

Operational Concept for a complete A-SMGCS

An Output of conceptual work in the European Project EMMA

Jörn Jakobi, DLR

Background

- EMMA aims to prepare the concept for higher implementation levels of A-SMGCS that will be built up in EMMA2
- Difficulties with existing ICAO, EUOCONTROL, and EUROCAE levels of implementation when describing new services:
 - - But with routing, guidance, and onboard survices the system gets more complex (there are more than 2 evolution levels)
 - 4 A-SMGCS functions can hardly be matched to the services received by ATCOs, Pilots, and Vehicles Drivers
 - \checkmark No care for technical enablers and procedures
 - ➤ No evolutionary steps with ICAO requirments

EMMA Approach

- - ✓ Industry (Airbus, PAS, TATM, SELEX)
 - ✓ R&D (DLR, NLR, EUROCONTROL)
 - → Users
 - → ANSPs (ANS_CR, AENA, DSNA, ENAV, DFS)
 - → Airlines (DLH, CSA)
 - → Airports (CSL, AENA)

→ D131 EMMA OSED-update Document

a star for the star of the start the

Definition of Services proposed by EMMA

- Service Description is allocated to the user who receives it and not to a primary function
- → 3 main users:
 - → ATCOs receive
 - → Surveillance
 - → Routing

 - → Guidance (ground based guidance) service
 - ✓ Pilots receive an onboard service enabled by A-SMGCS
 - ✓ Vehicle Drivers receive an onboard service enabled by A-SMGCS

Definition of Services proposed by EMMA

- When defining a service, technical functions and their technical enablers have to be regarded
- \checkmark It is an iterative process
 - ✓ Service ←→ technical Enablers

Definition of Steps of Implementation

- Different steps of implementation for each individual service that depends on following criteria:
 - (1) Development status of the technical enabler (standardised, on the market or to be developed yet)
 - (2) Development status of the service (already validated or only at the stage of a concept)
 - (3) Degree of interrelations to other functions (complexity)
 - (4) Quality of the enabling equipment (needed reliability, safety)
 - (5) Impact on current operational procedures and size of the changes
 - (6) Cost/benefit considerations

A Start Barrier Competition

Definition of Functions and Technical Enablers

ATCO - Surveillance

Function	On-board Enabler	Ground Enabler
Provide traffic information	•ADS-out or mode S transponder	 Cooperative sensors (SSR Mode-S, ADS-B, GNSS) Non-cooperative sensors (SMR) Sensor data fusion Flight information Vehicle information
Provide traffic context		Aeronautical info serverMeteo data
Interface with ATCOs		•HMI component

EMMA Surveillance – Service Step 1

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

EMMA Surveillance – Service Step 2

Jörn Jakobi, DLR

EMMA Surveillance – Service Step 3 (+VIS3)

in der Helmholtz-Gemeinschaft

Definition of Services Steps

ATCO - Surveillance

Service Steps	Description	Comments
Step 1	 Detection and accurate position of all aircraft, all vehicles, and obstacles Identification of all cooperative aircraft and vehicles 	Manoeuvring area
Step 2	• Step1 + Detection and identification of all aircrafts	Movement area
Step 3	 Step2 + Detection and identification of all vehicles Detection of Obstacles 	Movement area •Vis3 - where manoeuvring a/c may come into conflict with each other or with vehicles ICAO doc 9830 §3.5.16.3

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Definition of Functions and Technical Enablers ATCO - Control

Function	On-board Enabler	Ground Enabler
Conflict and Incursion Detection and Alerting		•Surveillance function + alerting algorithm
Conflict Resolution		•Resolution algorithm
Support to Communication	Data Link (point to point)Onboard HMI component	Data LinkGround HMI component
Support to coordination between ATCOs		Flight Data ManagementElectronic Flight Strips

STATE PARTICIPALITY

Definition of Service Steps

ATCO - Control

Service Step	Description	Comments
Step 1	•Runway Conflict/Incursion detection and alerting	
Step 2	•Taxiway Conflict/Incursion detection and alerting	Implementation of conflict resolution advisory
Step 3	 Detection of plan / route deviation Support to Communication (CPDLC) ATCO coordination (EFS) 	may be initiated at any step
Step 4	•Conflict/Incursion detection and alerting of apron/stand/gate conflicts	

Definition of Functions and Technical Enablers ATCO - Routing

Function	On-board Enabler	Ground Enabler
Manual Routing	None	 Input Devices + simple routing algorithm
Semi-automatic Routing	None	 Routing algorithm + Interfaces to external data
Automatic Routing	None	 Routing algorithm + Interfaces to external data Planning algorithm (SU-time, DMAN)

Definition of Service Steps ATCO - Routing

Service Steps	Description	Comments
Step 1	Manual Routing	Manual input of a route supported by the shortest taxi route w.r.t. to local standard routes
Step 2	Semi-automatic Routing	Routing service proposes a most suitable route, taking into account control and flight plan information.
Step 3	Automatic Routing	Routing service provides route (track) and time information by aid of a planning function.
Step 4	Automatic Routing + ROP (DMAN) ^[1]	Planning support is further increased by a departure manager providing optimal runway occupancy times.

Definition of Functions and Technical Enablers ATCO – Ground Guidance

Function	On-board Enabler	Ground Enabler
Manual Operation of Ground based Guidance Means	None	 Controller HMI (Switchboard or Lighting Display), Airfield Lighting Control System, Selectively switchable Centre Line Lights and Stop Bars
Automatic Operation of Ground based Guidance Means	None	Same as above + •Interfaces to Control and Surveillance Function •Automatic Airfield Lighting Control System

Definition of Services Steps

ATCO – Ground Guidance

Service Steps	Description	Comments
Step 1	Manual Operation of Ground based Guidance Means	Equipment available on the market.
Step 2	Automatic Operation of Ground based Guidance Means	Automatic generation of guidance information, based on the cleared route and the actual position of the aircraft.

Definition of Functions and Technical Enablers Pilot (Flight Crew)

Function 1/2	On-board Enabler	Ground Enabler
Airport Moving Map	 Own-ship position and state vector Aeronautical database (airport layout) 	
Surface Movement Alerting	AMMConflict and Alerting algorithm	
Ground Traffic Display	•ADS-B-in •AMM	•TIS-B (to see non ADS-B aircraft, vehicles)
Traffic Conflict Detection	 Conflict and Alerting algorithm 	•TIS-B
Ground / Air Database Upload	 Aeronautical database 	 Airport Mapping Database server X-NOTAM D-ATIS

Definition of Functions and Technical Enablers Pilot (Flight Crew)

Function 2/2	On-board Enabler	Ground Enabler
CPDLC Ground Clearances and Taxi Route Uplink	•CPDLC (DCL, D-Taxi)•Airport Moving Map	•CPDLC •Routing service
Braking and Steering Cues	 Taxi-Route (uplinked or not) Aeronautical database (airport layout) B&S algorithm 	
HUD Surface Guidance	 Taxi Route (uplinked or not) Own-ship position and state vector Aeronautical database 	
Automated Steering	 Taxi Route (uplinked or not) Own-ship position and state vector Auto-Pilot for taxiing 	

Definition of Service Steps

Pilot (Flight Crew)

Service Steps	Description	Comments
Step 1	 Airport Moving Map Surface Movement Alerting Braking and Steering Cue (for landing roll) 	•Equipment already available
Step 2	 Ground-Air Database Upload Ground Traffic Display Traffic Conflict Detection CPDLC Ground Clearance and Taxi Route Uplink Braking and Steering Cue (landing roll and taxi) 	•Ground TIS-B + DL needed
Step 3	•HUD Surface Guidance	•HUD is already available for approach
Step 4	 Automated Steering 	 Major changes in equipments and procedures
Deutsches Zei	ntrum Raumfahrt eV	2nd NASA / DLR Work Shop, Braunschweig, 2005-10-13/14

in der Helmholtz-Gemeinschaft

Definition of Functions and Technical Enablers Vehicle Drivers

Function	On-board Enabler	Ground Enabler
Airport Moving Map	 Own-ship position and state vector Aeronautical database (airport layout) 	
Surface Movement Alerting	AMMConflict and Alerting algorithm	
Ground Traffic Display	•ADS-B-in •AMM	•TIS-B
Traffic Conflict Detection	 Conflict and Alerting algorithm 	•TIS-B
Support to Vehicles Operations via data link	 Ground/vehicle datalink 	•Ground/vehicle datalink

Definition of Services Steps

Vehicle Drivers

Service Steps	Description	Comments
Step 1	 Airport Moving Map inlc. alerts 	 No ground equipment Equipment already available
Step 2	 Ground-Air Database Upload Ground Traffic Display incl. alerts 	•Ground TIS-B + DL needed
Step 3	•Dispatch and Guidance via data link	

A AND A AND

Definition of Procedures

- Workshop with Users to discuss by which potential procedures the services should be applied
- ✓ Procedures defined for higher services but still very pre-matured
- But we need initial procedures to test them in validation activities (EMMA2)
- Initial procedures used to cluster service steps to A-SMGCS implementation packages
- ✓ Procedures are the <u>core</u> to enable a service to bring benefit
- ✓ EMMA doc D135 Op. Requirements Doc

Logical Interdependencies between EMMA Service Steps

in der Helmholtz-Gemeinschaft

Jörn Jakobi, DLR

Logical Interdependencies between EMMA Service Steps

			Expected S	Steps to	each Servic	e			
Surveillance	S1 id/pos everything manoeuvering	S2 Step 1 + id/pos a/c in the movement area				S2 ve mo	S3 + id/pos ehicles vement area		
Control	C1 Conflict Rwy	Co	C2C3Conflict TwyPlan / Route Deviation			C A	C4 onflict Apron		
Guidance	Manual sv	witched gro	G1 ound guidan	ice (e.g.	Heathrow)		A	G2 G2	ritch
Routing		R1 Manu	l Jal Sem	R2 ni-auto	R3 Auto (pla	nning)	_	R R	4)P
Airborne		A A	A1 MM	A2 M Ground traffic H + CPDLC			A3 HUD	A4 Auto steering	
Vehicles		V1 AMM	V2V3Ground TrafficData link						

ICAO A-SMGCS Categorisation

1. Visibility Conditions

- Vis 1 no impact
- Vis 2 ATCO cannot see
- Vis 3 Pilots cannot see and avoid (400m < Vis 3 < 75m)
- Vis 4 Pilots cannot taxi (< 75m)
- 2. Traffic Density

•

•

Light (L): 0 < movements < 20

= 1 RWY

> 1 RWY

- Medium (M): 20 < movements < 35
- Heavy (H): 35 < movements ∞
- 3. Aerodrome Layout
 - Basic (B): = 1 RWY
 - Simple (S):
 - Complex (C):

= 1 TWY = 1 Apron

> 1 TWY > 1 Apron

> 1 TWY > 1 Apron

ICAO implementation levels

Aerodrome				Control					Guida	nce		
Types	User	Surveillance	Conflict Prediction and/or	Conflict Analysis	Conflict Resolution	Routing		Gro	und		On Beard	Level
T-1: 1:(B)(L) T-2: 1:(B)(M)	Controller	Х	Detection	Х		Х	1*	2*	3.	4*		
T-4: 1:(S)(L)	Pilot/Vehicle driver		5	197			Х					Ι
	System		VII									
T-5: 1:(S)(M) T-6: 1:(S)(H) T-7: 1:(C)(L)	Controller	Х	Х	Х	Х	Х						
T-10: 2:(B)(L) T-11: 2:(B)(M) T-13: 2:(S)(L)	Pilot/Vehicle driver		Х	Х	Х		Х	Х				Π
	System	Х	Х									
T-8: 1:(C)(M) T-12: 2:(B)(H) T-14: 2:(S)(M)	Controller		Х	Х	Х				Х			
T-16: 2:(C)(L) T-19: 3:(B)(L) T-20: 3:(B)(M)	Pilot/Vehicle driver		Х	X ¹⁾	X ¹⁾		Х					III
T-22: 3:(8)(L)	System	Х	Х	Х	Х	Х						
T-9: 1:(C)(H) T-15: 2:(S)(H) T-17: 2:(C)(M) T-19: 2:(C)(H)	Controller		Х	Х	Х							
T-21: 3:(B)(H) T-23: 3:(S)(M) T-24: 3:(S)(H)	Pilot/Vehicle driver		Х	X ¹⁾	X ¹⁾		Х					IV
T-25: 3:(C)(L) T-26: 3:(C)(M) T-27: 3:(C)(H)	System	Х	Х	Х	Х	Х				х		
T-28: 4:(B)(L) T-29: 4:(B)(M) T-30: 4:(B)(H)	Controller		Х	Х	Х							
T-31: 4:(S)(L) T-32: 4:(S)(M) T-33: 4:(S)(H) T-34: 4:(C)(L)	Pilot/Vehicle driver						Х				Х	V
T-35: 4:(C)(H) T-36: 4:(C)(H)	System	Х	Х	Х	Х	Х				Х		

Deutsches Zentrum für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

ICAO A-SMGCS Categorisation T1 – T36

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Source: TATM, FHA WS, 2005-04-05

ICAO A-SMGCS Categorisation T1 – T36

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

2nd NASA / DLR Work Shop, Braunschweig, 2005-10-13/14 Jörn Jakobi, DLR

EMMA Matrix for Implementation Packages

L A			VISIB	VISIBILITY				
Y O U F	TRAFFIC DENSITY	Vis 1	Vis 2	Vis 3	Vis 4			
C O ∑ D	Medium	Implementation Package (IP) 1	IP2	IP3	IP4			
LEX	Heavy	IP5	IP6	IP7	IP8			

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

2nd NASA / DLR Work Shop, Braunschweig, 2005-10-13/14 Jörn Jakobi, DLR

ICAO A-SMGCS Definition

A system providing routing, guidance and surveillance for the control of

aircraft and vehicles in order to maintain the declared surface movement

rate under all weather conditions within the aerodrome visibility

operational level (AVOL) while maintaining the required level of safety.

- → SAFETY
- ✓ THROUGHPUT

and the second second the second the second the second the second second the second second the second second

EMMA Matrix for Implementation Packages

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium optional				
Heavy Optional				

2nd NASA / DLR Work Shop, Braunschweig, 2005-10-13/14 Jörn Jakobi, DLR

Logical Interdependencies between EMMA Service Steps

	Expected Steps to each Service										
Surveillance	S1 id/pos everything manoeuvring		S2 S1 + id/pos a/c in the movement area					S2 ve mo	S3 + id/pos ehicles ovement area		
Control	C1 Conflict Rw	'y	Co	C2 nflict Tw	C2 C3 Inflict Twy Plan Deviation			C	C4 Conflict Apron		
Guidance	Manual	switch	ned gro	G1 und guid	dan	ce (e.g. ł	Heathrow)		_	- G2 Auto sw	vitch
Routing			R1 Manu	ual S	l Sen	R2 ni-auto	R3 Auto (pla	nning)	_	R R	4 DP
Airborne			A AM	1 1M	A2 Ground traffic + + CPDLC			A3 HUD	A4 Auto steering		
Vehicles		A	V1 MM	V2 V3 Ground Traffic Data link							

Proposed Initial Implementation Packages

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium optional	S1 + C1			
Heavy				
Optional				

2nd NASA / DLR Work Shop, Braunschweig, 2005-10-13/14 Jörn Jakobi, DLR

Proposed Initial Implementation Packages

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1		
optional				
Heavy				
Optional				

2nd NASA / DLR Work Shop, Braunschweig, 2005-10-13/14 Jörn Jakobi, DLR

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C1 + A2 + V2	
optional				
Heavy				
Optional				

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

2nd NASA / DLR Work Shop, Braunschweig, 2005-10-13/14 Jörn Jakobi, DLR

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium optional	S1 + C1	S2 + C1	S2 + C1 + A2 + V2 S3 + C4 + R3	
Heavy				
Optional				

- Ground STCA" or
- Aircraft approaching stationary traffic (ICAO doc 9830, §3.4.5.7 b) 2))

2nd NASA / DLR Work Shop, Braunschweig, 2005-10-13/14 Jörn Jakobi, DLR

The and

11. 2 -

2nd NASA / DLR Work Shop, Braunschweig, 2005-10-13/14 Jörn Jakobi, DLR

11 =

11 -1

1 -

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium optional	S1 + C1	S2 + C1	S2 + C1 + A2 + V2 S3 + C4 + R3	
Heavy				
Optional				

and the second second the second the second the second the second second the second second the second second

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C1 + A2 + V2 S3 + C4 + R3 S2 + C4+ V2+ R3	
optional				
Heavy				
Optional				

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C4+ V2+ R3	S2 + C2 + A3 + V2
optional				
Heavy				
Optional				

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C4+ V2+ R3	S2 + C2 + A3 + V2
optional	A1 + V1 R3/R4 +A2 +V1	A2 + V2 C2+R3/R4+A2+V1	R4 + A2	C4 + A4 + R3/R4
Heavy				
Optional				

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C4+ V2+ R3	S2 + C2 + A3 + V2
optional	A1 + V1 R3/R4 +A2 +V1	A2 + V2 C2+R3/R4+A2+V1	R4 + A2	C4 + A4 + R3/R4
Heavy	S2 + C3 + R4	S2 + C3 + R4	S2 + C4 + V2 + R4	S2 + C3 + A3 + V2 + R4
Optional				

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1	S2 + C1	S2 + C4+ V2+ R3	S2 + C2 + A3 + V2
optional	A1 + V1 R3/R4 +A2 +V1	A2 + V2 C2+R3/R4+A2+V1	R4 + A2	C4 + A4 + R3/R4
Heavy	S2 + C3 + R4	S2 + C3 + R4	S2 + C4 + V2 + R4	S2 + C3 + A3 + V2 + R4
Optional	A2 + V2	A2 + V2	A2 + V3	A4 + V3

Traffic Density	Vis 1	Vis 2	Vis 3	Vis 4
Medium	S1 + C1 Euroo EM	S2 + C1 control MA	S2 + C4+ V2+ R3	S2 + C2 + A3 + V2
optional	A1 + V1 R3/R4 +A2 +V1	A2 + V2 C2+R3/R4+A2+V1	R4 + A2	C4 + A4 + R3/R4
Heavy	S2 + C3 + R4	S2 + C3 + R4	S2 + C4 + V2 + R4	S2 + C3 + A3 + V2 + R4
Optional	A2 + V2	A2 + V2	A2 + V3	A4 + V3

Questions...?

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

2nd NASA / DLR Work Shop, Braunschweig, 2005-10-13/14 Jörn Jakobi, DLR