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Abstract
In the last decade quantum machine learning has provided fascinating and fundamental
improvements to supervised, unsupervised and reinforcement learning (RL). In RL, a so-called
agent is challenged to solve a task given by some environment. The agent learns to solve the task by
exploring the environment and exploiting the rewards it gets from the environment. For some
classical task environments, an analogue quantum environment can be constructed which allows
to find rewards quadratically faster by applying quantum algorithms. In this paper, we analytically
analyze the behavior of a hybrid agent which combines this quadratic speedup in exploration with
the policy update of a classical agent. This leads to a faster learning of the hybrid agent compared
to the classical agent. We demonstrate that if the classical agent needs on average 〈J〉 rewards and
〈T〉cl epochs to learn how to solve the task, the hybrid agent will take 〈T〉q � αsαo

√
〈T〉cl〈J〉

epochs on average. Here, αs and αo denote constants depending on details of the quantum search
and are independent of the problem size. Additionally, we prove that if the environment allows for
maximally αokmax sequential coherent interactions, e.g. due to noise effects, an improvement given
by 〈T〉q ≈ αo〈T〉cl/(4kmax) is still possible.

1. Introduction

The application of quantum algorithms to machine learning provided promising results and evolved over
the last years to the domain of quantum machine learning (QML) [1, 2]. The main types of machine
learning are supervised, unsupervised and reinforcement learning (RL) [3] and each of them can be
improved by quantum algorithms [1, 2, 4–8]. In RL an agent has to solve a task via interactions with an
environment, perceiving a reward as a measure of its performance on the task. RL can be applied to solve
problems from different areas such as robotics [9, 10], healthcare [11], or games such as Go [12].

The structure of RL allows for multiple quantum improvements. Various results show quantum
advantages for quantum-enhanced agents interacting with a classical environment. In this way,
improvements on the deliberation time of an agent [13–15] or a better performance via variational
quantum circuits [16, 17] can be achieved.

Depending on the quantization of the environment, different methods can be applied [18–23] to gain
quantum improvements in sample complexity, that is the number of interactions the agent has to perform
with the environment to solve the task. In this work, we will focus on an approach with quantum-accessible
environments introduced in [24]. This framework allows for a quadratic speedup in sample complexity
during the exploration if access to some oraculized version of the environment is available (see [24] and
section 3 for more details). The construction of such an oraculized environment is for example possible for
deterministic strictly epochal environments, but also for stochastic environments [24] and epochal
environments with variable epochal length [25]. There also exist specific environments for which
super-polynomial and exponential improvements have been demonstrated [26].
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The quadratic speedup in exploration will improve the agent’s performance if the agent is luck-favoring3

on the environment. In this paper, we investigate how this speedup in exploration will lead to an
improvement in sample complexity. For this purpose, we introduce a hybrid agent based on a feedback loop
between quantum exploration and classical updates. We then analyze the resulting performance and
compare it to a similar classical agent based on the same update rules. We determine possible speedups for
two different situations: quantum-enhanced learning with (i) an ideal quantum computer and (ii) a
quantum computer with only a limited number of possible coherent interactions.

An experimental implementation of such an agent with limited quantum resources based on a photonic
quantum processor is described and demonstrated in [23]. In this paper, we concentrate on the theoretical
background of such quantum-enhanced learning agents.

We will start with a brief review on RL in section 2. Then, we discuss quantum-enhanced exploration
and introduce a hybrid learning agent in section 3. Consecutively, we analyze its behavior and compare the
learning time of hybrid learning agents and their corresponding classical agents in section 4. We conclude
by summarizing our results and discussing generalizations of the here discussed hybrid agent to more
general scenarios in section 5.

2. Classical reinforcement learning

In reinforcement learning, an agent A is challenged to solve a task via interactions with an environment E.
The interaction is usually modelled as a (partially observable) Markov decision process defined by the
(finite) set of states S of the environment and a (finite) set of actions A performed by the agent.

The distribution of the initial state of the environment is described by a probability distribution P(s). An
action a performed by the agent leads to a state change of the environment from s to s

′
according to the

transition probabilities P(s′|a, s). The agent receives (partial) information, called observations or percepts
c(s), about the current state of the environment. The agent chooses its next action a based on the observed
percept c(s) according to its current policy Π(a|c). Additionally, the agent receives a real-valued reward r
rating its performance. The goal of the agent is to optimize the obtained reward in the long term by
updating its policy Π based on its observations and thus to learn. Different classical algorithms have been
developed such as SARSA, Q-learning, deep Q-learning or projective simulation [3, 27, 28] which provide
good policies and update rules.

The performed actions of an agent together with the resulting observed percepts and rewards form its
history

hn = ((c1, a1, r1), . . . , (cn−1, an−1, rn−1), (cn, an, rn)). (1)

An agent interacting with an environment will update its policy Π(a|c) according to the observed history.
Also the evaluation of the performance of an agent is usually a function based on its history.

In general, the policy Π(a|c) is probabilistic. Consider now a set of learning agents, with the same initial
policy Πh0 and update rules, which have performed n interactions. In general, the different agents observe
different histories hn leading to different consecutive policies Πhn . The average performance of these agents
thus depends on the probability distribution pn(hn) to observe different histories hn.

In order to solve a given task, agents with different histories usually need a different number of
interactions n. Therefore, it is necessary to extend the probability distribution pn(hn) over histories with
length n to the probability distribution p(hn) over the set of infinite histories. Here, p(hn) now determines
the probability that an infinite long history h∞ starts with hn. A more explicit definition of p(hn) can be
found in appendix A. In section 4, we will use the probability distribution of histories p(hn) to compare a
set of classical and quantum-enhanced agents in order to determine possible quantum speedups.

3. A quantum-enhanced learning agent

To quantize RL we will use the approach of quantum accessible environments introduced in [24], where the
agent and the environment are embedded in a communication scenario. The environment sends percepts
and rewards to the agent, which responds with actions. This communication is quantized by encoding
classical percepts c, actions a and rewards r into orthonormal quantum states |c〉, |a〉 and |r〉. In this
scenario, the quantum-enhanced agent can choose to interact quantum by using superposition states as
action states or classical by limiting itself to orthonormal basis states.

3 Meaning that lucky agents, which received more rewards in the past, are expected to outperform unlucky agents, which received less
rewards.
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In this paper, we consider strictly epochal environments. In strictly epochal environments, the
interaction of an agent with its environment can be divided into epochs4. In each epoch, the environment is
initialized in some initial state |s1〉 and consecutively L percept-action pairs (c1, a1), . . . , (cL, aL) are
exchanged.

3.1. Quantum-enhanced exploration
For some environments, action sequences with a reward r > 0 can be found faster by using superpositions
of action states and interference effects [24]. Similar to the wave-particle duality, interference effects
between different sequences of actions |�a〉 are destroyed if information about the actions within one epoch
are measured or memorized. As a consequence, all such information contained in the percepts c and states s
of the environment need to be coherently deleted after an epoch in order to obtain interference effects.
There exist different classes of environments where this is possible as discussed in [24], such as for example
memoryless environments or deterministic strictly epochal environments.

In these cases, the environment can be used to create a quantum oracle OE described by the unitary

OE|�a〉A|0〉R =

{|�a〉A|0〉R if r(�a) = 0

|�a〉A|1〉R if r(�a) > 0.
(2)

by playing a single (αo = 1, e.g. memoryless environments) or several epochs (αo = 2, e.g. for deterministic
strictly epochal environments). The constant αo denotes how many epochs are required to effectively create
one oracle OE. The oracle OE is equivalent to a controlled not-gate acting on the reward register and
controlled by the action state |�a〉A. We can create a quantum-enhanced learning agent, whenever such an
oracle exist.

Quantum-enhanced agents use this oracle to find rewarded sequences of actions quadratically faster.
That is, for a fixed policy, they need on average 〈t〉q = α

√
〈t〉cl [29–32, 32, 33] epochs to find the next

reward, whereas a classical agent would need 〈t〉cl epochs. Here, the constant α = αs · αo is determined by
the number of epochs αo necessary to create the oracle OE and a constant αs depending on the applied
quantum search algorithm [29–33] 5. Given this quadratic speedup in exploration, it is possible to
construct a basic quantum agent based on any classical agent. A basic quantum agent performs quantum
searches for a certain amount of time and then trains an internal copy of the classical agent to reproduce the
found rewarded sequences of actions. This basic quantum agent is on average luckier than the classical
agent, as it will on average find rewarded sequences faster than the classical agent. Hence, if the
agent-environment-setting is luck-favoring [1], it will outperform the classical agent [24].

However, more advanced quantum–classical hybrid agents can be constructed by alternating between
quantum search and classical policy updating as discussed in this paper and experimentally demonstrated in
[23]. Furthermore, we quantify the overall speedup in learning for these agents, which is in general not
possible for the basic quantum agent described in [24].

3.2. Quantum-enhanced exploration and classical policy updates
A key feature of RL is the assumption that there exist not only correct and incorrect (sequences of) actions
but rather a spectrum of better or worse (sequences of) actions. In addition, some resemblance between
good (sequences of) action is usually implied. In these cases, finding good actions sequences which might
be suboptimal (but with higher probability to find them) can help to find better (sequences of) actions,
which are less probable. For example, there may exist many, not too long routes from city A to city B with
different length. By slightly varying such a route, an even shorter and therefore better route might be found.
As a consequence, many RL problems, like e.g. in deterministic strictly epochal environments, can in theory
be solved by testing all possible action sequences and searching for the optimal one. However, the search
space for such problems is usually too big and the optimum might be unknown such that solving the
problem via straight forward search is not possible in practice and RL is used instead.

Quantum-enhanced exploration can speed-up the search for rewards quadratically. However, the search
space might nevertheless be too large to find the optimal solution via direct search. We therefore use in
these cases quantum-enhanced exploration to search for general rewarded actions and use classical methods
for policy updates. The policy updates will change the underlying search space and help to find better
solutions. In general, also these modified search spaces are still big such that quantum-enhanced
exploration can be also advantageous after the first policy updates. Therefore, we introduce in the following

4 Epochs are often also called episodes. We chose epochs to be consistent with the notion of strictly epochal environments as used e.g. in
[24, 25].

5 Typical values are αs =
π
4 if the classical reward probability is known or αs =

9
4 if it is unknown.
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a hybrid quantum–classical learning agent. This agent uses quantum-enhanced exploration not only in the
beginning, before any policy update took place. Thought, it alternates between quantum-enhanced
exploration and classical policy updates. We establish a feed-back loop between quantum-enhanced
exploration and classical policy updates such that both procedures can profit from each other.

3.3. Description of the hybrid learning agent
In the following, we consider classical agents with a policy which can be described by a a probability
distribution Π̂(�a) for action sequences for a complete epoch and environments which allow the
construction of an effective oracle OE, equation (2). This is e.g. possible for agents in deterministic strictly
epochal environments which use mapping as described in appendix B.

We can create a hybrid quantum classical learning agent based on this classical agent. The hybrid agent
alternates between quantum epochs used for quantum exploration and classical epochs used for policy
updates as shown in figure 1 and described in detail below:

(a) Given the classical probability distribution Π̂(�a) of action sequence, estimate a lower bound Qmin on
the winning probability

Q =
∑

{�a|r(�a)>0}
Π̂(�a) (3)

and prepare the action state

|ψ〉A =
∑
{�a}

√
Π̂(�a)|�a〉A (4)

and the reward state |−〉R = (|0〉R − |1〉R)/
√

2.

(b) Use several epochs to perform amplitude amplification [29, 30, 33] until a reward is found. This
consists e.g. of the following steps, if the winning probability Q is not known exactly:

(1) Initialize m = 1 and λ = 6/5 and choose a random integer k < m.

(2) Use αok epochs to perform k Grover iterations

|ψ′〉A|−〉R = (FOE)k|ψ〉A|−〉R, (5)

where F = 𝟙− 2|ψ〉〈ψ| is the reflection around the initial action state.

(3) Perform a measurement on the resulting state |ψ′〉A to determine a possible sequence of actions�a.

(4) Play one classical epoch with the measured sequence of actions�a and record the observed percepts
and reward.

(5) Terminate if the sequence wins a reward; else set m to min(λm,
√

1/Qmin) and restart.
(c) Use the most recent classical information from step b(4) to update the classical policy.

(d) Determine the new probability distribution Π̂(�a) and Qmin according to the new policy and repeat.

The probability to observe a reward in step b(4) after performing k Grover iterations and playing
αok + 1 epochs is given by (see appendix C)

G(Q, k) = sin2
[

(2k + 1) arcsin(
√

Q)
]
. (6)

A classical agent sampling its actions directly from Π̂(�a) would observe a reward with probability Q in each
single epoch. As a consequence, performing Grover iterations leads to observing a reward more frequently
only if Q < G(Q, k)/(αok + 1). This is only the case for winning probabilities Q below a certain threshold
Q � Qmax. This threshold is given by Qmax ≈ 0.3964 for simple learning problems with αo = 1 and the
minimal number of Grover iterations k = 1.

A hybrid agent following the steps b(1)–(5) will automatically decrease the probability to perform
Grover iterations because it always starts with k = 0 each time after it has found a reward. Thus performing
Grover iterations becomes more and more unlikely the larger Q. Nevertheless, it might be advantageous to
fix k = 0, and thus restrict the agent to classical behavior, at a certain point of learning. This behavior can
be steered e.g. by the total number of found rewards or the observed frequency of rewards in the last few
classically played epochs.

The above described hybrid agents finds rewards quadratically faster than a corresponding classical agent
with the same policy Π̂(�a). However, the effect of this quantum-enhanced exploration on the learning time
depends on the used policy update rules and the environment. Two simple examples are (i) a very
exploitative agent in a deterministic environment which chooses to play always the first found rewarded
sequence of action, once it has found it or (ii) a very explorative agent which does not update its policy.

4
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Figure 1. Scheme of a hybrid learning agent: a hybrid agent alternates between quantum and classical epochs. A sequence of
quantum epochs is started by preparing the reward register and the action register in the superposition states |−〉R and |ψ〉A. By
playing αok epochs, the actions state is transformed into (FO)k|ψ〉 whereas the final reward state is equal to its initial states. No
percept information is available during quantum epochs. Consecutively, the agent performs a measurement on the action register
resulting in a single sequence of actions�a. Subsequently, the agent plays one classical epoch where its actions are described by the
measurement result�a. The agent uses the obtained information about percepts and rewards from the classical epoch to update its
policy. Based on the updated policy, the agent decides to either continue with quantum or classical epochs.

In the first case, the quantum-enhanced agent achieves a quadratic speed-up in the learning time. In the
second case, the quantum-enhanced agent usually finds rewards more often than the classical agent. Yet,
both agents never learn, such that no improvement in the learning time can be achieved. For settings where
future rewards and policy updates depend solely on the found rewards, we prove in the next section a
quasi-quadratic improvement of the learning time.

4. Analysis of the hybrid agent

In the following, we compare the behavior of the above described hybrid learning agents with
corresponding classical agents. The behavior of a learning agent depends on the history it has observed.
Hybrid agents only observe percepts and rewards during classical epochs (step b(4)). As a consequence, the
general history of a hybrid agent, containing all actions, percepts and rewards for all epochs, is not well
defined. However, we can define the rewarded history hr, which is the history of an agent reduced to
rewarded epochs. That is, epochs where a non-vanishing reward r > 0 was found. E.g. when a
non-vanishing reward was obtained in every even epoch, the corresponding rewarded history would be
(e2, e4, e6, . . .) with ej containing the sequence of actions, percepts and rewards observed in epoch j. We
define the event of observing a rewarded history hr as the set of all infinite length histories, which reduce to
rewarded histories starting with hr.

Therefore, we consider only environments and agents with a behavior which is completely defined by
their rewarded history. In this case, the behavior of the agent can be described by Π̂(�a) and it only updates
its policy when receiving a reward. In addition, all agents (hybrid and classical) use the same update rules
which are based solely on rewarded epochs. As a consequence, the behavior of all agents is solely
determined by rewarded epochs.

The analysis of the hybrid agent will concentrate on three properties. First, we will show that the
probabilities to observe a given rewarded history are identical for the classical and the corresponding hybrid
agent. Based on these results, we then determine the scaling advantage in the learning time for a hybrid

5
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Figure 2. Simulation of the average reward of hybrid and classical learning agents based on t-PS [34] on a binary tree
environment with 12 layers (212 leaves and 25 rewarded leaves). The maximum reward, given by r = 25, is obtained on the
optimal path through the tree. Leaves reached by leaving the optimal path after x decisions are rewarded with r = 	2(5+x−12)
.
Shown is the average reward of 50 000 agents over time for more explorative agents with β = 0.01 (blue curve) and more
exploitative agents with β = 0.1 (red curve). Further details such as the definition of β can be found in appendix F.

agent with unlimited quantum resources. In the end, we will go one step into the direction of noisy
intermediate-scale quantum (NISQ) computers and investigate achievable improvements based on a limited
number of coherent interactions.

4.1. Distribution of rewarded histories hr

The final quality of a trained agent depends on the initial policy and performed policy updates and thus in
the here considered cases solely on the observed rewarded history. That is the history reduced to rewarded
epochs. As a consequence, a classical agent and a hybrid agent which have observed the same rewarded
history hr obtain the same classical policy. In addition, the probability p(hr) to observe a given rewarded
history hr is equal for a hybrid agent and its corresponding classical agent as stated below and proven in
appendix D:

Theorem 1 Let E be a (time independent) epochal environment with corresponding oracle OE and Acl be a
classical agent with a corresponding hybrid agent Aq as defined above. Then, the probability distribution of
rewarded histories p(hr) for Acl interacting with E and Aq interacting with OE and E are equal.

Theorem 1 leads to several direct consequences when comparing a group of trained hybrid agents with a
group of corresponding classical agents. Consider for example a setup with different possible rewards r. Not
all agents will learn to achieve the maximal possible reward in the long run due to their individual observed
histories. Yet, a group of hybrid agents and a group of corresponding classical agents converge towards the
same average reward as shown in figure 2 due to theorem 1. Or consider groups of agents, where each agent
plays until it has found J rewards. Then, all hybrid agents switch to complete classical behavior and we
compare the consecutive behavior of the group of hybrid agents with the group of classical agents. In this
case, both groups behave exactly similar and the behavior of both groups are indistinguishable from each
other.

In ML, there often exists a trade-off between exploration and exploitation. This manifests itself often in
a trade-off between fast learning and optimal behavior in the long run [3, 35]. An example of such a
trade-off is visualized in figure 2. Here, we considered classical policies depending on some parameter β
influencing the ratio between exploration and exploitation (see appendix F). Exploitative agents (β = 0.1,
red curve) learn faster but get stuck more likely in local maxima. As a consequence, the expected average
reward will be lower in the long run. Whereas explorative agents (β = 0.01, blue curve) learn slower but
reach in the long run a higher expected average reward. This is the case for classical agents as well as for
hybrid agents. In contrast, going from a classical agent to its corresponding hybrid agent, both based on the
same policy, leads to faster learning without sacrificing the expected average reward due to theorem 1.

4.2. Learning time
In order to quantify the speedup of our hybrid agent we define the learning time T(h) of an agent with
history h as the minimal number of epochs t this agent needs to reach a winning probability Q = Qt, (3)
above a predefined learning threshold that is Qt � Ql. We say the learning time is infinite if Qt < Ql ∀ t. A
learning threshold is achievable, if and only if the probability p({h∞ ∈ H∞|T(h∞) = ∞}) = 0 for histories
of agents with infinite learning time is zero.

6
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In general, a speedup in learning is only achieved while the hybrid agent performs amplitude
amplification which is only the case for winning probabilities Q < Qmax (compare section 3). In these cases,
our hybrid agent can achieve the following speedup compared to its corresponding classical agent:

Theorem 2 Let E be a (time independent) epochal environment with corresponding oracle OE and Acl be a
classical agent with a corresponding hybrid agent Aq as defined above. Then, for all achievable reward
probabilities Ql < Qmax, the average learning time of a hybrid agent 〈T〉q and its corresponding classical agent
〈T〉cl are connected via6

〈T〉q � α
√
〈T〉cl〈J〉, (7)

where 〈J〉 denotes the average number of rewards agents need to observe in order to learn.

Hence the hybrid agent learns quadratically faster, while it converges towards the same average policy as
its corresponding classical agent.

Proof. In order to determine the average 〈T〉, we split the learning time into intervals of length tj of
constant policy. Thus, the interval j starts after j non-vanishing rewards have been observed and ends with
the observation of the next non-vanishing reward. In addition, we define J(h) as the number of
non-vanishing rewards an agent with history h has observed until it has learned. As a consequence, the
learning time of an agent with history h is given by

T(h) =
J(h)−1∑

j=0

tj(h). (8)

The average learning time 〈T〉 is thus determined by averaging T(h) over all possible histories h. We
perform this averaging in two steps. First, we average over all histories h which can be reduced to the same
rewarded history hr. Consecutively, we average over all rewarded histories hr.

The policy Π̂, the winning probability Q and thus J depend not on the exact history h but solely on the
rewarded history hr for the learning agents and environments considered here. Thus, a classical agent which
has found already j rewards with rewarded history hr needs on average

〈tj(hr)〉cl =
1

Qj(hr)
(9)

epochs to find the next reward (see appendix E for a more detailed discussion). A quantum-enhanced agent
as described in section 3 finds rewards quadratically faster [29, 30]. As a consequence, the average interval
time 〈tj(hr)〉q for such agents is given by

〈tj(hr)〉q � α√
Qj(hr)

= α
√
〈tj(hr)〉cl. (10)

The learning time 〈T(hr)〉 averaged over all agents with the same rewarded history hr is determined by

〈T(hr)〉 =
J(hr )−1∑

j=0

〈tj(hr)〉. (11)

As a consequence, quantum-enhanced learning agents with a rewarded history hr learn on average in

〈T(hr)〉q �
J(hr )−1∑

j=0

α
√
〈tj(hr)〉cl (12)

� α
√

J(hr)
√
〈T(hr)〉cl (13)

epochs. Here, we have used the Cauchy–Schwarz inequality in the second step.
Averaging 〈T(hr)〉 over all possible rewarded histories leads to (see appendix E)

〈T〉 =
∑
{hr}

p(hr)〈T(hr)〉. (14)

6 With constant α = αs · αo where αs,o are typically of the order αo ∈ {1, 2} and αs ≈ 9
4 .

7
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Note, that the probability p(hr) to observe a given rewarded history is identical for quantum-enhanced
learning agents and their corresponding classical agents due to theorem 1. As a consequence, using again
the Cauchy–Schwarz inequality leads to

〈T〉q � α
∑

hr

p(hr)
√

J(hr)〈T(hr)〉cl (15)

� α
√

〈J〉〈T〉cl, (16)

where 〈T〉q and 〈T〉cl denote the average learning times of the quantum-enhanced agents and classical
agents, respectively. 〈J〉 denotes the average number of rewards an agent with given policy update rules
needs to find in order to learn. 〈J〉 is equal for classical and quantum enhanced agents. �

4.3. Noisy quantum devices
Theorem 2 quantifies the achievable speedup of our hybrid agent assuming the existence of a perfect
quantum computer. However, quantum computers which will be available soon will be noisy and thus
possess limited coherence times. Such behavior can be approximated by assuming that noise can be
neglected for up to αokmax consecutive quantum epochs whereas the effect of noise starts to become crucial
if more than αokmax quantum epochs are performed consecutively. Therefore, the question arises which
improvements can be achieved if only a limited number of epochs can be performed coherently in a row.
That is, we investigate the achievable improvement assuming that the number of Grover iterations k in step
b(2) of our hybrid agent is limited to k � kmax. Obviously, the limitation of k plays only a role if the
winning probability Q, (3), is small such that

Q � Qkmax = sin2

[
π

2(2kmax + 1)

]
. (17)

Here, Qkmax denotes the smallest reward probability which leads to G(Qkmax , kmax) = 1, see (6), when
performing kmax Grover iterations. It is also possible to achieve an improvement in this regime albeit a
linear one as stated in the following theorem:

Theorem 3 Let E be a (time independent) epochal environment with corresponding oracle OE and Acl be a
classical agent with a corresponding hybrid agent Aq as defined above. Then, a hybrid learning agent limited to
maximal kmax sequential Grover iterations interacting with OE can reach achievable reward probabilities
Ql < Qkmax in a learning time 〈T〉q with

〈T〉q � αoπ
2

16

〈T〉cl

kmax
, (18)

where 〈T〉cl is the learning time of the corresponding classical agent interacting with E.

Note, this is a linear improvement in query complexity which can be crucial in certain settings
independent of the running time of the algorithm. Figure 3 shows the performance of limited and
unlimited agents on the binary tree environment described in appendix F. The separation between the
hybrid and the limited agent increases for decreasing initial winning probabilities Q and thus typically with
the size of the environment.

Proof. Again, we first consider a learning agent with a given rewarded history hr before we average over all
possible rewarded histories.

A classical winning probability Qj = Qj(hr) leads after kmax Grover iterations due to (6) to an enhanced
winning probability [29, 30]

G(Qj, kmax) = sin2
[
(2kmax + 1) arcsin(

√
Qj)

]
. (19)

As a consequence, the expected interval time tj (compare proof of theorem 2) of the hybrid agent is given by

〈tj(hr)〉q =
αokmax + 1

G(Qj, kmax)
. (20)

Here, we have taken into account that αokmax epochs are necessary to create kmax Grover iterations plus one
epoch to determine the reward. The denominator can be approximated with the help of the inequality
sin(x) � x · sin(x0)/x0, which is valid in a range 0 � x � x0 � π/2. In our case, we consider the interval
0 � x � x0 =

π
2 .

8
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Figure 3. Comparison of a perfect hybrid agents, a classical agent and two noisy hybrid agents on the same task as in figure 2.
The noisy hybrid agents are limited to kmax = 1 and 2. The classical and the perfect hybrid agent are identical to the ones in
figure 2 with β = 0.01. The difference between the noisy and perfect hybrid agent will increase on harder environments, where
more Grover iterations are required to obtain high probabilities.

Identifying x = (2kmax + 1) arcsin(
√

Qj) and using arcsin(
√

Qj) >
√

Qj leads to

G(Qj, kmax) � 4

π2
(2kmax + 1)2Qj (21)

� 4

π2
4kmax (kmax + 1)Qj. (22)

With the help of 〈tj(hr)〉cl = 1/Qj and 1 � αo, we find as a result

〈tj(hr)〉q � αoπ
2

16kmax
〈tj〉cl. (23)

A summation over 0 � j < J(hr) gives the average learning time 〈T(hr)〉 and the average over all possible
rewarded histories hr leads to (20) due to theorem 1. �

Notice that the inequality can be tightened by using smaller values for x0, allowing to prove higher
improvements for smaller limits on Ql. The extreme case with x0 → 0 leading to sin(x0)/x0 → 1 is
approximately reachable for Ql � 1 and kmax � 1

Ql
leading to

〈T〉q ≈ αo
〈T〉cl

4kmax
. (24)

In general, the total learning process of a quantum-enhanced learning agent with limited quantum
resources can be split into three phases. The first phase is defined by winning probabilities Qj � Qkmax . In
this phase, a linear improvement proportional to kmax is achievable according to theorem 3. The second
phase is defined by Qkmax < Qj < Qmax . Here, a complete Grover search is possible and beneficial and a
quadratic speedup is achieved according to theorem 2. The last phase Qj � Qmax is the phase, where the
hybrid agent reproduces the classical agent and therefore no speedup can be generated in this phase.

5. Conclusions and outlook

In this paper, we analyzed the quantum speedup which can be gained by combining classical RL agents with
quantum exploration. We compared quantum-enhanced learning agents, which alternate between quantum
exploration and classical policy updates, with classical learning agents based on the same policies and
update rules.

For analytical reasons, we considered only agents which fulfilled the following two criteria: first, agents
are able to determine the probabilities for all possible action sequences for one epoch beforehand. Second,
policy updates are completely determined by the rewarded history, that is the history of an agent reduced to
epochs with a non-vanishing reward. We also assumed that if the behavior of the environment changes
from one epoch to another. Then, these changes are again completely determined by the rewarded history.

For this classes of agents and environments, we proved that the probability p(hr) to observe a given
rewarded history for a quantum-enhanced agent is equal to the one for a corresponding classical agent. As a
consequence, a hybrid agent and its corresponding classical agent behave similarly. That is, quantum and

9
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classical agents with the same rewarded history hr follow the same policy and quantum and classical agents
tend towards the same average reward per epoch in the long run.

Based on this result, we proved a quadratic speedup in learning for quantum-enhanced agents compared
to their classical counterparts without sacrificing the quality of the learned solution. Furthermore, we also
analyzed speedups which can be obtained with limited quantum hardware. We demonstrated that a
quantum improvement can also be obtained if only a limited number of consecutive epochs can be
performed coherently.

A proof of principle experiment of a quantum-enhanced learning agent as discussed in this paper has
been demonstrated experimentally with a nanophotonic quantum processor [23]. This concept of photonic
quantum-enhanced learning agents can easily be expanded to more advanced architectures for RL. Indeed,
it is possible to define the policy Π with the help of variational quantum circuits such as photonic networks
[34].

In general, also classical learning agents and environments, which do not obey the criteria mentioned
above, can be combined with quantum exploration. However, the behavior of quantum-enhanced learning
agents in such scenarios might differ from the behavior of the corresponding classical agents. For example,
the probability for an epoch with vanishing reward is different for quantum and classical agents. As a
consequence, policy updates based on epochs with vanishing reward might lead in the long run to different
policies for quantum-enhanced agents and classical agents. Therefore, no general comparison between
quantum-enhanced agents and classical agents about the long term expected reward and learning time can
be made in these cases.

Many learning setups are luck-favoring in the sense that agents which received more rewards in the
beginning also receive more rewards on average in the future (compare [24]). In general,
quantum-enhanced agents will learn faster in such setups. However, the obtainable speedup will depend on
the exact setup. In very rare occasions, an agent which observed fewer rewards in the beginning might
perform better in the long run. We do not expect any quantum speedups in learning in such setups.

In the future, it is necessary to further study realistic learning setups based on general classical agents
and faulty quantum hardware for example with the help of simulations and further numerical analyzes. In
this way, more specific predictions about possible quantum improvements might be gained.
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Appendix A. The history of an agent

We define by Hn the set of all possible histories hn with length n which can be observed by a set of agents.
The probability pn(hn) to observe a history of length n can be determined recursively. Let
hn+1 = ((c1, a1, r1), . . . , (cn, an, rn), (cn+1, an+1, rn+1)) be an extension of the history
hn = ((c1, a1, r1), . . . , (cn, an, rn)). Then, the probability pn+1 to observe the history hn+1 is given by

pn+1(hn+1) = PR(r|sn+1, sn) · P
(
sn+1|an+1, sn

)
·

· Πhn

(
an+1|cn+1

)
· PC(cn+1|sn) · pn(hn). (A.1)

Here, PC(cn+1|sn) denotes the probability for a percept cn+1 if the environment is in the state sn, Πhn

denotes the actual policy of an agent with observed history hn, P
(
sn+1|an+1, sn

)
the probability that the state

of the environment changes from sn to sn+1 due to action an+1, and PR(r|sn+1, sn) the probability that a
reward r is issued due to the state change from sn to sn+1. The recursion for an environment with initial
state s0 starts with p0(h0) = 1 and PC(c1|s0).

In order to solve a given task, agents with different histories usually need a different number of
interactions n. Therefore, it is necessary to extend the probability distribution pn(hn) over the set Hn of
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Figure B1. Map generated by an agent interacting with a deterministic strictly epochal environment where each epoch starts
with a percept c0 = s0 followed by 3 actions a (small filled circle) and 3 percepts c = s (open circle). Already observed transitions
appear in black solid lines. The map assumes that actions/state transitions not chosen/observed so far lead to new percepts (grey,
dashed).

histories with length n to the probability distribution p(hn) over the set of infinite histories H∞ [36]. Here,
p(hn) now determines the probability that an infinite long history h∞ starts with hn via

p(hn) := p({h∞|h∞ starts with hn}) = pn(hn). (A.2)

Appendix B. Mapping

In general, learning agents can use mapping or model building [3] in order to determine their next actions.
A map of the environment can e.g. be generated by not only generating and storing a policy Π(a|c) for
every observed percept c, but also keeping track of observed transitions (cn, an) → cn+1. Such a map can also
include actions and percepts not taken/observed so far.

Figure B1 shows an example of a map for a deterministic strictly epochal environment where percepts c
are equal to the state s of the environment and each epoch consists of 3 consecutive actions. In each step,
the agent can choose between two different actions a and a

′
. Here, the agent already observed that starting

an epoch with the sequence of actions (a1 = a, a2 = a′) leads to the same percept as starting with
(a1 = a′, a2 = a). However, so far it has not observed e.g. the percept resulting from starting the epoch with
the action sequence (a1 = a, a2 = a). Therefore, the agent assumes that this sequence of actions will lead to
a new, so far unobserved percept.

An agent can use such a map to plan its action for the next epoch by defining the policy

Π̂(�a) =
L∏

j=1

Π(aj|c(a1, . . . , aj−1)) (B.1)

for complete action sequences of an epoch. Here, it uses for unknown percepts c the equal distribution

Π(aj|c(a1, . . . , aj−1)) =
1

‖A‖ if c unknown, (B.2)

where ‖A‖ determines the number of possible actions.
The above described method is only one possible way how an agent can plan its actions for the next

epoch. The important point is that it is possible to define Π̂(�a) at the beginning of each epoch.

11
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Appendix C. Turnover from quantum to classical search

A classical agent can observe a reward with probability Q, (3) in every epoch. As a result, the average reward
obtained by classical agents following the policy Π̂ is given by

〈r〉cl =
∑
{�a}

r(�a)Π̂(�a) = r̄cl Q. (C.1)

Here, we introduced the average reward of a winning sequence

r̄cl =
∑

{�a|r(�a)>0}
r(�a)Π̂(�a)/Q (C.2)

for classical agents, which is equal to the average reward conditioned on observing a reward r > 0.
A quantum-enhanced agent uses αok epochs to perform amplitude amplification to determine a possible

rewarded sequence of actions. The agent will receive in an additional consecutive epoch a reward with
probability [30]

G(Q, k) = sin2 ((2k + 1)Θ(Q)) (C.3)

Θ(Q) = arcsin
√

Q. (C.4)

Thus, quantum-enhanced agents receive on average a reward of

〈r〉q = r̄q
G(Q, k)

αok + 1
, (C.5)

where r̄q is the average reward of a winning sequence of a quantum-enhanced agent. Due to theorem 1, we
find r̄q = r̄cl = r̄. As a consequence, a learning agent with a winning probability Q will receive on average
more rewards when performing quantum exploration for k epochs if

Q <
sin2

[
(2k + 1) arcsin(

√
Q)

]
αok + 1

. (C.6)

The inequality can only be solved numerically. For αo = 1 and k = 1 we find that a quantum-enhanced
agent finds on average more rewards if Q < Qmax ≈ 0.3964.

Appendix D. Theorem 1

In the following, we give a detailed proof of theorem 1. Please keep in mind that we consider in this paper
only agents and environment, where all changes in the general behaviors, such as e.g. policy updates, are
completely determined by their rewarded history. Therefore, we introduce Π̂j as the policy of an agent in the
jth interval starting after the jth rewarded epoch and ending with the j + 1th rewarded epoch. As a result,
the probability to play the sequence of actions�a in an epoch in the interval j is given by Π̂j(�a).

The probability to get no reward in an epoch in the jth interval is given by∑
{�a|r(�a)=0}

Π̂j(�a) = 1 − Qj (D.1)

with Qj, (3), being the reward probability in this interval. The probability pj(tj,�aj) that the jth interval
contains tj epochs and ends with the action sequence �aj with r(�aj) > 0 is given by the probability to play
tj − 1 epochs without getting any reward and play then the action sequence �aj leading to

pj(tj,�aj) = (1 − Qj)
tj−1Π̂j(�aj). (D.2)

As a consequence, the probability pj(�aj) that playing the action sequence �aj will lead to the jth observed
reward is given by

pj(�aj) =
∞∑

tj=1

pj(tj,�aj) (D.3)

=
1

Qj
Π̂j(�aj), (D.4)
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where we used the geometric series in the second step. The probability to observe a given rewarded history
hr can be expressed with the help of the conditional probability p(hr|�a0), denoting the probability to observe
hr if �a0 was observed as the first rewarded action sequence via

p(hr) = p(hr|�a0)p0(�a0). (D.5)

The same considerations hold for all other time intervals, leading together with (D.4) to

p(hr) =
J−1∏
j=0

Π̂j(�aj)

Qj
, (D.6)

where we assumed that the rewarded history hr contains J rewarded epochs.
Amplitude amplification [29, 30] enhances Qj but preserves the ratio Π̂j(�aj)/Qj. The classical and the

hybrid agent start with the same policy Π̂0. As a consequence, their probability to observe �a0 as the first
rewarded action sequence is equal leading to identical probabilities p(hr) for rewarded histories of length
J = 1. If a quantum and a classical agent played the same �a0 as first rewarded action sequences, they follow
the same policy Π̂1 in the next interval leading together with (D.6) to identical distributions for rewarded
histories.

Appendix E. Average learning times

In the following, we summarize more detailed discussions concerning the proof of theorem 2.
The expected learning time 〈T(hr)〉 for an agent with a given rewarded history can be expressed by

〈T(hr)〉 =
J(hr)−1∑

j=0

〈tj(hr)〉, (E.1)

because the behavior of the here considered agents depends solely on the rewards an agent has found so far.
The probability pj(tj,�aj) that the duration of interval j is given by tj epochs and that interval j ends with

the rewarded action sequence �aj is given by (D.2). The probability that the duration of interval j is given by
tj conditioned on that the agent’s rewarded history is given by hr is therefore determined by

pj(tj|hr) =
pj(tj,�aj)

pj(�aj)
= Qj(1 − Qj)

tj−1. (E.2)

As a consequence, the average interval time 〈tj(hr)〉 of an agent with rewarded history hr is given by

〈tj(hr)〉 =
∞∑
τ=1

τpj(τ |hr) =
1

Qj
(E.3)

as used in (9).
In the main text, we then express the average learning time 〈T〉 as an average of the learning times

〈T(hr)〉 for different given rewarded histories in (14). This equation follows from the following
considerations.

Let p(T, hr) be the probability that an agent has learned after T epochs and has observed the rewarded
history hr and let Hr be the set of all possible rewarded histories. Then, the average learning time is
determined by

〈T〉 =
∞∑

T=1

∑
hr∈Hr

Tp(T, hr). (E.4)

The average learning time 〈T(hr)〉 of an agent conditioned on observing hr is given by

〈T(hr)〉 =
∞∑

T=1

Tp(T|hr) (E.5)

with p(T|hr) = p(T, hr)/p(hr). As a consequence, we find

〈T〉 =
∞∑

T=1

∑
hr∈Hr

Tp(T|hr)p(hr) =
∑

hr∈Hr

〈T(hr)〉p(hr). (E.6)
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Figure F1. Binary tree environment with l = 3 layers. The correct sequence (green) is rewarded with a reward r = 2k, leaving the
correct sequence after x correct decisions leads to an exponentially decaying reward with r = 	2(k+x−l)
 (green numbers). Each
binary choice is connected to a so-called h-value determining the probability to choose this option. At the end of each epoch
(after l decisions) all h-values along the chosen sequence are increased by the obtained reward.

Appendix F. Binary tree environment

In this section, we describe the binary tree environment used as an example environment for figures 2 and
3. Additionally, we introduce a learning agent based on t-PS [34] simplified and reduced to the essentials for
this binary tree environment. For a more detailed introduction of projective simulation or t-PS we
recommend [28, 34]. The source for this simulation is available at [37].

In the binary tree environment, see figure F1, an agent has to perform l sequential binary decisions in an
epoch. Then, a reward is issued and a new epoch starts. One sequence of action is marked as the correct
sequence and rewarded with a reward r = 2k. Leaving the correct sequence after x correct decisions leads to
an exponentially decaying reward of r = 	2(k+x−l)
. The number of rewarded action sequences (r > 0)
relative to the complete number of possible action sequences reduces exponentially with l − k. On the other
hand, the reward difference within the rewarded subspace grows exponentially with k.

This environment inhabits two important features making it an ideal example for comparing the here
described hybrid agent with its classical counterpart: (i) it is hard to find a rewarded action sequence
leading to a big possible speedup for the hybrid agent. (ii) Classical optimization within the rewarded
subspace leads to higher rewards, allowing a comparison of the quality of the found solution between the
hybrid agent and its classical counterpart.

To complete the example, we will need an agent interacting with this environment. As this paper does
not focus on how to construct a good classical agent, we will use just a simple agent suited for this
environment. We would like to emphasize that more advanced agents could be used, too. Our simple agent
assigns an h value to each possible choice. Each of the l binary decisions is decided by a random decision
governed by a softmax policy. The yth decision of an epoch is thus governed by the probabilities

piy = 0.5 + 0.5 tanh
[
β(hi1,...,iy − hi1,...¬iy )

]
, (F.1)

with iz ∈ {0, 1}∀ 1 � z � y and ¬i denoting the alternative choice to i. The h values are initialized by the
same value (h = 1). However, the exact initial value is irrelevant because the policy only depends on the
difference between the h-values. If a rewarded was observed for the sequence�i = (i1, . . . , il), all h values of
the sequence are increased by the obtained reward r via

hi1,...,iy → hi1,...,iy + r ∀ 1 � y � l. (F.2)
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