The four elements of achieving
research software sustainability
for long tail projects

Ste P han Drus kat1 2.4 https://orcid.org/0000-0003-4925-7248
Thomas Krau 893 https://orcid.org/0000-0003-3731-2422

'German Aerospace Center (DLR), Institute for Software Technology; stephan.druskat@dIr.de
2Humboldt-Universitat zu Berlin, Department of Computer Science
3Humboldt-Universitat zu Berlin, Department of German Studies and Linguistics; thomas.krause@hu-berlin.de
“Friedrich Schiller University Jena, Department of English Studies

DOI 10.5281/zenodo.7654778 CC-BY 4.0 International

mailto:stephan.druskat@dlr.de
mailto:thomas.krause@hu-berlin.de
https://doi.org/10.5281/zenodo.7654778
https://creativecommons.org/licenses/by/4.0/deed.en

Q: How to sustain small research software projects?

“The long tail of science”

Developers per project

Number of projects

Our domain: projects with a bus factor — 1.

Approach: potential for technical sustainability + documentation +
open infrastructures + maintenance strategy

Druskat, Stephan; Krause, Thomas; Liideling, Anke; Gast, Volker (2019):
Infrastrukturstrategien fur nachhaltige Forschungssoftware in befristeten Projekten. Poster.
deRSE19. https://doi.org/10.6084/m9.figshare.11277764.v1

H1: “A minimal infrastructure for the
sustainable development and provision of
[small research software] consists of four
elements”:

1. Develop for technical
sustainability

2. Documentation as first class output

3. Use existing infrastructures

4. Maintenance strategy

Technical sustainability (a.k.a. follow good practice)

issues pull-requests
mature-technologies tdd
modularization user-documentation

: : . portability
continuous-integration

: . testing developer-documentation

licensing ~ 3utomated-builds

reproducible-builds code-analysis
code-review

Documentation

- Documentation for all target
groups:
- users

- developers and maintainers
- interested parties (e.g, funders)

- No integration of undocumented
changes

B Hexatomic Developer & Maint: X

€ C

1. Introduction
2. Development

2.1. Development setup
2.1.1. Getting the source code
2.1.2. Coding style and formatting
2.1.3. Creating and activating the
target platform
2.1.4. Running and debugging
Hexatomic in Eclipse

2.2. Workflow
2.2.1. Repositories

2.3. Architecture

2.4. Data model

2.5. Logging and error handling

2.6. Adding a new editor

2.7. Automated tests
2.7.1. Adding a test bundle
2.7.2. Adding a test case
2.7.3. Mocking injected
dependencies
2.7.4. Ul integration tests

2.8. Documentation

w

. Maintenance
3.1. Taking over as maintainer
3.2. Versioning
3.3. Continuous integration
3.4. Working with contributions
3.5. Licensing and citation
3.6. Releases

4

O & nhttpsi/hexatomic.githubiio/hexat:

~

tm B % L O R 2V

mic/dev/v1.0

‘ Search this book ...

Introduction

This is documentation for developers and maintainers of Hexatomic.

If you are looking for documentation of how to use Hexatomic, please refer to the
user documentation.

Contributing to Hexatomic development

Hexatomic is an open source project. We welcome contributions from the community.

If you want to contribute code to Hexatomic, please make yourself familiar with the
general contributing guidelines first, then continue to read this documentation.

The contributing guidelines also include information on how to report a bug, request
a feature, etc.

Requirements

Hexatomic is an Eclipse e4 application, built on the Eclipse Platform for rich client
applications, and implemented in Java. It is built with Apache Maven and the Eclipse
Tycho extension, and versioned with Git.

It will be easier for you to contribute to Hexatomic if you already have some
experience with these technologies.

Here are links to some resources that can help you get started:

Existing open infrastructures

H,: To sustainably provision small research software, four
infrastructure elements are needed.

Source code repository platform (here: GitHub)

Repository for build artifacts (here: Zenodo)

Repository for dependency artifacts (here: Maven Central, Eclipse P2)
Maintainer

LN~

Maintenance strategy

- Maintainer is the central role in the project

- Documentation for sunsetting and maintainer off-/onboarding
- Maintenance does not need experience (student assistants)
- Experiments: documented maintainer changes

Development

Start of platform First beta
development release release Original end of project Release 1.0
| Release O.Bfé()atwu:}:SGraphAﬂno Continuous implementation
/ | \ of new features and releases
L 08/2020
New features
from internal and I e
| 12/2019 7 simulated extemal o 11/2021 08/2022
| developers | | | o
| 08/2019 ! l 05/2021 06/2021 11/2021 !

© ® ®

internal maintainer established internal change external change change to long-term maintainer

Results

Software: Hexatomic Maintainer changes
- Successful: development and provision - Successful: changes to internal
through minimal infrastructure maintainer (milestones I1/1V)
- Successful: external contribution - Semi-successful: change to external

integrated maintainer
b == u o - Lack of experience led to stalling
integrations
- Steep learning curve due to previously
unknown complex technology (Java,
OSGi, Eclipse RCP)
- Incremental improvements in maintenance

documentation T

GitHub oo - oo

Lessons learned

Minimal infrastructure works, but minimal != small
- Setting up a sustainable infrastructure should be part of the project planning, even if the main benefit
might happen after the project ends
- Templates for specific Programming Languages and types of research software would be helpful

Maintenance may be non-trivial, depending on technological experience
- We need RSEs to do maintenance

Processes are important:
- Code review
- Supported by a review checklist and quality metrics (static code analysis via Cl)
- Manual testing, building, running
- Periodic triage of unreviewed code as workaround for urgent bug fixes by the maintainer
- Only integrate high quality changes:
- Static code analysis quality metrics
- Complete documentation
- Only tested changes

Infrastructure and processes improve RSE practice even in solo projects

Thank you

- Hexatomic: https://github.com/hexatomic/hexatomic | hexatomic.github.io
> Druskat, Stephan, Krause, Thomas, Lachenmaier, Clara, & Bunzeck, Bastian. (2022).
Hexatomic (1.0.1). Zenodo. doi:10.5281/zenodo.7034163

- Paper forthcoming

- Contact: stephan.druskat@dlir.de, thomas.krause@hu-berlin.de, mailing list

- Team: Volker Gast, Anke Liideling, Bastian Bunzeck, Clara Lachenmaier J,

- Funded under the call Research Software Sustainability issued by Deutsche
Forschungsgemeinschaft, grant number 391160252. J,
T. Krause as current maintainer is funded by Deutsche Forschungsgemeinschaft SFB
1412, grant number 416591334

https://github.com/hexatomic/hexatomic
https://hexatomic.github.io
https://doi.org/10.5281/zenodo.7034163
mailto:stephan.druskat@dlr.de
mailto:thomas.krause@hu-berlin.de
https://sympa.cms.hu-berlin.de/sympa/info/hexatomic-users
http://www.dfg.de/en/research_funding/programmes/infrastructure/lis/funding_opportunities/call_proposal_software/
http://www.dfg.de/en/
http://www.dfg.de/en/
https://gepris.dfg.de/gepris/projekt/391160252?language=en
http://www.dfg.de/en/
https://gepris.dfg.de/gepris/projekt/416591334?language=en

