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Abstract

Traditionally, robots are regarded as universal motion
generation machines. They are designed mainly by kine-
matics considerations while the desired dynamics is im-
posed by strong actuators and high-rate control loops. As
an alternative, one can first consider the robot’s intrinsic
dynamics and optimize it in accordance with the desired
tasks. Therefore, one needs to better understand intrinsic,
uncontrolled dynamics of robotic systems. In this paper we
focus on periodic orbits, as fundamental dynamic proper-
ties with many practical applications. Algebraic topology
and differential geometry provide some fundamental state-
ments about existence of periodic orbits. As an example,
we present periodic orbits of the simplest multi-body sys-
tem: the double-pendulum in gravity. This simple system
already displays a rich variety of periodic orbits. We clas-
sify these into three classes: toroidal orbits, disk orbits and
nonlinear normal modes. Some of these we found by ge-
ometrical insights and some by numerical simulation and
sampling.

1 Introduction

The traditional approach to robot motion generation is
to first plan trajectories on a kinematic level and then de-
velop controllers for tracking the planned trajectories. The
robot hardware, and therefore its dynamics, are considered
to be given a priori. As the robot is understood as a univer-
sal motion generation machine, the ideal controller must
track any trajectory to the best extent possible, leading
to the ideal of a fully decoupling controller. This compen-
sates the intrinsic dynamics and leads to simple error dy-
namics; for example, fully decoupled, second-order linear
differential equations in computed torque and operational
space control [24, 27]. Theoretically, one could control an
elephant to jump like a flea this way. Despite the huge suc-
cess of this approach in robotics, the limitations are also
obvious and well known: actuator saturation, model er-
rors, and unmodelled dynamics lead, in the extreme case,
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to severe performance limitations, robustness problems up
to instability, and high energy consumption.

An alternative perspective has been taken in robotics
for a long time as well, leading to minimalistic and
passivity-based control [18, 3], bio-inspired design, embod-
ied intelligence, passive walkers [29, 42], and locomotion
template anchoring [21]. When operating a robot on tra-
jectories matching its natural dynamics, one only needs
very small control action. Such trajectories correspond to
geodesics with respect to the Jacobi metric. Also research
in neuroscience suggests that humans operate their arms
on geodesics [6, 19]. Especially, for robots that are sup-
posed to perform quite specific, periodic, or quasi-periodic
motions most of the time, such as in legged locomotion,
linking the design of the robot and its intrinsic dynamics to
its desired task promises benefits in terms of performance
and energy efficiency. Paraphrasing Rodney Brooks [8],
we would say Elephants don’t play hopscotch either. Also
industrial robots, when used in large production lines, per-
form mostly very repetitive motions. Energy efficiency
becomes relevant here as well, in the context of CO2 neu-
trality, while maximizing speed and/or force is always the
central concern.

In this paper we contribute some insights into under-
standing intrinsic robot dynamics as methodologies to gen-
erate highly efficient motions. To this end, we go back to
the roots of mechanics, taking a closer look at the prin-
ciples of least action and interpreting them geometrically.
Although these principles are dating back to Maupertuis,
Euler, Lagrange, Jacobi, and Hamilton, almost three cen-
turies of developments in differential geometry, algebraic
topology, and of numerical methods, make it worth taking
a fresh look at their meaning and implications. We address
motions that can be performed at constant total energy,
in particular periodic motions. Although our intuition of
frictionless, constant energy behavior of robot dynamics
is that of chaotic or at least very complicated motions, it
turns out that there are even more periodic, regular mo-
tions than in general linear systems. As an example, we
will present the zoo of intrinsic periodic motions of the
double pendulum, i.e., of the most basic, 2 DoF robot dy-
namics.

1.1 A Very Short Primer on Robot Dynamics

The classical way of deriving the equations of motion
of mechanical systems is based on the Lagrange formal-
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ism [28, 31, 4, 41]. One defines a Lagrangian

L(q, q̇) = T (q, q̇)− U(q) (1)

as the difference of kinetic energy T (q, q̇) and potential en-
ergy U(q), with q ∈ Q being configuration variables and Q
the configuration space. We integrate the Lagrangian over
candidate trajectories q(t) using the Hamiltonian action
integral

SH(q) =

∫ t2

t1

L(q, q̇)dt. (2)

The action integral is a functional: it takes an input func-
tion of a single variable and outputs a real number. For
the Hamiltonian action integral, this input is a function
q : R → Q of time and the output is the total action of
the mechanical system on q(t) from t1 to t2. Then we
take Hamilton’s Principle of Least Action to select a true
system trajectory q̂(t) out of the canditates:

The system takes a trajectory q̂(t) between q1 =
q(t1) and q2 = q(t2), that extremizes SH(q̂) over
all possible smooth paths satisfying the given
boundary conditions.

Using variational calculus, the extremizer for (2) locally
satisfies the Euler-Lagrange equations

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (3)

The resulting equations of motion can be, in absence of ex-
ternal generalized forces, written in the well-known stan-
dard form

M(q)q̈ +C(q, q̇)q̇ + g(q) = 0 (4)

with mass matrix M(q), potential forces g(q) and Cori-
olis and centrifugal forces C(q, q̇)q̇. From this step on,
one classically only uses (4) for analyzing the dynamics of
the multi-body system. The power and large variety of
applications make us not spend too many thoughts on the
meaning of the initial action integral (2), which is merely
considered a creative intermediate step needed to arrive at
the Euler-Lagrange equations.

We would like to go one step back and introduce some
classical results directly derived from an alternative ver-
sion of the principle of least action: we look at the
Maupertuis-Euler-Lagrange-Jacobi formulation. We will
take advantage of this in gaining new insights into the in-
trinsic dynamics of conservative mechanical systems, espe-
cially regarding the existence and numerical computation
of periodic trajectories of various types. Although this
body of work, leading to some remarkable insights, is still
today a topic of active research in mathematical physics
and theoretical mechanics, it seems to be largely unknown
to the robotics community. We believe that the theoretical
results of the last decades as well as the powerful numeri-
cal tools and the computation power available today might
lead to many applications in robotics.

1.2 Mauptertuis’ Principle of Least Action

If the Hamiltonian H(q, q̇), which in robotics is identi-
cal to the total energy, stays constant during motion, time

can be completely eliminated from Hamilton’s principle of
least action, leading to Maupertuis’ principle

SM (q) =

∫ q2

q1

pdq, (5)

where p = ∂L/∂q̇ is the generalized momentum, expressed
as a function of position along the trajectory of constant
energy [4]. These two principles of least action can be
derived from each other in the case of constant energy [15].
The elimination of time, and thus of velocities, has two
major implications:

1. the search for trajectories of the systems can be per-
formed in the n-dimensional configuration space in-
stead of the 2n-dimensional phase space; and

2. one can access a huge body of results from Rieman-
nian geometry and algebraic topology.

If parametrizing the curve by time, (5) will take the form

SM =

∫ t2

t1

2T (q, q̇)dt. (6)

Let’s compare: in Hamilton’s principle of least action we
fix the endpoints q1, q2 and the corresponding times t1,
t2, but we do not fix the total energy. We find trajec-
tories of the system using this principle. In Maupertuis’
principle we fix the endpoints q1, q2 and the total energy,
but do not care about times. We find configuration paths
only, without velocity information. We can, however, re-
construct time and velocity from the configuration path
considering the fixed total energy. For a purely geomet-
ric formulation of conservative motions, geodesics play a
central role. We introduce them now.

1.3 Geodesics on Riemannian Manifolds

The notion of geodesics is one of the most basic concepts
in differential geometry [32]. Let (M, g) be a Riemannian
manifold1 with metric gij . A geodesic is the straightest
curve between two points [32]. Let γ : [s1, s2] → M be a
parametric curve. It will be called geodesic if it extremizes
the arc-length integral2

L(γ) =

∫ s2

s1

√
gijγ′iγ′jds, (7)

with γ′ = dγ/ds. In general the extremum does not need
to be a minimum. For example, on a sphere, geodesics
are both segments of the great circle passing through two
given points, which is unique if the points are not antipo-
dal. Fig. 1 illustrates the principle in the Euclidean space
(R2, δij). For this example, the blue straight line is the
globally shortest path and the only geodesic. Geodesics,
and thus extremizers of (7), satisfy the geodesic equa-
tion [40, 25]

∂2γa

∂s2
+ Γa

bc

∂γb

∂s

∂γc

∂s
= 0, (8)

1We cannot introduce manifolds here. Great starting points are
the books by T. Needham on differential geometry [32], and by F.
Morgan on Riemannian geometry [30].

2We use Einstein notation in this paper: whenever one up-down
pair of indices match, we implicitly sum over them. Example:
gija

ibj :=
∑

i

∑
j gija

ibj
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Figure 1: Geodesic on Euclidean space. Blue shows a
geodesic and orange non-geodesics.

where Γa
bc are Christoffel symbols of the second kind de-

rived solely from the metric

Γa
bc =

1

2
gai

(
∂

∂xc
gib +

∂

∂xb
gic −

∂

∂xi
gbc

)
, (9)

where gai is the inverse of gai, i.e., g
iαgαj = δij .

1.4 A Purely Geometric Perspective on Lagrangian
Mechanics

Starting from Maupertuis’ principle of least action (5),
(6), it can be shown that trajectories of constant energy
between two points are geodesics with respect to the Jacobi
metric [4, 12, 10]

Jgij = 2(E − U(q))mij , (10)

where mij is the inertia tensor. The derivation of the
Jacobi metric is based on this insight: if energy is con-
stant (T (q, q̇) + U(q) = E), then velocity can be ex-
pressed as a function of position on any trajectory. So
let us parametrize a motion along the curve γ instead of
time t by arc length s, which is in bijective relation s(t) to
time. With the notation q′ = dq/ds we have:

2T (q, q̇) = mij q̇
iq̇j = mijq

′iq′j
(
ds

dt

)2

= 2(E − U(q)).

(11)
This relates the differentials dt and ds

dt =

√
mijq′iq′j

2(E − U(q))
ds. (12)

Using 2T = 2(E − U) allows to remove T from (6). We
also substitute t with the curve parameter s and get

SM =

∫ t2

t1

2T (q, q̇)dt

=

∫ s2

s1

2(E − U(q))

√
mijq′iq′j

2(E − U(q))
ds

=

∫ s2

s1

√
2(E − U(q))mijq′iq′jds

=

∫ s2

s1

√
Jgijq

′iq′jds, (13)

which is indeed exactly the arc length with respect to the
Jacobi metric (10). This is remarkable! Isoenergetic tra-
jectories of the multi-body system in a potential field are
geodesics on the manifold (Q, Jg), where Q is the configu-
ration space. This eliminates velocities from the problem
- it is purely about curves on the configuration space. The

solutions describe only the path itself, not the timing along
it. Velocities are obtained by scaling the tangent according
to q̇ = q′ds/dt: we need to scale the tangent to satisfy the
constant energy condition. We can also reconstruct time
by integrating (12).

For potential-free systems the metric is proportional to
the inertia tensor Jgij = 2Emij and the constant fac-
tor can be ignored when searching for geodesics. Thus,
for potential-free rigid body systems, trajectories are
geodesics w.r.t. the inertia tensor. In this case, the paths
are independent of the energy, varying the energy only
changes the speed used to trace out the geodesics in config-
uration space. In contrast, for systems in potential fields,
the geodesics generally vary with the total energy E, as
the Jacobi metric is energy-dependent. The necessary and
sufficient conditions for the paths to be independent of en-
ergy also in presence of potential energy have been derived
in [2].

1.5 Algorithms: Shooting versus Extremizing Arc
Length

How can we use the insights presented so far to find
intrinsic paths of dynamic systems? The basic example
is still the path of constant energy between two points
(Fig. 1), which can be, however, easily extended to pe-
riodic paths of line topology and to closed paths. The
approach mostly used in robotics for finding a path be-
tween the points qA and qB in Fig. 1 is to choose an ini-
tial guess for the velocity q̇A and ”shoot” from the initial
state (qA, q̇A), i.e. simulate the robot dynamics under ad-
ditional constraints of time, energy, etc. A measure of the
amount by which the point qB is missed by the path is
fed to the optimization algorithm, which will adapt the
initial velocity q̇A until it will hopefully hit the point qB .
Obviously, for long paths, the problem is not very well con-
ditioned and there exist many improvements, for example
by multiple shooting algorithms. For periodic trajectories,
the Poincaré map gives a similar procedure for optimiza-
tion, based on simulating the system dynamics. As a basic
principle, one optimizes in the space of curves which are
feasible solutions of the differential equation, trying to sat-
isfy the boundary conditions.

In contrast, by using the principle of least action, one
optimizes in the space of curves satisfying the boundary
conditions, i.e. passing through the points qA and qB ,
but which are not necessarily solutions of the system’s
differential equations (yet). The algorithms then make
these curves system trajectories by zeroing the amount
by which the curves fail to satisfy the geodesic equation.
Equivalently, the algorithm extremizes the arc length in
the corresponding Jacobi metric, which can be intuitively
thought of as contracting rubber strings on the manifold.
We look in more detail at this algorithm in the following.

2 String Relaxation

Imagine you take a string and fix the two ends to two
distinct points. Now think of the string as a rubber band:
it will naturally contract to the (locally) shortest possible
path between the two endpoints.

Suppose we have a not (yet) geodesic curve γ(s, t),
which we would like to converge to a geodesic as t → ∞.
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γt(k)
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Figure 2: Discrete string in Euclidean space

We take the geodesic equation and make γ(s, t) satisfy it
more and more over time by the PDE

∂γa

∂t
=

∂2γa

∂s2
+ Γa

bc

∂γb

∂s

∂γc

∂s
. (14)

Let’s discretize γ(s, t) in space and time and write it
as γt(k) = γ(k∆s, t∆T ) (Fig. 2). We use central differ-
ences for the first derivatives and also discretize the second
derivative. This results in the update rule

γa
t+1(k) = γa

t (k) + ∆T
γa
t (k + 1)− 2γa

t (k) + γa
t (k − 1)

(∆s)2

+∆T Γa
bc

γb
t (k + 1)− γb

t (k − 1)

2∆s

γc
t (k + 1)− γc

t (k − 1)

2∆s
.

Note that we show here an explicit Euler scheme for
discretizing (14). This is not what one would implement
in practice, but serves to illustrate the idea. Convergence
is rather slow for the explicit scheme as small time steps
must be chosen. For this kind of relaxation dynamics much
faster convergence can be obtained by switching to implicit
solvers allowing to crank up ∆T a lot [16].

2.1 Example: Dynamical System

Let us next try string relaxation on a dynamical system.
We consider the configuration space of a double pendulum
and choose a total energy E. Assume we want a trajec-
tory from a configuration qA to qB . For constant energy,
we can fully capture its dynamics in the Jacobi metric
and make the problem purely geometric. We fix a simu-
lated string at the two configurations qA and qB and let
it contract under the Jacobi metric. Fig. 3 shows one such
example. The dashed blue line in Fig. 3 shows the ini-
tial string. Over the iterations the string converges to the
orange curve. At the same time, the Riemannian length
of the string decreases (blue in Fig. 3b). In orange we
show the convergence velocity of the relaxation measured
by v(t) =

∑
k ||γt−1(k)− γt(k)||.

Once the string has converged to a geodesic γ(s) we
compare it to a forward simulated system. One last step is
to determine the initial velocity q̇A. We scale the tangent
of γ(s) to match the physical energy using the inverse of
(12). We scale the tangent of γ(s) such that the total
energy is preserved

q̇A =

√
2(E − U(qA))

mijγ′i
Aγ

′j
A

∂γ

∂s
. (15)

Starting from the state (qA, q̇A) we simulate the double
pendulum using a Runge-Kutta integration scheme for
some time and obtain the curve shown in orange in Fig. 3c.
We observe that the simulated trajectory follows the re-
laxed string in configuration space. As we still have energy
at qB we pass by it and continue.

In the example we have fixed the string at two fixed
end-points qA and qB . This allows us to find geodesics
connecting two configurations. But nobody stops us from
closing the string by connecting the first and the last vertex
on the string. Then, the string has no boundary conditions
that would hold it in place. Often it will collapse to a
point, but sometimes the topology of the space prevents
this collapse - we will look into this phenomenon in the
next section. In that case we can use the string relaxation
to find periodic orbits.

3 Topological Insights into Periodic Or-
bits

Besides providing algorithms to find intrinsic trajecto-
ries, the principle of least action leads to the possibility of
making general theoretical predictions about the types and
numbers of special trajectories, such as periodic orbits. To
get a flavor of the approaches, one needs some topology,
in particular algebraic topology. We will only show a brief
summary of the most essential concepts here. The main in-
terest of algebraic topology is to classify manifolds into cer-
tain equivalence classes and find invariant quantities which
uniquely characterize them [9]. Manifolds are homotopy-
equivalent if they can be smoothly deformed into each
other by a homotopy [17, 26]. In Fig. 4, the doughnut and
the mug are homotopy-equivalent and this is, intuitively
speaking because they are both 2-dimensional, closed, un-
bounded surfaces with one hole.

An effective way to classify n-dimensional manifolds
is to count their number of holes of dimensions 0, ..., n,
which are described by the Betti numbers b0, ..., bn. For
2-dimensional surfaces, a zero-dimensional hole is a gap
between two path-connected components. So, for exam-
ple, b0(S2) = 1 for a sphere S2 and b0 = k for a manifold
composed of k disjoint spheres.

One-dimensional holes are found and counted by classes
of closed curves (1-cycles) on the manifold, which can-
not be shrunk to a point. For example, on a sphere S2
all closed curves can be shrunk to a point (Fig. 5), so
b1(S2) = 0. On a torus T2, there are two distinct classes
of curves that cannot be shrunk to a point, as shown in
Fig. 5 in orange. Therefore, on the torus b1(T2) = 2. In
each of the two classes, there are infinitely many curves,
which can be continuously deformed into each other. How-
ever, note that the curves from class a cannot be contin-
uously deformed into curves of class b, the two sets are
disjoint. Finally, both the sphere and the torus have one
2-dimensional hole (whose boundary is a closed surface),
and therefore, b2(S2) = b2(T2) = 1.

For the analysis of periodic, closed paths of a robot, the
first Betti number, related to families of closed curves, is of
particular interest. Consider a double pendulum (2 DoF
vertical manipulator with gravity). Its configuration space
is the 2-torus T2. The two distinct types of cycles a and b
form a basis (independent generators) for the group of all
possible cycles. The neutral element of the group is the
zero cycle, i.e., the set of all curves which can be shrunk
to a point. The composition a + b of two elements of the
group means that the cycles are just followed one after the
other, and, e.g., 2a+3bmeans that a curve winds two times
around the first joint and three times around the second
joint. The order does not matter, the group is considered
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Figure 3: String relaxation to find trajectories of dynamical systems

Figure 4: The mug can be continuously deformed into a
doughnut; they have the same topology. Image rendered
from the 3D model provided by [36].

a b

Figure 5: Classes of closed curves: cycles on the sphere
and the torus. Blue curves can be continuously collapsed
to a point; orange curves cannot.

abelian (commutative). This group is called the homol-
ogy group H1(T2) and its rank is indicated by the Betti
number b1. Any closed curve on the torus can be gener-
ated starting from αa + βb with α, β ∈ Z and through a
homotopy (continuous deformation). Note, again, that for
different α, β, the curves cannot be continuously deformed
into each other, the classes are disjoint.

This will be used in Section 4.1 to directly show that
there are infinitely many periodic closed orbits for the dou-
ble pendulum, at least one for each element of the homol-
ogy group H1(T2).

4 A Case Study: Periodic Orbits of the
Double Pendulum

In this section we will discuss the large variety of pe-
riodic trajectories of conservative robot models based on
one of the most simple examples, the 2-dof vertical robot,
i.e. the double pendulum, see Fig. 6. We will classify the
type of periodic orbits into three classes: toroidal orbits,
disk orbits, and brake orbits. Toroidal orbits are the ones
directly predicted by algebraic topology; they are due to
the toroidal structure of the configuration space. These
orbits turn at least one joint in full cycles. Disk orbits
happen completely within a chart of disk topology, i.e.,
we do not need the wrapping of angles for them. Finally,

q1

q2

g

(a) Double Pendulum

Toroidal Orbits

Disk Orbit

Brake Orbits

arg minU(q)

arg maxU(q)

(b) Some Periodic Trajectories

Figure 6: A double pendulum and some of its periodic
trajectories of various classes shown on its toroidal config-
uration space.

brake orbits are extensions of normal modes of linear sys-
tems. Most types of trajectories discussed in this section
will be present also for robots with arbitrary degrees of
freedom. Toroidal orbits are only possible as soon as one
of the joints allows full turns.

4.1 Toroidal Orbits

The dynamics of the conservative double pendulum in
a gravity field is known to display chaotic behavior [39].
This is due to the inertial couplings and the upper bounded
potential, having unstable equilibria at the upright config-
urations. If the total energy is high enough to permit full
turns of the joints, i.e. E > Umax(q), the system has, how-
ever, also infinitely many periodic orbits. This is a direct
consequence of the topology of the torus and its homology
class H1(T2). As shown in Sec. 3, there are infinitely many
disjoint classes of closed curves, obtained by integer linear
combination and homotopic deformation of the two base
cycles on the torus. According to their definition, these
curves cannot be shortened to a point, so there is a mini-
mal length in each of these classes, and therefore the curve
having that length will be a geodesic.

We take the numerical string relaxation algorithm of
Sec. 2 to find such geodesics. First, we fix the desired en-
ergy E needed to determine the Jacobi metric (10). Then
we start by creating a string of the correct topology, i.e., we
create an initial string in the class (α1, α2) for α1, α2 ∈ Z.
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Figure 7: Toroidal orbits of the double pendulum for some fixed energies of types. (0, 1), (1, 0), and (1, 2). On the left
we show the Cartesian trajectories of the first (blue) and second (orange) points mass. In the middle: time evolutions of
the joints. Right: configuration paths on the torus.

Iteratively updating the nodes of the string by the update
rule will let the string converge to a geodesic - and thus
to a periodic orbit of the double pendulum. This result
holds in any dimension, as the Betti number for an n-dof
pendulum is b1(Tn) = n. It is indeed a classical result [4]
that

Proposition 1. For any n integers α1, ...αn, of which
at least one is nonzero, there exists at least one periodic
trajectory of the n-dof pendulum performing αi rotations
around joint i, for i = 1, ..., n.

Fig. 7 shows the trajectories of the double pendulum in
the gravity field for the combinations (0, 1), (1, 0), (1, 2),
and (2, 1) for some fixed energies. It is important to note
that each orbit is only valid for the energy it was computed
for; the geodesics are not invariant w.r.t. the energy in
the Jacobi metric. We observe, however, that they contin-
uously deform with variations in energy. For the double
pendulum, we find sometimes more than one geodesic, also
for fixed energies. Only one of them will be a global min-
imum, others only local ones.

4.2 Disk Orbits

The algebraic topology results do not say anything
about the existence of periodic orbits of the type (0, 0),
i.e., of closed trajectories that oscillate in an interval less
than 2π. Indeed, such trajectories do not need to exist
in general (for arbitrary metrics), because all the zero cy-
cles can be shrunk to a point; there is no hole to prevent
their collapse. Nevertheless, it is not excluded that the

metric encodes bumps or other local geometrical features
such that closed curves make the arc length stationary:
this makes them geodesics and, simultaneously, periodic
orbits. Indeed, studies on chaotic systems show that they
often display a rich variety of unstable periodic orbits [35,
20]. This has also been shown for mechanical systems [22,
33]. We employ a scheme similar to [35]: we take a bound-
ary value solver [5] to find solutions q(t) to the differential
equation (3) such that q(0) = q(T ), q̇(0) = q̇(T ) and
H(q, q̇) = Edes for some desired energy Edes. The esti-
mated period time T is updated as well during the opti-
mization. Once we found a solution we perform numerical
continuation [11] over the energy to generate families of
solutions.

We have found a large variety of periodic orbits and
show two particularly simple families in Fig. 8, which con-
tinuously vary with energy. Each row in Fig. 8 shows one
family. On the left we show the orbits in configuration
space and observe that they continuously deform with en-
ergy. On the middle we show the highest energy orbits in
Cartesian space; and on the right the same orbit in config-
uration space. It looks like, for low energies, they collapse
into brake orbits (more to those later in Sec. 4.3), although
this observation has no theoretical backup yet. It will be
certainly interesting to further investigate these types of
trajectories in the future, because they are well suited for
robots and also for biological limbs, which cannot perform
full turns. For example, the swinging motion of a leg could
be performed in such a mode.
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4.3 Brake Orbits aka Nonlinear Normal Modes

Brake orbits were the primary focus of our initial re-
search interest and were presented in detail in [1, 2]. We
understand this type of orbits as generalization of normal
modes of linear systems. For linear dynamics, periodic
motions will take place in configuration space in the di-
rections given by the eigenvectors. A line of research [23,
38] dating back to Rosenberg [34] noted that there is a
straightforward generalization to nonlinear systems and
therefore called these oscillations nonlinear normal modes.
These modes were studied, however, only for systems com-
posed of point masses and nonlinear potentials, thus not
being applicable to robotic systems. In order to extend
the results to robotics and to emphasize the connection to
the linear modes, we coined the concept of eigenmanifolds
in [1]. Each trajectory has the property that it oscillates
back and forth between two points, where the system stops
and reverses motion.

It turns out that trajectories of this kind have also been
studied in a quite general setup with tools of differential
geometry and algebraic topology since Seifert [37]. He has
proven the existance of one brake orbit and conjectured
there should be even more, both in his seminal work [37]:

Proposition 2. For any conservative mechanical systems
with closed equipotential surfaces, there exists at least one
brake orbit for each energy level.

Conjecture 1 (Seifert). For any conservative mechanical
systems with n degrees of freedom and with closed equipo-
tential surfaces, there exist at least n brake orbits for each
energy level.

This is an idea certainly inspired by the n modes of n
DoF linear systems. Some authors have provided proofs
of the conjecture for particular cases [14] and Giambó et
al. claim in a recent preprint to have proven it [13] under
conditions which apply to general Hamiltonian systems.
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Figure 9: Brake orbit example for the double pendulum.

However, the additional conditions of the theorems are
generally not satisfied by robot dynamics equations, leav-
ing this as a still open theoretical question.

Based on the insights of the theory, we developed
numerical algorithms for searching the nonlinear modes
(brake orbits) starting from the linearized solutions. Fig. 9
presents brake orbits of the double pendulum. On the left
we show brake orbits growing our of the two linear eigen-
vectors. The dots show two configurations, which are used
for initial conditions for the simulations on the right. In
the middle, we display the brake orbits as a surface pa-
rameterized by energy as additional coordinate. This is
a representation of the eigenmanifolds, which is alterna-
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Figure 10: Overview of types of periodic orbits.

tive to the one from [1]. As predicted by the theorem, at
least two nonlinear modes exist for every energy level. We
report that for all robot systems analyzed so far, includ-
ing legged robots and a 7 DoF robot arm [7], the Seifert
conjecture holds.

4.4 Classification and Overview on Periodic Orbits

Fig. 10 summarizes the types of periodic orbits pre-
sented in this paper. One orbit for each type of our ex-
ample system are also shown on the torus in Fig. 6b. For
very low energies, the linearization around the equilibrium
holds as an approximation, and one will have linear modes.
As energy increases, one observes that the modes begin to
bend and we recognize that the linear modes were a par-
ticular case of the nonlinear normal modes (brake orbits).
Indeed, with the continuation method, at least two non-
linear modes can be found for the 2-DoF system. Our
experience so far was that in general, at least n nonlin-
ear modes can be found for n-DoF systems. Nonlinear
normal modes will cease to exist as soon as the total en-
ergy exceeds the maximal possible potential energy, i.e. if
E > Umax(q). In that case, there is no point where all the
energy is purely potential and there cannot be points with
zero velocity.

Although not predicted so far by the algebraic topology
arguments, we have numerically shown that also closed
orbits without full rotations exist, which we call disk or-
bits. These might be of particular interest to robotics be-
cause these trajectories can be executed also by robots
that do not permit endless rotation, which is mostly the
case in today’s robots. Finally, starting at some minimal
energy E > Umin(q), allowing at least on joint to do full
turns, closed multi-turn orbits appear. For E > Umax(q),
i.e., energies exceeding the maximal potential energy, these
toroidal orbits are the dominant periodic behavior. There
are infinitely many such closed orbits for any robot.

5 Conclusion

We hope to have triggered some interest of the robotics
community in better understanding the potential benefits
of geometric and topological approaches to study the be-
havior of robot dynamics from a global perspective. Clas-
sical robotics control takes a rather local view so far, while
global solutions are traditionally the field of motion plan-
ning. The presented tools might provide a methodical
bridge between the two areas.

Regarding the practical relevance, consider the large
variety of periodic orbits we found even in our simplest
example. Complex robots will display even richer behav-
iors! Imagine we can assemble our tasks out of pieces of

these orbits - or even better: a task might coincide with
a periodic orbit if we design the system properly. All one
needs then is to compensate for friction, stabilize the nat-
ural orbits [7] and possibly develop approaches to shape
them to a certain extent, by posture or by control. By de-
signing and exploiting the intrinsic dynamics of a robotic
properly, tasks can be achieved more naturally, more effi-
ciently, and more performantly. If we would like a robot to
jump like a flea, we should probably not build an elephant
but rather something close to a flea.
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