
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

GNNs for Knowledge Transfer in Robotic
Assembly Sequence Planning

Matan Atad

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

GNNs for Knowledge Transfer in Robotic
Assembly Sequence Planning

GNNs für Wissentransfer von Robotern bei
der Planung von Montagereihenfolgen

Author: Matan Atad
Supervisor: Rudolph Triebel, PD Dr. habil.
Advisors: Jianxiang Feng, M.Sc.

Maximilian Durner, M.Sc.
Ismael Rodriguez Brena, M.Sc.

Submission Date: 15.01.2023

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, Matan Atad

Abstract

Automated Assembly Sequence Planning (ASP) is a crucial task for robotic systems in
manufacturing settings as it increases flexibility and efficiency. However, ASP is still
largely performed manually, which can be time-consuming and prone to errors. The
ASP process consists of two main steps: determining possible assembly sequences and
confirming the feasibility of these sequences with the capabilities and restrictions of
the target robot system. While several methods have been developed to automate ASP
in recent years, they have limitations such as a lack of flexibility with regard to the
properties of the assembly, a long training process, and a dependence on both positive
and negative examples for feasibility detection.

To address these issues, we propose a graph-based approach that divides the ASP
problem into two tasks: Sequence Prediction and Feasibility Prediction. For the
Sequence Prediction task, we model assemblies as graphs of part surfaces and apply
a Graph Neural Network (GNN) to efficiently extract meaningful information from
the input. An expert demonstrator guides us through the sequence prediction process,
step-by-step, predicting which parts can be placed in their position at each state of the
assembly. Our method is flexible and able to transfer knowledge between different
assembly tasks.

For Feasibility Prediction, we frame the task as an Anomaly Detection (AD) problem
and use our GNN as a feature extractor to create latent representations for each
assembly graph. We train a Normalizing Flows (NF) model to model the distribution
of feasible assemblies and detect infeasible assemblies as Out-of-Distribution (OoD).
Although our method performs better than a baseline one-class classifier, it still lags
behind a binary classifier trained on both feasible and infeasible assemblies. However,
it is not trivial to obtain a sufficient amount of infeasible assemblies for training. To
better understand the limitations of our approach, we conduct ablation studies.

Our approach requires only a few seconds to derive a feasible assembly sequence
and could be integrated into future ASP frameworks to dramatically reduce planning
time while using fewer computational resources compared to previous methods. To
our knowledge, we are the first to use NF for graph-level Anomaly Detection. Overall,
our method has the potential to significantly improve the efficiency and effectiveness of
ASP in manufacturing settings.

iii

Contents

Abstract iii

1. Introduction 1
1.1. Motivation . 1
1.2. Approach . 3
1.3. Research Scope . 4
1.4. Thesis Structure . 5

2. Related Work 6
2.1. Assembly Sequence Planning (ASP) in Robotics 6

2.1.1. Graph Search Algorithms . 7
2.1.2. Heuristics . 8
2.1.3. Rule Inference . 9

2.2. Graphs for the Task Planning Problem . 9
2.2.1. Sampling and Optimization . 10
2.2.2. Learning . 12

2.3. Graph Anomaly Detection for Feasibility Prediction 13
2.3.1. Plan Feasibility . 13
2.3.2. Graph-Level Anomaly Detection 14

3. Background 16
3.1. Graph Neural Networks (GNNs) . 16
3.2. Heterogeneous Graph Neural Networks 17
3.3. Normalizing Flows . 18
3.4. Task Planning Formulation . 21

4. Method 22
4.1. Problem Setting . 22

4.1.1. Sequence Prediction . 22
4.1.2. Feasibility Prediction . 24
4.1.3. Assumptions . 24

4.2. Assembly Graphs . 25
4.3. Graph Assembly Network . 27

iv

Contents

4.4. Sequence Prediction . 30
4.4.1. Sequence Score . 32

4.5. Feasibility Prediction . 32
4.5.1. Normalizing Flows . 32
4.5.2. Baseline Classifier: Sequence Set Size 33

5. Experiments and Results 34
5.1. Dataset . 34

5.1.1. Acquiring a dataset . 34
5.1.2. Dataset characteristics . 35

5.2. Evaluation Metrics . 36
5.2.1. Sequence Prediction . 37
5.2.2. Feasibility Prediction . 39

5.3. Sequence Prediction Task . 39
5.3.1. Baseline Setup . 39
5.3.2. Knowledge Transfer . 41
5.3.3. Ablation Studies . 43

5.4. Feasibility Prediction Task . 44
5.4.1. Classifier Comparison . 44
5.4.2. Knowledge Transfer . 46
5.4.3. Latent Space . 46
5.4.4. Ablation Studies . 49

6. Conclusion 52
6.1. Problem Definition . 52
6.2. Our Approach . 52
6.3. Contributions . 53

7. Outlook 54
7.1. Limitations . 54
7.2. Future Research . 54

A. Appendix: Detailed Results 56
A.1. Sequence Prediction Task . 57
A.2. Feasibility Prediction Task . 63

B. Appendix: One-class SVM 64

List of Figures 66

v

Contents

List of Tables 68

List of Acronyms 69

Bibliography 71

vi

1. Introduction

1.1. Motivation

Recent disturbances to global supply chains following the COVID-19 pandemic and
the war in the Ukraine are requiring manufacturers to become agile, for instance by
relocating their production lines to other countries in order to mitigate shortages in
resources (Shih, 2020). To cut down costs, producers are introducing automation
at a greater pace, but rapid changes in market needs also demand often adaptions
and customization of product design (Shih, 2020). These changes translate to often
modifications in assembly lines, requiring their time-consuming and resource-intensive
re-planning.

Automated assembly planning is one of the most important objectives of robotic
systems to increase manufacturing flexibility since decreasing planning time and
eliminating errors can facilitate greater product customization. Though product design
is commonly executed with the assistance of Computer-Aided Design (CAD) systems,
robotic assemblies are still mostly planned manually by experts (Rodrıguez et al., 2019).

Figure 1.1.: A two-arm robotic system, similar to the one simulated by our environment,
assembling a metal structure (Rodriguez et al., 2020).

Robotic Assembly Sequence Planning (ASP) includes two major steps which are
interconnected. First, generate all possible assembly sequences, meaning, the order in
which individual parts are put in place. This step is affected first and foremost by the
geometrical properties of the assembly structure, i.e. how the different parts relate to

1

1. Introduction

Product
Specification Sequence Planner PlannersN sequences

Assembly
Plan

Simulation
Environment

feedback

(a)

Product
Specification

Graph Assembly
Network

Expert
Demonstrations
(feasible only)

Plannersfeasible sequence
Assembly

Plan

Simulation
Environment

Normalizing Flows
feasible/infeasible

(b)

Figure 1.2.: Traditional (a) vs. our (b) method for Assembly Sequence Planning (ASP).
In (a), multiple geometrically possible sequences are given to planners and analyzers,
which verify their feasibility with the help of a simulation environment and can provide
feedback. In (b), our Graph Assembly Network is trained on expert demonstrations and
provide a known to be feasible sequence to the planners, reducing the overall planning
time. Our Normalizing Flow (NF) model predicts the feasibility of the assembly based
only on feasible examples.

each other. Second, confirm the feasibility of the candidate assembly sequences with the
capabilities of the target robotic system. For instance, the Degrees of Freedom (DoF),
the size of the working environment and the number of arms influence the capacities of
the system. The system with two robotic arms in Fig. 1.1 can assemble a larger variety
of products than one with a reduced skill-set since it can hand over parts from one
gripper to the other (Rodriguez et al., 2020).

Fig. 1.2a depicts the planning process: the Sequence Planner provides geometrically
possible sequences to downstream planners and analyzers, such as motion and grasp
planners, inverse kinematics and workspace analyzers. These, in turn, reject infeasible
sequences with the help of a simulation environment, potentially provide feedback to
guide the sequence planners (Thomas et al., 2015) and finally derive an assembly plan.

Each of these two planning stages has its share of challenges. Finding candidate
assembly sequences is an NP-hard combinatorial problem since the amount of possible

2

1. Introduction

solutions grows with the factorial of the assembly parts (Rashid et al., 2012). Feasibility
checks, confirming if an individual assembly sequence can be successfully executed on
a specific robotic system, are also computationally expensive, as they require the plan
to be executed in the robotic system or at least in its simulation (Rodrıguez et al., 2019).
In the work by Suárez-Ruiz et al. (2018), 11 minutes were required for the assembly
motion planning of an IKEA chair, more time than the actual execution of the plan.
A fully automated assembly planner will likely require testing of many candidate
sequences, accumulating potentially to hours.

Recently attempts have been made to automate the tedious planning process by using
Neural Networks (NN) to directly predict feasible assembly sequences (Watanabe &
Inada, 2020; M. Zhao et al., 2019) or to infer the underlying rules guiding their creation
(Rodriguez et al., 2020). However, these methods suffer from several limitations. First,
they use representations that do not support complex structures or are dependent on
the number of parts in the assembly, therefore they could not generalize the knowledge
gained. Second, they are dependent on multiple pre-processing steps (e.g. graph
matching). Another line of works aims at predicting if a structure is feasible at all in
a given robotic system (Bouhsain et al., 2022; Driess et al., 2020; Noseworthy et al.,
2021; Wells et al., 2019; L. Xu et al., 2022), yet they require the inclusion of infeasible
assemblies in the training set, demanding extra efforts in data collection.

1.2. Approach

We propose to divide the ASP problem into two sub-tasks. The first, Feasibility Prediction,
classifies the feasibility of the assembly structure, and the second, Sequence Prediction,
infers a known to be feasible assembly sequence. Aiming at addressing the limitations
of existing methods, this thesis employs a graph-based approach for solving these two
tasks.

Graph representation is intuitive for assemblies, as it is used to depict complex
structures in many other domains, for instance, chemistry (Lim et al., 2019) and physics
(Battaglia et al., 2016). We refined an existing representation of assemblies as graphs,
suggested by Rodriguez et al. (2020), such that it will include a full specification of the
structure parameters and its assembly state, i.e. which parts are in their target position.
We set the assembly part surfaces as graph nodes and encode their corresponding
geometrical distances as graph edges. This representation supports the depiction
of assemblies with a varying number of differently shaped parts. In contrast to
representations that use absolute part positions, ours is agnostic to rotations and
mirroring of the assembly structure. The graph also contains part nodes, which encode

3

1. Introduction

the current state of the assembly, instead of using an external data structure for this
purpose.

To extract useful information from the graph input, a Graph Neural Network (GNN)
(Scarselli et al., 2008) is a popular and appealing method, as it allows for high com-
putation-space efficiency (Wu et al., 2020). We train our Graph Assembly Network to
follow an expert demonstrator (Lin et al., 2022) and solve the Sequence Prediction task
in a step-by-step setting, predicting in each state of the assembly which parts could be
placed in their target position. We can employ this setting since assembly sequences
exhibit the Markovian property (Bellman, 1957), in which each step is independent
of all previous ones, given the current state. Apart from its simplicity and training
efficiency, this approach allows our model to be independent of the number and length
of predicted sequences. Indeed, we demonstrate that it can transfer knowledge between
different assembly tasks.

We frame Feasibility Prediction as an Anomaly Detection (AD) problem, allowing
us to detect infeasible assemblies in a single-class setting. We employ our Graph
Assembly Network as a feature extractor and use its output graph latent as an input to
a Normalizing Flows (NF) (Dinh et al., 2014) model, which models the distribution of
feasible assemblies. Since we assume infeasible assemblies are drawn from a different
distribution, we can use an Out-of-Distribution (OoD) detection setting to identify
them (Yang, Zhou, et al., 2021), since the NF assign them with a lower likelihood. We
conducted ablation studies to investigate the intrinsic driving factors that contribute to
the performance of our model.

1.3. Research Scope

The scope of this work is developing a method to solve the two presented ASP tasks
using GNN and NF models.

Fig. 1.2b presents how our approach could be integrated into an Assembly Planning
framework. Our Graph Assembly Network and NF models are first trained on expert
demonstrations of feasible sequences represented as Assembly Graphs. Given a query
assembly, the feasibility of its graph latent is predicted by our NF model. If it’s feasible,
an assembly sequence is derived from our Graph Assembly Network by traversing the
assembly state tree and provided to downstream planners and analyzers in order to
derive an assembly plan.

We define the following three research questions:

4

1. Introduction

1. Can we represent assemblies in a way that is flexible and supports differently-
sized structures?

2. Can we generalize knowledge and correctly predict assembly sequences?

3. Can we predict the feasibility of an assembly only based on positive examples, i.e.
other feasible assemblies?

1.4. Thesis Structure

This work includes six other chapters. Chapter 2 covers related work in robotic
Assembly Sequence Planning, the way graphs are used in the field of Task Planning and
previous methods for graph-level Anomaly Detection. Chapter 3 presents the theoretical
background required for the development of our method. Chapter 4 describes our
approach, the architecture of the model and its implementation. In Chapter 5, we
present the experimental setting, the experiments we conducted and their results. We
summarize our approach and key contributions in Chapter 6. Finally, in Chapter 7, we
discuss the limitations of our work and present directions for future research.

5

2. Related Work

The focus of this work is Assembly Sequence Planning (ASP), a variant of the Task
and Motion Planning (TAMP) problem. In Section 2.1, we review previous approaches
to ASP. In section Section 2.2, we discuss recent advancements in TAMP, mainly the
use of GNNs, which inspired our approach. Finally, in Section 2.3, we present current
approaches for graph Anomaly Detection (AD) for feasibility prediction.

2.1. Assembly Sequence Planning (ASP) in Robotics

Assembly Sequence Planning (ASP) is a process that receives a geometric description of
a final assembly product and derives a sequence of operations, according to which the
target product can be assembled step-by-step. A principle problem for robotic assembly
sequence planning is that the number of parts orderings is factorial in the number of
parts, making it an NP-hard problem (Rashid et al., 2012).

We define a feasible sequence as an ordering of all assembly parts which is possible
in a specific robotic system and will put the structure together without collision while
considering geometrical restrictions and ones originating from the motion planners
(Jiménez, 2013). A second question concerns the optimality of the assembly sequence,
which could be defined in terms of the overall assembly time, the number of required
tool changes and more (Jiménez, 2013). In this work, we focus on feasibility, though we
believe our approach could be extended to incorporate optimality as well1. Nonetheless,
we mention here works considering the question of optimality for completeness.

Traditional approaches for ASP incorporate the following steps (Jiménez, 2013):

1. Definition of the precedence constraints between parts.

2. Generation of all feasible assembly sequences.

3. Searching for the optimal solution.

Commonly, a graph depicting the assembly process is created in which nodes represent
individual assembly steps. Finding a solution in this setting means searching a path

1In order to classify assemblies as feasible, our method learns to follow expert demonstrations. These
could potentially be restricted only to optimal ones (see more in Chapter 7).

6

2. Related Work

Figure 2.1.: An example of an AND/OR Graph (Thomas et al., 2015). The root of the
graph is the complete assembly and the leaves are the individual parts.

between nodes representing initial assembly states to the one representing the final
product.

2.1.1. Graph Search Algorithms

A popular assembly graph representation is the AND/OR Graph (De Mello & Sander-
son, 1990) (Fig. 2.1), in which the root is the full assembly structure and the leaves
are the individual parts. Each node represents a state of the assembly and an edge
connecting two nodes means a single disassembly operation2 leading from one state to
its predecessor.

The AND/OR Graph could be created using the Disassembly For Assembly strategy
(De Fazio & Whitney, 1987), which converts the task of finding how to assemble a
given product to a simpler equivalent problem- finding how it could be disassembled.
Starting from a single complete target assembly, it recursively removes parts till an
initial state is reached, in which all of the assembly parts are disconnected. In an
alternative strategy, in which the graph is built bottom-up from the set of individual
parts, there are numerous target configurations that could be reached, meaning an
infinite branching factor3 (De Mello & Sanderson, 1990), making the former strategy
simpler.

As an example of an application of this method, Thomas et al. (2003) inferred the
AND/OR Graphs out of product CAD files. Later they devised a method to prune the

2Note that assembly operations are not necessarily reversible (e.g. drilling a part). The expression
Disassembly Operation refers to a reverse of an assembly operation.

3The Branching Factor of a graph node is the number of its children or out-degree. High branching factors
make search algorithms that follow every branch computationally expensive, potentially leading to
combinatorial explosion (Edelkamp & Korf, 1998).

7

2. Related Work

geometrically infeasible paths out of these graphs using computer vision techniques
(Nottensteiner et al., 2016; Thomas et al., 2015). Nevertheless, their method still
requires validation with a grasp planner to enforce the restrictions of the robotic system,
considerably increasing the time required for finding a feasible sequence. This is a
major disadvantage in comparison to our approach, which requires detailed planning
only for a single, known to be feasible, sequence.

Work Graph Representation Method Limitations

Thomas et al. (2015)
Complete assembly process Graph search Prolonged validation with planers

Nottensteiner et al. (2016)

Iwankowicz (2016)
N/A Heuristics No actual learningAb Rashid (2017)

B. Li et al. (2022)

Sinanoğlu and Börklü (2005)
N/A NN Inflexible internal representations

Chen et al. (2008)

M. Zhao et al. (2019) N/A
Deep RL

Inflexible internal representations
Limited application to other problemsWatanabe and Inada (2020) Complete assembly process

Rodriguez et al. (2020)
Complete assembly process
Assembly structure

Rules Inference,
NN,
Graph matching

Inflexible internal representations
Limited application to large structures

Table 2.1.: Discussed approaches for Assembly Sequence Planning (ASP)

2.1.2. Heuristics

Although exhaustive search is the simplest strategy ensuring the detection of the
optimal sequence, it is impractical for larger assemblies. Therefore, multiple meta-
heuristic methods have been proposed to reject infeasible sequences and find ones close
to the optimal (Jiménez, 2013). These include Ant Colony Optimization (ACO) (Ab
Rashid, 2017), Genetic Algorithms (GA) (B. Li et al., 2022) and Evolutionary Algorithms
(EA) (Iwankowicz, 2016). Though these approaches reduce the search time, they still
have to be executed separately per assembly, since no actual learning from experience
is performed.

Few works (Chen et al., 2008; Sinanoğlu & Börklü, 2005) suggested NN as a heuristic,
using Supervised Learning to infer a mapping from the geometric features to a complete
assembly sequence and as such, they are early predecessors of our work. Nevertheless,
they input feature vectors and thus do not scale to assemblies with different sizes and
different objects. Also, they are evaluated only on a few samples and are dependent on
multiple pre-processing steps.

More recently, M. Zhao et al. (2019) and Watanabe and Inada (2020) applied deep
Reinforcement Learning (RL) for ASP, to learn a policy for assembly sequencing.

8

2. Related Work

Though both methods initialize the policy with results from past solved tasks, they
still require retraining for every new structure. This is the case since their internal
representations are based on feature vectors which are dependent on the number of
parts in the assembly and its specific characteristics. Though they can gain insights
from known past sequences, their learning is limited and they can not be easily applied
to other problems.

2.1.3. Rule Inference

In a recent work, motivating ours, Rodriguez et al. (2020) suggested inferring assembly
rules (e.g. a specific part type should be assembled before another), thus allowing
knowledge transfer of workspace limitations between different assemblies (Fig. 2.2a).
They define a concept of an assembly Topology, a graph representation of the assem-
bly layout, depicting its parts and corresponding surfaces as nodes. Edges in this
graph mean either association of a surface to a part or relations between surfaces (e.g.
touching, screwed). The topology graph does not include any specific geometrical
characteristics of the assembly (e.g. distances between surfaces), and therefore many
different assemblies, or instances, could be associated with the same topology. Using
graph sub-matching, they associate each specific assembly with its matching topologies
from a predefined database of known ones. Finally, a topology-specific classifier is used
to predict the assembly rules given the instance-specific geometrical parameters.

The presented approach has several limitations. First, it is highly coupled to the
number of parts in the assembly, as training a different rules classifier is required per
topology. In addition, for larger assemblies, the sub-graph matching step would likely
result in pairing with multiple smaller topology classes. As mentioned by Rodriguez
et al. (2020), it may be hard to consolidate these and infer rules covering the constraints
of the larger assembly.

2.2. Graphs for the Task Planning Problem

ASP can be seen as a variant of the Task Planning problem (in itself a sub-task of TAMP),
which plans robot operations in an environment with complex, often long-horizon,
objectives, involving different objects and manipulators (Garrett et al., 2021). Although
this problem setting is more general than ours, we draw inspiration from works in this
field.

Task Planning algorithms define symbolic rules for the states, actions and constraints
used by the planners. Their output action sequences are usually provided to a motion
planner which checks the kinematic feasibility in the geometric world (Thomas et al.,

9

2. Related Work

(a)

(b)

Figure 2.2.: Overview of methods by Rodriguez et al. (2020) (a) and S. Nguyen et al.
(2020) (b). In (a), graph matching is used to infer a higher level topology for an assembly.
A classifier then predicts assembly rules given the specific instance parameters. In (b),
graph search is performed to find steps leading from a source to target graphs.

2003). Unfortunately, motion planning is computationally demanding and its usability
as a feasibility checker is restricted in the real world.

A vast body of task-planning approaches were suggested over the years (Garrett et al.,
2021). We will focus here on approaches that represent the environment where the
robot operates as a graph since this representation is scalable and can take advantage
of relational priors between environment objects (Y. Zhu et al., 2021). In this setting,
the graphs commonly incorporate nodes for manipulated objects (Bapst et al., 2019;
S. Nguyen et al., 2020; Y. Zhu et al., 2021), their target positions (Funk et al., 2022;
Lin et al., 2022) and the robot gripper (Ye et al., 2020). Edges can represent high-level
relations between objects (S. Nguyen et al., 2020; Y. Zhu et al., 2021).

2.2.1. Sampling and Optimization

Classical methods for task planning incorporate sampling or optimization (K. Zhang et al.,
2022). Given a task with a description of an initial and a goal state, sampling methods
sample possible intermediate states leading to the goal state from a continuous infinite
state space. Later, searching algorithms or heuristics are used to find a sequence of
feasible actions between these intermediate states.

A recent trend in these approaches is to directly work on visual input instead of
specifications of the environment. This has its benefit in a TAMP setting, in which
robots are expected to interact with a dynamic and ever-changing environment. In our
setting, though, a static specification of the end product could be provided from CAD

10

2. Related Work

(a)

(b)

Figure 2.3.: Overview of methods by Bapst et al. (2019) (a) and Lin et al. (2022) (b). In
(a), a graph is fed to a GNN, producing updated edge embeddings. The output action
is obtained with an argmax across all edges coordinates, each defines the probability of
performing an action between the source and target nodes. In (b), GNNs select the next
object and its corresponding goal position, by applying softmax on the respective node
embeddings.

files. Moreover, working with structured inputs presents substantial advantages in the
number of computational resources required4.

Y. Zhu et al. (2021) created a geometric graph representing the positions and poses
of objects in the environment before and after a robot manipulation from two input
images in a fully-supervised setting. Node features for this graph originate in a pose
estimation pipeline. Next, they use heuristics to convert this graph into a symbolic
scene graph, in which edges represent high-level relations between objects (On, In
etc.). Starting from the graph representing the goal state, they let a GNN act as a task
planner, predicting a series of states leading back to the initial state (Backward Search).
Then, they sample some of these candidates and provide them to a second GNN, which
predicts which of these would be feasible in the current state of the environment.

Working in a similar setting, Ye et al. (2020) use sampling on their graph represen-
tations, starting from an initial state and enumerating possible next steps (Forward
Search). As part of their training, they fit a multi-dimensional Gaussian on sequences
of actions in the training set, allowing them to sample feasible action sequences during
inference. However, this limits their applicability to same-length sequences.

In optimization-based methods, solutions are found by minimizing a constrained
cost function and enforcing the geometrical constraints of the robotic system. Similarly
to the previous method, S. Nguyen et al. (2020) infer from two input images a graph
representing objects in an environment before and after a robot manipulation. They

4Our GNN pipeline has ≈ 50K parameters vs. many millions required by ones processing images.

11

2. Related Work

then perform sampling and a search to find action sequences that will transform the
source graph to the target (Fig. 2.2b). Finally, they let a non-linear program eliminate
sequences that do not adhere to environment constraints.

The major difference between the problem setting of these works to ours is the fact
they operate in an infinite state space, making them dependent on external components,
such as optimizers, to retrieve feasible action sequences. This in turn restricts them to
simplified environments, made of identical manipulated objects. In our setting, the
state space is finite, though factorial, and known, allowing us to model it directly and
also incorporate complex objects with intricate relations.

2.2.2. Learning

Reinforcement Learning methods learn policies that map the current state of the
environment to a projected next state by maximizing a numerical reward signal (K.
Zhang et al., 2022). Bapst et al. (2019) (Fig. 2.3a) and follow-up work by Funk et al.
(2022) and R. Li et al. (2020), use GNNs to learn policies for the construction of target
structures using given building blocks. Bapst et al. (2019) graph representation includes
nodes for each object, while Funk et al. (2022) differentiate between placed and unplaced
objects nodes and also add nodes that define the target structure layout. The graphs
are forwarded to GNNs and the output policy action is obtained through edges (Bapst
et al., 2019) or node-pair embeddings (Funk et al., 2022).

The main disadvantage of RL methods is their long training time and the vast amount
of data required. For instance, the model by Funk et al. (2022) required 5000 epochs to
converge and R. Li et al. (2020) needed hundreds of millions of training samples. Our
model is trained on a few thousand examples for as little as 35 epochs.

As a direct inspiration to our work, instead of using RL, Lin et al. (2022) (Fig. 2.3b) use
learning from demonstrations (or Imitation Learning) to train two GNNs, one that selects
objects in the scene and another that selects a suitable goal state from a set of possible
goal positions. Their graph representation holds nodes for objects as well as goal
positions and the network predictions are obtained by applying softmax over the nodes
embeddings. Imitation learning reduces the amount of training data required, however,
their graph representations lack geometrical information about manipulated objects.
They assume an environment made of identical blocks with simplified relationships,
therefore their ability to take motion planning feasibility into account is limited. We
aim to incorporate knowledge of the restrictions of the robotic environment into our
model.

12

2. Related Work

Work Graph Representation Method Limitations

Y. Zhu et al. (2021)
Separate graphs for source &
target environment states

Sampling, heuristics

Simplified, unscalable
Ye et al. (2020) Sampling, search

S. Nguyen et al. (2020)
Sampling, search,
optimization

Bapst et al. (2019)
Single graph with nodes for
objects, gripper, targets etc.

RL Prolonged trainingR. Li et al. (2020)
Funk et al. (2022)

Lin et al. (2022)
Single graph with nodes for
objects & their goal positions

Imitation Learning Simplified

Table 2.2.: Discussed approaches for Task and Motion Planning (TAMP)

2.3. Graph Anomaly Detection for Feasibility Prediction

We represent assemblies as graphs and frame the feasibility prediction problem as
graph-level Anomaly Detection. This setting allows us to detect infeasible assemblies
based only on feasible ones and thus eliminate the effort required in collecting a dataset
of infeasible assemblies.

2.3.1. Plan Feasibility

We start by presenting several previous methods, centered around the question of plan
feasibility. Rodrıguez et al. (2019) show how the order of expensive feasibility checks
executed with a planner could be optimized, for instance by pruning sequences that are
expected to fail and performing time-consuming evaluations only if quicker ones have
passed successfully. Wells et al. (2019) trained a feature-based Support Vactor Machines
(SVM) (Cortes & Vapnik, 1995) model to directly predict the feasibility of an action
sequence based on experience, but it can not be scaled to scenes with a different number
and types of objects. Driess et al. (2020) (Fig. 2.4) and two recent follow-up works
(Bouhsain et al., 2022; L. Xu et al., 2022) use a NN to predict if a mixed-integer program
can find a feasible motion for a required action based on visual input. Noseworthy et al.
(2021) take an active learning approach to this problem, guiding the dataset acquisition
step. Their method choose action sequences that are deemed most informative (reduce
the entropy the most) and learns from their successes or failures.

Interestingly, all these methods work in a fully-supervised setting, requiring failing
action sequences to be included in the training set and then use binary classifiers.
We devise a single-class method by modeling the distribution of feasible assemblies

13

2. Related Work

with Normalizing Flows, thus feasibility prediction translates to Out-of-Distribution
detection (see Section 4.1.2).

Figure 2.4.: Overview of method by Driess et al. (2020). A NN predicts the feasibility
of an action on a specific object in the scene input image. The object in question is
specified using a mask.

2.3.2. Graph-Level Anomaly Detection

Graph AD is a widely researched topic, though most works focus on identifying
anomalous nodes and edges in a single graph, while only a few methods tackle the
graph-level setting (X. Ma et al., 2021), i.e. identifying graphs abnormal to the ones seen
during training. Moreover, when it comes to the graph-level problem, many studies
aim to detect abnormal changes in sequences of time-dependent graphs (Cui et al.,
2019; Eswaran et al., 2018; Lagraa et al., 2021), yet these are difficult to generalize to
settings with large variations in structure between non-related graph instances.

Considering AD in static graphs, some approaches (H. T. Nguyen et al., 2020; L.
Zhao & Akoglu, 2021) suggested first acquiring graph embeddings, for instance with
Graph2Vec (Narayanan et al., 2017) or Weisfeiler-Leman graph kernel (Shervashidze
et al., 2011), and then apply existing anomaly detectors, such as Isolation Forest (Liu
et al., 2008), Local Outlier Factor (Breunig et al., 2000) or One-class SVM (OC-SVM)
(Schölkopf et al., 1999), to derive an anomaly score. The main problem with these
methods is that they are dependent on the quality of the graph embeddings, which
were inferred in the previous step, and may not be optimal for the AD task.

Few methods utilize GNNs for frameworks optimized end-to-end. L. Zhao and
Akoglu (2021) suggested a model consisting of a Graph Isomorphism Network (GIN)
(K. Xu et al., 2018), a node pooling layer and a Deep Support Vector Data Description
(SVDD) (Ruff et al., 2018) one-class classifier. A different approach is followed by R. Ma
et al. (2022), who use Knowledge Distillation for capturing the training data patterns.

14

2. Related Work

Work Graph Embeddings Classifier Limitations

H. T. Nguyen et al. (2020)
Graph2Vec
Graph kernels

Isolation Forest
Local Outlier Factor
OC-SVM

Graph embeddings not optimal

L. Zhao and Akoglu (2021)
GNN

Deep SVDD
No exact density estimation

R. Ma et al. (2022)
Difference between Predictor
and Random networks

Gomes-Selman and Demir (2019) GNN
Predicted likelihood
of Auto-regressive model

Limited to simplified graphs

Table 2.3.: Discussed approaches for Graph Anomaly Detection

They train a Predictor GNN to follow the output embeddings of another Target GNN,
fixed with random weights. Finally, their anomaly score is defined as the difference
between the two networks’ predictions.

Generative models and especially Generative Adversarial Network (GAN) (Goodfel-
low et al., 2014) are commonly used for AD in other domains (Kwon et al., 2019; Rani
et al., 2020; Yang, Xu, et al., 2021). These methods are based on the idea that anomalies
cannot be generated since they do not exist in the training data. In this setting, a
NN learns the patterns of the training data by reproducing it from its corresponding
latent representation. The anomaly score is derived from a Reconstruction Error, which
compares the original and reproduced data instances.

Unfortunately, generative models for graphs are quite limited in their reconstruction
abilities from a latent representation, especially in complex settings such as ours (i.e.
heterogeneous graphs with a varying number of nodes) (Wu et al., 2020). Gomes-Selman
and Demir (2019) use Graph Auto-regressive models (You et al., 2018) to compare the
predicted scores of training and anomalous graphs. However, their experiments are
limited to highly simplified synthesized graphs.

All the methods presented so far use their anomaly score as a rough approximation
of the true density of the abnormal samples. As a direct inspiration to our method,
several works have explored the usage of Normalizing Flows (NF) (Dinh et al., 2014) for
AD in other domains (Nachman & Shih, 2020; Rudolph et al., 2021; Wellhausen et al.,
2020). Similar to the two stages approach above, a latent representation of the sample is
first obtained from a feature extractor. Then, this latent is transformed through a flow
to obtain its density. A major advantage of this approach is its capability to compute
the density of a sample directly, without approximation. However, as mentioned before,
it is dependent on the ability of the feature extractor to extract semantics relevant to the
task (Kirichenko et al., 2020). To the best of our knowledge, we are the first to apply
NF to the graph-level AD problem.

15

3. Background

This chapter presents the theoretical background required for the development of
our method. We elaborate on the principles of Graph Neural Networks (GNNs)
(Section 3.1), Heterogeneous Graph Neural Networks (Section 3.2) and Normalizing
Flows (NF) (Section 3.3), as these are fundamental to our approach. In addition, we
briefly describe the Task Planning formulation (Section 3.4), as we use it in our problem
definition.

3.1. Graph Neural Networks (GNNs)

Let G = (V,E) be an undirected graph with nodes V and undirected edges E, where
every node v ∈ V is assigned with a feature vector ϕ(v). Graph Neural Networks
(GNNs) (Scarselli et al., 2008) are neural networks operating on graphs, capable of
updating node features by exchanging information between neighboring nodes. This
is done using a Message Passing layer (Gilmer et al., 2017), where commonly multiple
message-passing layers are used. For every message passing layer l, a three-step process
to update the features of node v ∈ V is defined:

1. Gather the feature vectors, or messages, of neighbouring nodes: {hl−1
j }j∈Ni .

2. Aggregate the neighbouring nodes messages: ml
i = gω({hl−1

j }j∈Ni).

3. Update the features of the node: hl
i = f l

θ(h
l−1
i , ml

i).

Where Ni are the neighbours of node vi, the function gω can be learned during training
or constant (e.g. sum) and fθ is a NN with learned weights θ. fθ and gω are shared
across all nodes in the graph, making GNNs efficient and independent of the number
of nodes in the graph. We set h0

i = ϕ(vi), i.e. the input features.

Numerous GNN architectures were proposed in recent years (Wu et al., 2020),
suggesting different ways to aggregate neighbor features, combining message-passing
layers with activation functions and more. We will present here the two most prevalent
architectures which incorporate a notion of edge weight or features into the formulation1

since these are required in our setting (see Section 4.2).
1Both of these assume the graphs include self-edges.

16

3. Background

Graph Convolution Networks (GCN)

In Graph Convolution Network (GCN) (Kipf & Welling, 2016), the neighbor’s contribu-
tion to the node features is convoluted using the weight of the edge connecting the two
nodes:

ml
i = ∑

j∈Ni

(
ei,j√
didj
· hl−1

j

)
(3.1)

hl
i = W · ei,i

di
hl−1

i + W ·ml
i (3.2)

Where W is a learned weight matrix, ei,j is the weight of the edge connecting the edge
vi to vj and di is an edge weight normalization term: di = 1 + ∑j∈Ni

ei,j.

Graph Attention Networks (GAT)

In Graph Attention Network (GAT) (Brody et al., 2021; Veličković et al., 2017), the
neighbor’s contribution to the node features is a relative weight, learned using an
attention mechanism:

ml
i = ∑

j∈Ni

(
αi,j · hl−1

j

)
(3.3)

hl
i = W1 · αi,ihl−1

i + W1 ·ml
i (3.4)

αi,j =
exp

(
a · σ

(
W2[hl−1

i ∥ hl−1
j ∥ ei,j]

))
∑j∈Ni∪{i} exp

(
a · σ

(
W2[hl−1

i ∥ hl−1
k ∥ ei,k]

)) (3.5)

Where W1, W2 and a are learned, σ is a Leaky ReLU activation function (Maas et al.,
2013) and ∥ is a vector concatenation operator.

3.2. Heterogeneous Graph Neural Networks

A Heterogeneous Graph (Sun & Han, 2013) G = (V,E) generalizes graphs to multiple
types of nodes and edges. Each node v ∈ V belongs to one particular node type ψ(v)

and analogously each edge e ∈ E to an edge type ϕ(e). We further define for each node
v a set of distinct node and edge types connected to it Φ(v) = {(ψ(v), ϕ(e))}.

Both GCN and GAT models were extended to a heterogeneous graph setting (Wang
et al., 2019; C. Zhang et al., 2019). This is accomplished by obtaining for each node a
different updated representation per group of specific neighboring source node and

17

3. Background

edge types, and aggregating the different representations to obtain a single result, for
instance using a sum. This formulation is essential, as every type of neighbouring node
may have a different dimension.

For example, Eq. 3.2 is replaced for Heterogeneous GCN with:

hl
i = g

(
(hl

i)
k
)

k∈Φ(vi)
(3.6)

(hl
i)

k = Wk ∑
j∈Nk

i

(
ei,j√
didj
· hl−1

j

)
(3.7)

Where g is an aggregation function (sum, average etc.), Nk
i is a sub-set of vi neighbours

with a specific node type and connected to vi with a specific edge type. Notice how
the general weight matrix W in Eq. 3.2 is replaced here with Wk, to match the specific
feature dimensions of the nodes Nk

i .

3.3. Normalizing Flows

Normalizing Flows (NF) (Dinh et al., 2014) are transformations of simple base probabil-
ity distributions into complex ones using a sequence of invertible and differentiable
transformations. Given data samples from an unknown distribution we can map them
into a simple distribution (e.g. Gaussian) in which it is possible to evaluate their
densities.

Change of Variables Formula

Let X, Z ∈ RD two random variables such that Z has a known and tractable probability
density function pZ : RD → R, called the base distribution. Let f : RD → RD an
invertible and differentiable (valid) transformation such that f (Z) = X. Using the
change of variables formula, one can compute the probability density function of the
random variable X:

pX(X) = pZ(f−1(X))

∣∣∣∣det
(

∂ f−1(X)

∂X

)∣∣∣∣ (3.8)

= pZ(Z)
∣∣∣∣det

(
∂ f (Z)

∂Z

)∣∣∣∣−1

(3.9)

Where det(A) is the determinant of the square matrix A and J(f) = ∂ f (Z)
∂Z ∈ RD×D is

the Jacobian matrix of partial derivatives such that J(f)i,j =
∂ f (Z)i

∂Zj
. The requirement for

f (·) to be invertible and differentiable ensures that the Jacobian matrix has an inverse
and its determinant is tractable.

18

3. Background

(a)

(b)

Figure 3.1.: Transformation Stacking (a) and Affine Coupling Flows (b). In (a), stacking
of multiple flows transforms a simple distribution p0(Z0) to a complex one pK(ZK)

(Weng, 2018). In (b), the coupling function h(·|θ) applies "scale-and-shift" to the upper
part of the input ZA, while its parameters depend on the output of the NNs ΘS and
ΘT on the lower part ZB.

Transformation Stacking

Given an arbitrary complex transformation f , one can generate any distribution pX from
any base distribution pZ with Eq. 3.8 (Bogachev et al., 2005). However, constructing
these mapping such that they are convenient to compute, invert, and calculate the
determinant of their Jacobian is a difficult task. Instead, we can stack multiple simple
transformations to create arbitrary complex ones (Fig. 3.1a).

Let f1, . . . , fK a set of K valid transformations, we denote Zi = fi ◦ · · · ◦ f1(Z),
i ∈ [1, K], and ZK = X. We also define Zi ∼ pi(Zi). The stacking, or composition,
f = fK ◦ · · · ◦ f1 can be shown to be valid and has the following determinant of the
Jacobian (Kobyzev et al., 2020):

det J(f) =
K

∏
i=1

∣∣∣∣∣det

(
∂ f−1

i (Zi)

∂Zi

)∣∣∣∣∣ (3.10)

Substituting this term into Eq. 3.8 we get:

p(X) = p0(Z0)
K

∏
i=1

∣∣∣∣∣det

(
∂ f−1

i (Zi)

∂Zi

)∣∣∣∣∣ (3.11)

19

3. Background

Coupling Flows

Given an input Z ∈ RD, we define its disjoint partition (ZA, ZB) ∈ Rd ×RD−d, d < D.
Let the coupling function h(·|θ) : Rd → Rd be a valid transformation parameterized by θ.
We define the coupling flow (Dinh et al., 2014):

XA = h(ZA|Θ(ZB))

XB = ZB (3.12)

Where h is parameterized by a conditioner function Θ(ZB), an output of some function
on ZB alone. Assuming h is invertible, one can show that the coupling flow is a valid
transformation (Dinh et al., 2014).

For increased complexity, it is common practice to use transformation stacking
(Eq. 3.11) and compose several coupling flow blocks. However, in every coupling flow
layer, D − d input dimensions remain unchanged. Therefore, the ordering of input
dimensions is reversed after each block; ZA is alternately replaced with ZB.

Affine Coupling Flows

Several methods were proposed in regards to Θ() and h(). In the RealNVP architecture
(Dinh et al., 2016), it is suggested to use Affine Coupling (or "scale-and-shift") (Fig. 3.1b):

h(ZA) = ZA ⊙ exp
(

ΘS(ZB)
)
+ ΘT(ZB) (3.13)

Where ΘS, ΘT : RD−d → Rd are scale and translation NNs and ⊙ is an element-wise
product.

Density Estimation with Normalizing Flows

Let fθ be a transformation parameterized with θ and let pZ a given base distribution pa-
rameterized with ϕ. Given a set of samples D = {Xi}M

i=1 from an unknown distribution,
we can perform likelihood-based estimation of the parameters Θ = (θ, ϕ):

log p(D|Θ) =
M

∑
i=1

log pX(Xi|Θ) (3.14)

=
M

∑
i=1

log pZ(f−1
θ (Xi)|ϕ) + log

∣∣∣det
(

J(f−1
θ (Xi)

)∣∣∣ (3.15)

During training, the parameters of the transformation θ and of the base distribution ϕ

are updated to maximize the log-likelihood.

20

3. Background

3.4. Task Planning Formulation

Task Planning specifies a tuple {S,A, σ0,S∗} to describe the environment in which a
robot operates. The tuple is comprised of a set of environment states S and a set of all
possible actions, or transitions, A ⊆ S × S, describing changes leading from one state
of the environment to the next. Each action α =< σ, σ̂ >∈ A moves the environment
from state σ to state σ̂. In addition, an initial state σ0 ∈ S and a set of possible goal
states S∗ ⊆ S are defined.

The objective of the Task Planning problem is to find a policy π, which is a sequence
of ordered actions, that moves the initial state σ0 into a goal state σ∗ ∈ S∗.

21

4. Method

Given an input assembly, we consider two tasks:

• Sequence Prediction: Infer sequences of possible placement actions, leading to the
complete assembly.

• Feasibility Prediction: Infer the feasibility of the assembly in the target robotic
system.

For this purpose, we encode the assemblies as graphs and design a pipeline comprising
of two major components: a GNN, predicting the assembly sequence in a step-by-step
setting, and an NF model, which uses a latent representation created by the GNN
pipeline to predict the assembly’s feasibility likelihood.

This chapter is structured as follows. We start by describing the formal problem
setting for both tasks in Sections 4.1.1 and 4.1.2. We continue and present our Assembly
Graph representation (Section 4.2) and Graph Assembly Network pipeline (Section 4.3)
and show how we use these for Sequence Prediction in Section 4.4. Finally, we present
our NF model for Feasibility Prediction in Section 4.5.1.

4.1. Problem Setting

4.1.1. Sequence Prediction

Our objective is to predict an ordering, or a sequence, of the assembly parts, such
that it can be followed by a robotic system. Meaning, this predicted sequence should
be feasible, i.e. take into account the kinematic constraints of the system. We use a
simulator to generate a training set consisting of expert demonstrations, where each
assembly is accompanied by all its possible feasible sequences.

Assemblies

We follow Rodriguez et al. (2020) and describe assembly A as a finite set of N parts
P = {p1, . . . , pN}, where each part is composed of a set of Ki surfaces Si = {si

1, . . . , si
Ki
}.

Both parts and surfaces are specified by their type and an additional unique numeric

22

4. Method

identifier. Surfaces are further characterized by their relationship to each-other R(si
a, sj

b),
with si

a ∈ Si and sj
b ∈ Sj. The surface distance relationship defines the relative position

of parts in the assembly.

Decision Process

Following Lin et al. (2022) and using Task Planning formulation (Section 3.4), we
describe the Sequence Prediction task for assembly A as a Markov Decision Process
(MDP) (Bellman, 1957) {S,A, p}1:

S = {σt ∈ {0, 1}N} is the state set. State σt defines which parts are already in their
target position (i.e. assembled), while the rest are pending their placement:

σt[i] =

{
1 if part pi is in its target position

0 otherwise
(4.1)

A = {α ∈ N} is the part placement action set. The action α place the part pα in its
target position.

The transition function p defines the probability that action α in state σt will lead to
state σt+1:

p(σt+1) = Pr(σt+1|σt, αt) (4.2)

p satisfies the Markov property (Bellman, 1957), since given (σt, αt), the state σt+1 is
conditionally independent of all previous states and actions.

Starting from the initial state σ0, multiple different sequences of placement actions
leading to the final state σT, in which all N parts are in place, might be possible.
However, for some assemblies, no sequence of actions can successfully lead to the
final state due to the constraints of the robotic system. We refer to these assemblies as
infeasible. Our objective is to learn a policy πθ : σt → {α1, . . . , αj}, j ≤ N which maps
each state to a set of placement actions leading to a final state by following an expert.

Expert demonstrations

The expert demonstrations are given as trajectories τ for each assembly A in the dataset.
The trajectory τ defines a set of possible placement actions for each of the states
σ1, . . . , σT:

τ(A)i =
{

σi, {α
exp
i,k }

Ki
k=1

}
, Ki ≤ N, ∀i ∈ [1, T] (4.3)

1We omit the definition of rewards R, as these are redundant in our setting.

23

4. Method

In this setting, our objective is to minimize the fully-supervised loss between the
expert action set and the predicted action set:

min
θ

E

[
T

∑
i=1

∥∥∥{αexp
i,k }

Ki
k=1 \ {α

pred
i,z }

K′i
k′=1

∥∥∥] (4.4)

Where E is the expectation over all training samples and \ is the set difference operator.

As we will see later, our method is able to generalize and predict placement actions
leading to the successful construction of unseen assemblies.

4.1.2. Feasibility Prediction

Our second objective is to predict the feasibility of a given assembly. For this purpose,
we use Anomaly Detection (AD), which aims to detect anomalous samples by scoring
their deviation from the normal instances observed during training (Yang, Zhou, et al.,
2021). In our setting, the normal samples are the feasible assemblies and the abnormal
are the infeasible ones.

Our underlying assumption is that abnormal samples are drawn from a distribution
different from the training sample distribution and therefore could be detected using
likelihood estimation (OoD detection) (Yang, Zhou, et al., 2021). We model the feasible
assemblies distribution Pf easible, and then given an assembly A we can confirm if
Pf easible(A) < δ for some threshold δ > 0.

4.1.3. Assumptions

Similar to Rodriguez et al. (2020), we exploit the fact that related products are typi-
cally comprised of parts from a shared catalog. In our setting, this catalog is made
of just a few metal atomic sub-types that could be assembled to create numerous
structures. Consequently, reusing knowledge acquired by assembling specific products
can expedite planning for future related products comprised of parts from the same
catalog.

We consider metal assemblies positioned on a 2D plane (i.e. on a flat surface) and
assume their parts to be mutually aligned. Assembly parts surfaces are either orthog-
onal or parallel to each other and geometrical distances are defined between parallel
surfaces. We only consider relationships defined by the notion of distance between
surfaces, excluding more advanced interactions such as "screwed" or "inserted"2.

2Thus simplifying the representation used by Rodriguez et al. (2020), though these advanced interactions
may introduce additional restrictions on the sequencing of the assemblies.

24

4. Method

1

2

3

1

2

3

Legend

Surface Nodes

Part Nodes

Surface-to-Part Edges

Surface-to-Surface Edges

[assembled-flag=0, part-type=1, part-id=1]

[surface-type=2, surface-id=10]

Figure 4.1.: A 3-part assembly (left) and a matching assembly graph (right) with
example feature vectors for two nodes. Best viewed in color.

4.2. Assembly Graphs

We represent the overall structure of an assembly using distances between its part
surfaces. Using only relative distances instead of absolute positions in the plane makes
this representation agnostic to the rotation and mirroring of the assembly structure.

Given an assembly A, we represent it at state σt as an undirected heterogeneous
graph Gt = (V,E) (Section 3.2) containing two types of nodes: part nodes Vp and
surface nodes Vs, and two types of edges: Es-to-s, connecting all surface edges in the
graph to each other and Es-to-p, connecting each surface node to its respective part
node. Nodes and edges are optionally associated with additional multi-dimensional
feature vectors ϕ(v) ∈ Rdv and ϕ(e) ∈ Rde respectively3. An example assembly graph
is depicted in Fig. 4.1.

3We abuse the notation and reuse ϕ() to symbolize the input feature vectors of different graph entities.

25

4. Method

Part Nodes

Part nodes are the ones responsible for encoding the current state of the assembly. A
part node v

p
i ∈ Vp is associated with a matching vector ϕ(v

p
i) ∈ R3 comprising of the

features [assembled-flag, part-type, part-id]:

• assembled-flag: a 1d binary value, indicating if the respective part is placed in its
target position at the current state of the assembly. For example, in the initial
state of the assembly graph, σ0, all these flags are set to zero, while in the final
state σT all are set to one.

• part-type: numeric value field which is assigned with one of the following 1d
values: 0 for short-profile, 1 for long-profile and 2 for angle-bracket.

• part-id: natural numeric value in the range [0, N − 1], uniquely identifying a part
in the given assembly.

Surface Nodes

A surface node vs
i ∈ Vs is associated with a matching vector ϕ(vs

i) ∈ R2 comprising of
the features [surface-type, surface-id]:

• surface-type: assigned with with 1d natural numeric value in the range [0, 4]
according to the following keys: short-profile-short-surface, short-profile-long-surface,
long-profile-short-surface, long-profile-long-surface, angle-bracket-lateral-surface. We do
not distinguish between parallel surfaces of the same part (for instance, the two
lateral surfaces of the bracket), to make our approach agnostic to mirroring of
individual parts.

• surface-id: similar to part-id, each surface is assigned with an identifier in the range
[0, number-of-surfaces-in-assembly− 1].

Positional Encoding

Both the part-id and surface-id fields are encoded with a d-dimensional Sinusoidal
Positional Encoding (Vaswani et al., 2017). Let t be the desired part or surface id, we
define its encoding pt ∈ Rd as:

∀i ∈ [1, d] : pt[i] =

{
sin(ωk · t) if i = 2k

cos(ωk · t) if i = 2k + 1
(4.5)

ωk =
1

100002k/d (4.6)

26

4. Method

We number surfaces clockwise, starting from the top surface, while we number parts
from the one closest to the environment origin.

0 50 100 150 200 250

Position

0

8

16

De
pt

h

Figure 4.2.: Sinusoidal Positional Encoding (Vaswani et al., 2017) used by our model.
Each column represent a single 16d embedding.

Surface-to-Surface Edges

The set of surface nodes Vs is a complete graph. Meaning, each surface node pair
(vs

i , vs
j) ∈ Vs × Vs is connected with a surface-to-surface edge es-to-s

ij ∈ Es-to-s. This edge
is assigned with a 1d feature vector ϕ(ei) ∈ R, indicating the relation between the two
surfaces (color coded in Fig. 4.1). If the two surfaces belong to the same part, the value
of this feature is 1 (blue edges). If the two surfaces are orthogonal, the value of this
feature is −1 (light red edges). Otherwise, the surfaces are parallel and the value is
their respective geometric distance in centimeters (black edges). Surface nodes also
have self-loop edges with a feature of 0 (removed from the figure for brevity).

Surface-to-Part Edges

Each surface and part node pair (vs
i , vp

j) ∈ Vs ×Vp, where surface vs
i belongs to the part

v
p
j , is connected with a surface-to-part edge e

s-to-p
ij ∈ Es-to-p. This edge is not associated

with a feature vector.

4.3. Graph Assembly Network

Our model inputs an assembly A at state σt represented as a graph Gt (Fig. 4.3). Inspired
by Lin et al. (2022), we model the long-horizon assembly sequencing problem as a
step-by-step binary classification per each part in the assembly. At each step, the model
outputs a score per part, reflecting the probability of placing it in its target position in
the current state of the assembly.

Surface and Part Blocks

The architecture is made of identical blocks, which are applied sequentially to obtain
updated node representations. Each block is made of a GAT GNN (Brody et al., 2021;

27

4. Method

G
N

N

In
st

an
ce

 N
or

m

Ta
nh

G
N

N

In
st

an
ce

 N
or

m

Ta
nh

FC

S
ig

m
oi

d

1. Surface Block

2. Part Block

3. Prediction Head

1.

2.

3.

Figure 4.3.: The Graph Assembly Network. First, the Surface Block (1) is applied on the
surface nodes (gray box). Next, the Part Block (2) is used to pool information from the
surface nodes into the part nodes (purple boxes). Finally, the Prediction Head (3) is
applied on the part nodes (light red boxes) to obtain a probability score per part.

Veličković et al., 2017) (Section 3.1), an Instance Normalization layer (Ulyanov et al.,
2016) and a Tanh function.

Surface Blocks are applied on surface nodes and surface-to-surface edges and output
updated surface node features. Then Part Blocks are applied on surface nodes, part
nodes and surface-to-part edges to obtain updated part node features.

Instance Normalization is computed as follows:

y =
x−E[x]√
Var[x] + ϵ

∗ γ + β (4.7)

28

4. Method

Where x and y are the input and output node features respectively, the mean and
variance are computed per dimension of the nodes in the particular graph of the batch,
γ and β are learned parameters and ϵ a small constant.

As an additional regularization mechanism, we apply Dropout (Srivastava et al., 2014)
to prevent the network from over-fitting the training set during knowledge transfer
experiments. This is performed by letting a Bernoulli distribution randomly set the
GNN weights to zero during training.

Prediction Head and Loss Function

To obtain a score per part, a fully-connected layer followed by a Sigmoid function is
applied on each part node.

During training, we compare the network output to the expert trajectories using
binary cross-entropy. Our objective function (Eq. 4.8) includes an additional regulariza-
tion term (Eq. 4.9) aimed at encouraging the network not to predict the placement of
parts that are already in their target position (as reflected in the part nodes assembled-flag
input feature).

LΘ =
N

∑
i=1

Ni

∑
j=1

(
ŷij · log(yij) + (1− ŷij) log(1− yij)

)
+ δLreg (4.8)

Lreg =
N

∑
i=1

Ni

∑
j=1

aij · yij (4.9)

Where N is the number of graphs in the dataset, Ni is the number of nodes in the i-th
graph, yij and ŷij the output probability score of the model and the ground-truth for
the j-th node in the i-th graph respectively, δ a weighing coefficient and lastly aij the
value of the assembled-flag in the input features of the t-th node of the i-th graph.

Training Setting

As described in Section 4.1.1, we collected M demonstrations of the expert solving
assembly sequencing problems. At each state of the assembly σt, we gather the
set of placement actions performed by the expert αt = {αexp

t }K
k=1 across all of its

demonstrations. We assemble a dataset made of assemblies, their state and the matching
expert action ground-truths:

D = {τj}M
j=1, τj = {(A, σt, αt)}T

i=1 (4.10)

29

4. Method

In the training stage, we randomly sample a batch of these τ tuples and build their
matching assembly graph Gt, representing the state of assembly A at state σt. We also
create a ground-truth one-hot vector ŷ = 1[ŷi ∈ αt] based on the expert actions, in
which 1 is assigned to all parts chosen by the expert in αt and 0 for all others. Finally,
we compare the model predictions to the ground-truth using the objective in Eq. 4.8.

We used PyTorch Geometric (PyG) (Fey & Lenssen, 2019) to build the model and
PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019) to train it. Our model
includes 51.7K trainable parameters. Table 4.1 specifies the hyper-parameters we used
for training.

Parameter Value

Batch Size 256
Learning Rate 0.002182
Optimizer Adam
Training epochs 33
Regularization δ 0.3
Positional Encoding Length 16
Hidden Channels 94
Surface Blocks 3
Part Blocks 1
Surface/Part Blocks Leaky ReLU Slope 0.15
Surface/Part Blocks Dropout Probability 0.02
Surface/Part Id Positional Encoding Size 16d

Table 4.1.: Hyper-parameters used for model training.

4.4. Sequence Prediction

In the setting presented in Section 4.3, our model predicts in each state of the assembly
the possible next placement actions. To infer complete assembly sequences (i.e. of
length N), we apply the model on the initial-state assembly graph while repeatedly
placing parts in their target positions following the model predictions. We define this
process in Algorithm 1 in which we traverse the assembly state tree using Depth First
Search (DFS).

For each assembly A in the test set, we execute Algorithm 1 on the graph in its initial
state G0, meaning, when all part nodes assembled-flags are set to zero. First, we check the

30

4. Method

Algorithm 1 Assembly State Tree Traversal

function Traverse-Tree(Model M, Assembly Graph Gt = (V,E), Threshold λ)
S← list()
if (∀v ∈ V : v.assembled-flag == 1) then

return S ▷ Exit: all parts assembled
end if
ypred ← M(Gt)

for i← 1 to |V| do
if ypred[i] < λ then

continue
end if
Gt+1 ← copy(Gt)
[Vt+1]i.assembled-flag← 1 ▷ Set part node i as assembled
S∗ ← Traverse-Tree(M,Gt+1, λ) ▷ Recursion call
for s in S∗ do

s∗ ← [i] + s ▷ Add current part at the head of the sequence
S.append(s∗)

end for
end for
return S

end function

exit condition of the recursion, if all parts are already in place. Next, we call the model
on the graph to retrieve its prediction per part node ypred ≥ 0. We then iterate over the
part nodes while skipping ones for which the score is lower than a predefined threshold
λ. This threshold helps reduce the overall run-time; as we only follow promising paths.
For each node v, we follow the model prediction and set it as assembled. We then
call the recursion on the altered graph to retrieve possible sequences starting with the
chosen node. Finally, we add v to the head of each returned sequence.

We define the set of predicted complete sequences as:

S = { s ∈ Traverse-Tree(M,G0, λ) | |s| = N } (4.11)

Where N is the number of parts in A.

31

4. Method

4.4.1. Sequence Score

For a given sequence s predicted by the algorithm, we define its Sequence Score γs as
the minimal step probability along the predicted sequence:

γs = min(ys) (4.12)

This score measures the confidence in the "weakest link" along the predicted sequence;
the action about which the model is least certain. This quantity is appropriate in our
setting since its magnitude is independent of the sequence length, allowing evaluation
of the model performance on differently sized assemblies4.

For example, let s = [4, 2, 3, 1, 5] a predicted assembly sequence. Let the respective
probabilities for each of the actions ys = [0.9, 0.87, 0.84, 0.81, 0.95]. The Sequence Score
is then γs = min(ys) = 0.81.

4.5. Feasibility Prediction

4.5.1. Normalizing Flows

As outlined in Section 4.1.2, our second objective is to predict the feasibility of as-
semblies. Since we frame this task as AD and our input is represented as graphs
(Section 4.2), we take a graph-level AD approach (X. Ma et al., 2021). We propose a
model trained on feasible assembly graphs that can identify infeasible ones as abnormal.
For this purpose, we used NF (Section 3.3) in an OoD (Kirichenko et al., 2020) setting
to model the distribution of feasible assemblies.

Feature Extractor

We use our Graph Assembly Network (Section 4.3), pre-trained on feasible assemblies,
as a graph-level feature extractor by applying a channel-wise mean pooling on each
graph part node’s embeddings. This setting creates a single latent graph representation
whose number of dimensions is independent of the number of assembly parts.

NF model

We used the common RealNVP NF architecture (Dinh et al., 2016) (Section 3.3) compris-
ing multiple layers of affine coupling flows. We pass feasible assemblies latents through

4We experimented with other aggregation functions as well, see Section 5.4.1 for more details.

32

4. Method

these flows to reach a multivariate Gaussian distribution with a diagonal covariance
matrix, parameterized using learned mean and variance.

During training, we optimized the log-likelihood objective in Eq. 3.15. The validation
set was comprised of both feasible and infeasible assembly graphs latents, allowing us to
select a model which maximized the Area Under the Receiver Operating Characteristic
Curve (ROC AUC) score (see Section 5.2.2), i.e. optimized class separation on this set.
This is still an AD setting since although the validation set includes both classes, it was
only used for model selection.

The NF model predicts for a given test assembly its log-likelihood score. If LL(A) < δ

for some threshold δ > 0, we predict A is infeasible. The model includes 16.8M trainable
parameters. Table 4.2 specifies the hyper-parameters we used for training.

Parameter Value

Batch Size 32
Learning Rate 1e− 5
Training epochs 32
Optimizer Adam
Hidden Channels 94
Flows 749
Shift & Scale network layers 4
Shift & Scale hidden channels 94

Table 4.2.: Hyper-parameters used for the Normalizing Flows model training.

4.5.2. Baseline Classifier: Sequence Set Size

As a reference to our proposed NF-based OoD detector, we used our Sequence Predictor
(Section 4.4) trained on both feasible and infeasible assemblies to derive the feasibility
of assembly graphs, making this a binary classifier (in contrast to the single-class NF
model). In this setting, the size of the predicted Sequence Set indicates the assembly
feasibility.

We let our Graph Assembly Network pipeline predict the set of sequences SA for
a given test assembly A. If no sequence was predicted, i.e. |SA | = 0, the assembly
is predicted Infeasible, otherwise, it is predicted Feasible. We use the Sequence Score
(Section 4.4.1) as a threshold controlling the size of the predicted set: ∀s ∈ S require
γs > δ for some δ > 0.

33

5. Experiments and Results

In this chapter, we present the details of our experimental setup and summarize
our results. We first describe the dataset we created (Section 5.1) and the evaluation
metrics we employed (Section 5.2). We then present the results of our experiments
on the Sequence Predictor (Section 5.3), including evaluations in various knowledge
transfer tasks and an ablation study of the GNN positional encodings. Finally, we
cover the Feasibility Predictor (Section 5.4), comparing it to other classifiers, examining
the limitations of the graph latent representation, and conducting extensive ablation
studies. Additional detailed results can be found in Appendix A. In the following, we
note with Ai assemblies with i parts.

5.1. Dataset

5.1.1. Acquiring a dataset

To perform our experiments, a dataset of synthetic assemblies and their matching
sequences was created using the in-house simulation software MediView. Each of
the assemblies is made of up to three atomic part types: long profile, short profile and
angle bracket, the latter allows attachment of profiles to each other. Assembly parts are
associated with their matching surfaces; four surfaces for profiles (two long and two
short) and two for brackets1 (lateral).

For example, in Fig. 5.1, the blue and red surfaces are parallel and have a distance of
2 cm, whereas the blue and orange surfaces are in contact and therefore have a distance
of 0 cm. The blue and green surfaces are on the same hyperplane and therefore have a
distance of 0 cm as well. Finally, the blue and magenta surfaces are orthogonal and
therefore not assigned with a distance.

For each assembly, the simulation software was tasked with putting together the
structure by iteratively attempting all N! part placements, while considering the restric-
tions imposed by the capabilities of a KUKA LBR Med (Fig. 1.1) target robotic system
and restrictions of the working environment.

1The bracket’s remaining diagonal surface is omitted since it is not aligned with profile surfaces.

34

https://www.kuka.com/en-de/industries/health-care/kuka-medical-robotics/lbr-med

5. Experiments and Results

Short Profiles

Long Profile

Angle Brackets

Figure 5.1.: An example 3-part assembly (best viewed in color).

We process the simulation output to obtain two types of supervision signals for
assembly A:

1. Placement Action Trajectory In a given state of an assembly σt, which placement
actions {α}K

k=1, meaning, choices for the next part, led to successful construction.

2. Assembly Feasibility If at least one of the simulation sequences is successful, the
assembly is labeled as feasible. If, on the other hand, no sequence led to success,
meaning the simulation is unable to create the structure, the assembly is labeled
as infeasible.

5.1.2. Dataset characteristics

Our dataset is comprised of randomly generated specifications of 18000 feasible assem-
blies and 2000 infeasible ones. Assemblies are made of between 3 and 7 parts (Fig. 5.2a),
with a combination of different atomic types (Fig. 5.2b).

We further examine the number of ground-truth sequence trajectories per assembly
(Fig. 5.2c). Most A5 assemblies have five sequence trajectories each, while some have
only two. A lower number of sequences implies a more constrained assembly, one
which is harder to put together. For the infeasible assemblies, incomplete sequences
attempted by the simulation environment are available, i.e., ones leading to a failure
state, in which the structure is incomplete, but no remaining part could be placed due
to constraints.

As the overall number of parts in the assembly increases, so does the maximal
distance between their surfaces, since the overall size of the structure also grows

35

5. Experiments and Results

3 4 5 6 7
parts

0

1000

2000

3000

4000

5000

6000

in

 d
at

as
et

Feasible
Infeasible

(a)

3 4 5 6 7
parts in assembly

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

fe

as
ib

le
 in

 d
at

as
et

Short Profile
Long Profile
Angle Bracket

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
of sequneces

0

500

1000

1500

2000

2500

3000

3500

of

 a
ss

em
bl

ie
s

of parts
3
4
5
6
7

(c)

200 300 400 500 600 700
Distances between surfaces

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

De
ns

ity
 in

 d
at

as
et

of parts
3
4
5
6
7

(d)

0 10 20 30 40
Minimum distance between surfaces

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Feasible
Infeasible

(e)

Figure 5.2.: (a): Parts breakdown in feasible and infeasible assemblies. (b): Number of
part types in feasible assemblies. (c): Number of ground-truth sequence trajectories
per assembly. (d): Maximal distance between assembly surfaces. (e): Minimal distance
between surfaces (excluding zero) vs. assembly feasibility.

(Fig. 5.2d). We have not observed a correlation between the surfaces’ minimal distances
and the assembly feasibility (Fig. 5.2e).

5.2. Evaluation Metrics

We used the following metrics to evaluate our method:

• Sequence Prediction:

1. Step-by-Step: Examine the model’s predictive performance to infer the parts
that should be assembled next given the current state. Evaluated using a
Precision-Recall curve and Area Under Curve (AUC) score.

2. Complete-Sequence: Examine the model’s predictive performance to infer
the entire set of assembly sequences. Evaluated using Information Retrieval
(IR) Precision-Recall curve and AUC score.

3. Precision@k: Measures the model’s ability to rate the confidence it assigns to
its Top-k sequences. Meaning, how likely are the k-highest scored sequences
in the ground-truth set.

36

5. Experiments and Results

• Feasibility Prediction: We evaluate the ability of the different models to sep-
arate between the feasibility classes with Area Under the Receiver Operating
Characteristic Curve (ROC AUC).

5.2.1. Sequence Prediction

Step-by-Step Metrics

In this setting, we are comparing the model predicted binary class per part node
(assembled-flag) to the ground-truth and therefore chose to evaluate it using established
classification metrics. We apply a threshold on the model predictions and compare it
with the ground truths to derive the step-by-step Precision and Recall metrics:

Precision =
tp

tp + f p
(5.1)

Recall =
tp

tp + f n
(5.2)

For example, for a 5-part assembly with ground-truth y = [1, 0, 1, 1, 0] (meaning,
the expert chooses to assemble parts 1, 3 and 4), the model outputs the prediction
ypred = [0.99, 0, 0.3, 0.7, 0.55]. Notice how the output probabilities do not sum up to
1, as each is an independent result of a Sigmoid function. Assuming a threshold of
λ = 0.5 we get the prediction ŷpred = [1, 0, 0, 1, 1], meaning two True Positives (tp) for
parts 1 and 4, one True Negative (tn) for part 2, one False Positive (f p) for part 5 and
one False Negative (f n) for part 3. We can now report both Precision and Recall of 2/3.

Note that the step-by-step ypred is different from the sequence ys we used to derive
the Sequence Score in Section 4.4.1. While the former is the prediction of the model per
part for a given state of the assembly, the latter is a probability predicted per placement
action chosen by the Sequence Predictor along the sequence s.

We compute the macro average for the Precision and Recall metrics per assembly
size, meaning calculate it separately and then average the results to prevent biases
against smaller assemblies. In addition, we plot a Precision-Recall curve with a varying
threshold value and report the AUC score2 in order to eliminate the dependency on
the chosen threshold parameter.

2The Area Under the Precision-Recall Curve is also called Average Precision in some publications (M. Zhu,
2004). We use the term AUC to prevent confusion.

37

5. Experiments and Results

Information Retrieval Metrics

Metrics used in Information Retrieval (IR) compare sets of predictions vs. a ground
truth, e.g., websites retrieved by a search engine (Croft et al., 2010). In our setting, we
treat a correctly predicted sequence as one having an identical counterpart sequence in
the ground truth, as we are interested in following the expert demonstrations as closely
as possible. Partial matches between some steps in the predicted and ground truth
sequences are not beneficial as they may be infeasible given incorrectly placed parts3.

IR-Precision and IR-Recall Two sets are defined: Retrieved Documents (RET) and
Relevant Documents (REL). Retrieved documents could be websites returned for a given
search query. In this case, relevant documents are all websites on the internet relevant
to the topic. In our setting, the retrieved documents are the set of sequences S returned
by Algorithm 1, and the relevant documents are the set of ground truth sequences.

IR-Precision and IR-Recall (Croft et al., 2010) are defined :

IR-Precision =
|RET ∩ REL|
|RET| (5.3)

IR-Recall =
|RET ∩ REL|
|REL| (5.4)

IR-Precision is the proportion of retrieved documents that are relevant, it measures
the model’s ability to reject irrelevant documents in the retrieved set. IR-Recall, on
the other hand, is the proportion of relevant documents that are retrieved. Meaning,
how well is the model able to find all relevant documents. Similar to the step-by-step
precision-recall curve, we report here the AUC.

Precision@k There is an additional benefit in a model that is able to properly rank
its retrieved documents set. For instance, in our setting, having more confidence in the
top-1 sequence, since in the real world we would be interested in putting the assembly
together only once. Precision@k (P@k) measures the proportion of top-k retrieved
documents that are relevant (Herlocker et al., 2004)4:

TOP(k) = sort(RET)[: k] (5.5)

P@k =
|TOP(k) ∩ REL|
|TOP(k)| (5.6)

3We argue that the predicted sequence s = [4, 2, 3, 1] for the ground truth ŝ = [1, 2, 3, 4] has no benefits,
since, for example, the partial match [2, 3] may be infeasible given part 4 is already placed.

4An analogous definition of Recall@k (R@k) exists (Herlocker et al., 2004), but is problematic and
therefore not used here. It considers the proportion of relevant documents that are retrieved in the
top-k and therefore highly dependent on |RET|. A perfect model will have a small R@k when k is
much smaller than |REL|.

38

5. Experiments and Results

Where sort() ranks the retrieved sequences by their Sequence Score (see Section 4.4.1).

In practice, k might be larger than |RET|, introducing biases into the computation of
Eq. 5.6, since we would not be able to distinguish between cases in which the predicted
sequences are false to ones in which fewer sequences were predicted in the first place.
We argue that the first case is more harmful in our setting and set k = min (k, |RET|).
It does not make sense to compute P@k when k < |REL| because even a perfect model
can only achieve (k/|REL|) < 1.

For instance, consider the case in which we are interested in computing P@3 when
there are five ground-truth sequences (|REL| = 5) and the model predicted only two
sequences (|RET| = 2), with one of these correct. In this case, we set k = min(3, 2) = 2
and derive P@3 = 1/2.

5.2.2. Feasibility Prediction

In this setting, we compare binary classifiers that assign each assembly with one of
two possible classes: Feasible or Infeasible. For this purpose, we plot the commonly
used Receiver Operating Characteristic (ROC) curve, which compares the classifiers’
True-Positive Rate (tpr) to the False-Positive Rate (fpr), and derive a matching AUC
score, where:

tpr =
tp
p

(5.7)

f pr =
f p
n

(5.8)

Notice that in this setting, a positive (p) instance is a feasible assembly and a negative
(n) is an infeasible one, different from the labeling presented above in Section 5.2.1.

5.3. Sequence Prediction Task

In our first experiment, given an assembly, we are interested in predicting its assembly
sequences.

5.3.1. Baseline Setup

We train our Graph Assembly Network (Section 4.3) and test it on the sequence
prediction task. We evaluate the model in the step-by-step and complete-sequence
prediction settings. As a baseline, we used 4-fold cross-validation and trained the

39

5. Experiments and Results

model on a feasible assembly dataset comprised of a random mixture of assembly sizes.
We then tested the model separately per assembly size.

In each column of Fig. 5.3 we report the results for a given assembly size, including
the Precision-Recall curve in the complete-sequence setting (including the AUC) and
P@k scores for k ∈ [1 . . . 10] with a threshold of 0.5. Notice that P@k is reported for
Ai only when the assembly has at least k ground truth sequences (see discussion in
Section 5.2.1).

Figure 5.3.: Cross Validation results on the Sequence Prediction task in the baseline
setup. In each column the baseline model is evaluated on a different Ai.

When inspecting the results, we see that the model achieves good results in this
setting, reflected in a high mean AUC score across the board. Interestingly, the
complete-sequence mean AUC score for A5 and A6 (0.96 and 0.93) is lower than the one
achieved for A7 (0.97). One would have expected that since A7 has many more ground
truth sequences (Fig. 5.2c), their prediction with higher recall is harder. We claim the
opposite is correct: a smaller number of ground truth sequences also reflects restrictive
constraints on the assembly. More indications for this are given when comparing
Fig. 5.2c to the P@k results of A5 and A6, where a rise in precision is observed between
P@2− P@3 and P@4− P@5. Some assemblies in A5 and A6 have fewer ground truth
sequences than the rest since they are more constrained and harder for the model to
predict, lowering the corresponding P@k scores.

40

5. Experiments and Results

5.3.2. Knowledge Transfer

A significant ability of our model is to generalize knowledge between different assembly
tasks. We demonstrate this by evaluating models trained on differently sized assemblies,
as previous methods (Rodriguez et al., 2020; Wells et al., 2019) are incompatible with
this setting.

In the first setting, many-to-one (Fig. 5.4), we trained a model on a dataset comprised
of a mixture of assembly sizes but i, i.e., A∀j ̸=i. We then evaluated this model on Ai
alone. For instance, the model in the first column of Fig. 5.4 was trained on A∀j ̸=5 and
is evaluated on A5. When comparing the results in Fig. 5.4 to the baseline, we observe
a reduction of an average of 4.6 points in AUC between the settings, which could be
expected. However, we can also observe P@1 and P@2 of ≈ 0.9, indicating our method
is beneficial in this setting.

Figure 5.4.: Cross Validation AUC scores on the Sequence Prediction task in the
knowledge transfer many-to-one setting. In each column a different model, trained on
A∀j ̸=i, is evaluated on Ai.

We shed light on this generalization in a second experiment setting, one-to-many
(Fig. 5.5 and Table 5.1), which is reversed to the previous. Here, a model is trained Ai
and then evaluated on A∀j ̸=i, i.e., all assemblies with a size different than i. Looking into
Fig. 5.5, we identify a clear pattern in which each model is able to obtain comparably

41

5. Experiments and Results

A4

A5

A6

Figure 5.5.: Cross validated P@k results on the Sequence Prediction task in the knowl-
edge transfer one-to-many setting. In each row a different model was trained on Ai
alone and then evaluated on a different A∀j ̸=i per column. Each model is able to give
valuable predictions on assemblies smaller than the ones it was trained on.

Training Set
Step-by-Step AUC (↑) Complete Sequence AUC (↑)

A3 A4 A5 A6 A7 A3 A4 A5 A6 A7

A4 0.92± 0.11 0.48± 0.12 0.41± 0.11 0.43± 0.12 0.93± 0.09 0.28± 0.12 0.25± 0.15 0.25± 0.15
A5 0.93± 0.06 0.89± 0.07 0.78± 0.14 0.59± 0.16 0.83± 0.07 0.70± 0.09 0.36± 0.12 0.24± 0.07
A6 0.90± 0.10 0.89± 0.11 0.93± 0.04 0.59± 0.16 0.73± 0.16 0.68± 0.24 0.71± 0.13 0.24± 0.07

Table 5.1.: Feasibility classifiers AUC scores in Knowledge Transfer one-to-many setting.
In each row, a model trained on Ai is evaluated on different test sets A∀j ̸=i.

high P@k results for smaller assemblies5. For instance, A5 (third row) obtains high
results for A3 and A4, which makes sense, as the constraints guiding the assembly of
smaller structures are contained in larger structures6. The same pattern repeats with
AUC in Table 5.1.

5We do not perform this experiment on A7, as there are relatively small amount of assemblies with 7
parts in the dataset.

6We provide detailed P@k results in Table A.1.

42

5. Experiments and Results

(a)

(b)

Figure 5.6.: Ablation study of part and surface positional encodings. In (a), we replace
the encodings with random values or remove them entirely. In (b), we permute the order
of parts and surfaces in test and training time, revealing their respective importance for
the model’s ability to grasp geometrical bias.

5.3.3. Ablation Studies

Positional Encoding

In our assembly graph (Section 4.2), both the part and surface node embeddings contain
an id field which we represent as a 16d sinusoidal positional encoding (Vaswani et al.,
2017). We conducted a series of experiments on A5 to look into the contribution of
these to our model and confirm they do not cause an over-fit to the training data.

First, we experimented with removing the positional encoding field altogether or
replacing it with an identically lengthed random value. In Fig. 5.6a, positional encoding
dramatically increases the performance of our model. We hypothesize that these posi-
tions introduce geometrical bias, i.e., understanding of the part and surface interactions,
which is helpful in our task.

43

5. Experiments and Results

We number assembly parts and surfaces in a constant order. Parts are counted
beginning from the one closest to the environment origin. Surfaces, on the hand, are
always numbered clockwise, starting from the respective part top. As we see in Fig. 5.6b,
permuting these in test time cause severe degradation in performance, indicating
constant numbering harm the model’s ability to generalize. However, introducing
permutations into the training process produces surprising findings. While part order
permutations make the model more robust in test time, allowing it to outperform the
baseline, surface order permutations cause it to fail. We believe this demonstrates the
importance of these features for the model’s understanding of the parts’ geometrical
structure.

5.4. Feasibility Prediction Task

In the second experiment, given an assembly we are interested in predicting its feasibil-
ity class, i.e. feasible or infeasible.

5.4.1. Classifier Comparison

Normalizing Flows

We proposed using NF to model the distribution of feasible assemblies Pf easible. The
feasibility class is obtained by comparing the model’s predicted log-likelihood score to
a predefined threshold. As elaborated in Section 4.5.1, our model uses a single-class
training setting.

Baseline Classifier: Sequence Set Size

Our baseline feasibility classifier (Section 4.5.2) uses the size of the sequence set,
predicted by the Sequence Predictor, as an indication of the assembly feasibility.

We trained this base model in two settings. First, the model was trained in a single-
class setting on feasible assemblies alone. Second, a binary classification setting was
used, by including both feasible and infeasible assemblies in the training set. For
infeasible samples, we created a dummy trajectory, in which no part is chosen by the
expert demonstrator in the assembly’s initial state. We justify this design in a series of
experiments in Section 5.4.4.

44

5. Experiments and Results

One-class SVM

As an additional reference to our method, we report the results of a One-class Support
Vector Machine (OC-SVM) (Schölkopf et al., 1999) model7, as it was used by previous
graph-level AD works (H. T. Nguyen et al., 2020; L. Zhao & Akoglu, 2021). This model
was trained in a similar setting to the NF, i.e., on the pooled node embeddings created
by our GNN for feasible assemblies alone.

Classifier
AUC (↑)
A5 A6

Sequence Set Size, binary-class 0.96 0.98
NF, single-class 0.85 0.83
OC-SVM 0.74 0.59
Sequence Set Size, single-class 0.61 0.57

Table 5.2.: Feasibility classifiers AUC score on balanced test sets.

(a) (b)

Figure 5.7.: Comparison of the different methods for feasibility classification for A5 (a)
and A6 (b). The baseline model, based on Sequence Set Size, achieves the best results,
but it is trained in a binary setting.

Evaluation

In Fig. 5.7 and Table 5.2, we compare the results of the three models described above in
the feasibility perdition task for A5 and A6. The baseline classifier, trained in a binary

7An overview of OC-SVM is provided in Appendix B.

45

5. Experiments and Results

setting on both feasible and infeasible assemblies is able to best separate between the
classes. Next in line is the NF model trained in a single-class setting. The OC-SVM
works on the GNN embeddings directly and thus has only limited success. Finally,
the baseline model, which also uses this single-class setting, is not much better than
chance.

(a) (b)

Figure 5.8.: Ability of the feasibility classifiers to transfer knowledge. The classifiers in
(a) were trained on A6 and tested on A5, whereas in (b) they were trained on A5 and
tested on A6.

5.4.2. Knowledge Transfer

Similar to the experiments we ran in Section 5.3.2, we are interested in measuring the
ability of our classification methods to transfer knowledge about feasibility between
differently sized assemblies.

In Fig. 5.8, we train the classifiers on A5 and test them on A6 (b) and vice-versa (b).
In line with the results in Section 5.3.2, we see that transfer of feasibility knowledge is
possible only from larger assemblies to smaller ones.

5.4.3. Latent Space

Though our NF model uses many parameters (Table 4.2), it still lags behind the binary-
class setting. To better understand its limitations, we examine the graph’s latent
representation, i.e., the pooled part node embeddings. First, we visualize them in a 2d
space with t-distributed Stochastic Neighbor Embedding (t-SNE) (Van der Maaten &
Hinton, 2008).

46

5. Experiments and Results

Figure 5.9 presents the t-SNE embeddings of feasible and infeasible assemblies of
variable sizes using latents originating from our baseline model, trained on feasible ones
alone. First, in Fig. 5.9a, we see that these latents’ rich semantics encode information
about the assembly size. However, at least for the case of this baseline model, it can not
distinguish between feasible and infeasible samples at all (Fig. 5.9b); the corresponding
clusters present a mixture of both feasible and infeasible instances, without a clear
decision boundary.

60 40 20 0 20 40

40

20

0

20

40

tSNE visualiztion, baseline (feasible only)

parts
3
4
5
6
7

parts
3
4
5
6
7

(a)

60 40 20 0 20 40

40

20

0

20

40

tSNE visualiztion, baseline (feasible only)

feasiblity
0
1

feasiblity
0
1

(b)

Figure 5.9.: t-SNE visualization of latents created by the baseline model, trained on
feasible assemblies alone. Assembly latents are color labeled by their size (a) and
ground truth feasibility class (b). Best viewed in color.

30 20 10 0 10 20 30 40

20

10

0

10

20

30
tSNE visualiztion, Seqeunce Set Size (feasible only)

feasiblity
0
1

feasiblity
0
1

(a)

40 30 20 10 0 10 20 30 40

20

10

0

10

20

tSNE visualiztion, Seqeunce Set Size (mixed)

feasiblity
0
1

feasiblity
0
1

(b)

40 30 20 10 0 10 20 30

30

20

10

0

10

20

30

tSNE visualiztion, NF (feasible only)

feasibility
0
1

feasibility
0
1

(c)

Figure 5.10.: t-SNE visualization of A5 latents created by baseline model in a single-class
setting (a), a binary-class setting (b) and the baseline latents transformed by the NF
model into a Gaussian base distribution (c).

In Fig. 5.10, we look closer into the cluster of A5 assemblies. Figure 5.10a presents the
latents of the baseline model. In Fig. 5.10b, we see how the model trained using binary
supervision, i.e., on both feasible and infeasible assemblies, is able to cluster infeasible

47

5. Experiments and Results

infeasbile feasbile

cosine similarity, GNN embeddings (feasbile only)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(a)

infeasbile feasbile

cosine similarity, GNN embeddings (feasbile+infeasible)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(b)

infeasbile feasbile

cosine similarity, NF embeddings

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c)

Figure 5.11.: Cosine Similarity between A5 latents. In (a) the latents are produced by
the baseline model, trained on feasible assemblies alone. In (b), by the model trained
on both feasible and infeasible assemblies. Finally, in (c), latents were produced by the
NF, trained on feasible assemblies only. Best viewed in color.

latents together8. Finally, in Fig. 5.10c, we show the baseline latents transformed by
our NF model into a Gaussian base distribution. Here again, a separation between the
classes is evident.

Qiu et al. (2022) described a common problem in deep one-class classification in
which all the data embeddings collapse and become similar. To better understand this
phenomenon, we compute the Cosine Similarity9 between test set embeddings of both
feasible and infeasible assemblies and plot the resulting tables in Fig. 5.11.

Indeed, the embeddings of the model trained only on feasible assemblies are almost
identical (Fig. 5.11a). We overcome this problem by transforming these latents into
another representation space with NF. The model can push the embeddings of the
two classes apart (Fig. 5.11c), as infeasible assemblies embeddings are allocated with
lower density. However, our method can not to retrieve the near-optimal embeddings
generated by the model trained in a binary-class setting (Fig. 5.11b).

8In the baseline model, feasibility classification is based on the output probability of individual node
embeddings and not on the pooled representation. However, we believe this analysis still provides
insights into the model’s working.

9The Cosine Similarity between two vectors x, y is defined as SC(x, y) = (x · yT)/(|x||y|). SC ∈ [−1, 1]
such that when SC = 1 the two vectors are identical, when SC = 0 they are orthogonal and finally
when SC = −1 they are exactly the opposite.

48

5. Experiments and Results

5.4.4. Ablation Studies

Infeasible assemblies trajectory

The baseline model loss term compares its output to the expert sequence trajectories
(Section 4.3). We experimented with two possible approaches for assigning infeasible
assemblies with a target trajectory.

(a) (b)

Figure 5.12.: Two approaches for incorporating infeasible assemblies in the training set,
as reflected in the mean step probability and overall sequence score, an example for
A5. In (a), the assembly initial state is assigned with a dummy trajectory. In (b), failed
sequences attempted by the simulation are extended with the dummy state. Approach
(a) is more effective in lowering infeasible assemblies score.

In the first, the assembly’s initial state is assigned with a dummy trajectory, in which
no part should be chosen. In the second, for each infeasible assembly, we include all
failed sequences provided by the simulation environment (Section 5.1) and extend with
a dummy final state. Meaning, multiple failed trajectories are included in the training
set for the same infeasible assembly.

We trained our model with the two approaches and compared its step-by-step
probabilities on feasible and infeasible assemblies. When examining Fig. 5.12a, we
notice that in the first approach, maximal reduction in infeasible sequences probability
is achieved in the initial step, though a decline is also noticed in the following steps.
On the other hand, for the second (Fig. 5.12b), the reduction is concentrated almost
entirely in the last step. Indeed, there is an additional benefit for the first approach
in terms of running time, as infeasible assemblies could be identified early, with no
need to traverse through the remaining steps. Overall we witness a greater reduction in
infeasible sequence probabilities with the first approach, and therefore better separation

49

5. Experiments and Results

(a) (b)

Figure 5.13.: Comparison of the two methods for incorporating infeasible assemblies
into the model’s training set to the baseline model, trained on feasible assemblies
alone. Both methods achieve similar results in sequence prediction (b), therefore adding
infeasible assemblies does not harm the training procedure. However, using failed
initial state score higher in the classification task (a).

in the downstream classification task, as reflected in an almost perfect AUC score
(Fig. 5.13a).

In a second experiment, we verified that adding infeasible assemblies to the training
set does not affect the model performance in the previous sequence prediction task. We
compared in this setting the models trained above with the baseline model, trained on
feasible assemblies alone (Fig. 5.13b).

Sequence score

We examined several aggregation functions as candidates for the Sequence Score
(Section 4.4.1). The first requirement for this score is to represent the overall confidence
of the model in a predicted sequence, considering the downstream task of feasibility
classification. The second is to be independent of the length of the sequence, allowing
its use regardless of the number of parts in the assembly. We considered several
candidate aggregation functions: Minimum, Maximum, Mean, Variance and Product. We
trained the model on a mixture of feasible and infeasible assemblies from A5 and A6

and then compared the candidate function values on model output sequences.

Examining Fig. 5.14, we see that both the minimum and the product functions enable
similar separation between the feasible and infeasible assemblies. However, the product
value is highly coupled to the length of the sequence, as reflected in the difference in
its value between A5 and A6 for feasible assemblies.

50

5. Experiments and Results

Figure 5.14.: Values of candidate aggregation functions on the probabilities of predicted
sequences of both infeasible and infeasible assemblies. The minimum function was
chosen as sequence score.

Normalizing Flows Likelihood

The NF log-likelihood equation (Eq. 3.15) is a sum of two terms: the density of the
transformed point in the base distribution and the determinants of the Jacobian of the
flows transformation matrices.

To better understand the contribution of each of these terms to the model’s ability to
separate between the classes, we plot their value separately for an A5 test set in Fig. 5.15.
For better visibility, we use Kernel Density Estimation (KDE) (Parzen, 1962) to plot the
smoothed distributions. As we see, the determinants are the main contributing factor
to class separation, whereas the values produced by the base distribution collide.

200 100 0 100 200 300 400 500
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

NF model Log-likelihood
infeasible
feasible

(a)

300 250 200 150 100 50 0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

NF model Log-likelihood (base proabability)
infeasible
feasible

(b)

200 250 300 350 400 450 500 550 600
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

NF model Log-likelihood (log determinant)
infeasible
feasible

(c)

Figure 5.15.: NF predicted log-likelihood values for feasible and infeasible assemblies
from A5. The prediction of the model (a) is a sum of the base probability (b) and the
transformation matrices log determinant (c).

51

6. Conclusion

6.1. Problem Definition

In this thesis, we addressed the Assembly Sequence Planning (ASP) problem, which
is aimed at deriving an order of operations, according to which a target product can
be assembled step-by-step by a robot system. We studied two sub-tasks: Feasibility
Prediction and Sequence Prediction. In the first, given a geometric description of a final
product, we predict if a target robot system would be able to assemble it without
collision. In the second, we infer a series of feasible placement actions, leading to the
complete product.

We work on a propriety dataset comprised of specifications of structures made of two
types of metal profiles, connected with angle brackets. With these three distinct atomic
parts, multiple structures with varying levels of assembly complexity are defined.
A target robotic system simulation environment was tasked with assembling these
structures, exhaustively attempting all possible part ordering. Successful sequences
were used as ground truth trajectories for our method.

6.2. Our Approach

We represent each assembly as a graph with its parts surfaces as nodes, encoding
their corresponding geometrical distances and orientations as graph edges. This graph
also contains information about the current state of the assembly, i.e., which parts are
already in place, using part nodes. This heterogeneous graph representation provides
flexibility in depicting different structures and is agnostic to rotations and mirroring of
the assembly.

We exploited the graph’s geometrical biases and designed a GNN pipeline, creating
latent representations for each assembly part. These latents are first utilized to infer
a probability per part, indicating if the part in question could be placed in its target
position in the current state of the assembly. To this end, since the placement is only
dependent on the current state of the assembly, we trained the network in a step-by-step

52

6. Conclusion

supervised setting, using the dataset sequences as ground-truth demonstrations. We
traversed the assembly state tree with DFS, obtaining complete assembly sequences.

The part node latents are also pooled to create a single graph representation, which
is plugged into a downstream feasibility predictor. We employed Normalizing Flows
model for feasibility prediction, training it in a single-class setting on latents originating
from feasible assemblies. The NF model predicts the probability density of a given
structure under the feasible assemblies’ distribution.

6.3. Contributions

Our approach has several key contributions:

1. Our Assembly Graphs are flexible, allowing us to represent different 2d structures
while being agnostic to rotation and mirroring. Using a GNN pipeline allows
us to exploit geometrical biases and maintain high memory efficiency; our GNN
backbone requires ≈ 52k trainable parameters. Since we train our network using
Imitation Learning, our setting is highly efficient in training time, requiring just 33
epochs of training on a few thousand examples. As we use a step-by-step setting,
our model is independent of the number and length of predicted sequences.
Finally, we require only a few seconds, the time required to traverse the assembly
state-tree, to infer assembly sequences.

2. Instead of using a separate network, we exploit the graph latents produced by our
GNN pipeline for feasibility prediction. Contrary to previous approaches, our
NF-based model is trained in a single-class setting, modeling the distribution of
feasible assemblies. It is capable of providing a density estimation for a queried
assembly and not only an anomaly score. We are the first to apply NF for
Out-of-Distribution detection in a graph-level AD setting.

3. We conducted extensive experiments to evaluate the capability of our model to
transfer knowledge between different assembly tasks, as previous methods lacked
this capacity. Our method can generalize knowledge gained on larger assemblies
and then apply it to smaller ones. We believe this is the case since the relevant
constraints guiding the assembly of the smaller structures are contained in larger
assemblies.

53

7. Outlook

7.1. Limitations

Our work has several limitations:

1. We conducted our experiments on a limited dataset of assemblies, made of up to
7 parts from 3 atomic types. We assumed all of them to be 2d structures, i.e., lying
on a flat surface. Our evaluation was executed based on simulated ground-truth
trajectories, without an actual robot-in-the-loop.

2. Though our method predicts the feasibility of a given assembly structure, it
does not provide explanations guiding its decision. In addition, given an input
structure, our method predicts feasible assembly sequences, but it does not
consider the question of sequence optimally (in terms of assembly time, etc.).

3. Our NF-based feasibility classification model beats the OC-SVM classifier, directly
working on the assembly graph’s latents. However, though it includes many
trainable parameters, it still lags behind the binary-class baseline model. We
believe this is the case since the latents generated by the GNN collapse to near
identical representations.

7.2. Future Research

Based on the above, we suggest the following directions for future research:

1. Generalization Generalize our graph representation to 3d structures. This could
be done by adding two more surfaces to each part and considering parallel and
orthogonal relations in the 3d space. We suggest conducting experiments on
larger assemblies with various atomic parts, also combining an actual robot in
the evaluation.

2. Optimality Consider the optimality of the predicted assembly sequence, for
instance, by including only the optimal trajectories in the ground truth or adding
a prediction head to the pipeline, e.g., assembly-elapsed-time.

54

7. Outlook

3. Explainability Since NF models are differentiable, we can take the gradient of the
model’s predicted density with respect to its input. This may allow us to provide
an explanation for the model output (e.g. distance between two specific parts)
and solve problems that prevent the structure assembly. Another approach could
be exploring the decision boundary between feasible and infeasible assemblies’
latents. Moving latents to the other side of the boundary may allow the creation
of counter-factual explanations, i.e., feasible assemblies as similar as possible to
the infeasible ones (Atad et al., 2022), using generative models such as Graph
Auto-regressive models (You et al., 2018).

4. Improve model performance Few directions are suggested to improve the NF
model performance. These include training the GNN and NF end-to-end, chang-
ing the NF training objective to be fully supervised (Kirichenko et al., 2020), or
encouraging the GNN latents to be more expressive (Qiu et al., 2022). Another
issue could be that the Gaussian base distribution, used by our NF model, lacks
the sufficient capability to model the complex target distribution. This problem
could be circumvented by using other complex base distributions (Stimper et al.,
2022).

55

56

A. Appendix: Detailed Results

A. Appendix: Detailed Results

A.1. Sequence Prediction Task

Figure A.1.: Cross-validated sequence-prediction results for the baseline model.

57

A. Appendix: Detailed Results

Figure A.2.: Cross-validated sequence-prediction results in the many-to-one setting. In
each row a model was trained on all but Ai and is evaluated on Ai.

58

A. Appendix: Detailed Results

Figure A.3.: Cross-validated sequence-prediction results in the 4-to-many setting. The
model was trained on A4 and in each row its results on another Ai ̸=4 are given.

59

A. Appendix: Detailed Results

Figure A.4.: Cross-validated sequence-prediction results in the 5-to-many setting. The
model was trained on A5 and in each row its results on another Ai ̸=5 are given.

60

A. Appendix: Detailed Results

Figure A.5.: Cross-validated sequence-prediction results in the 6-to-many setting. The
model was trained on A6 and in each row its results on another Ai ̸=6 are given.

61

A. Appendix: Detailed Results

Tr
ai

ni
ng

/
Te

st
in

g
Pr

ec
is

io
n@

k
(↑

)

A
3

A
4

A
5

A
6

A
7

k
=

1
k
=

2
k
=

1
k
=

2
k
=

3
k
=

4
k
=

1
k
=

2
k
=

3
k
=

4
k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
k
=

6
k
=

7
k
=

8
k
=

1
k
=

2
k
=

3
k
=

4
k
=

5
k
=

6
k
=

7
k
=

8
k
=

9
k
=

10

A
4

0.
99
±

0.
02

0.
97
±

0.
04

0.
24
±

0.
40

0.
25
±

0.
40

0.
25
±

0.
39

0.
25
±

0.
39

0.
27
±

0.
39

0.
27
±

0.
39

0.
28
±

0.
39

0.
28
±

0.
39

0.
28
±

0.
39

0.
28
±

0.
39

0.
28
±

0.
39

0.
29
±

0.
39

0.
37
±

0.
39

0.
37
±

0.
39

0.
37
±

0.
39

0.
37
±

0.
39

0.
37
±

0.
39

0.
37
±

0.
39

0.
37
±

0.
39

0.
37
±

0.
39

0.
37
±

0.
39

0.
37
±

0.
39

A
5

0.
97
±

0.
02

0.
96
±

0.
02

0.
80
±

0.
21

0.
80
±

0.
22

0.
79
±

0.
23

0.
79
±

0.
23

0.
59
±

0.
22

0.
58
±

0.
21

0.
57
±

0.
20

0.
56
±

0.
19

0.
60
±

0.
23

0.
58
±

0.
21

0.
57
±

0.
20

0.
57
±

0.
20

0.
70
±

0.
15

0.
68
±

0.
13

0.
68
±

0.
12

0.
67
±

0.
12

0.
66
±

0.
11

0.
64
±

0.
10

0.
63
±

0.
10

0.
62
±

0.
10

0.
62
±

0.
10

0.
62
±

0.
10

A
6

0.
91
±

0.
06

0.
92
±

0.
05

0.
90
±

0.
09

0.
91
±

0.
08

0.
91
±

0.
08

0.
91
±

0.
08

0.
86
±

0.
09

0.
84
±

0.
11

0.
89
±

0.
12

0.
87
±

0.
13

0.
73
±

0.
32

0.
73
±

0.
32

0.
72
±

0.
31

0.
73
±

0.
31

0.
66
±

0.
22

0.
62
±

0.
16

0.
61
±

0.
11

0.
61
±

0.
08

0.
59
±

0.
07

0.
58
±

0.
07

Ta
bl

e
A

.1
.:

C
ro

ss
-v

al
id

at
ed

Se
qu

en
ce

P
re

d
ic

ti
on

P
@

k
sc

or
es

in
on

e-
to

-m
an

y
se

tt
in

g.
In

ea
ch

ro
w

,t
he

m
od

el
w

as
tr

ai
ne

d
on

A
i

an
d

th
en

ev
al

ua
te

d
on

a
di

ff
er

en
t

A
j̸=

i
pe

r
co

lu
m

n.

62

A. Appendix: Detailed Results

A.2. Feasibility Prediction Task

Figure A.6.: Comparison of the two methods for incorporating infeasible assemblies
into the model’s training set to the baseline model, trained on feasible assemblies alone.
Evaluation in both feasibility and sequence prediction tasks for A5 and A6.

63

B. Appendix: One-class SVM

One-Class Support Vector Machine (OC-SVM) (Schölkopf et al., 1999) is a model that
learns a decision function for novelty detection: classifying new data as similar or
different to the training set.

Let {xi}n
i=1 be training samples in some space RD. Let Φ : RD → F a feature map,

mapping into a dot product space, such that the dot product can be computed by
evaluating some simple kernel k(x, y) = Φ(x) ·Φ(y). In our setting we used the Radial
Basis Function (RBF) kernel (Williams & Rasmussen, 2006):

k(x, y) = exp
(
−||x− y||2

2 · l2

)
(B.1)

Where l > 0 is a length scale parameter.

The underline idea behind OC-SVM is to “map the data into the feature space
corresponding to the kernel, and to separate them from the origin with maximum
margin” (Schölkopf et al., 1999). This is achieved with a binary function which returns
+1 in a region which captures the training samples and −1 elsewhere (Fig. B.1). To find
this decision function, we solve the quadratic program (Primal Problem):

min
ω∈F, ξ∈RD , ρ∈R

1
2
||ω||2 + 1

νn

n

∑
i=1

ξi − ρ (B.2)

s.t ∀i = 1, . . . , n : (ω ·Φ(xi)) ≥ ρ− ξi

∀i = 1, . . . , n : ξi ≥ 0

Where n ∈N is the number of training samples, ξi are the slack variables from the soft-
margin SVM formulation (Cortes & Vapnik, 1995) and ν ∈ (0, 1) is a hyper-parameter.

Using Lagrange multipliers and the kernel function for the dot-product calculation
(Kernel Trick), we obtain the Dual Problem:

min
α

1
2

n

∑
i, j=1

αiαjk(xi, xj) (B.3)

s.t ∀i = 1, . . . , n : 0 ≤ αi ≤
1

νn
,

n

∑
i=1

αi = 1

64

B. Appendix: One-class SVM

Once the optimal solution α∗ is obtained, the offset ρ can be computed with
ρ = ω ·Φ(xi) = ∑n

j=1 α∗j k(xj, xi), where xi is some sample whose corresponding α∗i
is not at the upper or lower bound, i.e. α∗i ∈ (0, 1/νn).

Figure B.1.: One-Class SVM classifier. The origin is the only initial member in the −1
class (Manevitz & Yousef, 2001).

Finally, the OC-SVM decision function is:

f (x) = sgn

(
n

∑
i=1

αik(xi, x)− ρ

)
(B.4)

If f (x) ≥ 0 then x is in the target class, otherwise, it is marked as novelty. The samples
for which αi > 0 are called Support Vectors (SV).

In the primal equation (Eq. B.3), the parameter ν controls the trade-off between the
model complexity and the training error (Xiao et al., 2014). It sets an upper-bound on
the fraction of outliers (training examples regarded out-of-class) and a lower-bound on
the number of training examples used as SV.

65

List of Figures

1.1. Two arm robotic system . 1
1.2. Traditional vs. our Assembly Sequence Planning Method 2

2.1. AND/OR Graph . 7
2.2. Methods by Rodriguez et al. (2020) and S. Nguyen et al. (2020) 10
2.3. Methods by Bapst et al. (2019) and Lin et al. (2022) 11
2.4. Method by Driess et al. (2020) . 14

3.1. Normalizing Flows . 19

4.1. Assembly Graph . 25
4.2. Sinusoidal Positional Encoding . 27
4.3. Graph Assembly Network . 28

5.1. Example Assembly . 35
5.2. Dataset Characteristics . 36
5.3. Sequence Prediction: Baseline Setup . 40
5.4. Sequence Prediction: Knowledge Transfer many-to-one 41
5.5. Sequence Prediction: Knowledge Transfer one-to-many 42
5.6. Ablation Study: Positional Encoding . 43
5.7. Feasibility Prediction: Classifiers Comparison 45
5.8. Feasibility Prediction: Knowledge Transfer 46
5.9. t-SNE visualization: baseline model latents 47
5.10. t-SNE visualization: A5 latents . 47
5.11. Cosine Similarity: A5 latents . 48
5.12. Feasibility Prediction: Infeasible Assembly Trajectory 49
5.13. Feasibility Prediction: Infeasible Assembly Trajectory 50
5.14. Feasibility Prediction: Candidate Aggregation Function 51
5.15. NF model log-likelihood . 51

A.1. Sequence Prediction: Baseline . 57
A.2. Sequence Prediction: Knowledge Transfer many-to-One 58
A.3. Sequence Prediction: Knowledge Transfer 4-to-many 59

66

List of Figures

A.4. Sequence Prediction: Knowledge Transfer 5-to-many 60
A.5. Sequence Prediction: Knowledge Transfer 6-to-many 61
A.6. Feasibility Prediction: Infeasible Assemblies 63

B.1. One-Class SVM Classifier . 65

67

List of Tables

2.1. Approaches for Assembly Sequence Planning 8
2.2. Approaches for Task and Motion Planning 13
2.3. Approaches for Graph Anomaly Detection 15

4.1. Model Hyper-parameters . 30
4.2. Normalizing Flows Model Hyper-parameters 33

5.1. Knowledge Transfer, one-to-many, AUC scores 42
5.2. Feasibility Classifiers Comparison . 45

A.1. Sequence Prediction: Knowledge Transfer one-to-many, Precision@k . . 62

68

List of Acronyms

ACO Ant Colony Optimization.

AD Anomaly Detection.

ASP Assembly Sequence Planning.

AUC Area Under Curve.

CAD Computer-Aided Design.

DFS Depth First Search.

DoF Degrees of Freedom.

EA Evolutionary Algorithms.

GA Genetic Algorithms.

GAN Generative Adversarial Network.

GAT Graph Attention Network.

GCN Graph Convolution Network.

GIN Graph Isomorphism Network.

GNN Graph Neural Network.

IR Information Retrieval.

KDE Kernel Density Estimation.

MDP Markov Decision Process.

NF Normalizing Flows.

69

List of Acronyms

NN Neural Networks.

OC-SVM One-class SVM.

OoD Out-of-Distribution.

P@k Precision@k.

R@k Recall@k.

RBF Radial Basis Function.

RL Reinforcement Learning.

ROC Receiver Operating Characteristic.

ROC AUC Area Under the Receiver Operating Characteristic Curve.

SV Support Vectors.

SVDD Deep Support Vector Data Description.

SVM Support Vactor Machines.

t-SNE t-distributed Stochastic Neighbor Embedding.

TAMP Task and Motion Planning.

70

Bibliography

Ab Rashid, M. F. F. (2017). A hybrid ant-wolf algorithm to optimize assembly sequence
planning problem. Assembly Automation.

Atad, M., Dmytrenko, V., Li, Y., Zhang, X., Keicher, M., Kirschke, J., Wiestler, B., Khakzar,
A., & Navab, N. (2022). Chexplaining in style: Counterfactual explanations for
chest x-rays using stylegan. arXiv preprint arXiv:2207.07553.

Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld, K., Kohli, P., Battaglia, P.,
& Hamrick, J. (2019). Structured agents for physical construction. International
conference on machine learning, 464–474.

Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D., et al. (2016). Interaction networks
for learning about objects, relations and physics. Advances in neural information
processing systems, 29.

Bellman, R. (1957). A markovian decision process. Journal of mathematics and mechanics,
679–684.

Bogachev, V. I., Kolesnikov, A. V., & Medvedev, K. V. (2005). Triangular transformations
of measures. Sbornik: Mathematics, 196(3), 309–335.

Bouhsain, S. A., Alami, R., & Simeon, T. (2022). Learning to predict action feasibility for
task and motion planning in 3d environments.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). Lof: Identifying density-
based local outliers. ACM sigmod record, 29(2), 93–104.

Brody, S., Alon, U., & Yahav, E. (2021). How attentive are graph attention networks?
arXiv preprint arXiv:2105.14491.

Chen, W.-C., Tai, P.-H., Deng, W.-J., & Hsieh, L.-F. (2008). A three-stage integrated
approach for assembly sequence planning using neural networks. Expert Systems
with Applications, 34(3), 1777–1786.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–
297.

Croft, W. B., Metzler, D., & Strohman, T. (2010). Search engines: Information retrieval in
practice (Vol. 520). Addison-Wesley Reading.

Cui, Q., Wu, S., Huang, Y., & Wang, L. (2019). A hierarchical contextual attention-based
network for sequential recommendation. Neurocomputing, 358, 141–149.

De Fazio, T., & Whitney, D. (1987). Simplified generation of all mechanical assembly
sequences. IEEE Journal on Robotics and Automation, 3(6), 640–658.

71

Bibliography

De Mello, L. H., & Sanderson, A. C. (1990). And/or graph representation of assembly
plans. IEEE Transactions on robotics and automation, 6(2), 188–199.

Dinh, L., Krueger, D., & Bengio, Y. (2014). Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516.

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv
preprint arXiv:1605.08803.

Driess, D., Oguz, O., Ha, J.-S., & Toussaint, M. (2020). Deep visual heuristics: Learning
feasibility of mixed-integer programs for manipulation planning. 2020 IEEE
International Conference on Robotics and Automation (ICRA), 9563–9569.

Edelkamp, S., & Korf, R. E. (1998). The branching factor of regular search spaces.
AAAI/IAAI, 299–304.

Eswaran, D., Faloutsos, C., Guha, S., & Mishra, N. (2018). Spotlight: Detecting anomalies
in streaming graphs. Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 1378–1386.

Falcon, W., & The PyTorch Lightning team. (2019). PyTorch Lightning (Version 1.4).
Fey, M., & Lenssen, J. E. (2019). Fast Graph Representation Learning with PyTorch Geometric.
Funk, N., Chalvatzaki, G., Belousov, B., & Peters, J. (2022). Learn2assemble with struc-

tured representations and search for robotic architectural construction. Confer-
ence on Robot Learning, 1401–1411.

Garrett, C. R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kaelbling, L. P., & Lozano-
Pérez, T. (2021). Integrated task and motion planning. Annual review of control,
robotics, and autonomous systems, 4, 265–293.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message
passing for quantum chemistry. International conference on machine learning, 1263–
1272.

Gomes-Selman, J., & Demir, N. (2019). Graph level anomaly detection.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., & Bengio, Y. (2014). Generative adversarial networks. Communications of the
ACM, 63(11), 139–144.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collabo-
rative filtering recommender systems. ACM Transactions on Information Systems
(TOIS), 22(1), 5–53.

Iwankowicz, R. R. (2016). An efficient evolutionary method of assembly sequence
planning for shipbuilding industry. Assembly Automation.

Jiménez, P. (2013). Survey on assembly sequencing: A combinatorial and geometrical
perspective. Journal of Intelligent Manufacturing, 24(2), 235–250.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907.

72

Bibliography

Kirichenko, P., Izmailov, P., & Wilson, A. G. (2020). Why normalizing flows fail to detect
out-of-distribution data. Advances in neural information processing systems, 33,
20578–20589.

Kobyzev, I., Prince, S. J., & Brubaker, M. A. (2020). Normalizing flows: An introduction
and review of current methods. IEEE transactions on pattern analysis and machine
intelligence, 43(11), 3964–3979.

Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., & Kim, K. J. (2019). A survey of deep
learning-based network anomaly detection. Cluster Computing, 22(1), 949–961.

Lagraa, S., Amrouche, K., Seba, H., et al. (2021). A simple graph embedding for anomaly
detection in a stream of heterogeneous labeled graphs. Pattern Recognition, 112,
107746.

Li, B., Wu, Y., Sun, H., Cheng, Z., & Liu, J. (2022). Unity 3d-based simulation data
driven robotic assembly sequence planning using genetic algorithm. 2022 14th
International Conference on Computer and Automation Engineering (ICCAE), 1–7.

Li, R., Jabri, A., Darrell, T., & Agrawal, P. (2020). Towards practical multi-object manipu-
lation using relational reinforcement learning. 2020 ieee international conference
on robotics and automation (icra), 4051–4058.

Lim, J., Ryu, S., Park, K., Choe, Y. J., Ham, J., & Kim, W. Y. (2019). Predicting drug–target
interaction using a novel graph neural network with 3d structure-embedded
graph representation. Journal of chemical information and modeling, 59(9), 3981–
3988.

Lin, Y., Wang, A. S., Undersander, E., & Rai, A. (2022). Efficient and interpretable robot
manipulation with graph neural networks. IEEE Robotics and Automation Letters,
7(2), 2740–2747.

Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. 2008 Eighth IEEE Interna-
tional Conference on Data Mining, 413–422.

Ma, R., Pang, G., Chen, L., & van den Hengel, A. (2022). Deep graph-level anomaly
detection by glocal knowledge distillation. Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining, 704–714.

Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q. Z., Xiong, H., & Akoglu, L. (2021).
A comprehensive survey on graph anomaly detection with deep learning. IEEE
Transactions on Knowledge and Data Engineering.

Maas, A. L., Hannun, A. Y., Ng, A. Y., et al. (2013). Rectifier nonlinearities improve
neural network acoustic models. Proc. icml, 30(1), 3.

Manevitz, L. M., & Yousef, M. (2001). One-class svms for document classification.
Journal of machine Learning research, 2(Dec), 139–154.

Nachman, B., & Shih, D. (2020). Anomaly detection with density estimation. Physical
Review D, 101(7), 075042.

73

Bibliography

Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., & Jaiswal, S.
(2017). Graph2vec: Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005.

Nguyen, H. T., Liang, P. J., & Akoglu, L. (2020). Anomaly detection in large labeled
multi-graph databases. arXiv preprint arXiv:2010.03600.

Nguyen, S., Oguz, O. S., Hartmann, V. N., & Toussaint, M. (2020). Self-supervised
learning of scene-graph representations for robotic sequential manipulation
planning. CoRL, 2104–2119.

Noseworthy, M., Moses, C., Brand, I., Castro, S., Kaelbling, L., Lozano-Perez, T.,
& Roy, N. (2021). Active learning of abstract plan feasibility. arXiv preprint
arXiv:2107.00683.

Nottensteiner, K., Bodenmueller, T., Kassecker, M., Roa, M. A., Stemmer, A., Stouraitis,
T., Seidel, D., & Thomas, U. (2016). A complete automated chain for flexible
assembly using recognition, planning and sensor-based execution. Proceedings of
ISR 2016: 47st International Symposium on Robotics, 1–8.

Parzen, E. (1962). On estimation of a probability density function and mode. The annals
of mathematical statistics, 33(3), 1065–1076.

Qiu, C., Kloft, M., Mandt, S., & Rudolph, M. (2022). Raising the bar in graph-level
anomaly detection. arXiv preprint arXiv:2205.13845.

Rani, B. J. B. et al. (2020). Survey on applying gan for anomaly detection. 2020 Interna-
tional Conference on Computer Communication and Informatics (ICCCI), 1–5.

Rashid, M. F. F., Hutabarat, W., & Tiwari, A. (2012). A review on assembly sequence
planning and assembly line balancing optimisation using soft computing ap-
proaches. The International Journal of Advanced Manufacturing Technology, 59(1),
335–349.

Rodriguez, I., Nottensteiner, K., Leidner, D., Durner, M., Stulp, F., & Albu-Schaffer, A.
(2020). Pattern recognition for knowledge transfer in robotic assembly sequence
planning. IEEE Robotics and Automation Letters, 5(2), 3666–3673.

Rodrıguez, I., Nottensteiner, K., Leidner, D., Kaßecker, M., Stulp, F., & Albu-Schäffer,
A. (2019). Iteratively refined feasibility checks in robotic assembly sequence
planning. IEEE Robotics and Automation Letters, 4(2), 1416–1423.

Rudolph, M., Wandt, B., & Rosenhahn, B. (2021). Same same but differnet: Semi-
supervised defect detection with normalizing flows. Proceedings of the IEEE/CVF
winter conference on applications of computer vision, 1907–1916.

Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S. A., Binder, A., Müller,
E., & Kloft, M. (2018). Deep one-class classification. International conference on
machine learning, 4393–4402.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The
graph neural network model. IEEE transactions on neural networks, 20(1), 61–80.

74

Bibliography

Schölkopf, B., Williamson, R. C., Smola, A., Shawe-Taylor, J., & Platt, J. (1999). Support
vector method for novelty detection. Advances in neural information processing
systems, 12.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K., & Borgwardt, K. M.
(2011). Weisfeiler-lehman graph kernels. Journal of Machine Learning Research,
12(9).

Shih, W. C. (2020). Global supply chains in a post-pandemic world. Harvard Business
Review, 98(5), 82–89.

Sinanoğlu, C., & Börklü, H. R. (2005). An assembly sequence-planning system for
mechanical parts using neural network. Assembly Automation.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1), 1929–1958.

Stimper, V., Schölkopf, B., & Hernández-Lobato, J. M. (2022). Resampling base distribu-
tions of normalizing flows. International Conference on Artificial Intelligence and
Statistics, 4915–4936.

Suárez-Ruiz, F., Zhou, X., & Pham, Q.-C. (2018). Can robots assemble an ikea chair?
Science Robotics, 3(17), eaat6385.

Sun, Y., & Han, J. (2013). Mining heterogeneous information networks: A structural
analysis approach. Acm Sigkdd Explorations Newsletter, 14(2), 20–28.

Thomas, U., Barrenscheen, M., & Wahl, F. M. (2003). Efficient assembly sequence
planning using stereographical projections of c-space obstacles. Proceedings of
the IEEE International Symposium onAssembly and Task Planning, 2003., 96–102.

Thomas, U., Stouraitis, T., & Roa, M. A. (2015). Flexible assembly through integrated
assembly sequence planning and grasp planning. 2015 IEEE International Confer-
ence on Automation Science and Engineering (CASE), 586–592.

Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2016). Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022.

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., &
Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph
attention networks. arXiv preprint arXiv:1710.10903.

Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., & Yu, P. S. (2019). Heterogeneous graph
attention network. The world wide web conference, 2022–2032.

75

Bibliography

Watanabe, K., & Inada, S. (2020). Search algorithm of the assembly sequence of products
by using past learning results. International Journal of Production Economics, 226,
107615.

Wellhausen, L., Ranftl, R., & Hutter, M. (2020). Safe robot navigation via multi-modal
anomaly detection. IEEE Robotics and Automation Letters, 5(2), 1326–1333.

Wells, A. M., Dantam, N. T., Shrivastava, A., & Kavraki, L. E. (2019). Learning feasibil-
ity for task and motion planning in tabletop environments. IEEE robotics and
automation letters, 4(2), 1255–1262.

Weng, L. (2018). Flow-based deep generative models. lilianweng.github.io.
Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2).

MIT press Cambridge, MA.
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive

survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1), 4–24.

Xiao, Y., Wang, H., & Xu, W. (2014). Parameter selection of gaussian kernel for one-class
svm. IEEE transactions on cybernetics, 45(5), 941–953.

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826.

Xu, L., Ren, T., Chalvatzaki, G., & Peters, J. (2022). Accelerating integrated task and
motion planning with neural feasibility checking. arXiv preprint arXiv:2203.10568.

Yang, J., Xu, R., Qi, Z., & Shi, Y. (2021). Visual anomaly detection for images: A survey.
arXiv preprint arXiv:2109.13157.

Yang, J., Zhou, K., Li, Y., & Liu, Z. (2021). Generalized out-of-distribution detection: A
survey. arXiv preprint arXiv:2110.11334.

Ye, Y., Gandhi, D., Gupta, A., & Tulsiani, S. (2020). Object-centric forward modeling for
model predictive control. Conference on Robot Learning, 100–109.

You, J., Ying, R., Ren, X., Hamilton, W., & Leskovec, J. (2018). Graphrnn: Generating
realistic graphs with deep auto-regressive models. International conference on
machine learning, 5708–5717.

Zhang, C., Song, D., Huang, C., Swami, A., & Chawla, N. V. (2019). Heterogeneous graph
neural network. Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, 793–803.

Zhang, K., Lucet, E., Sandretto, J. A. D., Kchir, S., & Filliat, D. (2022). Task and motion
planning methods: Applications and limitations. 19th International Conference on
Informatics in Control, Automation and Robotics ICINCO 2022), 476–483.

Zhao, L., & Akoglu, L. (2021). On using classification datasets to evaluate graph outlier
detection: Peculiar observations and new insights. Big Data.

76

Bibliography

Zhao, M., Guo, X., Zhang, X., Fang, Y., & Ou, Y. (2019). Aspw-drl: Assembly sequence
planning for workpieces via a deep reinforcement learning approach. Assembly
Automation.

Zhu, M. (2004). Recall, precision and average precision. Department of Statistics and
Actuarial Science, University of Waterloo, Waterloo, 2(30), 6.

Zhu, Y., Tremblay, J., Birchfield, S., & Zhu, Y. (2021). Hierarchical planning for long-
horizon manipulation with geometric and symbolic scene graphs. 2021 IEEE
International Conference on Robotics and Automation (ICRA), 6541–6548.

77

	Abstract
	Contents
	Introduction
	Motivation
	Approach
	Research Scope
	Thesis Structure

	Related Work
	Assembly Sequence Planning (ASP) in Robotics
	Graph Search Algorithms
	Heuristics
	Rule Inference

	Graphs for the Task Planning Problem
	Sampling and Optimization
	Learning

	Graph Anomaly Detection for Feasibility Prediction
	Plan Feasibility
	Graph-Level Anomaly Detection

	Background
	Graph Neural Networks (GNNs)
	Heterogeneous Graph Neural Networks
	Normalizing Flows
	Task Planning Formulation

	Method
	Problem Setting
	Sequence Prediction
	Feasibility Prediction
	Assumptions

	Assembly Graphs
	Graph Assembly Network
	Sequence Prediction
	Sequence Score

	Feasibility Prediction
	Normalizing Flows
	Baseline Classifier: Sequence Set Size

	Experiments and Results
	Dataset
	Acquiring a dataset
	Dataset characteristics

	Evaluation Metrics
	Sequence Prediction
	Feasibility Prediction

	Sequence Prediction Task
	Baseline Setup
	Knowledge Transfer
	Ablation Studies

	Feasibility Prediction Task
	Classifier Comparison
	Knowledge Transfer
	Latent Space
	Ablation Studies

	Conclusion
	Problem Definition
	Our Approach
	Contributions

	Outlook
	Limitations
	Future Research

	Appendix: Detailed Results
	Sequence Prediction Task
	Feasibility Prediction Task

	Appendix: One-class SVM
	List of Figures
	List of Tables
	List of Acronyms
	Bibliography

