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Introduction

In order to achieve significant reduction of CO2 emissions to 80% compared to 1990 by 2050, government agencies and power grid operators support the construction of solar power plants. Therefore, public
authorities and electricity grid operators are interested in change detection methods to observe the buildup of renewable energy sources, like private solar module systems or to forecast the electric grid
demand and production. To support energy system analyzing applications we extent and/or replace the current used free OpenStreetMap (OSM) data with Earth Observation (EO) detected energy infrastructure
sources. First results show an impact of modelling results depending on the level of detail information between free available OSM and EO data.
Building information are generated from 3K OpAiRS data by GIS tools and developed extraction algorithm show a limitation to polycrystalline Photovoltaic module detection. Shadowing effects of PV modules as
well as classification of photovoltaic and solar thermal modules from optical airborne data play an important role.

Methods - Input data for GIS-like Energy System Models

Solar modules are built from a combination of different materials and minerals. Therefore,
different sensor types were used to collect earth observation (EO) data sets. The study area of
Oldenburg and Ulm was recorded with hyperspectral (Ground Sampling Distance (GSD) 1,2m) and
optical (GSD 13cm) camera systems (DLR OpAiRS System) in the years 2018 and 2019 over
Oldenburg and Ulm region.

Figure 4: FlexiGIS systematically investigates different scenarios of self-consumption and analyses the characteristics and role of
flexibilization technologies in promoting greater self-sufficiency in cities. First tests of Corine Land Cover (CLC) datasets were
conducted and compared with the OpenStreetMap (OSM) land use datasets. The coverage, competence and applicability of the
datasets for the modeling and application of urban energy systems are primarily investigated. Further tests and examinations are
under development. Due to the 5ha processing of the CLC data (Keil et al., 2007), the datasets are not such fine
structured like OSM datasets. Existing OSM input data results will be extended to more and more available EO data sets. The OSM
based modelling results are compared against EO based energy modelling outputs.

Data usage in Energy Modelling Applications

We are engaged in developing knowledge of PV module construction from PV module research
and contribute solar radiation data from the Copernicus Atmosphere Monitoring Service (CAMS)
(Schroedter-Homscheidt et al., 2021). The extracted, characterized and geocoded PV and solar
thermal systems are used, for example, in self-developed energy modeling software FlexiGIS. The
impact on modeling results with EO datasets, in comparison with Open-source input data, is
investigated. Irradiance data with a high spatial and temporal resolution are derived using all-sky
imagers and can be used to determine the irradiance available to each individual PV installation.

Figure 1: Processing workflow from data collection to implementation in energy system models, example: FlexiGIS. The module in
the middle is a cloud-based fast downscaling service using namely CAMS radiation data and high resolution Digital Surface Model
developed by MINES Paris - PSL in the framework of the pilot "High PV penetration at urban scale" of the Showcase Renewable
Energy of the e-shape.

Figure 2: Laboratory spectra from goniometer measurements of mono-, polycrystalline and thin film photovoltaic modules
(Gutwinski et al., 2018), as well as characteristic peak investigation, such as the normalized hydrocarbon index (nHI) (Clark et al.,
2003 and 2009) of the ethylene vinyl acetate (EVA) layer of solar modules (Czirjak, 2017), were used to train a spectral indices
algorithm for photovoltaic (PV) module detection at Oldenburg region.
Left - laboratory spectra from goniometer measurements of mono-, polycrystalline and thin film photovoltaic modules (Gutwinski
et al., 2018); right - extracted spectra from airborne hyperspectral data collection.

Figure 3: Left: PV extracted over Oldenburg by trained index analysis show validation accuracies up to 90.6% (Ji et al, 2021), but
is restricted to mono- and polycrystalline photovoltaic module detection (red circle). A definition of characteristic peaks for thin-
film modules detection is ongoing. Right: ENVI Deep learning methods, so-called convolutional neural networks (CNNs), are used
for optical data analysis to identify energy infrastructures, such as the detection of photovoltaic modules, and separate them from
solar thermal and thin film modules. The actual accuracy of the trained network is at OA = 99,8%, UA = 72,8% and PA = 72,8%.
Therefore optimization of the network is ongoing. Color code: red = PV, green = Thinfilm-module, blue = solar thermal, yellow =
ground truth/ validation for solar device types.

Figure 5: Ongoing activities for EO data implementation into the DLR self-developed energy modeling software FlexiGIS. For data
implementation tests a set of 21 fictive roofs with varying geometry are used, to explore the effect of a more realistic roof
geometry distribution.
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evaluated with regard to the relevance in energy system models.
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Figure 6 : More realistic roof geometry distribution resulted in a 13% higher storage requirement (right side), despite a better
distribution of production during the day.

Figure 7: Forecasting systems based on all-sky imagers (ASI), generate irradiance maps with high temporal (30 sec) and spatial
resolution (e.g. 5 m x 5 m). Predictions are generated with high accuracy for the next 20 minutes and overall lead times of up to 2
hours. The irradiance maps are used to predict the production of distributed PV installations. A PV model (based on PVLib)
provides PV production based on predicted radiation and measurements of temperature and humidity in the urban area.
Calculation of the irradiance on the inclined module plane requires accurate information on the shading of individual modules
(including partial shading) and on the exact orientation and inclination of each PV installation’s modules. Detailed roof
information such as building height, inclination and orientation of roof surfaces increase the accuracy and practical applicability
of highly resolved forecasts of PV production. Left: ASI forecast in a clear-sky situation; Middle: ASI forecast in a situation with
scattered clouds; Right: ASI forecast with clouds and buildings at Oldenburg region.
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