The four elements of achieving research software sustainability for long tail projects

 $Stephan\ Druskat^{1,2,4}\ \text{ id https://orcid.org/0000-0003-4925-7248} \\ Thomas\ Krause^3\ \text{ id https://orcid.org/0000-0003-3731-2422}$

¹German Aerospace Center (DLR), Institute for Software Technology; stephan.druskat@dlr.de
²Humboldt-Universität zu Berlin, Department of Computer Science

³Humboldt-Universität zu Berlin, Department of German Studies and Linguistics; thomas.krause@hu-berlin.de

⁴Friedrich Schiller University Jena, Department of English Studies

DOI 10.5281/zenodo.7654778

License CC-BY 4.0 International

Q: How to sustain small research software projects?

Approach: potential for technical sustainability + documentation + open infrastructures + maintenance strategy

H1: "A minimal infrastructure for the sustainable development and provision of [small research software] consists of four elements":

- Develop for technical sustainability
- 2. **Documentation** as first class output
- 3. Use existing infrastructures
- Maintenance strategy

Technical sustainability (a.k.a. follow good practice)

```
issues pull-requests mature-technologies tdd modularization user-documentation portability continuous-integration
```

```
licensing testing developer-documentation automated-builds reproducible-builds code-analysis code-review
```

Documentation

- Documentation for all target groups:
 - users
 - developers and maintainers
 - interested parties (e.g, funders)
- No integration of undocumented changes

Existing open infrastructures

H₂: To sustainably provision small research software, four infrastructure elements are needed.

- 1. Source code repository platform (here: **GitHub**)
- 2. Repository for build artifacts (here: **Zenodo**)
- 3. Repository for dependency artifacts (here: **Maven Central**, **Eclipse P2**)
- 4. Maintainer

Maintenance strategy

- Maintainer is the central role in the project
- Documentation for sunsetting and maintainer off-/onboarding
- Maintenance does not need experience (student assistants)
- Experiments: documented maintainer changes

Results

Software: Hexatomic

- Successful: development and provision through minimal infrastructure
- Successful: external contribution integrated

Maintainer changes

- Successful: changes to internal maintainer (milestones II/IV)
- Semi-successful: change to external maintainer
 - Lack of experience led to stalling integrations
 - Steep learning curve due to previously unknown complex technology (Java, OSGi, Eclipse RCP)
- Incremental improvements in maintenance documentation

Lessons learned

- Minimal infrastructure works, but minimal != small
 - Setting up a **sustainable** infrastructure should be part of the project planning, even if the main benefit might happen after the project ends
 - Templates for specific Programming Languages and types of research software would be helpful
- Maintenance may be non-trivial, depending on technological experience
 - We need RSEs to do maintenance
- Processes are important:
 - Code review
 - Supported by a review checklist and quality metrics (static code analysis via CI)
 - Manual testing, building, running
 - Periodic triage of unreviewed code as workaround for urgent bug fixes by the maintainer
 - Only integrate high quality changes:
 - Static code analysis quality metrics
 - Complete documentation
 - Only tested changes
- Infrastructure and processes improve RSE practice even in solo projects

Thank you

- **Hexatomic:** https://github.com/hexatomic/hexatomic | hexatomic.github.io > Druskat, Stephan, Krause, Thomas, Lachenmaier, Clara, & Bunzeck, Bastian. (2022). Hexatomic (1.0.1). Zenodo. doi:10.5281/zenodo.7034163
- Paper forthcoming
- **Contact:** stephan.druskat@dlr.de, thomas.krause@hu-berlin.de, mailing list
- Team: Volker Gast, Anke Lüdeling, Bastian Bunzeck, Clara Lachenmaier 🙏
- **Funded** under the call *Research Software Sustainability* issued by Deutsche Forschungsgemeinschaft, grant number 391160252. T. Krause as **current maintainer** is funded by Deutsche Forschungsgemeinschaft SFB 1412, grant number 416591334