FROM EMISSION TO IMMISSION - AIRCRAFT NOISE RESEARCH AT DLR GÖTTINGEN

01.12.2022 i-LUM Doktoranden-Kolloquium HAW Hamburg

Lothar Bertsch, DLR Göttingen

previous contact with HAW

- contact to Prof. Scholz (some years ago)
 - Diplomarbeit with TU Braunschweig and DLR
- work featured in Mobiles (2015)

- PhD candidate from HAW at DLR Göttingen (until 2021)
- Prof. Akkermans: joint M.S. thesis (2022)

content of talk

research teams & tasks

introduction

- (mixed fidelity) low-noise aircraft design
- challenges

summary/conclusion

research teams & tasks

3 dedicated teams (each with staff of 3-4): scenario noise (since 1994), low-noise a/c design (since 2014), and small aircraft noise and local pollutants (since 2022)

research teams & tasks

prediction

- from emission to immission along entire flight trajectory
- strongly multi-disciplinary
 → account for relevant disciplines

reduction

- radical noise goals, e.g., ACARE, not achievable with technology retrofit
 - → required measures: combination of retrofit, operation, and design
- main acoustic properties defined by design
 - → noise as early **design objective**

- emission = source
- propagation (through turbulent atmosphere)
 - dependent on freq / noise source here: <u>atmospheric attenuation</u>-
 - independent of freq / noise source
 - <u>distance (geometric</u> spreading)
 - moving source effects: for example: <u>Doppler</u> shift
- immission = receiver situation

introduction: noise source categories (here: tube-and-wing a/c w. turbofan)

interaction noise source

simple example

interaction noise source

real life example:

introduction

noise source ranking in reality

- complex orchestra of noise sources → varying rank-order of sources, esp. approach
- approach situation:
 - observer location ~ 12 km prior runway threshold
 - aircraft at ~ 1000 m altitude
 - configuration: mid high-lift / no gear
 - engine setting: low
 - maximum noise level (A-weighted) ~ 70 dBA
- departure situation:
 - observer location ~ 11 km after runway threshold
 - aircraft at ~ 1300 m altitude
 - configuration: clean
 - engine setting: high
 - maximum noise level (A-weighted) ~ 70 dBA

(mixed-fidelity) low-noise aircraft design simulation process

- in-house a/c design process w. fully embedded noise assessment
 - componential & parametric noise simulation
 - interfaces to process external data
- external a/c: noise evaluation (incl. flight simulation)
 - common simulation plattform <u>RCE</u>
 - common data language <u>cpacs</u>

 assessment of arbitrary noise descriptors at arbitrary receivers

(mixed-fidelity) low-noise aircraft design external input data

- numerical or experimental data (typically source information: emission)
- absolute or delta values

(mixed-fidelity) low-noise aircraft design external input data

(mixed-fidelity) low-noise aircraft design tube-and-wing aircraft: result validation

- comparison with experimental data
 - components: windtunnel data / engine testbed
 - overall aircraft: measured fly-over data, e.g., A319*, A320, B747, Dornier 228, and VFW 614
 - available data bases (cert. levels, NPD)
- comparison with numerical data
 - components: Hi-Fi aeroacoustic simulation
 - overall aircraft: tool-to-tool** comparison
- (plausibility/feasibility check: textbook, existing knowledge ...)

(mixed-fidelity) low-noise aircraft design multi-level simulation

- three-level approach: component, single aircraft, and scenario
 - scenario simulations according to Doc 29, AzB, DIN or physics-based sonAIR

challenges

 super sonic transport noise certification (not further discussed today)

 simulation uncertainties (not further discussed today)

- perception influenced design
- advance air mobility noise assessment (single flight & scenario)

17 hi

propulsion challenges advanced air mobility (and drones)

- parasitic interaction aerodynamic
- dominating interaction noise \rightarrow highly dependent on operating condition
- examplary vehicles:

challenges advanced air mobility (and drones)

- inherent unique challenges
 - high number of flight movements (much more than helicopters)
 - operation in close proximity to densely populated areas
 - short propagation distances (no advantageous atmospheric attenuation)
 → higher frequencies are not attenuated
 - street canyons \rightarrow reflections
 - unprecedented and/or additional noise exposure for large parts of the population

challenges advanced air mobility (and drones)

- acceptance of AAM ??
 - community disturbance: increase in perceived levels due to certain factors
 - for example equivalences from old ISVR study *:
 - negative reaction to leisure flying + 5 dB(A)
 - poor community/airfield relations + 10 dB(A)
 - fear of crashes + 10 dB(A)
 - nobody acts on complaints + 20 dB(A)
 - aircraft are flying too low + 20 dB(A) (equivalences are not reversible)
 - example: comparison of drone to car drive-by (video © Prof. Shane Ross, Virginia Tech, 2021)
 - significantly different perception of video
 - magnitude of level does not reflect the problem (selection of metric?)

*) Ollerhead, J. et al.: "A Study of Community Disturbance Caused by General and Business Aviation Operations", ISVR, University of Southampton, U.K. Department of Transport, July **1988**

summary & conclusion

- main reserach activities in Göttingen: prediction & reduction of a/c noise
- challenges: SST, AAM & drones, perception influenced design, and simulation uncertainties
- most important lessons learned for noise assessment
 - caution with "representative" or "typical" situation: magnitude of contributions and rankorder/dominance of sources NOT constant
 - avoid overly simplified assessment (no meaningful results)
 - don't focus on fixed operating conditions
 - don't focus on few observer locations
 - apply multiple noise descriptors (evaluation biased by noise descriptor!)
- AAM & drones
 - acceptance issue
 - interaction noise source are dominant
 - short distances \rightarrow frequency content (emission!)
 - carefull with differential engine control \rightarrow annoyance
 - too simplified assessment can be completely off!

Questions?

contact:

22

Dr.-Ing. Lothar Bertsch, +49 551 709 2473, <u>lothar.bertsch@dlr.de</u>, Institute of Aerodynamics and Flow Technology, DLR Göttingen challenges perception influenced design TM

H2020 project ARTEM: BWB

Aircraft Auralization Current Long-Range Aircraft - Tube & Wing VS. Future Concept (2050) - Blended Wing Body contributing to the Horizon 2020 project

challenges uncertainty quantification

- quantification of simulation uncertainties:
 - essential for mixed-fidelity methods -
 - essential for dose-response studies —
- overall UQ:
 - input uncertainty
 - model uncertainty
 - propagation uncertainty
- approach: first-order second-moment (FOSM)
 - linearization / Taylor approximation
 - valid for small uncertainties: good agreement with Monte Carlo / Polynomial Chaos
 - fully embedded assessment (1 run): spacial and temporal distribution

