
Fig. 3: left - laboratory spectra from goniometer measurements of mono-, polycrystalline and thin film photovoltaic modules
(Gutwinski et al., 2018); right - extracted  spectra from  airborne hyperspectral data collection.
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Earth Observation based energy infrastructures to support GIS-like energy system models

Due to increasing worldwide urbanization, increase of urban residents energy demand,
decreasing photovoltaic (PV) and solar thermal module prices the number of operating
plants has increase significantly in recent years. Authorities and electricity grid operators
support solar power plants installations in order to achieve the Federal Government’s
strategies for reducing CO2 emissions and primary energy consumption by 80% until
2050. For load modelling, generation of demand and production statistics as well as
infrastructure design they need up-to-date roof usage and coverage information plus
solar plant location data. Many of these systems are not exactly registered and publicly
available databases of solar modules are not up to date.

Monitoring strategies of solar plants are interesting for energy forecasting models in
research, urban planning and industry. Currently, energy forecasting models are often
based on community-based OpenStreetMap data (e.g. Alhamwi et al. 2018). However,
these are partly faulty, have insufficient detailed information or have very different
regional accuracy. Therefore, we start to collect energy-specific data with Earth
observation techniques. Questions of energy system analysis are, for example, the
modelling of load profiles in the electricity system.

We focus on energy load quantification in urban areas such as buildings and renewable
energy sources detection, photovoltaics and solar thermal energy devices from flight and
satellite data.

Methods and Results - Input data for GIS-like Energy System Models
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Laboratory spectra from goniometer measurements of mono-, polycrystalline and thin film
photovoltaic modules (Gutwinski et al., 2018) (Figure 3), as well as characteristic peak
investigation, such as the normalized hydrocarbon index (nHI) (Clark et al., 2003 and 2009)
of the ethylene vinyl acetate (EVA) layer of solar modules (Czirjak, 2017), were used to
train a spectral indices algorithm for photovoltaic (PV) module detection at Oldenburg
region (Figure 4).

Deep learning methods, so-called
convolutional neural networks
(CNNs), implemented in the ENVI
software are used for optical data
analysis to identify energy
infrastructures, such as the
detection of photovoltaic modules,
and separate them from solar
thermal and thin film modules
(Figure 2). The actual accuracy of
the trained network is at OA =
99,8%, UA = 72,8% and PA =
72,8%. Therefore optimization of
the network is ongoing.

Based on optical flight data an ultra-high-resolution digital surface model was generated
and combined with open LGLN LoD2 data to extract building height, angle and
orientation of roof surfaces at Oldenburg region (Figure 5).

Solar modules are built from a
combination of different materials
and minerals. Therefore, ultra-
high-resolution airborne optical
(Kurz, 2009) and hyperspectral
(DLR, 2016) data was collected in
the years 2018 and 2019 over
Oldenburg and Ulm region (Figure
1). The data sets are collected with
the DLR OpAiRS System, mounted
at DLR Dornier Airplane and post-
processed by DLR Remote Sensing
Technology Institute colleagues.
Atmospheric and georeferenced
correction is done by the ATCOR 4
Processor (Richter et al., 2012).

Conclusion and Acknowledgement 

Results based on high-resolution flight data can be further applied to commercial and free
satellite data sets such as WorldView, Sentinel-2 and EnMap to enable large-scale,
national or even European use. The balance between the loss of information due to the
change in spatial resolution of the satellite data and the simultaneous gain of information
is quantified and evaluated with regard to the relevance in energy system models.

The research is funded by the Horizon 2020 e-shape project [European Union’s Horizon
2020 research and innovation program, grant no. 820852]. Special thanks to Julian Zeidler
for processing the LoD2 data to extract the roof shapefiles and to Dr. Wieke Heldens for
processing the building height information.

References:
1. Alaa Alhamwi and W. Medjroubi and T. Vogt and C. Agert (2018); Modelling urban energy requirements using open source data and models, Applied

Energy, Vo. 231, p. 1100-1108, DOI: 10.1016/j.apenergy.2018.09.164
2. Clark, R. N., G. A. Swayze, K. E. Livo, R. F. Kokaly, S. J. Sutley, J. B.Dalton, R. R. McDougal, and C. A. Gent (2003b), Imaging spectroscopy: Earth and

planetary remote sensing with the USGS Tetracorder and expert systems, J. Geophys. Res., 108(E12), 5131, doi:10.1029/2002JE001847
3. Clark R., Curchin J. M., Hoefen T. M., Swayze G. A., 2009: Reflectance spectroscopy of organic compounds: 1. Alkanes, Journal of Geophysical Research E:

Planets, Volume 114 (3); doi:10.1029/2008JE003150, http://pubs.er.usgs.gov/publication/70034984
4. D. Czirjak, “Detecting photovoltaic solar panels using hyperspectral imagery and estimating solar power production,” J. Appl. Remote Sens. 11(2), 026007

(2017), doi: 10.1117/1.JRS.11.026007.
5. DLR Remote Sensing Technology Institute (IMF). (2016). Airborne Imaging Spectrometer HySpex. Journal of large-scale research facilities, 2, A93.

http://dx.doi.org/10.17815/jlsrf-2-151
6. Martin Gutwinski, Prof. Dr. Carsten Jürgens, Dr. Andreas Rienow (2018); Analysis of the spectral variability of urban surface materials based on a

comparison of laboratory- and hyperspectral image spectra; unpublished Master Thesis at Ruhr-University Bochum, Geography Department,
Geomatics/Remote Sensing Group

7. Ji, C., Bachmann, M., Esch, T., Feilhauer, H., Heiden, U., Heldens, W., Hueni, A., Lakes, T., Metz-Marconcini, A., Schroedter-Homscheidt, M. and Weyand, S.,
2021. Solar photovoltaic module detection using laboratory and airborne imaging spectroscopy data. Remote Sensing of Environment, 266, p.112692.

8. Kurz, Franz (2009) Accuracy assessment of the DLR 3K camera system. In: DGPF Tagungsband, 18, Seiten 1-7. Deutsche Gesellschaft für Photogrammetrie,
Fernerkundung und Geoinformation. DGPF Jahrestagung 2009, 2009-03-24 2009-03-36, Jena. ISSN 0942-2870.

9. R. Richter and D. Schläpfer, “Atmospheric / Topographic Correction for Airborne Imagery”, (ATCOR-4 User Guide, Version 6.2 BETA, February 2012)
10. Schroedter-Homscheidt, M., Azam, F., Betcke, J., Hoyer-Klick, C., Lefèvre, M., Wald, L., Wey, L., Saboret, L., (2021): CAMS solar radiation service user

guide, technical report, DLR-VE, CAMS72_2018SC2_D72.4.3.1_2021_UserGuide_v1.
11. Auszug aus den Geodaten des Landesamtes für Geoinformation und Landesvermessung Niedersachsen, ©2022, www.lgln.de

Motivation and Introduction

Fig. 1: Study area of Oldenburg and Ulm with flight lines of the hyperspectral
(GSD 1,2m) and optical (GSD 13cm) data collected by the DLR OpAiRS
System

Fig. 5: Wechloy University area at Oldenburg; Left: ultra-high-resolution DSM from optical airborne data; Middle: roof top types;
Right: building heights

Fig. 4: PV extracted over Oldenburg by
trained index analysis show
validation accuracies up to 90.6%
(Ji et al, 2021), but is restricted to
mono- and polycrystalline
photovoltaic module detection
(red circle). A definition of
characteristic peaks for thin-film
modules detection is ongoing

Fig. 2 : Classified raster by trained pixel segmentation network; red = PV,
green = Thinfilmmodule, blue = solar thermal, yellow = ground truth/
validation for solar device types

At the institute, we have detailed knowledge of PV module construction from PV module
research and contribute solar radiation data from the Copernicus Atmosphere Monitoring
Service (CAMS) (Schroedter-Homscheidt et al., 2021). The extracted, characterized and
geocoded PV and solar thermal systems are used, for example, in self-developed energy
modeling software FlexiGIS (Figure 6). The impact on modeling results with EO datasets,
in comparison with OpenStreetMap input data, is investigated.

Fig. 6: Ongoing activities for EO data implementation into the DLR self-developed energy modeling software FlexiGIS


