
distance from the laser scanner in the model world. The surface of a laser pixel cube, however, is
only an extrapolation trough parameters of the laser scanner, i.e. field of view and resolution. A
big problem would be if the back of a stretched cuboid is hit by the camera ray, but just next to it
is the front part of another cuboid. If this hit produces a close distance as the actual distance of
this front part is, then the standard deviation would be too high.
But there is an additional inaccuracy to consider. The measurements of the laser scanner are not

one hundred percent correct. The datasheet of the Velodyne VLP-16 multi-line laser scanner[8]
names an uncertainty of 0.002 meters in each measurement. This has to be included in the
calculations too. To get the likely error, if two errors are combined, the Gaussian formula states
for this likely error ∆C:

∆Clikely =
√

(∆A)2 + (∆B)2 (15)

With ∆A and ∆B being the two errors or uncertainties, which are here the calculated standard
deviation of the grid within the pixel and the measurement uncertainty of the laser scanner. If the
maximum error for the combination of these two uncertainties is wanted instead, they just have to
be summed up.

5 Experimental Results on Feature Distance Determination

Using a system consisting of the same computation hardware configuration as used in section 4.3
and the sensors as presented in section 3.1, some experiments in a real environment are made.
Prior to this, the calibration of the sensor transitions is done by measuring the offsets at each
Cartesian axis of the frames coordinate system. The relative rotation of each axis is presumed to
be zero on each axis, which is a 3 by 3 identity matrix as a rotation matrix, as the directions of
view of the sensors are exactly the same. This was done because there was no calibration available
at the time; on the other hand, however, the rack is manufactured by computer numerical control
(CNC) procedures and thus the sensors are mounted with high precision also by means of their
orientations.
To make statistically more precise statements, several setups were tested. They consist of the

test field and two AprilTags which are placed in different locations with each setup. For each tag,
the software framework pass image coordinates in pixels, which represents the center of the tag
within the image. Through the ray tracing model of this thesis, the distance from the camera
is determined. These calculated distances are validated by a handheld laser rangefinder (LRF).
Although several setups were tested, only a few are discussed. The measurements, statistical values
and camera views for every setup can be found in Appendix D: Experiment Setups and Appendix
F: Experiment Setups Statistics. Data is generated by running the software framework with the
ray tracing algorithm for around 5 seconds at 10Hz and calculating the weighted average and
weighted standard deviation of the datasets for each combination of left and right camera and tag
one and tag two. The weights are defined as:

wi =
stdmin

stdwi
(16)
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(a) Test field with tags. (b) View of left sensor camera. (c) View of right sensor camera.

Figure 33: Experiment setup 1. Tag one on the front left and tag two on the back right.

Figure 34: Depth map in the view of the right camera in the model world of experiment setup 1.

with stdwi being the weighted standard deviation of the distance calculation i after equation 14
and stdmin being the smallest possible standard deviation calculated in section 4.4, which is the
uncertainty of the laser scanner. Because this value is fixed, whereas the standard deviation
for each distance (equation 14) can be zero, the combination of stdwi and the uncertainty value
after equation 15 will bring the same value as the uncertainty value itself, consequently being the
minimal standard deviation possible. The weighted average and the weighted standard deviation
is then calculated as in the equations 13 and 14.
Figure 33 shows a photo of the first setup including the view of both sensor cameras. The left

camera has a FOV of 40° by 40° and the right one a FOV of 80° by 80° with the closer tag being
number one and the more distant tag number two. Figure 34 shows the depth map in view of
of the right camera in the model world. Table 2 shows the distances of the two tags from both
cameras with the difference (error) to the distance measured by the LRF and this measured value
itself.
Note that the distance measured with the LRF is a very rough measurement (as captured in

figure 35) since it is held with bare hands and also because of the unknown position of the actual

Tag Camera Distance Model Standard Deviation Delta from LRF Distance LRF

T1
left 7.627 ± 0.005 -0.011

7.638
right 7.656 ± 0.004 0.018

T2
left 17.606 ± 0.0106 -0.061

17.667
right 17.602 ± 0.008 -0.065

Table 2: Statistics for experiment setup 1. Values in [meter].
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Figure 35: LRF next to the left camera sensor.

camera sensor. This hypothetic sensor position can vary through the used camera lens and the
focus settings and it is difficult to estimate it.
In setup 6 and setup 7 the tags were placed at the edge of the view of the left and the right

sensor camera, respectively, to check limits of the whole detection system. Since the left camera
has a more narrow FOV than the right one, both tags were detected correctly in both cameras
in setup 6. As it can be seen in table 6 in Appendix F: Experiment Setups Statistics, in setup
7 there were no values to process. Only the distances from the LRF are available. For the left,
camera it was not possible to gain distance values from the ray tracing model, since the tags were
placed at the edges of the FOV of the right camera and thus are out of view of the left one. The
reason for the missing distance values of the right camera is, that the tag placed on the right was
placed too far to the image border so that the feature detection algorithm could not detect the
AprilTag. In figure 36a it is noticeable, that the right tag is placed too far to the right so that
the right white border is not visible anymore and thus the detection of the AprilTag does not
work properly. The missing distance values for the left tag have another reason, since it is also in
the view of the feature tracker. Figure 36c shows the view of the laser scanner, where a pixel is
representing one laser point. The laser pixels got horizontally stretched by the factor 28 to get
an almost quadratic picture. Note that the FOV of the laser scanner is 90° by 30°, thus making
quadratic objects not quadratic in the picture at all. The brighter the pixel the greater was the
distant measured, whereas the red areas have no distances available. The left green marked area
indicates all the measurement points for the left tag. As it can be seen, there are unavailable
distances within this tag area, which is the reason for the unavailability of values in table 6. The
darker left half of this tag is from another object standing in between the laser scanner and the tag
itself. Since the measurement period for each setup was around 5 seconds, this is a systematic flaw.
Reasons for this could be an internal failure at this angle or dirt on the protective glass of the
laser scanner hull. But it could also because of the object in front of the tag, which creates this
gap along its right side. This can happen if e.g. the edge of the object is made of metal, which
reflects the laser beams and distorts the actual distance measurement. Figure 36b shows a 3D
rendering of the model world of one scan of setup 7, with the look at the left tag. In this model
world, the laser pixel cuboids are only as depth as the most distant direct nearest neighbor is away
as described in section 3.2, which in other words consider only a 3 by 3 field of laser scans around
the current cuboid. To go against such gaps as it occurs in setup 7, instead a 5 by 5 field of laser
measurement could be considered to further extend the depth of the laser pixel cuboid. This would
close one-pixel gaps, as long the camera pixel ray does not hit exactly the small gap in the back.
The schematic in figure 36d shows the problem visually. The red line shows the camera pixel ray,
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(a) View of right sensor camera. (b) Rendering of the model world with look on the left tag
marked in green.

(c) View of laser scanner.

camera pixel ray

extended laser cuboid

direct neighbor
cuboid

next but one
neighbor cuboid

(d) Simplified schematic of the gap problem.

Figure 36: Experiment setup 7.

which only hits a near cuboid if the blue marked cuboid got extended this way be derive its depth
from the next but one neighbor cuboid instead of the direct one.
There are also missing values for setup 8 and setup 9, but this time it is about the distances

of the LRF. All setup tests are done in daylight. Since the LRF has only a class 2 laser for its
distance measurement, after tags standing about 20 meters away and without a tripod it is very
difficult to hit the tag surface with the laser by hand. Also, at this distance, the laser is too weak
at daylight the LRF to read the laser echo for its measurement process. The laser scanner, however,
could measure these distances. In fact, the maximum distance measured by the laser scanner is
close to 70 meters. This value is gathered from the raw laser scanner values, not by using tags.
In all setups, but especially in the last setup (S9), a noise of the distances from the ray tracing

model over time was clearly observable. Also, table 6 in Appendix F: Experiment Setups Statistics
states standard deviations of about 3 to 10 centimeters for all setups. One possible source of this
could be the actual jitter of the laser scanner range measurements, which is fed directly in the ray
tracing model and thus used by the tag distance determination. Figure 37 shows the view of the
laser scanner of setup 9 with each pixel representing a laser point, but with the variance over time
as value instead of an actual measured distance. The brighter the pixel, the higher the jitter was
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Figure 37: Jitter of experiment setup 9 within the 5 seconds measurement time period. Boxes represent
the tags.

over the 5 seconds of the measurement. The tags are marked. The laser pixels got horizontally
stretched by the factor 28 to get an almost quadratic picture. Note that the FOV of the laser
scanner is 90° by 30°, thus making quadratic objects not quadratic in the picture at all. The
brightest pixels equals a jitter, or standard deviation over time, of 29.448 [meter]. All other values
between zero and this maximum jitter are logarithmically scaled. The front tag has an average
jitter of around 58.112 [meter] and the back tag of around 50.428 [meter]. These values are from
the laser scanner itself. Additionally to this, especially to for longer time periods, expansions and
subtractions of the mounting rack because of temperature variations can occur, producing very
small indifferences between the sensors orientations. These can also emerge from vibrations from
e.g. rotors or other shock sources.

Figure 38: View of left sensor camera with occurring covering problem.
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(a) Rendering of the model world with look from the
left sensor camera.

(b) Rendering of the model world with look on the
tag, which is not visible due covering by the laser
cuboids of the person.

Figure 39: Model world rendering of the occurred covering problem.

While testing the setups, the prior discussed covering problem (section 4.3.2) occurred. Figure 38
shows this occurrence in the view of the left sensor camera while a person standing in between the
laser scanner and a tag, which is placed about 17.6 [meter] away from the sensor configuration
(see 6 in the appendix at setup 1 tag 2). With the model world rendered at this state, figure 39b
shows, that the person in front of the laser scanner, or its laser pixel cuboids, completely cover the
tag. This is making the camera pixel ray of the center of the tag hit these cuboids of the person
rather than (hypothetical) cuboids of the tag itself. The calculated distance from the ray tracing
model is 2.255 ± 0.014 [meter]. Note, that the standard deviation is very small in terms of the
big misinterpretation of the distance of the tag. This is because the calculation of this standard
deviation does not consider the distance of the hit to the actual measurement point of the hit
cuboid, as it is stated in section 4.4. Implementing this consideration, the standard deviation
would be very high in this covering problem case.
Also, the “step problem” described in section 4.3 is tested. It states, that a cuboid is vertically

too big due the low vertical resolution. Because of this, either a laser pixel can cover a point which
lies behind its front in the real world, or this front lies too far away than a corresponding point in
the real world would be. This is tested by using a relatively small tag. It has to be big enough,
that the camera resolution allows the AprilTag recognition detect this tag, but also it has to be
smaller than the high of a cuboid at the distance the tag is held from the laser scanner. This tag
is then slowly moved from top to bottom. Figure 40a shows finally the occurrence of the step
problem. At this time point, the tag was about 4.254 [meter] away from the right sensor camera
and the point lying behind it, which is the body of the person holding the tag, 4.603 [meter] away
from this camera. This image frame was captured by the right camera, from which the distance
of the detected tag center is mistakenly calculated as the 4.603 [meter] by the ray tracing model.
The model world rendering in figure 40b shows that only one row of laser scan cuboids has the tag
detected (and hands of the person). In this case, the center of the tag in the image frame was
either barely above or below this row, so that the camera pixel ray hit the cuboids of the body of
the person.
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(a) View of the right sensor camera.

(b) Rendering of the model world with look at the person
holding the tag.

Figure 40: Forces occurring of the step problem.

6 Conclusions and Future Directions

A fusion model for visual image data and laser range data has been developed, of which with
passing an image coordinate a distance can be returned as long the resulting ray hits the laser
range data in the ray tracing model. This algorithm has been implemented into two environments,
the simulation and the software framework. Several different setups in the simulation and later in
the experimental tests have been considered and discussed. Also, analyzes for the performance
of the algorithm in the software framework, as well as differences (errors) between true distances
from the camera and estimated distances by the fusion model, have been done.
AprilTags are used in this thesis to detect as features. Of course, other methods can be used to

e.g. detect corners of an object for avoidance. The only needs the fusion model has are the FOV
of camera and laser scanner, their resolutions and the image coordinate of the image feature of
interest.
Different ways to calibrate the relative transition and rotation between the sensor cameras and

the laser scanner have been presented. Future research should contain the actual execution of
such a calibration prior to the experimental tests to make more accurate statements, instead of
assuming the relative rotations to be specific ones due CNC manufactured mounting racks.
Not only returning the distance alone, different ways to calculate the standard deviation regarding

a specifically returned distance have been discussed. Each way has its simplicity, but also reasons
to use it or not. Depending on how the actual usage of the fusion model is, the calculation of the
standard deviation has to be adjusted.
Since a laser ray of the laser scanner itself will expand in diameter over distance, the actual first

hit of this ray on a surface of an object is not compelled to be the center of the ray. In the ray
tracing model, however, the measured distance of by a laser ray is considered to be such a center
point. This issue should be integrated into the standard deviation too.
Either way, the fusion model presented in this thesis is a raw fusion itself. This means, there

are no error correction or data filtering done. By using raw data and blindly using the resulting
estimated distances air dust or reflections of windows can bring great problems, just to name a few.
Also, such error cases as the “step problem” (section 4.3 and 5) or the “covering problem” (section
4.3.2) can still bring misleading distances from the fusion model.
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Abbreviations

ARTIS Autonomous Rotorcraft Test bed for Intelligent Systems. 8, 19

ATON Autonomous Terrain-based Optical Navigation. 19

CAD computer-aided design. 8

CNC computer numerical control. 31, 37

DLR German Aerospace Center. 19

FOV field of view. 8, 16, 18, 32, 33, 35, 37

IMU inertial measurement unit. 14–16

LiDAR Light Detection and Ranging. 5

LRF laser rangefinder. 31–34, 59

MATLAB matrix laboratory. 15

MDSD Model-Driven Software Development. 20, 21

RODOS Realtime Onboard Dependable Operating System. 19

SysML Systems Modeling Language. 20, 21

UML Unified Modeling Language. 20, 21
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Appendix A: Depth Maps

Figure 41: Depth map of M0C1 Figure 42: Depth map of M0C2

Figure 43: Depth map of M0C3 Figure 44: Depth map of M0C4

Figure 45: Depth map of M1C1 Figure 46: Depth map of M1C2
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Figure 47: Depth map of M1C3 Figure 48: Depth map of M1C4

Figure 49: Depth map of M2C1 Figure 50: Depth map of M2C2

Figure 51: Depth map of M2C3 Figure 52: Depth map of M2C4

43



Figure 53: Depth map of M3C1 Figure 54: Depth map of M3C2

Figure 55: Depth map of M3C3 Figure 56: Depth map of M3C4

Figure 57: Depth map of M4C1 Figure 58: Depth map of M4C2

44



Figure 59: Depth map of M4C3 Figure 60: Depth map of M4C4

Figure 61: Depth map of M5C1 Figure 62: Depth map of M5C2

Figure 63: Depth map of M5C3 Figure 64: Depth map of M5C4
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Appendix B: Error Maps

Figure 65: Error map of M0C1 Figure 66: Error map of M0C2

Figure 67: Error map of M0C3 Figure 68: Error map of M0C4

Figure 69: Error map of M1C1 Figure 70: Error map of M1C2
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Figure 71: Error map of M1C3 Figure 72: Error map of M1C4

Figure 73: Error map of M2C1 Figure 74: Error map of M2C2

Figure 75: Error map of M2C3 Figure 76: Error map of M2C4

47



Figure 77: Error map of M3C1 Figure 78: Error map of M3C2

Figure 79: Error map of M3C3 Figure 80: Error map of M3C4

Figure 81: Error map of M4C1 Figure 82: Error map of M4C2
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Figure 83: Error map of M4C3 Figure 84: Error map of M4C4

Figure 85: Error map of M5C1 Figure 86: Error map of M5C2

Figure 87: Error map of M5C3 Figure 88: Error map of M5C4
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Appendix C: Time Maps

Figure 89: Time map of M0C1 Figure 90: Time map of M0C2

Figure 91: Time map of M0C3 Figure 92: Time map of M0C4

Figure 93: Time map of M1C1 Figure 94: Time map of M1C2
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Figure 95: Time map of M1C3 Figure 96: Time map of M1C4

Figure 97: Time map of M2C1 Figure 98: Time map of M2C2

Figure 99: Time map of M2C3 Figure 100: Time map of M2C4

51



Figure 101: Time map of M3C1 Figure 102: Time map of M3C2

Figure 103: Time map of M3C3 Figure 104: Time map of M3C4

Figure 105: Time map of M4C1 Figure 106: Time map of M4C2
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Figure 107: Time map of M4C3 Figure 108: Time map of M4C4

Figure 109: Time map of M5C1 Figure 110: Time map of M5C2

Figure 111: Time map of M5C3 Figure 112: Time map of M5C4
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Appendix D: Experiment Setups

(a) left camera view (b) right camera view (c) jitter of laser scanner

Figure 113: Experiment setup 1

(a) left camera view (b) right camera view (c) jitter of laser scanner

Figure 114: Experiment setup 2

(a) left camera view (b) right camera view (c) jitter of laser scanner

Figure 115: Experiment setup 3
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(a) left camera view (b) right camera view (c) jitter of laser scanner

Figure 116: Experiment setup 4

(a) left camera view (b) right camera view (c) jitter of laser scanner

Figure 117: Experiment setup 5

(a) left camera view (b) right camera view (c) jitter of laser scanner

Figure 118: Experiment setup 6
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(a) left camera view (b) right camera view (c) jitter of laser scanner

Figure 119: Experiment setup 7

(a) left camera view (b) right camera view (c) jitter of laser scanner

Figure 120: Experiment setup 8

(a) left camera view (b) right camera view (c) jitter of laser scanner

Figure 121: Experiment setup 9
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Appendix F: Experiment Setups Statistics

Setup Tag Camera Distance Model Standard Deviation Delta from LRF Distance LRF

S1
T1

left 7.6270397059 ± 0.0054733611 -0.0109602941
7.638

right 7.6560584603 ± 0.003729596 0.0180584603

T2
left 17.6057011176 ± 0.0106332354 -0.0612988824

17.667
right 17.6022800124 ± 0.0077256081 -0.0647199876

S2
T1

left 9.7973379048 ± 0.0060097856 -0.0606620952
9.858

right 9.7765284545 ± 0.0064733504 -0.0814715455

T2
left 16.4030116 ± 0.012691796 -0.0799884

16.483
right 16.4047931371 ± 0.009669433 -0.0782068629

S3
T1

left 12.0728508421 ± 0.0063452082 -0.0581491579
12.131

right 12.0537248302 ± 0.0062733896 -0.0772751698

T2
left 14.0669131579 ± 0.006939209 0.0289131579

14.038
right 14.0704134349 ± 0.0082744343 0.0324134349

S4
T1

left 14.040965059 ± 0.0121887296 -0.004034941
14.045

right 14.0365550709 ± 0.0147800532 -0.0084449291

T2
left 14.0745234615 ± 0.006085638 -0.0134765385

14.088
right 14.0768870955 ± 0.0045263142 -0.0111129045

S5
T1

left 7.8727330588 ± 0.0076547932 -0.0682669412
7.941

right 7.8660132929 ± 0.007824201 -0.0749867071

T2
left 16.4588517059 ± 0.0047833597 -0.0751482941

16.534
right 16.4571858824 ± 0.0078419391 -0.0768141176

S6
T1

left 11.6216157647 ± 0.0087215117 -0.0653842353
11.687

right 11.5937364598 ± 0.0078803744 -0.0932635402

T2
left 11.8053281765 ± 0.0064042569 -0.0456718235

11.851
right 11.8436005 ± 0.0070669893 -0.0073995

S7
T1

left NaN ± NaN NaN
11.69

right NaN ± NaN NaN

T2
left NaN ± NaN NaN

12.151
right NaN ± NaN NaN

S8
T1

left 8.9841229 ± 0.0056416783 NaN
NaN

right 8.9956141607 ± 0.00730289 NaN

T2
left 22.7103699412 ± 0.0093788885 NaN

NaN
right 22.6803233889 ± 0.0128153515 NaN

S9
T1

left 9.4711898333 ± 0.0067245498 NaN
NaN

right 9.4842050385 ± 0.0066199314 NaN

T2
left 33.2919965833 ± 0.0110453421 NaN

NaN
right 33.2755210968 ± 0.0058390863 NaN

Table 6: Experiment setups statistics. Evaluated in section 5. Data in [meter].
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