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Abstract: Remote sensing image composites are crucial for a wide range of remote sensing applica-
tions, such as multi-decadal time series analysis. The Advanced Very High Resolution Radiometer
(AVHRR) instrument has provided daily data since the early 1980s at a spatial resolution of 1 km,
allowing analyses of climate change-related environmental processes. For monitoring vegetation
conditions, the Normalized Difference Vegetation Index (NDVI) is the most widely used metric.
However, to actually enable such analyses, a consistent NDVI time series over the AVHRR time-span
needs to be created. In this context, the aim of this study is to thoroughly assess the effect of dif-
ferent compositing procedures on AVHRR NDVI composites, as no standard procedure has been
established. Thirteen different compositing methods have been implemented; daily, decadal, and
monthly composites over Europe and Northern Africa have been calculated for the year 2007, and the
resulting data sets have been thoroughly evaluated according to six criteria. The median approach
was selected as the best-performing compositing algorithm considering all the investigated aspects.
However, the combination of the NDVI value and viewing and illumination angles as the criteria for
the best-pixel selection proved to be a promising approach, too. The generated NDVI time series,
currently ranging from 1981–2018, shows a consistent behavior and close agreement to the standard
MODIS NDVI product. The conducted analyses demonstrate the strong influence of compositing
procedures on the resulting AVHRR NDVI composites.

Keywords: AVHRR; NDVI; time series; remote sensing; multi-spectral; compositing; weighing;
temporal synthesis; temporal statistics; Europe; AVHRR CDR; MODIS; TIMELINE

1. Introduction

Tracking the changes in vegetation continuously on large spatial scales is of high impor-
tance for measuring, understanding, and adapting to global environmental changes [1,2].
Temperature and precipitation patterns are influenced by climate change, which impacts
the vegetation condition and phenology of natural and agricultural systems [3,4], and
hence, affects a wide range of ecosystem services such as habitat provision, biodiversity,
water purification, soil fertility, and food production [5–8]. Therefore, to understand the
impact of climate change on a certain region (e.g., Europe), it is necessary to quantitatively
investigate how the phenology and vegetation conditions have been changing. Only when
such patterns are known for several decades is it possible to derive quantitative statistics
regarding ecosystems’ variabilities and, based on that, climate relevant trends. Repeated
and spatially continuous monitoring over large areas is only possible based on remote
sensing data [9]. The use of satellite data for monitoring such dynamics has therefore
steadily increased over the last few decades [8] and has advanced to become a standard
tool used to enable informed decisions in policy, management, and planning.

Long-term observations over at least three decades are necessary to track climate
relevant changes [10]. In addition, especially for the monitoring of highly variable vege-
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tation canopies, continuous measurements at high temporal frequency are a prerequisite.
Medium resolution satellite remote sensing is the only source providing multi-decadal data
at short intervals, allowing for the generation of robust, dense, and long time series [9].
Although more satellite systems are becoming available every year, only one mission with
daily global coverage goes back in time over decades. The Advanced Very High Resolution
Radiometer (AVHRR) instrument series on the National Oceanic and Atmospheric Admin-
istration (NOAA) satellites has been providing daily data since the early 1980s at a spatial
resolution of approx. 1–4 km, allowing the analyses of environmental processes that are
triggered by climate change [11], such as the detection of long-term seasonal shifts.

To actually enable such analyses, a consistent time series over the AVHRR time-span
needs to be created. In this context, the TIMELINE (Time Series Processing of Medium
Resolution Earth Observation Data assessing Long-Term Dynamics In our Natural Envi-
ronment) project was established at the German Aerospace Center (DLR) [12]. It aims
at the generation of a scientifically sound, well-calibrated, and homogeneous AVHRR
time series at 1 km resolution over Europe and North Africa, starting in the early 1980s.
An operational processing and data management environment was developed to process
NOAA and MetOP AVHRR raw data to L1b, L2, and L3 products. While L1b and L2 are
scene-based data in orbit-geometry, L3 data are projected and gridded, in daily, 10-day,
and monthly composites. A comprehensive set of remote sensing land and atmosphere
products is developed [12,13].

For monitoring vegetation conditions, vegetation indices (VI) are widely applied, and
the Normalized Difference Vegetation Index (NDVI) is the best known and most widely
used metric [14,15]. The NDVI is the difference between the near-infrared (NIR) and red
reflectance, related to their sum [16]:

NDVI =
ρNIR − ρred
ρNIR + ρred

, (1)

where ρred and ρNIR are the surface bidirectional reflectance factors in the red and near-
infrared domain. The strength of the NDVI is its rationing concept, which reduces multi-
plicative noise (e.g., differences in illumination, cloud shadows, and atmospheric attenua-
tion) that is present in all bands. It therewith permits comparisons of seasonal and inter-annual
changes in vegetation activity. The main disadvantage of the NDVI is the influence of additive
noise, such as the effect of atmospheric path radiances. The NDVI also exhibits scaling and
saturation problems, and is sensitive to canopy background variations [17].

AVHRR NDVI has been widely used in various applications, including land-cover
classification, plant growth monitoring, drought detection, deforestation, or change de-
tection [18–25]. It is also an input parameter for general circulation and biogeochemical
models [26]. A range of regional and global AVHRR NDVI products currently exist. The
NASA Long-Term Data Record (LTDR) NOAA Climate Data Record (CDR) NDVI is pro-
duced for the entire lifetime of AVHRR, i.e., from 1981 to the present day, at a daily temporal
resolution and a spatial resolution of 0.05◦ [27,28]. The NASA/Goddard Space Flight Cen-
ter (GFSC) Global Inventory Monitoring and Modeling System (GIMMS) NDVI3g data
set is a global product, too, but is generated at 8 km spatial resolution and only at 15-day
intervals for the years 1981–2015 [29,30]. The global ENDVI10 product of VITO, based on
the EUMETSAT MetOP data, has a spatial resolution of 1 km, but has only been produced
since 2007 in 10-day intervals [31,32]. For Canada only, the Crop Condition Assessment
Program (CCAP) has produced daily and weekly NDVI composites for 1987–2021 at a 1 km
spatial resolution [33], while for the conterminous U.S. and Alaska, weekly and biweekly
NDVI composites at 1 km date from 1989–2019 [34]. However, at the moment of preparing
this manuscript, no NDVI product over Europe exists that covers the full time series of
four decades and offers a spatial resolution of 1 km. In the TIMELINE project, we aim to
fill this gap.

Single image acquisitions provided by optical sensors are usually affected by gaps and
noise, induced by clouds, aerosols, and cloud shadows. In addition, time series are often
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acquired at irregular intervals or—as it is the case for AVHRR—at varying repetition rates
due to the overlap of several satellite missions. Furthermore, the footprints of acquisitions
often vary with the orbital passes. Generating a time series of equidistant and spatially
comprehensive data sets is, however, crucial for a wide range of remote sensing applications
such as change detection or time series analysis. This is especially relevant when targeting
large areas, which have to be processed and analyzed in a systematic manner. Compositing
was hence developed to produce gap-free, consistent, n-day data sets [35]. Pixel-based
image compositing through temporal synthesis offers a range of advantages. It enables the
exploitation of the information content of all available images, including partially cloudy
scenes. Furthermore, heterogeneous observations from different orbits can be transformed
into a time series of equidistant and uniform data sets [36]. One disadvantage of image
composition is that valid observations might not be considered. The temporal interval
of the selected time series should therefore be adapted to the specific region, sensor, and
application to find a good balance between data gaps and information loss.

While the NDVI calculation is straightforward (see Equation (1)), radiometric measure-
ments of a given surface can vary substantially under varying viewing and illumination
geometries, mainly due to anisotropic effects. As the rationing applied during the NDVI
calculation reduces, but does not completely eliminate these variations, multiple NDVI
measurements of the same target surface can still vary. The rules applied for integrating
several measurements into one temporal composite can hence have a profound influence
on the resulting NDVI map. It has been shown by [37] that, depending on the preprocess-
ing and compositing method, contradictory conclusions can be drawn from a time series.
A thorough assessment of the compositing method applied is therefore fundamental for
any composite product.

Methodologically, a range of compositing approaches exist. Compositing methods
for each pixel either a) select from several observations the value that best satisfies some
criteria, or b) combine different observations’ values by calculating a new value.

Most NDVI compositing studies follow the first approach, i.e., a “best-pixel” selection
strategy following one criterion. One of the simplest and most frequently used approaches
is the maximum value compositing (MVC), which selects the observation corresponding
to the highest observed index value (usually NDVI, but in some cases, also brightness
temperature (BT), surface temperature, difference in red and NIR reflectance, ratio of
blue and NIR, thermal radiance, and minimum scan angle have been used) [35,38–43].
The underlying concept of this approach is to reduce the disturbing influences, because
clouds, snow, and aerosols typically depress NDVI and BT over land. Other best-pixel
compositing approaches select the observation corresponding to the median [41,44] (or
multi-dimensional versions of it such as the geometric median [45] or medoid [46]) of
a distribution; however, this is usually applied to spectral rather than NDVI compositing.

Often, multiple criteria are taken into account for the best-pixel selection, of which
the simplest solutions are stepwise decision rules. For the Moderate Resolution Imaging
Spectroradiometer (MODIS) NDVI compositing, constraints based on quality, cloud, and
viewing geometry are added to the MVC in order to reduce the effect of strongly varying
Instantaneous Fields of View (IFOV) [47–49] (see also Section 2.2.2). Additionally, the
GIMMS NDVI3g relies on the MVC, but includes an empirical mode decomposition in
a second step to reduce sun zenith angle effects [50]. Similarly, in [51], the MVC is combined
with constraints on view zenith angles. A comparison study on compositing algorithms [38]
also tested two-step criteria (MVC followed by maximum temperature or by minimum
scan angle). For the AVHRR compositing of [42], an approach consisting of three steps
(based on the maximum BT, maximum red/NIR ratio, and NDVI MVC, respectively) was
designed. Furthermore, [52] uses the consecutive criteria NDVI, BT, and scan angle. In the
Landsat compositing of [53], a cascade of decisions regarding cloudiness, BT, and NDVI
values is passed.

Conceptually similar is the idea to incorporate multiple criteria in the best-pixel se-
lection concurrently through scoring of parameters. Scoring approaches evaluate each
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observation using a range of criteria for which a (optionally weighted) score is calculated
and the highest sum of scores determines the best-pixel selection [54,55]. Common parame-
ters used are the view angle [47,56], atmospheric conditions, such as haze or distance to
clouds [56,57], and temporal proximity [56]. Additionally, spectral similarity has been used
as a score to quantify the comparability among available observations and hence to penalize
outliers [56]. This approach was however only applied to yearly or seasonal composites
and is conceptually problematic when targeting more narrow temporal intervals.

The second approach (b) of mathematically combining pixel values from different
observations and hence generating new synthetic values includes mean value composit-
ing [58,59], weighted averaging [60], and deriving synthetic images from time series mod-
els [61,62]. While the outputs of these synthetic value generation methods can be very
homogenous in appearance, the values in the composite do not represent physical observa-
tions. Best-pixel selection strategies, on the other hand, strongly depend on the quality of
cloud masking, atmospheric correction, and other applied quality measures, as well as on
the underlying weighing function to avoid artifacts [63].

The conducted literature review shows that there is no standard procedure established
for the composite generation of the NDVI, and that when developing or deciding on an
approach, the special challenges of AVHRR as well as the applied preprocessing steps need
to be considered. Composites generated from wide FOV satellite data such as AVHRR
often contain significant bidirectional reflectance effects caused by large viewing and
illumination angle variations and hence, strong geometric off-nadir distortions [47,64–66].
Goward et al. [67] highlighted that factors related to instrument calibration and off-nadir
viewing can create deviations of NDVI from ground observations by more than 50%.
Additionally, for a multi-sensor time series, differences in the band center wavelength and
spectral response functions also have an impact on vegetation indices, see [68], which is
also relevant for the different AVHRR sensors [69]. Furthermore, NOAA satellites are prone
to orbit drift, resulting in slowly changing view and solar zenith angles due to changing
observation times over the lifetime of the satellite [70–72]. This leads to the challenge of
integrating data recorded at the same place and time but under widely diverging acquisition
conditions into one map. This issue is especially important when using acquisitions from
different platforms of overlapping NOAA missions.

The aim of this study is hence to thoroughly assess the effect of different compositing
procedures on AVHRR NDVI composites, and to identify the best procedure for generating
daily, 10-daily (in the following called “decadal”), and monthly AVHRR NDVI composites
at 1 km spatial resolution over Europe. A comprehensive range of different compositing
methods, including single and multiple criteria approaches, is analyzed in terms of the
NDVI value distributions, spatial and temporal consistency, and regarding the local ac-
quisition homogeneity. Furthermore, the general conformity with other existing NDVI
composite products of similar spatiotemporal specifications is used as a critical benchmark,
as in earlier studies [73,74]. The selected procedure as well as the resulting TIMELINE
AVHRR NDVI L3 time series are presented in the last section of this paper.

2. Materials and Methods
2.1. Study Area and Sites

The study area of the TIMELINE project covers Europe and Northern Africa, having
the same extent as the European Environmental Agency (EEA) reference grid: 900,000 m
east and 900,000 m north to 7,400,000 m east and 5,500,000 m north (Figure 1). The
total land area covered is 13,200,106 km2. Almost half of the area makes up the Great
European Plain spanning from Western France to Russia. According to the Köppen–Geiger
classification [75], Western Europe and the Mediterranean Basin have a temperate climate
with dry and hot summers in the Mediterranean regions and warm summers in Western
Europe [70,72]. Towards the East the climate gets more continental with warm summers
in Central and Central-Eastern Europe and cold summers in Scandinavia and North-
Eastern Europe. In Northern Africa, arid conditions with hot summers dominate. The
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natural vegetation in Northern Europe is characterized by boreal coniferous forest, and by
coniferous and mixed broadleaved forest in Central Europe. In the Mediterranean regions,
sclerophyllous forests would dominate [76]. Eastern Europe belongs to the Eurasian
Steppe and Northern Africa and the Arabian Peninsula make up part of the Sahara and
Arabian Desert.
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Figure 1. Extent of the TIMELINE study area in LAEA ETRS89-extended projection with L3 tile
borders (white), location of the focus areas A–F (see Section 2.4.2, in yellow), and location of the
investigated sites (red dots, see Table S1 for site numbers). The background map shows an RGB false
color composite (logarithmic stretch) of the three-month mean of monthly (May, June, and July 2007)
median red and NIR reflectance composites, with red = band 1 (red reflectance), green = band 2 (NIR
reflectance), and blue = band 1. Data gaps (which include inland water bodies) are displayed in
white, while oceans are light blue.

NDVI extracted over 37 sites (see Figure 1), which were distributed over all climate
zones and located on different land cover, is used in this study to assess the temporal
behavior of the NDVI time series on a local scale. The sites are selected from different
measurement networks, as such (instrumented) sites serve as a focal point for international
research efforts, facilitating traceability and cross-comparison. Twenty sites belong to
the Integrated Carbon Observation System (ICOS) network [77]. ICOS, which aims at
observing the levels of greenhouse gas (GHG) emissions, provides data from more than
140 measurement stations (of which 87 are ecosystem stations) across 14 European countries.
All selected sites are well characterized and situated in homogeneous landscapes, and are
hence useful for earth observation tasks [78]. Furthermore, different Committee on Earth
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Observation Satellites (CEOS) networks have been exploited: from the Pseudo-Invariant
Calibration Sites (PICS) [79], we chose the desert site Algeria5 (while Algeria3 and Libya4
were used for reflectance calibration, see Section 2.2.1), and from the LandNet/RadCalNet
Sites [80], we chose La Crau. From the GHG Europe Database [81], Collelongo and Fyo-
dorovskoye are selected, and from the Fiducial Reference Measurements for Vegetation
(FRM4VEG) project [82], Barrax and Wytham Woods are chosen. The Durable Environmen-
tal Multi-disciplinary Monitoring Information Network (DEMMIN) is part of the TERENO
network [83] as well as of the Joint Experiment for Crop Assessment and Monitoring (JE-
CAM) [84]. Apart from these sites, some stations proposed by other AVHRR data analyses,
i.e., Koslowsky (1996) [85] and the Land-Cover CCI validation report [86], have been used.
All sites have been chosen according to their spatial homogeneity and representativeness
for dominant vegetation classes in Europe. A description of the name, land cover, location,
and network reference of all sites is given in Table S1. Mostly, statistics derived from these
sites are used in aggregated metrics in this study. Three sites are however investigated
in more detail in Section 3.2: Algeria5 (CEOS site, desert), Hesse (ICOS site [87], forest),
and Piedmont (site from [85], rice cultivation). A detailed description of these three sites is
given in Figure S1.

2.2. Data
2.2.1. AVHRR

NOAA AVHRR is a satellite mission that has run since the launch of the first AVHRR
sensor in 1978 on board the NOAA TIROS-N satellite. Since then, the AVHRR series has
continuously operated on board of 14 of the NOAA polar orbiting environmental satellites
(POES) and on EUMETSAT MetOP-A, B, and C. In total, three versions of the instrument
exist, denoted as AVHRR, AVHRR/2, and AVHRR/3 [88,89]. Six of the seventeen sensors
are still active and supply data, all of them belonging to the AVHRR/3 series. The current
TIMELINE products are derived from AVHRR data on 12 NOAA satellites (NOAA-07
to NOAA-19, except NOAA-13). NOAA AVHRR data have been acquired at the DLR,
with its own receiving antenna and processing facilities since 1981. DLR’s archive has
further been consolidated with third-party data sources (e.g., Berlin, EUMETSAT) [12,90].
Starting from L2 SDR (Surface Directional Reflectance, see below), also NOAA-8, NOAA-10,
and NOAA-15 are excluded from the data set due to insufficient harmonization of the
reflective data.

All AVHRR sensors are cross-track whiskbroom instruments with a FOV of +/− 55.4◦,
resulting in a swath width of ~2400–3000 km. Having an IFOV of approx. 1.4 mrad for each
channel, the ground-projected IFOV at nadir is approx. 1.1 km, which increases toward the
edges of the swath to approx. 6.2 km (cross track) by 2.3 km (along track). The full spatial
resolution is available when using High Resolution Picture Transmission (HRPT) and Local
Area Coverage (LAC) data, while the commonly used Global Area Coverage (GAC) data
are available only at a reduced resolution of ~4 km at nadir. The spectral response functions
(SRF) are slightly different for each AVHRR instrument. Furthermore, the radiometric
responses of the AVHRR sensors have undergone individual channel calibration drifts in
orbit due to extreme temperature shifts, exposure to ultraviolet radiation, and other aging
factors [69,91]. For the reflective channels, there is only a prelaunch calibration and updates
based on vicarious approaches conducted by NOAA OSPO.

Hence, only after a range of preprocessing steps (Figure 2), the data from different
sensors can be turned into harmonized analysis-ready L2 data [69]. AVHRR images
contain geometric distortions not only due the wide FOV, but also due to rotation and
satellite clock errors, imprecise orbital models, and spacecraft attitude errors [92,93]. The
resulting geolocation error can reach up to 10 km per pixel. It is corrected in the TIMELINE
project by a chip matching and orthorectification procedure [94]. In the next step, the
radiometric consistency of a particular AVHRR sensor, over time and especially between
AVHRR sensors, is improved by harmonizing the radiometry of the multi-sensor time
series. The official calibration coefficients from NOAA OSPO [89] are applied to account
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for radiometric changes due to sensor degradation. To account for the above mentioned
different spectral properties of each AVHRR sensor, the SRF of the respective sensor has
to be considered during data harmonization through the use of spectral band adjustment
factors in the harmonization workflow [95]. Other challenges in the L1b top-of-atmosphere
(TOA) reflectance product generation are frequent data defects caused by malfunctions of
the AVHRR sensors and errors in the data transmission process. Resulting missing pixels
and lines in the data are recorded during preprocessing, providing metadata entries and
per-pixel quality flags in each product as data quality control [12].
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Figure 2. TIMELINE Processing chain from L0 raw data to NDVI L3.

Based on the L1b data, L2 water masks [96] and cloud masks are generated. To
detect and mask clouds, the “AVHRR Processing scheme Over Clouds Land and Ocean
(APOLLO)” [97–99] is used in its probabilistic version (APOLLO_NG [100]). Both masks
as well as the L1b TOA reflectance are input to the atmospheric correction [12]. The atmo-
spheric correction scheme is designed for AVHRR data above land and is carried out using
a precalculated look-up table based on the radiative transfer model MODTRAN [101]. It
includes corrections for absorbing and scattering effects of atmospheric gases, for scattering
of air molecules (Rayleigh scattering), and for absorption and scattering due to aerosol
particles. The atmospheric correction processor generates L2 top-of-canopy (TOC) Surface
Directional Reflectance (SDR) products.

Since inconsistencies in the L2 SDR time series still occur that are not related to
atmospheric conditions and scene geometry, a subsequent radiometric harmonization of
the SDR time series is based on the PICS Algeria3 and Libya4 (for acquisitions acquired
in low gain mode), as well as on the CEOS sites Demmin and La Crau, and dark pixels
located in the Harz Mountains and Thuringian forest in Germany (for high gain mode) [12].
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As the illumination, viewing geometry, and surface BRDF model are considered for these
sites, the orbit drift effects are suppressed, and (predominantly) the sensor radiometry
is harmonized.

To enable time series analysis, all L2 SDR data are projected from orbit geometry into
a common reference grid in map projection (Lambert Azimuthal Equal Area (LAEA) with
ETRS89 datum) using the nearest neighbor algorithm. The extent of the LAEA ETRS89
projection corresponds to the European Environment Agency (EEA) reference grid. In the
last step, each data set is split into four tiles to enable easier data handling (Figure 1). The
spatial resolution of the now-called L2c products (tiled L2 products in map projection) was
set to 1 km. The L2c SDR data are generated at the moment over Europe and North Africa
for the years 1981–2018. In this method comparison experiment however, only data for the
year 2007 is used. Pixels with negative reflectance values and reflectance values larger than
1 in all three reflective bands have been excluded for NDVI calculation.

2.2.2. MODIS

MODIS are instruments aboard the NASA Terra and Aqua satellites. Both instruments
are viewing the entire Earth’s surface every 1 to 2 days, acquiring data in 36 spectral bands
with a swath width of 2330 km (cross track) by 10 km (along track at nadir) [102,103]. There
are several standard MODIS data products available, of which the Terra MODIS VI series
(MOD13) includes NDVI and EVI products. In this study, two data products from the
MOD13 series, version 6.1, were used for comparison to the different TIMELINE AVHRR
composites: the MOD13A2 product (https://doi.org/10.5067/MODIS/MOD13A2.061,
accessed on 12 March 2023), providing vegetation indices as 16-day composites [104], and
the MOD13A3 product (https://doi.org/10.5067/MODIS/MOD13A3.061, accessed on
12 March 2023), providing monthly vegetation index composites [105]. The MOD13A2
Collection 6 algorithm chooses the best available pixel value from precomposited (8 day)
and spatially aggregated (1 km) atmosphere-corrected surface reflectance data during the
16-day period in a Constrained View angle Maximum Value Composite (CV-MVC) [47].
Only higher quality data (i.e., cloud free, no residual atmospheric contamination, and low
view zenith angle) are used to compose the 8-day surface reflectance data, which is then
used for 16-day VI calculation. From the two 8-day NDVI values, the one with the smallest
view angle, i.e., closest to nadir view, is selected. In cases when fewer than two higher
quality VI observations are available, simple MVC or gap filling using an historic average
are employed as back-up algorithms [49]. The monthly MOD13A3 product is generated
using the 16-day MODIS VI products that overlap the month using a temporal compositing
algorithm based on a weighted average scheme [49].

The MODIS VI product suite has achieved validation at stage 3, with an accuracy of
±0.025 NDVI for TOC nadir NDVI when observations are of high quality. Overall, analyses
from airborne and field campaigns demonstrate that over most biomes, MODIS NDVI is
in very good agreement with ground NDVI. The product is particularly dependent upon
coherent atmospheric correction, which is assumed to be sufficiently stable over vegetated
areas. Thus, the MODIS product can be considered as a good reference to evaluate AVHRR
NDVI. However, MODIS NDVI is reported to saturate in dense vegetation, to achieve an
overall lower accuracy at higher latitudes over Europe, and to have a small positive bias
(+0.02), since forward-scatter pixels may be preferentially selected [106,107].

Both MOD13A2 and MOD13A3 products cover the temporal extent from February
2000 to present and include NDVI at a spatial resolution of 1 km [104,105]. They are
provided as gridded products in sinusoidal projection. For pixel-wise comparison with the
TIMELINE NDVI composites, the 2007 data sets in the MODIS tiles covering the TIMELINE
extent were projected to LAEA ETRS89 projection using the nearest neighbor algorithm
and rescaled by 1/10,000. To match the temporal resolution of MOD13A2 to the daily and
decadal intervals of the TIMELINE products for time series comparison at the stations,
these time series were linearly interpolated to daily steps using the “approx” function from
the R package “stats”, employing the exact MODIS composite day of year.

https://doi.org/10.5067/MODIS/MOD13A2.061
https://doi.org/10.5067/MODIS/MOD13A3.061
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2.2.3. NOAA AVHRR CDR

Within the frame of the NASA Long-Term Data Record (LTDR) project, high quality global
land surface climate data records (CDRs) are produced for multiple sensors, including the
NOAA AVHRR series [108]. The NOAA NDVI CDR product (DOI: 10.7289/V5ZG6QH9) [28]
contains NDVI derived from the AVHRR surface reflectance using data from eight NOAA
polar orbiting satellites (NOAA-7, -9, -11, -14, -16, -17, -18, and -19). Primary sensor data are
calibrated and geolocated to AVHRR GAC level 1B reflectance and brightness temperature,
geolocation information, and sensor data quality flags [109]. Daily surface reflectance
products are generated through a 6S (Second Simulation of a Satellite Signal in the Solar
Spectrum)-based atmospheric correction for each cloud-free pixel observed by the AVHRR
imager channels 1–3. Channels 3–5 are used to retrieve atmospheric conditions, cloud, and
snow masks [109].

The most recent version is the Land Surface CDR version 5 product generated by
the NASA GSFC and the University of Maryland (UMD). The NDVI product is available
globally as gridded data set at 0.05◦ spatial resolution. It provides daily NDVI data
from 1981 to present [28]. Even though no explicit accuracy estimate for the CDR NDVI
product version 5 exists, exhaustive general information on the quality of the product
is available. For the underlying surface reflectance, the accuracy of CDR version 4 was
assessed through comparison with data from the Aerosol Robotic Network (AERONET)
stations and MODIS products [109]. Of the three investigated biomes, only the forest biome
seems meaningful for Europe, where accuracy at 501 data points (location unknown) varies
between −0.025 during clear and −0.085 NDVI during average atmospheric conditions.
Under haze, accuracy decreases to −0.429 NDVI [109]. More recently, the LTDR CDR
NDVI version 5 was assessed with respect to the well-calibrated Landsat LEDAPS TM5 for
the timeframe 1984 to 2011 in [93], taking into account various biomes. After radiometric
recalibration, spectral band adjustment and BRDF correction of the CDR NDVI and spatial
adjustment of the LEDAPS geometry, the CDR NDVI performance was estimated to be close
to the combined TOC reflectance uncertainty specifications of 0.071 ρ + 0.0071 (ρ being the
surface reflectance) over land-cover classes, seasons, and AVHRR sensors. Of importance
for the calculation of the NDVI is the finding that even though the uncertainty was found
to be higher in the NIR band than for the red band, the relationship between the red and
NIR band errors was shown to be critical only for bare areas and shrublands [93], and is not
considered critical for the areas investigated in this research. Based on these results, overall
good performance of the NOAA CDR product with a tendency to underestimate true NDVI
has to be assumed. Since comparisons of CDR to the TIMELINE NDVI were performed
only at the site coordinates (see Section 2.1), no further preprocessing was necessary for
this study.

2.3. Compositing Methods

A set of 13 NDVI compositing approaches was tested in this study. Different sugges-
tions and considerations from the literature review have been recognized in the design
of the approaches. For example, the intrinsic capability of the NDVI to reduce noise and
its behavior to be attenuated by disturbing effects, such as residual clouds, is exploited
by using the NDVI value as a criterion for selecting the best observations in many com-
positing approaches; the MVC is the simplest version of that principle. The influence of
the scene geometry, i.e., extreme viewing and illumination angles, leading to distortion
effects, was reported by many studies [38,67,110,111], and hence, compositing techniques
constraining large zenith angles are included as further options. Furthermore, quality
information associated with the pixel reflectance could be considered during compositing.
Since compositing based on maximum temperature was reported to result in negatively
biased VI metrics [38,40], we did not include this approach.

The basic assumption of this study is that the inclusion of several criteria would lead
to better compositing results, as several causes of NDVI over- or underestimation might
be eliminated (as, e.g., stated by [38]). However, the magnitude of each of these effects as
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well as possible interactions are hardly discussed in the literature. Therefore, we designed
a range of compositing approaches and compared the results. The aim is on the one hand
to better understand the influence of single criteria on the resulting composites, and on the
other hand to test the effect of using multiple criteria and thereby of assigning different
weights to the compositing criteria. As the calculation of each version required considerable
processing power, we chose to test a relatively small set of logical scoring compositing
approaches with discrete weight proportions (e.g., making up for one third or half of the
weights) instead of performing a “global search” by continuously changing the weight
proportions of all variables in small steps. See Figure 3 for a systematic overview and
Table 1 for the method names, abbreviations, formulas, and underlying considerations.
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Figure 3. Schematic overview on categories of used compositing approaches. The term “Angles”
corresponds to a combined weight of all investigated angles, i.e., satellite and sun zenith angles as
well as relative azimuth angle, which are all equally weighted.

The approaches can be roughly split into single and multiple variable compositing ap-
proaches. The single variable compositing approaches comprise on the one hand, methods
that rely solely on the NDVI value:

• “MVC”: Maximum Value Compositing. The highest NDVI observation value achieves
the highest score, i.e., is selected. This is a standard procedure in image compositing,
originally designed for AVHRR compositing (see above). However, studies have
shown that MVC selects pixels with large view and solar zenith angles [38,67,110,112].
This is especially true for TOC reflectance [35,113]. The MVC approach thus potentially
selects pixels with NDVI greater than the nadir value. Nevertheless, we keep this
procedure for comparison reasons.

• “MED”: Median NDVI. The median value of all NDVI observations is selected. This
procedure relies on the NDVI values only, and it is thought to reduce signal attenuation
effects such as undetected clouds as well saturation or bidirectional reflectance effects,
while maintaining an original physical observation.
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Table 1. Overview on compositing methods: in the third column, the formula for the score calcu-
lation is given, where S is the score, k is each single observation, θi is solar zenith angle, θv is the
view zenith angle, φ is the relative azimuth angle, and A is the average acquisition angles score

(Ak =
(

Sk
Sa + Sk

Su + Sk
Az

)
/3 ).

Approach Abbreviation Score Formula Logic

Single Variable Compositing

With NDVI

Maximum Value Compositing MVC Sk
MVC = NDVIk

Established approach:
reduces disturbing influences as

clouds, snow, and aerosols
typically reduce NDVI.

Median MED MED = median
(

NDVIk
) Reduces signal attenuating and

saturation effects alike.

Without NDVI

Satellite Zenith Angle Sa Sk
Sa = cos

(
θk

v
) Satellite zenith of 0◦ (nadir view)

is considered best.

Sun Zenith Angle Su Sk
Su = cos

(∣∣θk
i − 45◦

∣∣) Illumination of 45◦ is
considered best.

Relative Azimuth Angle Az Sk
Az = cos

(
φk) Relative azimuth angle of 0◦ is

considered best.

Uncertainty Uc Sk
Uc = 1 − Uck

A low uncertainty associated with
band 1 + 2 reflectance is

considered best.

Multiple Variables Compositing

Scoring Compositing

With NDVI

NDVI 50%
Angles 25%
Uncertainty 25%

NAUc Sk
NAUc =

Sk
uc+Ak

2 +NDVIk

2

Half of the weight for score
calculation given to NDVI, and
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of weight to acquisition angles
and uncertainty each.

NDVI 33%
Angles 33%
Uncertainty 33%

NAUc_33 Sk
NAUc33

= Sk
uc+Ak+NDVIk

3
One third of the weight given to
angles, uncertainty, and NDVI.

Angles 66%
NDVI 33% AN Sk

AN =
(Ak×2)+NDVIk

3

Without uncertainty, 2/3 of
weight given to angles, and 1/3 of

weight to NDVI.

Without NDVI

Su 40% and Sa 40%
Az 20% SuSaAz Sk

SuSaAz =
(
Sk

Su × 0.4
)
+

(
Sk

Sa × 0.4
)
+

(
Sk

Az × 0.2
) Without uncertainty, 1/5 of

weight given to relative azimuth,
and 2/5 to each zenith angle.

Su 25%, Sa 25%, and Az 25%
Uncertainty 25% SuSaAzUc Sk

SuSaAzUc =
Sk

Su+Sk
Sa+Sk

Az+Sk
uc

4

Give equal weight to each angle
and to uncertainty.

Angles 50%
Uncertainty 50% AUc Sk = Ak+Sk

uc
2

Give half of the weight to angles
and to uncertainty each.

Stepwise Compositing

MODIS
Algorithm MOD Sk

(MVC,θ) = max
(
θ

S1
MVC

v , θ
S2

MVC
v , θ

S3
MVC

v , θ
S4

MVC
v

) Established approach used in the
standard MODIS product:

used for comparison as
a benchmark.

As it was discussed above that NDVI alone might not be a reliable criterion for
composite generation due to bidirectional reflectance effects, we implemented on the other
hand single variable compositing methods, which rely on other observation conditions,
namely the observation angles and uncertainty measures. Generally, all variable scores span
the range of 0–1. The four NDVI-independent single variable compositing methods are
included mainly to better understand the influence of these image acquisition conditions
on the process of selecting observations.

• “Sa”: Satellite Zenith Angle. The view angle of an observation is used as criterion.
As [112] specifies, the directional reflectance factor increases with the off-nadir view
angle for any azimuth view direction. Furthermore, the closer an acquisition is to
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nadir, the lower the effect of atmospheric disturbances is [114]. Hence, previous
studies have suggested generating composites approximating images with near-nadir
geometry [38,67,110]. Nadir view, i.e., a satellite zenith angle of 0◦, is considered best
and given highest score while larger angles are given lower scores by ranking the
cosine of the satellite zenith angle. Through cosine transformation, an angle of 0◦

obtains a score of 1, while for example angles of 20◦, 40◦, or 60◦, they obtain scores of
0.93, 0.77, or 0.5, respectively, and a score of 0 is assigned to view angles of 90◦.

• “Su”: Sun Zenith Angle. The illumination angle under which an observation is taken
is used as selection criterion. An illumination of 45◦ is considered best (to be in
accordance with the TIMELINE BRDF correction, see [12]) and is given the highest
score by ranking the cosine of the absolute value of the sun zenith angle minus 45◦.
The cosine of the absolute, −45◦-shifted angle values is in the last step scaled to a range
from 0 to 1, resulting in the lowest possible scores of 0 for sun zenith angles of 0◦

and 90◦.
• “Az”: Relative Azimuth Angle. The absolute difference between sun and satellite

azimuth angles under which an observation is taken is used as criterion. An equal
azimuth angle, i.e., a relative azimuth angle of 0◦, is considered best to minimize
shadowing effects [112], and is given the highest score by ranking the cosine of
the absolute relative azimuth angle, analogous to the scaling of the satellite zenith
angle score.

• “Uc”: Uncertainty. The uncertainty value, associated through flags with each pixel in
the L2c SDR red and NIR bands and indicating the reflectance uncertainty derived
during atmospheric correction, is combined, scaled to 0–1, and used as selection
criteria. No uncertainty is considered best and lower uncertainties achieve higher
scores through using their reciprocal value.

Based on the behavior of the single variable composites, but also based on the above
described literature review and theoretical considerations, a range of multiple variable
compositing methods was tested. With the exception of the “MOD” approach (see below),
in all of these approaches, the different variables are considered simultaneously. Variable
scores are combined according to their weights. Therefore, the NDVI value range of −1 to
1 was linearly rescaled to 0–1. When the acquisition angles (i.e., sun and satellite zenith as
well as relative azimuth) are combined through equal weighing in an average score, this is
denoted in the following as “Angles”. As for the single variables approaches, one batch of
compositing methods includes the NDVI:

• “NAUc”: NDVI, Angles, and Uncertainty. For the score calculation, half of the weight
is given to the NDVI value, while
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of each is given to the average score of the
acquisition angles and to the reflectance uncertainty. In this approach, every available
criterion is considered for the selection of the best pixel value, but with an emphasis
on NDVI.

• “NAUc_33”: NDVI, Angles, and Uncertainty. For the score calculation, equal weight
is given to the NDVI value, to the average score of the acquisition angles, and to the
reflectance uncertainty. It is hence conceptually similar to the NAUc approach, but
with less influence of the NDVI.

• “AN”: Angles and NDVI. For the score calculation, two thirds of the weight is given
to the average score of the acquisition angles, while one third is given to the NDVI
value. This approach hence gives higher importance to the acquisition geometry than
to NDVI, without considering the uncertainty.

The second group of compositing approaches based on parameter scoring does not
include the NDVI:

• “SuSaAz”: Sun Zenith, Satellite Zenith, and Azimuth. In this approach, only the
acquisition geometry, i.e., sun and satellite zenith angles as well as relative azimuth
angle, is used for compositing. For the score calculation, 40% of the weight is given to
each zenith angle, while the relative azimuth is considered with 20%.
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• “SuSaAzUc”: Sun Zenith, Satellite Zenith, Azimuth, and Uncertainty. In this approach,
every available criterion but NDVI is considered for selecting the best pixel value. For
the score calculation, equal weight is given to each of the four parameters.

• “AUc”: Angles and Uncertainty. In this approach, the uncertainty flag is given
a relatively high weight. For the score calculation, half of the weight is given to the
uncertainty, and half is given to an average score of the acquisition angles.

The approach used for the MODIS 16-day composites relies on the NDVI and view angle.
It does not simultaneously integrate them by scoring but it does so in a stepwise procedure:

• “MOD”: MODIS Algorithm. The algorithm first selects the two highest NDVI values
and in a second step selects of those the observation with the smaller satellite zenith
angle, called CV-MVC algorithm [47,49,107]. Additionally, other studies found this
stepwise procedure to be most effective [38]. This standard MODIS procedure is
included for comparison reasons as a benchmark. However, we adapted it using
the four highest NDVI values as “preselection” to account for the longer integrating
period and higher number of input data compared to MODIS.

2.4. Comparison of Compositing Approaches

A range of different criteria was selected to systematically and—where possible—
quantitatively compare the compositing approaches, in order to select the algorithm to
be finally used for the multi-decadal TIMELINE NDVI generation. Since it was not pos-
sible to generate the entire almost 40-year-long time series in 13 versions, this analysis is
restricted to data from the year 2007. The year 2007 was a year during which four NOAA
missions overlapped (NOAA-12, NOAA-14, NOAA-17, and NOAA-18). This represents
the possible diversity of input data to the composites well, especially since these missions
carry two different sensor generations (AHVRR/2 and AVHRR/3) [12]. In fact, there are
some years (2002, 2003, and 2005), in which data from even five platforms are available
simultaneously; however, these mostly include NOAA-15 data, which were excluded from
L3 product generation in the TIMELINE project due to unsuccessful data harmonization.

The TIMELINE L3 NDVI product suite consists of three composites: daily, decadal,
and monthly. Any selected method should hence be suited for all three intervals. Since
more than 95% of the daily composites consist of a maximum of five observations, we do
not expect large differences between the compositing methods for the daily composites.
Furthermore, we assume that the scientific community relies much more on the decadal
and monthly composites. Therefore, we will show some results for the daily composites,
but we will focus the visual and statistical analysis mainly on the decadal and monthly
products. The conducted evaluation steps are described in the following section.

2.4.1. Value Distributions

For all 13 versions of the monthly data sets, the NDVI value ranges and distributions
were assessed to analyze the general similarity or biases between the composites. The
distribution of solar and satellite zenith angles was also analyzed in this respect. From each
monthly composite, a random sample of 100,000 pixels is drawn and aggregated in one
yearly data set. The value distributions are then displayed as violin plots, which show the
probability density of the data at different values as well as the typical boxplot markers
(median, interquartile ranges, minimum, and maximum). Outliers are not plotted.

2.4.2. Spatial Consistency

Spatial consistency and smoothness are vital criteria for composite quality, since sharp
bounds in a map might translate to artefacts in thereof derived thematic products. The daily,
decadal, and monthly NDVI products have hence been mapped and visually assessed
for gaps, signal saturation, and artificial structures resulting, e.g., from scene borders,
geometric off-nadir distortions, or data defects. To quantify the general influence of the
compositing algorithm on the resulting NDVI, pixel-wise variance as well as maximum
NDVI differences between variants were calculated for each product.
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For easier comparison, the corresponding MODIS products (MOD13A2 and MOD13A3)
are plotted with each composite. Furthermore, the MODIS maps have been used to calculate
the deviation of the different monthly composites from MODIS NDVI for all time steps
and the entire TIMELINE area. Some focus areas, which stung out partly due to visible
artefacts, are shown in more detail: subsets from Central Italy (A), Central Norway (B),
Portugal (C), Northern Libya (D), Ukraine and Moldova (E), and Eastern Denmark and
South Sweden (F). For the location of the focus areas, see Figure 1.

2.4.3. Temporal Consistency

To ensure temporal consistency of the time series derived from the compositing
products, not only single compositing interval maps but temporal NDVI trajectories at
selected sites (see Section 2.1) covering a range of different vegetated biomes have been
investigated. The time series should be as clean and steady as possible, but also, should
reproduce phenological seasonal cycles as well as abrupt events such as harvests. For
comparison, the respective MODIS time series at each site is included in the plots, and the
deviation of each NDVI variant from MODIS at all stations is calculated in addition.

2.4.4. Spatial Consistency of Acquisition Conditions

As mentioned by [49], compositing methods inevitably result in spatial discontinuities
of the generated maps due to the fact that disparate observations can always be chosen
for adjacent pixels. As a result, selected pixels may originate from different days, with
different viewing and illumination geometries and different atmospheric conditions. As
an evaluation criterion, it was therefore suggested that the composite should approximate as
much as possible a single-date image with a constant, near-nadir geometry [38]. To evaluate
if adjacent pixels have been recorded under similar conditions, we therefore assessed each
pixel’s neighborhood conditions in all monthly composites. Using a 3 × 3 moving window,
first the number of observation days was counted (i.e., resulting in a value of 1 if all pixels
have been recorded on the same day, up to a maximum of 9 if each neighboring pixel of
the central pixel was recorded on a different day). In the next step, the variances of the
satellite and sun zenith angles in each 3 × 3 moving window have been calculated. All
three metrics were analyzed statistically through boxplots and visually by mapping the
number of days or variances, respectively, for the TIMELINE study area.

2.4.5. Comparison to MODIS and NOAA CDR NDVI Products

The generated TIMELINE NDVI product for the years 1982–2018 is compared to
MODIS and NOAA CDR NDVI products in order to, on the one hand, evaluate the overall
quality of the data set, and on the other hand, to investigate how well such time series
could be combined. Spatial and temporal consistency with the MODIS products is already
analyzed in depth in Sections 3.2 and 3.3 In Section 5, the match with the entire available
time series of the MODIS product, i.e., since 2000, is shown for four selected sites. In
addition, the NOAA CDR product for the years 1982–2018 (see Section 2.2.3) is plotted.

3. Results

For the year 2007, 365 daily, 36 decadal, and 12 monthly NDVI composites were
produced in 13 variants each. Every composite usually contains four tiles. However,
seventy-one daily image tiles and one decadal image tile could not be produced due
to missing valid observations, mainly in the winter months and exclusively in the two
northern tiles (Figure 1). All compositing variants described in Section 2.3 have been
calculated and evaluated according the criteria outlined in Section 2.4. Some variants
achieved very different results from the other variants, but some also achieved very similar
results. The correlation coefficients and Mean Absolute Difference (MAD) scores of all
variants are shown in Table S2. Specifically, within the group of the multiple variables
scoring compositing including the NDVI, the NAUc_33 variant achieved similar results
with the AN and—to a lesser degree—with the NAUc variant. In the group of the multiple
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variables scoring compositing without NDVI, SuSaAz resulted in very similar results as the
SuSaAzUc and AUc variants. In both cases, not only are the correlation coefficients between
the respective scenes very high (≥0.98), but also, the visual and statistical evaluation of
the maps and time series revealed high similarities. In order to keep both the length of
the manuscript and the readability of the graphs at an acceptable level, the NAUc_33 and
SuSaAz variants are not considered in the further description of the results, focusing on the
remaining 11 variants.

3.1. NDVI, Satellite, and Sun Zenith Angle Value Distributions

The value distributions of the sampled NDVI values, as well as of the satellite and sun
zenith angels, are displayed in Figure 4. They show partly distinct differences between
the compositing approaches. Regarding the NDVI distribution (Figure 4, top), the MVC
approach clearly stands out and generates the highest values overall, with a very high
median value of 0.70. A tendency toward value saturation is clearly visible and most
pronounced during the summer months, with the median and 75th percentile at 0.81 and
0.93, respectively. The other variants show fewer differences, especially regarding their
NDVI distribution shape. The MED NDVI approach expectedly results in overall lower
values than MVC (median of 0.51), with no saturation, a more natural data distribution, and
a relatively narrow range of low NDVI values. Out of the four single variable composites,
the versions solely relying of the sun and sensor angles Sa, Su, and Az, generate overall
similar value distributions with low median values (0.45, 0.49, and 0.48, respectively).
Accordingly, the SuSaAzUc and AUc approaches, weighing the angles with 75% and 50%,
result in similar NDVI value distributions (median of 0.45 and 0.43). The behavior of the
Uc criterion is not consistent, since the single variable approach employing Uc alone results
(with a median of 0.53) in higher values than the Su, Sa, or Az approaches, but also than
the SuSaAzUc and AUc approaches, in which it is used together with the angles criteria.
The NAUc approach, giving half of the weight to NDVI and one quarter each to angles and
uncertainty, achieves the second highest NDVI values (median of 0.62) after MVC, followed
by the other variants, which include the absolute NDVI values in the weight generation,
i.e., MOD, employing high NDVI as the first selection criteria (median of 0.59), and AN,
giving one third of the weights to NDVI, with an accordingly lower median value (0.55).
This pattern is also the same when the different seasons are investigated (not shown).

Regarding the satellite zenith angle distribution (Figure 4, middle), the Sa variant
stands out with a median of 3.53 degree. As a small view angle was the sole criterion
in this approach, this was to be expected. Accordingly, other variants that include the
satellite zenith angle in their weighing approach to a large degree, such as SuSaAzUc, AUc,
and AN, result in median view angles below 15 degrees and value distributions that are
clearly biased toward low values. The variants NAUc and MOD, which employ the (view)
angles criterion by at least 33%, result in similar value distributions, balanced but with
a bias toward small satellite zenith angles (medians of 20.4 and 22.0, respectively), while
the purely NDVI-based approaches, MVC and MED, select observations made under very
large satellite zenith angles (medians of 48.0 and 32.3, respectively). The Su and Az variants
show very similar value distributions with a strong bias toward high values (medians
of 44.1 and 44.3), which might originate from the orbit and sensor characteristics of the
AVHRR series. Its wide swath generates in every scene large satellite zenith angles. Since
the sun zenith is a factor changing mainly in north–south direction, while the view zenith
varies mainly in the east–west direction, large satellite zenith angles are sampled with
equal probability as nadir view observations if an illumination angle of 45◦ is the only
pixel selection criterion. The sun zenith angle distribution (Figure 4, bottom) is hardly
influenced by the choice of the compositing procedure. Most variants have a very similar,
uniform probability density distribution of sun zenith angles, biased toward higher values,
with median values of 49.4 ± 1 degree. Only the Su approach deviates from this pattern,
showing a normal distribution centered around a median of 45.6 degrees. As a sun zenith
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angle of ideally 45◦ was the sole criterion in this approach, the distribution of the sun zenith
angles in the Su variant reflects the underlying compositing rules.
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Figure 4. Violin plots of NDVI (top), satellite zenith (middle), and sun zenith angles (bottom)
distributions of each variant, including samples (n = 100,000 per map) from all monthly composites.

3.2. Spatial Consistency

Figure 5 displays the monthly NDVI maps for the TIMELINE extent in May 2007 based
on the different compositing approaches. Compared to the other compositing approaches as
well as to the monthly MODIS product (bottom right tile), the MVC compositing approach
(left tile in the first row) displays consistently higher values, even in northern latitudes and
over non-vegetated areas (most prominently the desert areas of Northern Africa). Uniform
planes of high NDVI values indicate that mainly pixels affected by signal saturation have
been selected. Furthermore, artefacts that become visible as stripes and edges can be
identified in the otherwise homogeneous desert areas. Although also being based on
the NDVI as selection criteria only, the MED approach (right tile in first row) seemingly
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generates very smooth maps. While the vegetation patterns are quite similar to the MODIS
product and natural structures, such as mountain ranges or natural gradients, can be well
recognized, no artificial bounds are discernible.

The three purely angle-based variants Sa, Su (second row), and Az (left tile in the
third row) all exhibit different, but noticeable geometric artefacts. In the Sa map, edges of
the north–south-oriented view angle stripes following the usual orbital passes can be seen,
most clearly over the deserts and in Easter and South-Eastern Europe. This is especially
prominent in winter and spring composites (not shown). In the Su approach map, artefacts
are less obvious on the continental scale, but discernible as smaller stripy patterns over
the Iberian Peninsula, the Baltics, and in the Balkans and Greece. Both effects, i.e., stripy
patterns over Portugal, Eastern Europe, and the Balkan, as well as the north–south-oriented
border effects following satellite orbits from the Baltics to North Africa, influence the Az
approach map (left tile in third row). The Uc approach (third row, right tile) generates maps
that seem smooth on a continental scale, with clearly visible distinct natural structures.
However, especially during the winter and spring months, artificial structures that relate
to scene boundaries are visible (not shown) as well as small scale patches of negative
values (in the shown example, e.g., in the Bosporus region), which affect the consistency of
the maps.
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Figure 5. Monthly NDVI maps based on the different compositing approaches for May 2007. The
MOD13A3 product of the same month is shown for comparison in the lower right tile.
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The multiple variable composites including NDVI (NAUc and AN, fourth row) result
in similar monthly composites, which seem to be affected by geometric artefacts to a lower
degree. Only over the deserts of North Africa are stripes and edges clearly visible. While
showing similar patterns as the MODIS products, the NDVI values are overall relatively
high, making natural features such as mountain ranges less discernible. The two variants
not including the NDVI in the selection criterion (SaSuAzUc and AUc, fifth row) are again
more strongly affected by geometric artefacts in the form of north–south-oriented striping
and smaller scale horizontal striping induced by strongly negative values. These effects
are clearly visible in both maps, e.g., over the desert areas, the Iberian Peninsula, Eastern
Europe, and the Bosporus. Nevertheless, apart from the introduced noise, the overall NDVI
value distribution seem to be in the range of the MODIS product. The actual MOD variant
(bottom row, left tile), however, strongly overestimates the MODIS product and while not
showing any strong geometric artefacts and depicting natural gradients well, it is clearly
afflicted by signal saturation, similarly to the MVC approach.

The comparison of the NDVI maps and the identified differences among them indicate
the strong influence of the compositing approach on the resulting NDVI maps. To quantify
this impression, the pixel-wise variance between compositing approaches as well as the
maximum difference in NDVI have been calculated. As an example, the variance and
maximum NDVI difference for the monthly composite of April 2007 is shown in Figure S2.
It can be seen that variance is not homogenous throughout the study area, but it is especially
high in the northern and eastern parts of Europe (in this case probably due to the reduced
number of valid observations because of snow and clouds), the Balkans, Turkey, and regions
of high vegetation density, such as the Nile delta. The map indicating the range of derived
NDVI values through different compositing approaches highlights that pixel-wise NDVI
can deviate up to a difference of 0.6 NDVI (on average 0.3 NDVI). However, in the summer
months, with overall higher NDVI values, the differences are smaller (not shown).

Figure 6 summarizes the above made observations on the accordance of the composit-
ing variants with MODIS by displaying the average deviation of the monthly composites
from MODIS NDVI. Since all the boxplot medians are negative, Figure 6 shows that all
AVHRR-based composites are biased toward higher values than the MODIS product.
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Figure 6. Deviation of the monthly composites generated with compositing approaches from MODIS
NDVI for the entire TIMELINE area.

However, differences between the approaches exist. As could already be seen from
the spatial maps, NAUc, MOD, and most prominently, the MVC approach show signifi-
cantly higher NDVI values than the MODIS product as well as a large interquartile range,
indicating that the differences are not systematic. Uc and AN also overestimate MODIS on
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average by 0.06 NDVI. Sa, SuSaAzUc, and AUc feature the smallest deviance from MODIS
(median deviation around 0.01 NDVI). The MED approach results in the smallest range of
deviations, indicating that the patterns of MODIS are nicely reproduced, although with
a small offset (median deviation 0.03 NDVI).

Figures S3 and S4 visualize the continental scale NDVI maps for decade 2 of Octo-
ber 2007 (i.e., 11 October–20 October 2007) and 23 June 2007, respectively, as examples
for decadal and daily products based on the different compositing approaches. At first
glance, these maps show that the spatial coverage of the decadal and daily maps is not as
exhaustive as the monthly product. These time intervals obviously are not long enough to
collect sufficient valid observations to map NDVI for the entire study area. Apart from this
difference, most issues observed with each compositing method in the monthly composites
are also traceable in the shorter-term composites. The MVC and MOD approaches generate
spatially consistent decadal maps, which, however, show very high NDVI values for the
largest parts of Europe (Figure S3, left tiles in top and bottom rows). Synthetic geometrical
structures are only discernible over desert areas and large plains in Eastern Europe. Addi-
tionally, the MED algorithm results in a smooth and differentiated decadal map in which
no artefacts are visible.

In the decadal Sa maps however, the north–south-oriented striping is still present but
is less prominent than in the monthly composites, especially in the summer months. The
same is true for the decadal Su maps, in which, especially the issue of horizontal stripes of
strongly negative values is reduced. Here, the shorter integration interval seems to reduce
the variance introduced through viewing and illumination geometry. However, both
variants appear visually noisier. For the decadal Az and Uc composites, similar artefacts
prevail as in the respective monthly data sets. Accordingly, the decadal SaSuAzUc and AUc
maps have geometric artefacts in the form of north–south-oriented striping and smaller
scale horizontal striping, especially in some spring and early summer scenes. The decadal
NAUc maps seem to be only rarely affected by geometric effects, but have overall relatively
high values as well as noisy patches of high NDVI, which are not continuous or relatable to
any natural landscape features. The decadal AN maps show similar properties as the NAUc
maps, but with generally lower NDVI values and less saturation patches. Furthermore, this
specific example also shows that the MODIS product (right tile of bottom row), which is
usually very spatially consistent, is sometimes affected by large scale artefacts (in this case,
in North-Eastern Europe).

Figure S4 shows the daily NDVI maps from 23 June 2007, based on the different
compositing approaches. Comparison of the maps reveals that the differences between
the tested compositing approaches are minimal for the daily composites. Value ranges
and landscape patterns are overall the same, with the rare but largest differences being
introduced by geometric artefacts (in the given daily maps, e.g., the wedge-like patch of
high NDVI values in Turkey being present in the Az, MED, MVC, NAUc, and Uc variants)
and patchy saturation areas.

On the continental scale, identifying small scale artefacts and finer deviations is
difficult. Therefore, the monthly NDVI maps based on the different compositing approaches
are shown in the focus areas A–C (Figure 7) and D–F (Figure S5). Area A displays Central
Italy, which is characterized by a hilly landscape covered by a mosaic of forests (especially
at higher elevations) and agriculture. Typical compositing errors that have partly been
described above and that can be observed in these subsets are signal saturation (MVC,
Uc, and MOD composites) and geometry effects such as visible orbit edges (e.g., Az and
AUc). In addition, on that scale another geometry issue becomes visible: pixel distortions
(north–south-oriented blurring) in the Su composite, which is probably caused by the
selection of far-off-nadir observations once the view angle is no longer a selection criterion.
The MED and AN maps are the spatially most continuous products.

Focus area B, which is located in Central Norway, is a typical mountainous fjord
landscape covered by evergreen forests and herbaceous vegetation. As expected, geometry
issues are especially prominent at such high latitude. Orbit edges are visible in the Az,
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SuSaAzUc, and AUc maps, and pixel distortions are visible in the Su and Az maps. Further-
more, due to the patchy landscape and the lower availability of valid observations, maps
are generally quite noisy (e.g., MVC, MOD, Sa, NAUc, and AUc composites). Focus area C
covers Central Portugal, north of Lisbon. The Mediterranean landscape is dominated by
sparse sclerophyllous forest intermixed with cropland in the lowlands, herbaceous cover,
and shrubland. In the selected subset, especially the occurrence of horizontal stripy patterns
is visualized. The MVC, Su, Az, NAUc, AN, SuSaAzUc, AUc, and MOD composites are
all affected to a stronger or weaker degree. In addition, orbit edge artefacts can be seen
in the Sa approach map. Hence, only the MED and Uc maps in this example are without
geometric issues.

The focus areas displayed in Figure S5 highlight some additional detected issues
in the NDVI composites. Focus area D is located in Northern Libya, west of Tobruk,
covered mainly by a flat vegetation-free sand desert. Only in the north-west, the al-
Dschabal al-Achdar highland is covered by forest, shrubland, and cropland. Due to the very
homogeneous surface of the desert area, the geometric artefacts can be visualized. While
in the Sa approach the orbit edges prevail, in the Su approach, the problem of integrating
different illumination conditions can be investigated. The Az approach shows issues with
horizontal bounds. Accordingly, the NAUc, AN, SuSaAzUc, and AUc approaches, which
integrate the angle constraints, show combinations of these effects. MVC and MOD are
without geometric structures, but show too high values.
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Figure 7. Zoom to focus A (left column), B (middle column), and C (right column) of the monthly
NDVI maps based on the different compositing approaches. For focus area locations, see Figure 1.

Focus areas E (covering a large cropland plain in Southern Ukraine and Moldova)
and F (covering cropland areas and forests in Eastern Denmark and South Sweden) both
include examples of high salt-and-pepper noise (SuSaAzUc, AUc, and MOD maps in subset
E; Sa, Su, Uc, SuSaAzUc, AUc, and MOD maps in subset F) as well as noisy patches of high
NDVI, which do not relate to any natural landscape features (MVC and NAUc maps in
subset E). In addition, geometry issues can be seen in the Sa and Su maps of focus area E
and in the Az maps of focus area F.

3.3. Temporal Consistency

The time series’ of the different compositing approaches for 2007 have been plotted for
all 37 stations. In Figure 8, the daily (top row), decadal (middle row), and monthly (bottom
row) composite time series are shown for three selected sites: the desert site Algeria5, the
deciduous broadleaf forest site Hesse, and the agriculture site Piedmont. For details on the
sites, see Figure S1, and for a less cluttered, split-up version of Figure 8, see Figure S6.
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Figure 8. Time series of daily (top), decadal (middle), and monthly (bottom) NDVI at the Algeria 5 (exemplary desert site), Hesse (exemplary forest site), and
Piedmont (exemplary agriculture site) stations. In black, the MOD13A2 (16 days interpolated to decadal and daily intervals, respectively, top and middle) and
MOD13A3 (monthly, bottom) are plotted as references. For better visualization, graphs are split up, showing the “single variable composites” (MVC, MED, Sa, Su,
Az, and Uc) and the “multiple variable composites” (NAUc, AN, SuSaAzUc, AUc, and MOD) separately in Figure S6.
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In general, the daily plots (top row) show at the one hand the low influence that the
compositing scheme has on the resulting NDVI map if only few observations are to be
combined (with most points in a time series being plotted on top of each other), and on the
other hand, they show the high variability that a daily AVHRR data set inevitably exhibits.
Nevertheless, the characteristics of the different land-cover types are generally reproduced,
with no vegetation signal over the desert site (left), overall high NDVI levels and an NDVI
increase during summer over the forest site (middle), and the very distinct phenological
cycle of the rice cultures on the agricultural site (right). On top of each plot, the MAD of the
compositing variant from the MODIS time series is included in the plot legend. It can be
seen that over the desert sites, variations between composites are minimal. The time series’
closest to MODIS are Sa, AUc, and MOD (MAD: 0.019), and the composites deviating the
most are MVC (MAD: 0.033), NAUc (MAD: 0.026), and Uc (MAD: 0.024). On the forest
site, the variants that are best at approximating MODIS are SuSaAzUc (MAD: 0.070), AUc
(MAD: 0.075), and Az and AN (MAD: 0.076). The largest deviations are observed for MVC
(MAD: 0.097), Su (MAD: 0.094), and Uc (MAD: 0.087). On the agriculture site, SuSaAzUc
(MAD: 0.06), AUc (MAD: 0.064), and SA and MOD (MAD: 0.065) fit best to the MODIS
curve, while again, MVC (MAD: 0.084), MED, and Su (both MAD: 0.075) deviate the most.
Enlarging the compositing interval to 10 days (middle row) already enables an almost
continuous time series for most sites. On the desert site (left), stable bare soil trajectories are
generated for most approaches, with only MVC, Az, NAUc, AN, AUc, and MOD including
too high values in the first half of the year. Accordingly, these are the variants that reach
high MADs above 0.04. On the Hesse forest site, the phenological cycle of green-up, peak
of season, and senescence between March and October are overall well captured, while
the February and November composites are very noisy and the January and December
observations are missing completely. Looking at the stability of the individual variant time
series, the MED, Az, Uc, and AN approaches generate a rather stable time series, while the
others are rather volatile. Statistically, the best variants on this site are the MED (MAD:
0.076), Az (MAD: 0.078), and AN (MAD: 0.079) approaches, while all other approaches
have MAD > 0.08, with the MVC being off the most (MAD: 0.132). The phenological cycle
of the rice cultivation site in Piedmont is overall captured well, although the winter and
spring phases also on this site are very noisy, and the green-up seems to be detected too
late by 10–20 days in comparison to the MODIS observation. Regarding the time series
consistency, the Sa, Uc, SuSaAzUc, AUc, and MED approaches are rather stable, while the
Su, Az, NAUc, AN, MVC, and MOD feature more and larger random jumps. The highest
accordance with MODIS is achieved again by the MED algorithm (MAD: 0.076), as well as
by the Sa (MOD: 0.079) and the SuSaAzUc (MOD: 0.08) approaches.

The time series’ of the monthly composites (bottom row) are the most continuous data
sets. On the desert site, the picture is largely the same as for the decadal time series. Addi-
tionally, in these intervals, some approaches such as MVC, NAUc, AN, SuSaAzUc, AUc,
and MOD select too high NDVI values for their composites and hence yield MADs ≥ 0.045.
The MED (MAD: 0.012), the Sa (MAD: 0.027), and the Uc (MAD: 0.028) approaches reach
the highest accordance with MODIS on this site. On the forest site (middle), a continuous
time series could be generated from February to November. Closing the gaps however
introduced some variance to some of the different compositing variants. Especially the Sa,
Uc, AN, SuSaAzUc, AUc, and MVC time series’, which are all rather jumpy. In addition,
while the MVC variant (MAD: 0.154) continuously overestimates the MODIS time series,
variants such as SuSaAzUc (MAD: 0.11), AUc (MAD: 0.107), and Sa (MAD: 0.08) rather
underestimate the forest NDVI during the mid of season.

While still being a bit too flat in comparison to MODIS, the MED (MAD: 0.06), Az
(MAD: 0.065), and MOD (MAD: 0.076) time series’ approximate it best. A certain variance
between the compositing approaches is also observable on the agricultural site (right),
but the phenological shape is still well captured in most of them. Only the Su, NAUc,
SuSaAzUc, and AUc variants do not reproduce the temporal vegetation growing pattern
very well. In comparison to the monthly MODIS product, also the timing of green-up and
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harvest seem to be well approximated. The closest fit was achieved by the Az (MAD: 0.055),
MED (MAD: 0.057), and Uc (MAD: 0.067) approaches, while the MVC (MAD: 0.166), Su
(MAD: 0.105), and NAUc (MAD: 0.101) showed the largest deviations.

Evaluating just these three sites made it clear that although some variants are sys-
tematically off in comparison to the MODIS time series (such as MVC or NAUc), there
is no clear pattern for the other variants. For example, AUc or MOD in some cases are
close to the MODIS reference, but far off on other sites. Therefore, the deviation of the
monthly (Figure 9), decadal (Figure S7), and daily (Figure S8) composites over all stations
was calculated. Figure 9 shows that the Sa, SuSaAzUc, and AUc time series are numerically
closest to the MODIS time series. Additionally, the MED and the Az variants overestimate
the MODIS reference only slightly, while MVC, NAUc, and MOD deviate strongly. For
the decadal composites (Figure S7), this pattern is similar, but the differences between the
variants are smaller, as is the overall deviation from the MODIS time series. For the daily
composites, (Figure S8), the differences are only marginal, which is consistent with the
visual interpretation of the time series plots.
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3.4. Spatial Consistency of Acquisition Conditions

To assess the spatial continuity of the generated maps with regard to the image
acquisition conditions, the variance of the day of acquisition, the satellite zenith angle, and
the sun zenith angle have been calculated in a 3 × 3 moving window for each compositing
approach. Figure 10 (top) shows the boxplots of the DOY variance for each approach.
MED shows the highest variants with a median of 5 (i.e., meaning that, on average, the
9 pixels in the moving window have been recorded on 5 different days), followed by MVC,
NAUc, and MOD, with a median of 3 days. All variants that give high weight to viewing
or illumination angles (Sa, Su, Az, SuSaAzUc, and AUc) achieve the lowest variance with
a majority of all pixels being recorded during the same day. This is logical, since the
emphasis of the acquisition geometry favors the selection of all pixels from one image
swath. These differences also become visually apparent in the variance maps of May 2007
of each approach (Figure S9, left column), in which the aforementioned geometry-scoring
approaches appear mostly in dark blue colors (representing a variance of 1 DOY). The MED
approach stands out with overall high DOY variance values.
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Figure 10. Neighborhood homogeneity characterized by DOY (top), satellite zenith (middle), and
sun zenith variance (bottom) in 3 × 3 window of all monthly composites for all variants.

The same overall pattern is also visible in the satellite (Figure 10, middle) and sun
zenith angle (Figure 10, bottom) variance boxplots. MED has the highest variance in the
viewing and illumination zenith angles among adjacent pixels, followed by MVC, MOD,
and NAUc, i.e., all variants that give at least 50% of the scoring weight to NDVI. The Su
approach shows the smallest variance for both zenith angles, followed by SuSaAzUc, Sa,
Az, and AUc. Accordingly, also the variance maps of satellite and sun zenith (Figure S9,
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middle and right column) follow the above described pattern. From these variables, it can
also be seen that variance is spatially random where it is high, but it rather systematically
depends on the image swath borders, e.g., in the case of the otherwise very homogeneous
Az approach.

4. Discussion

The conducted analyses demonstrate the tremendous influence of compositing pro-
cedures on the resulting AVHRR NDVI composites, especially when longer intervals are
envisaged (as the monthly composites in this study). Furthermore, the performances of the
different approaches varied for some variants, strongly depending on the evaluation crite-
rion considered. The selection of an algorithm therefore must consider a range of aspects,
which is discussed in the following subsections for each compositing approach/group of
approaches and summarized in Table 2.

Table 2. Evaluation of compositing methods based on different criteria. If a criterion is well or very
well fulfilled, it is marked with pluses (+/++); if a criterion is partly or completely unfulfilled, it is
marked with minuses (-/–).

Approach
Criteria Value Dis-

tribution
Spatial

Consistency
Spatial Match

to MODIS
Time Series
Consistency

Time Series
Match to MODIS

Neighborhood

MVC – - – - – -
MED + ++ + + + -

Sa ++ – ++ - ++ ++
Su + - + – - ++
Az + – + - + ++
Uc ++ - - + - +

NAUc - + – – – -
AN + + - + - +

SuSaAzUc ++ – ++ - ++ ++
AUc ++ – ++ - ++ ++

MOD - - – – – -

4.1. Purely NDVI-Based Approaches: MVC and MED

MVC compositing historically was the first approach used for NDVI compositing,
originally designed for AVHRR data. However, all conducted analyses in this study point
out the main issue introduced by the MVC approach: biased NDVI value distributions
that indicate the selection of observations affected by signal saturation. This leads to
a general NDVI overestimation, even in sparsely or non-vegetated areas, and a large
mismatch with MODIS, both at the investigated stations and for the entire study area. In
addition, artefacts such as stripes and swath edges do occur in the MVC products. These
findings are in accordance with the literature. It was reported that the MVC preferentially
selects pixels from off-nadir angles [110,111,114,115], especially from the forward scattering
direction where pixels have higher NDVI. The higher NDVI in forescatter geometry is
attributed to two effects related to anisotropy: in off-nadir direction, the sensor views
(a) a higher proportion of the more NIR reflective vegetation and a lower proportion of the
less reflective soil, thus increasing the NDVI ratio value, and (b) a higher proportion of
vegetation components in the upper layers of the canopy, which scatter a higher proportion
of solar incident flux [38,112]. Furthermore, the MVC approach was designed for TOA data,
and it was reported early that the NDVI overestimation effect is especially true for TOC
reflectance [35,113]. Since we employ atmospherically corrected data, this issue affects the
results of the MVC approach strongly. Accordingly, the MVC achieves negative valuations
in each evaluation category (see Table 2).

In contrast to the MVC approach, the MED variant results in balanced value distri-
butions and generates very smooth and consistent maps, while small landscape features
are still discernible. The MED approach in fact is the only approach that did not show
any geometric artefacts, leading to a “++” valuation of this criterion (see Table 2). The
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spatial match with the MODIS products is—with a median deviation of 0.03 NDVI—not
as close as in other variants (e.g., Sa, SuSaAzUc, and AUc, see below), but shows the
smallest range of deviations, indicating that the patterns of MODIS are well reproduced.
Looking at the temporal consistency, the MED approach is among the best approaches,
generating stable time series with few unnatural jumps. Accordingly, also in the time series
comparison to MODIS, MED is among the variants with a close match to MODIS. The only
weakness detected for the MED approach is the high heterogeneity when investigating the
neighborhood acquisition conditions. The approach clearly stands out with high variances
in DOY, satellite, and sun zenith angles within a 3 × 3 window. This indicates that a ma-
jority of the selected NDVI observations have been collected under differing conditions
than the neighboring ones. Unexpectedly, this does however not compromise the spatial
consistency of the MED maps, as mentioned above. This might be caused by the aspect
that especially if many good quality observations are available, the NDVI values among
which the median is selected are very similar. Hence, the selection of an observation with
the according DOY and geometries is more randomized than for other approaches, as
minimal differences in the NDVI might already induce a different selection. The ideal of
a single-date image with a constant geometry is therewith not fulfilled. However, apart
from this theoretical consideration, this circumstance does not seem to hamper the spatial
or temporal consistency of the product, and hence will not affect any application based
thereon. This criterion is therefore marked as only partly unfulfilled in Table 2.

In the literature, median compositing is usually only used for combining high spatial
resolution data such as Landsat or Sentinel-2 [41,44–46]. Thereby, the aim is mostly the
generation of gap-free multi-spectral mosaics that are representative of long time periods
(seasons or years), while no composite time series at high frequency intervals (such as
weeks or months) were generated using this approach. The mosaics serve in most studies
as a basis for land-cover classification and change detection, not for time series analysis.
One reason why median compositing so far was not used on AVHRR data might be the
susceptibility of the approach to undetected clouds or missing atmospheric correction.
Since we can rely on a thorough preprocessing chain in the TIMELINE project, the used
surface reflectance is robust and mostly unaffected by disturbing influences, enabling the
excellent performance of such a simple statistical approach.

4.2. Purely Geometry-Based Approaches: Sa, Su, and Az

The purely geometry-based approaches Sa, Su, and Az were included in this analysis
to better understand the influence of the scene geometry on NDVI mapping. In contrast
to [113], composites closely resembling a nadir image on a pixel basis could be generated.
However, this by itself did not guarantee a stable and artefact-free NDVI time series. While
all three approaches achieved satisfyingly balanced NDVI value distributions, they are all
strongly affected by geometric artefacts, especially the Sa and Az approaches. Sharp edges
of north–south-oriented image swaths, smaller stripy patterns that might be introduced by
sensor defects, or pixel distortions (north–south-oriented blurring) caused by far-off-nadir
observation could be found in many composites. This was partly expected, as changes in
the “best” viewing and illumination angles per definition must be abrupt. Nevertheless,
this analysis also illustrates some issues that have not been prominently discussed in
the literature, and highlights the importance of carefully selecting weights assigned to
sensor or sun angles when used in multiple variable compositing (see below). Looking
at the time series consistency, the three approaches mostly result in a rather volatile time
series. In comparison to the MODIS NDVI values, the Sa, Su, and Az approaches achieved
overall close matches and good ratings (Table 2), probably due to the dampening effect
of near-nadir observations with regard to a signal saturation. Additionally, naturally, the
neighborhood analysis revealed very homogeneous acquisition conditions most closely
resembling single-date image with constant geometry. However, given the high influence
that persistent geometric artefacts in a multi-decadal time series product would have on any
kind of spatial analysis, these positive ratings cannot counterbalance the above described
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issues with spatial inconsistencies. The usage of data corrected for bidirectional effects
might mitigate these problems [38], but such corrections have proven difficult and might
introduce new types of artefacts or blur spatial and temporal features.

4.3. Uncertainty Information as Sole Selection Criterion: Uc

Using only the uncertainty information derived from the TIMELINE atmospheric
correction for the best-pixel selection was a rather explorative approach, for which no
reference could be found in the literature (probably due to the lack of such additional
information in most data sets). The approach performed well in some regards, such as
the generation of balanced value distributions, stable time series at the station sites, and
relatively homogeneous neighborhood conditions. The latter is probably caused by the fact
that atmospheric conditions do not change on the small scale, hence neighboring pixels
are probably flagged with similar uncertainties. However, the spatial consistency of the Uc
maps are compromitted by orbit bound artefacts, signal saturation, as well as small scale
patches of negative values. At least, the issue of horizontal striping seems to be caught
by using the uncertainty criterion (see Figure 7), which proves the general benefit of the
uncertainty information in image composition. Nevertheless, the bad spatial and temporal
matches to the MODIS product are further aspects reducing the valuation of the Uc variant.

4.4. Multiple Variable Compositing Not including NDVI: SuSaAzUc and AUc

The above described analysis of the single variable compositing approaches Sa, Su, Az,
and Uc already summarizes the immanent strengths and weaknesses of the approaches that
are reproduced and partly reinforced in the multiple variable compositing relying on these
criteria, namely SuSaAzUc and AUc. Through penalizing large satellite and sun zenith
angles as well as unfavorable azimuth viewing/illumination conditions or uncertainty
flags, most observations made under moderate geometric conditions are selected. This
leads to balanced value distributions, and through the avoidance of very high NDVI values,
to a close overall match to the MODIS product. However, both of the SuSaAzUc and AUc
approaches lack spatial and temporal consistency. Especially, geometric artefacts render
the variants unusable. While some distortions such as pixel blurring are in fact avoided
through the combined weight of different angles, other effects such as sharp borders and
the striping of noise persist. Time series consistency is affected by random jumps and NDVI
overestimation (see, e.g., the green lines in the desert and forest site plots of Figure 8).

4.5. Multiple Variable Compositing including NDVI: NAUc and AN

The issues in the SuSaAzUc and AUc data sets not including NDVI (see Section 4.4)
indicate that not considering the absolute value of NDVI in a compositing approach
introduces problems that cannot be counterbalanced. On the other hand, the sole use of the
maximum NDVI did not achieve satisfying results either (Section 4.1). Using both aspects as
the quality criteria, either as weights in the NAUc and AN variant or stepwise in the MOD
variant (see Section 4.6), seems to be a promising approach. In fact, the spatial consistency of
the NAUc and AN approaches is satisfying, with geometric artefacts occurring considerably
more seldom than in most other approaches. However, the conducted tests also show
that the assignment of weights thereby plays and important role, as the results of both
approaches partly diverge strongly. For example, with the weight of the NDVI in the NAUc
approach being 50% and of the angles being only 25%, it produces the on average second
highest NDVI values of all the approaches (see Figure 4), while the median NDVI of AN
with an NDVI weight of only 33% and angles weight of 66% is in the range of the other
approaches. Similarly, differences in the temporal consistency could be observed between
the two variants. The AN time series’ at the stations are overall more stable and have
smaller MAD values when compared to MODIS. Looking at the stations but also at the
continental maps, both variants show an insufficient match to the MODIS time series, with
the NAUc algorithm however deviating more strongly, indicating again that the selection
of weights, and thereby, probably the low overall weight of the sun and satellite angles
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(25%), were not favorable. It can be hence derived that in general, combining the NDVI and
other restrictions in one score for a best-pixel selection can reduce, e.g., geometric effects.
However, a high enough weight of the illumination and viewing angles seems to be crucial
for satisfying composite consistency.

4.6. Imitating the MODIS Standard Product: MOD

The MOD algorithm was included in this study with the aim to approximate the
standard MODIS NDVI product. However, surprisingly, no close agreement to MODIS
products could be found, neither on the continental scale nor when looking at the time
series. Like the MVC approach, the MOD approach generates overall high values, is
also affected by saturation effects, and strongly overestimates the MODIS reference. In
addition, the MOD time series’ are mostly inconsistent as they include noise and jumps.
We did not expect this result, since it was found in earlier studies that, among the tested
criteria, the maximum NDVI in combination with the minimum view angle was the most
effective two-step criteria [38]. We therefore assume that, while we already considered the
large differences in MODIS and AVHRR NDVI input data generation and compositing
intervals through the usage of the four highest NDVI values as “preselection” as compared
to only two in the MODIS approach (see Section 2.3), the algorithm would still need to be
further adapted to the specific TIMELINE L2 SDR AVHRR characteristics to achieve more
similar results.

4.7. Algorithm Selection, Limitations, and Further Work

In Table 2, the eleven variants are evaluated according to the six criteria that were
assessed in this study. If a variant performs well or very well in one aspect, it is marked
by a plus or two pluses, respectively. Accordingly, if saturation, artefacts, or inconsisten-
cies could be observed in the different data set versions, they are marked with minuses.
Thereby, a double minus mark is meant to identify problems with a data set that seriously
compromises the usability of the time series, even if it performs well in other regards. For
example, strong geometric artefacts such as striping would inevitably affect any spatial
analysis and could not be counterbalanced by a realistic value distribution or smooth time
series behavior (see, e.g., Section 4.2) This kind of marking enables an objective method
selection, which resulted in the MED approach being chosen as the best-performing algo-
rithm (Table 2). The AN variant thereby ranges as the “second-best” approach, which could
further be refined in the future (see below).

This systematic procedure emphasizes that a compositing approach might perform
well in certain aspects, but can show substantial limitations when looking at others. Sim-
ilarly, large differences in the evaluation of compositing approaches were also observed
by [41], who concluded that the compositing performance in addition depended on com-
positing intervals and cloud cover, and that no single algorithm outperformed all other
algorithms. Therefore, the selection of an approach should be based on considering many
different criteria (as also suggested by [43]). The algorithm selection presented in this study
is one of very few examples from the literature where such an exhaustive evaluation was
performed. In addition, evaluating the spatial and temporal consistency of the product and
comparing it with similar products (in this case against the MODIS product as reference
data set) at more than 30 locations and over an entire year fulfills the CEOS “stage 2”
validation criteria.

However, the conducted analysis is still impaired by some limitations. Firstly, only
little importance was given to filtering the input data, since an overall good quality of the
scene-based TOC surface reflectance data was assumed. So far, only out of range values are
excluded from the NDVI compositing input data, while filtering based on quality flags was
not tested. This sould be further investigated in the future, especially since the uncertainty
layer was finally not selected as the weighing criteria for the best-pixel selection.

In addition, discrete weight proportion assignments of individual variables (e.g.,
making up for one fourth, one third, or half or the weights) instead of performing a “global
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search” by continuously changing the weight proportions of all variables in small steps,
potentially could result in missing out on the most effective compositing. However, the
exclusion of two variants (NAUc_33 and SuSaAz) from further analysis in this study due
to their great similarity with other variants, from which the weights deviated up to 33%,
already indicates that the composites do not react very sensitively to slightly changing
weights. Furthermore, since as a result of this analysis, a simple, single, variable approach
was chosen as the overall best-performing algorithm, this aspect probably might not change
the overall outcome of the study. Nevertheless, applying finer steps in testing the scoring
weights for the variables identified the most promising in this study (i.e., NDVI and angles,
as seen in the AN approach) could potentially still improve the results.

Another methodological limitation is the use of linearly interpolated MOD13A2 16-
days NDVI for comparison with daily and monthly composites at the stations. This
introduced an uncertainty, since we use synthetic values instead of physical observations
for product comparison. However, we assumed that this uncertainty would be smaller
than an uncertainty introduced by matching observations recorded up to 16 days apart.
Furthermore, we do not expect the uncertainty introduced through interpolation to affect
the results because a) we demonstrated (Figure 9) that all AVHRR-based composites on
average overestimate the MODIS product and hence, the tendency of variant deviations
would be the same even if the MODIS values vary in the range of the original observations.
Additionally, b) we showed that the deviation patterns of the compositing approaches
from MODIS are similar when looking at the area-wide monthly composites (Figure 6) and
at the daily, decadal, and monthly deviations at the stations (Figure 9, Figures S6 and S7).
Therefore, we assess the risk of introducing a bias to the comparison of the daily and
decadal values to the MODIS product as minimal.

Most importantly however, testing the validity of the approach should be extended to
other years, especially for the early 80s in which usually far less observations are available
for compositing. It must however be considered that, for these years an evaluation of the
compositing approaches is hampered by the lack of in situ data and high-quality reference
data sets such as MODIS NDVI, rendering such analysis more subjective. Assessing the
entire almost 40 years long time series for inconsistencies, artificial patterns or trends (as
performed in Section 5), therefore must partly compensate for missing true validation data
sets in the early decades.

5. Final TIMELINE NDVI Product and Comparison to MODIS and NOAA
CDR NDVI

Based on the above described evaluation criteria, the MED approach was selected as
best-performing compositing algorithm considering all investigated aspects (Section 4).
The final TIMELINE L3 NDVI product currently ranges from 1981–2018 and consists of the
daily, decadal, and monthly composites. Each L3 NDVI product consists of a netCDF file
with an exhaustive metadata library and six layers: (i) the NDVI for the composite period
derived according to the MED compositing; (ii–iii) the Julian day and time of acquisition
of the selected observation; and (iv–vi) layers that enable the user to further evaluate the
reliability of each NDVI value, namely, a quality layer with bit-encoded information on
atmospheric correction and angular information, a layer with the variance of all suitable
NDVI values, and a layer with the number of available observations. See Table S3 for
a detailed layer description. In addition, a “quicklook” image is provided for each tile.

To evaluate the validity of the selected compositing procedure for the entire production
period, the TIMELINE NDVI time series was plotted with the MODIS NDVI product as
well as with the NOAA CDR time series at the 37 stations. The NOAA CDR NDVI is
produced for the entire lifetime of the NOAA missions. However, it is only available as
a daily data set and was aggregated to monthly intervals through calculating the monthly
mean for enabling a direct comparison to MODIS and the TIMELINE product. The MODIS
product is directly comparable to our monthly composites, but it has only been available
since 2000.
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For visualization of the results, plots from four different land-cover classes have been
selected (Figure 11). The top left figure shows the “Africa Desert4” desert site (site #1
in Figure 1). All three NDVI products agree well with stable NDVI values around 0.125.
This high conformity over a stable desert site is in agreement with previous studies [116].
Outliers are clearly visible in this time series, which occur infrequently in the TIMELINE
(red spikes) and CDR (blue spikes) time series. Only the MODIS time series is not affected
by outliers. At the forest site “Collelongo” (top right in Figure 11) in Central Italy (site #17),
however, larger differences between the NDVI products become apparent. While in the
TIMELINE time series the yearly phenological cycle of this broadleaf forest compasses the
entire plausible NDVI range between 0 and 1, the amplitude of the CDR product is much
smaller, hardly reaching NDVI values of 0.5, especially in the early years. It seems that
the timing of green-up and senescence is similar in both data sets, with the TIMELINE
time series rising a bit earlier and falling a bit later than CDR. Despite the fact that the
comparison to MODIS is restricted to the years 2000–2018, it is evident that the absolute
values and amplitudes of the MODIS and TIMELINE NDVI agree much better with each
other than with the CDR product. The seasonal cycles overlap very well; however, NDVI
reduction during senescence occurs a bit later in the TIMELINE than in the MODIS data set.
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Figure 11. TIMELINE NDVI time series examples at four stations (the desert site “Africa desert 4”
(top left); the forest site “Collelongo” (top right), the agricultural site “Piedmont” (bottom left), and
the grassland site “Matera” (bottom right)) in comparison to the CDR und MODIS products.

These observations are valid for the most part also when looking at the agricultural
“Piedmont” site (bottom left in Figure 11, site #12). While the difference in amplitude
between TIMELINE and CDR is not as large as for the forest site, TIMELINE NDVI is still
significantly higher than the CDR NDVI. Similarly, the agreement with MODIS NDVI on
this site is very high with regard to the temporal patterns and the absolute NDVI values,
also when looking at the summer and winter minimum and maximum values. On the
Mediterranean grassland site “Matera” (bottom right in Figure 11, site #5) the TIMELINE
NDVI time series is less stable. This is mainly caused by more outliers occurring on this
site, e.g., in 1983, 2016, or 2017, as well as by a phase of low NDVI values in the late 1980s
and early 1990s, which is not reflected in the CDR data set. The match to the MODIS time
series is however again very close, with the timings of green-up and senescence being in
good agreement, apart from the above-mentioned outliers and the mismatch of the NDVIs
maximum values in some years.

The large difference between the TIMELINE NDVI and the CDR NDVI makes the
comparison of these two NDVI time series difficult, especially when evaluating similarities
in phenology and temporal trends. The difference in spatial resolution, with CDR covering
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0.05◦ × 0.05◦ grid cells while the TIMELINE NDVI has a spatial resolution of 1 km, could be
one reason for this offset. Apart from that, differences in the way that tropospheric aerosols
are treated during preprocessing could play a role, since these could significantly reduce
the NDVI [109]. Nevertheless, this analysis demonstrates in general a good agreement
of the TIMELINE NDVI time series with existing products, especially the MODIS time
series. It does not show any overarching artificial patterns, trends, or irregularities over
time, which indicates that the selected compositing procedure is valid for the entire NOAA
AVHRR lifetime.

6. Conclusions

Remote sensing image compositing enables the generation of gap-free, equidistant,
and spatially comprehensive time series. Since such data sets are crucial for a wide range
of remote sensing applications, especially when targeting large areas, which have to be
analyzed in a systematic manner, developing and evaluating compositing techniques
is highly relevant. The method comparison conducted in this study assessed different
compositing criteria and weighing approaches for daily, decadal, and monthly AVHRR
image composites, with the aim to generate a spatially and temporally consistent NDVI
time series.

It can be derived that algorithms considering only the viewing and illumination
conditions tend to introduce strong geometric artefacts into the NDVI maps (e.g., at image
swath borders). Similarly, the uncertainty information available for the used SDR product
was not a sufficient selection criterion by its own and produced unstable results. On the
other hand, approaches that rely purely or by at least 50% on the NDVI (as, e.g., the MVC),
often lead to the NDVI overestimation and saturated pixels. The MED approach proved to
be an exception from that rule due to its immanent balancing effect and robustness against
geometric artefacts. In consequence, the MED approach was chosen as the best-performing
compositing algorithm considering all the investigated aspects. The generated, currently
almost 40 years long, TIMELINE NDVI time series showed a consistent behavior and a close
agreement to the standard MODIS NDVI product, which potentially enables a smooth
integration of both data sets.

However, also the combination of the NDVI value and geometry conditions as selection
criteria for the NDVI map composition proved to be a promising approach (see the AN
variant) that could be further refined in the future. Future work could therefore focus on
an improved quality filtering of the input data, on finetuning of the scores assigned to the
acquisition angles and NDVI, respectively, and—most importantly—on the extension of
the assessment to further years.

The conducted analyses demonstrate the tremendous influence of a compositing
procedure on the resulting composites, especially when longer compositing intervals
are envisaged. Furthermore, it was shown that several criteria, i.e., at least spatial and
temporal consistency, should be assessed when evaluating compositing methods, since
data errors such as the geometric artefacts or a volatile time series might go undetected
when looking only at single evaluation measures. Due to the demonstrated high influence
of the compositing procedure on the quality of an NDVI time series, it can be assumed to
also strongly affect higher level products derived thereof, such as land-cover classifications,
change detections, or trend analysis. Compositing methods should therefore be thoroughly
tested and the potential limitations of temporal composites should be considered for
further analyses.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs15061631/s1, Table S1: Station names, land cover, location, and according networks or
literature reference of sites used in this study. The numbers in column “#N” refer to the station
numbering in Figure 1. Figure S1: Characterization of stations “Algeria 5” (top), “Hesse” (middle),
and “Piedmont (rice cultivation” (bottom)). The white dashed circle represents a 1 km footprint
around the station center coordinate. Table S2: Correlation coefficient (above diagonal) and Mean
Absolute Difference (MAD, below diagonal) of the different compositing approaches, averaged over
all monthly composites. Figure S2: Variance (left) and maximum difference (right) in NDVI estimates
derived from all 11 compositing variants for the monthly composite of April 2007. Figure S3: NDVI
maps for decade 2 October 2007 based on the different compositing approaches. Figure S4: Daily
NDVI maps from 23 June 2007, based on the different compositing approaches. Figure S5: Zoom to
focus areas D (left column), E (middle column), and F (right column) of the monthly NDVI maps
based on the different compositing approaches. For focus area locations, see Figure 1. Figure S6: Time
series of (A) daily, (B) decadal, and (C) monthly NDVI at the Algeria 5 (desert site, top), Hesse (forest
site, middle), and Piedmont (agriculture site, bottom) stations, split up showing the single variable
composites (MVC, MED, Sa, Su, Az, and Uc) on the left and the multiple variable composites (NAUc,
AN, SuSaAzUc, AUc, and MOD) on the right. In black, the MOD13A2 (16 days interpolated to decadal
and daily intervals, A and B) and MOD13A3 (monthly, C) is plotted as reference. Figure S7: Deviation
of the decadal composites generated with different compositing approaches from MODIS NDVI
at 37 stations. Figure S8: Deviation of the daily composites generated with different compositing
approaches from MODIS NDVI at 37 stations. Figure S9: Spatial representation of neighborhood
homogeneity. Table S3: Description of all data layers of the final L3 monthly NDVI product.
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