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Abstract—In recent years, the paradigm of navigation has
shifted from pinpointing the location of a single agent to
continuously estimating the full kinematic state of networked
autonomous agents. In this paper, we propose a kinematics-
aware information seeking algorithm for swarm navigation.
The algorithm tightly couples state estimation and autonomous
control given ranging and kinematic models. With the help of the
Fisher information theory, agents generate information seeking
command sequences. As an outcome, the swarm continuously
optimizes its trajectory so that the agents’ position and orienta-
tion uncertainty is actively minimized. The proposed algorithm
is verified by large-scale swarm simulations and demonstrated
in a space-analogue mission of autonomous swarm navigation on
the volcano Mount Etna.

I. INTRODUCTION

The European Union envisions swarm robotics as one of the
top innovation breakthroughs by 2038 [1]. A robotic swarm is
an autonomous multi-robot system that is capable of solving
complex tasks, e.g. sensing and exploration, of large areas
that are difficult to access [2]–[4]. A robot in a swarm is also
known as an agent. The collection of positions of all agents
is called a formation. Compared with a single robot, a swarm
is especially attractive for extraterrestrial surface exploration.
As an example, a conceptual lunar swarm exploration mission
[5] is depicted in Figure 1. A swarm of robots (in green)
depart from the landing site, scout the area of interest, and
deploy a low frequency array (in blue) to observe radio bursts
from Jupiter. To achieve these tasks autonomously, the agents
need to be aware of their positions and orientations. Without a
global navigation satellite system, a swarm on extraterrestrial
missions can exploit the radio signals that are exchanged in
the network to localize itself via multilateration. Anchors for
example a lander and two sensor boxes with known positions
at the landing site (marked in red in Figure 1) provide a
navigational coordinate system for swarm localization. The
accuracy of multilateration depends on the observation models
and the formation, which is quantified by Fisher information
(FI). Finding and maintaining preferable formations for local-
ization while exploring can be posed as a prerequisite task to
the main mission. In [6], [7], abstract methods dubbed position
information seeking (PIS) have been proposed, where agents
are considered as mass points that “jump” from location to

Figure 1: Conceptual lunar swarm mission for geological exploration
and radio astronomy.

location to approach optimized formations maximizing FI. In
real-world, preferred formations are often defined in the nav-
igational coordinate system. However, the actuator of a robot
can only execute control commands, like linear and angular
velocities, with respect to (w.r.t.) its body coordinate system.
Therefore, the agents need to possess precise knowledge of
their positions, orientations and kinematic models to generate
effective navigation strategies.

In this paper, we introduce a kinematics-aware information
seeking (KIS) method, extending the PIS framework in [7].
The posterior Cramér-Rao lower bound (PCRLB) is exploited
to formulate the formation optimization problem in KIS.
The agents plan smooth trajectories accounting for their
kinematic models. As an outcome, the swarm’s formation is
actively optimized, so that the agents’ position and orientation
information jointly increase. We analyze the mathematical
expression of the PCRLB, and draw intuitive interpretation
on the expected swarm behaviors emerging from KIS. The
proposed KIS method is verified with a large-scale swarm sim-
ulation and demonstrated in a space-analogue mission on the
volcano Etna, Sicily, Italy, in July 2022. The emerging swarm
behaviors from both simulation and experiment coincide with
the theoretical analysis, which verifies the effectiveness of the
proposed KIS method.

II. PROBLEM FORMULATION

A. Kinematic models

In [8], a 15 dimensional state space has been designed for
distributed particle filtering (DPF) for swarm navigation in 3D.



In this paper, we focus on the kinematics of ground rovers
operating in a 2D plane. We consider a swarm composed
of N agents with their positions pi =

[
xi, yi

]T
and their

headings ϕi defined as the angles from the positive x-axis to
the pointing directions of the rovers, where i = 1, . . . , N . The
state of the swarm is obtained by stacking all positions and
headings

x =
[
pT,ϕT

]T
=
[
pT
1 , · · · ,pT

N , ϕ1, · · · , ϕN

]T ∈ R3N . (1)

The ith rover is controlled by its velocity vi and turning rate ωi

commands. By stacking the controls of all rovers, we obtain
the control vector

u =
[
vT,ωT

]T
=
[
v1, · · · , vN , ω1 · · · , ωN

]T ∈ R2N . (2)

The state transition of a rover i is described by the coordinated
turn model [9, p. 206]:x+

i

y+i
ϕ+
i

 =

xi

yi
ϕi

+T

vi (si(ωiT ) cos(ϕi) + co(ωiT ) sin(ϕi))
vi (si(ωiT ) sin(ϕi)− co(ωiT ) cos(ϕi))

ωi


(3)

where si(x) = sin(x)
x and co(x) = cos(x)−1

x and T is the time
of executing constant velocity vi and turning rate ωi. We use
notation (·)+ to denote state advancement over T . The state
transition of the whole swarm can be expressed as a function
of the current state and the controls, i.e.

x+ = f(x,u). (4)

The term u denotes the exact controls that the actuators
execute. The measured controls, for example from an inertial
measurement unit (IMU), odometry, or command inputs, are
denoted as û = [v̂T, ω̂T]T, which are distorted by indepen-
dent additive white Gaussian noise (AWGN), with a diagonal
covariance matrix Σû = diag{Σv̂,Σω̂}.

We assume a maximum admissible velocity vmax, turning
rate ωmax, and a minimal turning radius rmin, which define the
set of admissible commands

V =
{
u
∣∣∣
|vi|≤vmax,|ωi|≤ωmax,|ωi|rmin≤|vi|,∀ 1≤i≤N

}
. (5)

The state space, transition model and admissible control
space collectively define the kinematics of a rover, which are
visualized in Figure 2.

B. Ranging measurements

We consider that agents obtain ranging measurements by
exchanging radio frequency (RF) signals and measuring round
trip time (RTT). We further assume the clock imperfection
has been pre-compensated [11]. The ranging measurement d̂ij
between two nodes i and j is modeled as

d̂ij = dij + ϵij , (6)

with the true distance dij distorted by AWGN ϵij with
distance-dependent variance σ2

ij(dij). The variance is modeled

ϕi
vi

xi x

yi

y forwards

backwards

rmin

vmax T

Figure 2: Kinematics of rover i is defined by the state space,
transition model and admissible control space. An image of a
summit-XL rover [10], which is used as a robotic platform for swarm
navigation experiments at the German Aerospace Center (DLR).

as in [7], which is quadratically proportional to the distance,
until reaching the maximum communication distance.

C. Optimization problem

In KIS, the expected uncertainty of the state estimate
x̂+ gets minimized by moving the swarm along preferable
trajectories. The uncertainty of the estimate is characterized
by its mean square error (MSE)

Σx̂+ = E
[(
x+ − x̂+

) (
x+ − x̂+

)T]
, (7)

where E is the expected value over the probability density
function p

(
x+, z(1:+)

)
, and z(1:+) contains all collected

measurements and predicted measurements for the next time
step. We can take the weighted sum of the diagonal elements
tr (Λx+Σx̂+) as the cost function, with a diagonal weighting
matrix Λx+ . The goal of information seeking is to choose
admissible controls u ∈ V such that the cost function is min-
imized, while fulfilling other mission objectives like collision
avoidance, goal approaching, etc. The additional objectives
are formulated as generic inequality constrains g(u) ≤ 0 as
in [7]. The KIS optimization problem is then formulated as

minimize
u∈V

tr (Λx+Σx̂+)

subject to g(u) ≤ 0.
(8)

III. KINEMATICS-AWARE INFORMATION SEEKING

A. KIS formulated with PCRLB

The MSE of an estimator is lower bounded by the
PCRLB [12], i.e.

Σx̂+ ⪰ Σx+ =

[
Σp+

...
· · · Σϕ+

]
= J−1

x+ , (9)

where Jx+ is the Bayesian information matrix (BIM) ex-
pressed recursively in [13], Σx+ ,Σp+ and Σp+ are the
PCRLB of x+,p+, and ϕ+, respectively, which are functions
of the controls u, and A ⪰ B denotes A−B is positive semi-
definite. If T is small enough, we can linearize (4) around



the expected state and the expected controls, i.e., x̄ = E[x]
and ū = E[u], to further simplify the expression of the cost
function to

x+ ≈ f (x̄, ū) +
∂x+

∂xT
(x− x̄) +

∂x+

∂uT
(u− ū) . (10)

The BIM can then be written as

Jx+ ≈Ex+ [Ix+ ] +

(
∂x+

∂xT
J−1
x

∂x+T

∂x
+

∂x+

∂uT
Σu

∂x+T

∂u

)−1

=

[
Ex+

[
Ip+

]
0

0 0

]
+

[
Σp̃+ Σp̃+,ϕ̃+

ΣT
p̃+,ϕ̃+

Σϕ̃+

]
︸ ︷︷ ︸

Σx̃+

−1

, (11)

where Σx̃+ is the Cramér-Rao lower bound (CRLB) on the
prediction of the next state x+ solely based on the transition
model and previous estimation, Ix+ and Ip+ are the predicted
range-only FI in the next time step for the state and positions,
Σp̃+ is the CRLB of the predicted positions p̃+ without
ranging, Σϕ̃+ is the CRLB of the predicted headings ϕ̃+

without ranging and Σp̃+,ϕ̃+ is the coupling between the
predicted positions and headings. Assuming that p(x,u) is
unimodal and that position information from ranging changes
slowly, we can approximate the expected value of the position
information from ranging with its value at the expected
position. After applying the Schur complement and the matrix
inversion lemma several times, we obtain the final expression
of PCRLB of the future positions and headings of agents as

Σp+ ≈
(
Ip+ +Σ−1

p̃+

)−1

(12)

Σϕ+ ≈ Σϕ + T 2Σω̂ −ΣT
p̃+,ϕ̃+

(
I−1
p+ +Σp̃+

)−1

Σp̃+,ϕ̃+ .

The KIS problem in (8) can be approximated as

minimize
u∈V

tr
(
Λp+Σp+

)
+ tr

(
Λϕ+Σϕ+

)
subject to g(u) ≤ 0,

(13)

where Λp+ and Λϕ+ are diagonal weighting matrices of posi-
tions and headings, respectively. In (13) the original problem
is explicitly expressed as two sub-problems, namely PIS and
heading information seeking (HIS). This new formulation is
preferable also because the cost function has a close-form
expression w.r.t. the controls u. In [7] the PIS is solved by
signal-step gradient descent methods, which is not applicable
for (13) due to the complex kinematic model. We apply
the sequential least squares programming method proposed
by [14], [15] to solve (13). This method iteratively searches
for a quadratic approximation of a nonlinear objective function
with inequality constraints.

B. KIS Solution Interpretation

We now investigate how the swarm behaves for KIS. For
PIS, it has been shown in [7] that the swarm will move into the
most rigid formation. In this paper, we focus on the HIS be-

Figure 3: The directions of the principal eigenvectors (left) and
the perpendicular lines to the principal eigenvectors together with
trajectories of two agents applying HIS (right).

havior. We assume the position and heading are approximately
decoupled, and the range-only position information changes
slowly. Consequently, we can consider each rover individually.
The heading information gain can be approximated by

tr

(
Λϕ+ΣT

p̃+,ϕ̃+

(
I−1
p+ +Σp̃+

)−1

Σp̃+,ϕ̃+

)
≈

N∑
i=1

[Λϕ+ ]i,i

(
∂p+

i

∂ϕi
σ2
ϕi

+
∂p+

i

∂ωi
σ2
ωi
T

)T

×
(
I−1

p+
i

+Σp̃+
i

)−1
(
∂p+

i

∂ϕi
σ2
ϕi

+
∂p+

i

∂ωi
σ2
ωi
T

)
, (14)

where σ2
ϕi

and σ2
ωi

are the PCRLB of the current heading and
the variance of the turn rate, respectively. We observe that (14)
is a quadratic form in a vector linearly combining ∂p+

i /∂ϕi and
∂p+

i /∂ωi, both of which are approximately perpendicular to the
trajectory of the rover. Furthermore, the heading information
gain is maximized if both vectors are aligned with the princi-
pal eigenvector of (I−1

p+
i

+Σp̃+
i
)−1 corresponding to its largest

eigenvalue. Especially when the range-only position informa-
tion is small compared to the prediction, i.e., Ip+

i
≪ Σ−1

p̃+
i

, the
rover will move in trajectories that are perpendicular to the
direction where the range-only position uncertainty is lowest.
An example with three anchors is shown in Figure 3. The
directions of the principal eigenvectors of Ip+

i
(on the left)

are pointing towards the anchors. The perpendicular lines to
the principal eigenvectors are plotted on the right, forming
multiple orbits around the anchors. The trajectories of two
simulated agents applying HIS follow these orbits.

IV. RESULTS

A. Large-Scale Swarm Simulation

To observe swarm behavior emerging from KIS at a large-
scale, simulations with 20 rovers were performed (see Fig-
ure 4). A rover (the first one from the right) has to move
to a goal (x, y) = (100m, 0m) with a minimal step of
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Figure 1: Simulation of a 20-agent swarm with one agent (the first
one from right) making goal approaching (GA) while all agents
making kinematics-aware information seeking (KIS).
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Figure 1: Simulation of a 20-agent swarm with one agent (the first
one from right) making goal approaching (GA) while all agents
making kinematics-aware information seeking (KIS).

Figure 4: A 20-agent swarm applies KIS, while one agent (the first
one from the right) additionally applies goal approaching.

δmin = 0.2m per time step. The other 19 rovers support
the goal-approaching rover by KIS. The maximum commu-
nication range is set to 20m as in [16], which is visualized
with gray dashed circles. Consequently, the goal-approaching
rover cannot measure its distance to the anchors once it is
outside the circles. It then relies on the other rovers to build a
bridge back to the anchors for localization as seen in Figure 4
similar to the PIS behaviors presented in [7]. However, the
agents of the bridge exhibit constant orbiting, wave-like and
interweaving parallel movements, which results from the HIS
component as expected in Section III-B. The square root of
the position and heading PCRLBs are plotted in Figure 4. The
spikes in the heading PCRLBs indicate that some agents are
occasionally stationary to accumulate position information at
a cost of increasing their heading uncertainty.

B. Space-Analogue Mission on Volcano Etna

As a highlight, the proposed KIS has been demonstrated in
a space-analogue mission on the volcano Etna, Sicily, Italy,
in July 2022. The experimental setup is shown in Figure 5. A
lander and three sensor boxes are deployed at the landing site
as anchors. Five agents including three stationary agents and
two robots estimate their positions, velocities and orientations
in 3D with real-time DPF [8]. The two rovers additionally
apply KIS in real-time with their DPF output. The cost
functions of KIS are extended to 3D, but the kinematics of

Figure 5: The experimental setup (viewed from the lander perspec-
tive) on the volcano Etna, Sicily, Italy, in July 2022.

Figure 6: Estimated trajectories of all agents (left), positioning and
orientation PCRLBs (right).

the rovers are constrained in 2D. The rovers firstly conduct
PIS in the time interval of 30 s - 170 s and then switch to
HIS at 170 s. Some preliminary results of the experiment are
plotted in Figure 6, including the estimated trajectories of all
agents (left), positioning and orientation PCRLBs (right). The
estimated trajectories of the agents qualitatively match well to
the ground-truth trajectories recorded by real-time kinematic
(RTK). Further quantitative analysis is still ongoing. As the
outcome of PIS, rovers move to positions that are benefi-
cial for position estimation of all agents, and then become
stationary to accumulate position information. Meantime, the
heading uncertainty increases. As soon as the rovers switch
to HIS, they start moving around the anchors with orbiting
behaviors, and the heading uncertainty drops.

V. CONCLUSION

We extended the swarm PIS framework in [7] to KIS.
Agents in the swarm adapt their trajectories with given
kinematic models to actively seek position and orientation
information. A uncertainty measure based on PCRLB has been
formally defined and exploited as cost functions. We analyzed
the expression of PCRLB, which (a) helps us to find an effi-
cient KIS solution, and (b) offers intuitive interpretation on the
expected swarm behaviors. An orbiting behavior is predicted
by theory and observed in both simulation and experiment. We
demonstrated the real-time KIS swarm navigation in a space-
analogue mission on the volcano Etna and pave our way to a
real-world space swarm exploration mission.
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