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Theoretical Fundamentals: UVLM
DIR

Basic VLM equation is solved for T’
AIC -T = RHS —(C<I¢/

The right hand side sums all velocities

4

T

RHS = _(vrb + Vwake T Vgust + Uelastic) o

Wake shedding procedure accounts for Kelvin's theorem
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Unsteady forces from temporal derivative of circulation
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Steady and quasi-steady forces from effective circulation = = N
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Linearized Formulation and Stability Analysis
DLR

Derivation of a time-discrete state space model for the aerodynamic forces (which become a function of the circulation of
the wake panels) and the structural dynamics, see Jonathan’s Master Thesis (on LDWG Teamsite)

Integration of both models into a monolithic aeroelastic state-space model
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Monolithic aeroelastic state space model in discrete time (no input vector here)
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Eigenvalue Analysis on Dynamics Matrix of entire aeroelastic system (p-method)
- Eigenvalues in time discrete form z;, transformation into time continuous form, 4;
« Stability criterion: Re (4;) < 0
* Re (4;) - Damping
« Im (4;) = Frequency




Static Coupling Simulations

Definition of VL lifting surfaces MSC Nastran FE model
DLR
Calculate VL grid metric: Build coupling model:
. _ _ _ _ _ * location of vortex rings nodes « select FE nodes on outer surface
« Static coupling simulations using a vortex-ring, zero-order VLM » panel areas and normals » calculate coupling matrix H
coupled spatially to Nastran SOL400 in the loop (with GFEM) ... |

E Calculate modal structural data !
(eigenvectors and eigenvalues) !

. .. .. Calculate AIC matrix
» Aeroelastic stability analysis is to be done about states of large |

L}
-

deflections, so we need pre-loaded mode shapes Caleulate airfoil polars by XFOIL preprocessing /
: for particular Reynolds numbers TSR
 Normal modes analysis: (K —w*M)p =0 , initialization

- on deformed structure: (K — w?M)¢p =0

Interpolate structural ) [ Update VL grid metric ]
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Static Coupling Simulations

DLR
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Static Coupling Simulations
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Static Coupling Simulations

DLR
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Dynamic Stability boundaries

DLR
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Extensions to account for aerodynamic nonlinearities (stall)#
DLR

» Determine the effective lift coefficient of each stripe
* Reduce circulation of aero panels to match user-defined maximum lift coefficient of stripe

e Correct amount of circulation is shed into wake
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Extensions to account for aerodynamic nonlinearities (stall)#
DLR

* ¢, max (airfoil section) adjusted to match maximum lift coefficient predicted from CFD simulation
» Steady polar of the wing becomes realistic when compared with CFD results
» The approach can be applied to unsteady simulations as well, but neglects dynamic effects (e.g. dynamic stall)
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Nonlinear, Unsteady Time Domain Simulations (LCO) #
DLR

* Nonlinear structural model (extended modal approach)
for structural dynamics yields LCO with realistic
amplitude (= 0.05 m at wingtip)

 Maximum airfoil lift coefficient = 0.9

* LCO frequency = 33 Hz

« Significant differences in LCO shape, linear structural
modes introduce nonlinear damping due to stretching of
aerodynamic panels

Linear modal approach Nonlinear modal approach
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see Philipp’s Master Thesis (on LDWG Teamsite)



Workflow for CFD grid generation

0.1 DLR
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» The real geometry of the TU Delft Pazy Wing 01y ~— — — o2 |

was 3D scanned and a high quality CAD file o ' o oxe '

was generated by NASA (see Teamsite) - .
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» A hybrid CFD grid with a structured surface NACA0018

mesh for the upper and lower wing was 010 02 04 y 06 03 |

generated based on the scanned geometry
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Static Coupling Results

» Angle of attack polar for 50 m/s airspeed

« Slightly different structural deformations due to
different Cl__, for fully turbulent and transitional
flow

see SciTech presentation this Tuesday EDLR
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Conclusions #
DLR

Summary:
» Extension of the tools used at DLR for the geometrically nonlinear analysis of aircraft structures at low speed

 Derivation of methods for the linearization of the aeroelastic model (UVLM)

« Combination of the linearized aerodynamic model with a linearized structural model to build a monolithic,
linearized aeroelastic model of the system

» Implement methods for stability analysis of the system

* DLR’s contribution to the Large Deflection Working Group of the AePW3
« Static coupling simulations
* Linear stability analysis for various angles of attack

Outlook and Next Steps:
« CFD time domain forced motion simulations with large mean angle of attack and large amplitude
« CFD time domain flutter and LCO simulations and validation with experimental results




