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Abstract

We use our new light curves, along with historical data, to determine the rotation state, photometric properties, and
convex shape models of the targets of the Lucy mission (3548) Eurybates and (21900) Orus. We determine a
retrograde spin for both targets, with sidereal rotation periods of 8.7027283± 0.0000029 h and
13.486190± 0.000017 h, respectively. The phase curves of both objects are nearly linear in the phase-angle
range observable from Earth and lack a pronounced opposition effect. Unsupervised classification of these phase
curves by the Penttilä et al. tool suggests that Eurybates and Orus belong to the C and D taxonomic types,
respectively, thereby independently confirming past classifications based on their spectral slope. Time-resolved
color-index measurements show no systematic color variations correlated with rotation for either target at the 1%
level, suggesting that no variegation is present on a hemispherical scale for any of the objects. Comparison of the
shape models with stellar occultation data available for the two objects from the program by Buie et al. allows us to
resolve the longitude ambiguity of the orientations of the spin axes and derive unique pole solutions for both
targets. Furthermore, scaling the shape models to match the occultation chords produces accurate sizes and
geometric albedos for both objects. The derived surface-equivalent spherical diameters are Ds= 69.3± 1.4 km and
Ds= 60.5± 0.9 km for Eurybates and Orus, respectively, while the geometric albedo in the H, G1, G2 system is
pV(H, G1, G2)= 0.044± 0.003 and pV(H, G1, G2)= 0.040± 0.002 for Eurybates and Orus, respectively.

Unified Astronomy Thesaurus concepts: Jupiter trojans (874); Light curves (918); CCD photometry (208)

Supporting material: machine-readable tables

1. Introduction

Lucy is a NASA mission of the Discovery class that will
perform a fly-by tour through both L4 and L5 Jupiter Trojan
clouds (Levison et al. 2021; Olkin et al. 2021). This paper is the
fourth of a series (Buie et al. 2018, 2021; Mottola et al. 2020)
devoted to characterizing the rotational state and the photo-
metric properties and to deriving sizes and shape models of the
Lucy targets from disk-integrated photometry and stellar
occultation observations.

Among the Lucy targets are (3548) Eurybates and (21900)
Orus, both located in the L4 swarm, for which close encounters
are planned in 2027 August and 2028 November, respectively.

Eurybates has a moderate orbital inclination of 8°. Tedesco
et al. (2004) report an IRAS-derived geometric albedo
pV= 0.054± 0.007 and a mean diameter Ds= 72.1± 4.1 km.
Based on NEOWISE radiometry, Grav et al. (2012) report a

geometric albedo pV= 0.052± 0.007 and a spherical-equiva-
lent diameter Ds= 63.885± 0.299 km, while Usui et al. (2011)
determined a mean geometric albedo pV= 0.060± 0.007 and a
mean diameter Ds= 68.40± 3.92 km from AKARI mid-
infrared data. With its size, Eurybates is the largest surviving
member of the only firmly established collisional families in
the Trojan region (Roig et al. 2008; Brož & Rozehnal 2011;
Milani et al. 2017). Fornasier et al. (2007)—based on visible-
range spectroscopy—classified Eurybates and the majority of
the observed members of its family as belonging to the
taxonomic type C. This classification makes Eurybates and its
family quite unique, since only about 10% of the Jupiter
Trojans classified so far belong to this group (Roig et al. 2008).
Stephens (2010) and Mottola et al. (2011) reported the first

independent determinations of the synodic rotation period for
Eurybates with 8.72± 0.01 h and 8.711± 0.009 h, respec-
tively. Mottola et al. (2016) used a partial data set from the
work reported in this paper to perform the first light-curve
inversion for Eurybates, determine its sidereal period
(Psid= 8.702724± 0.000009 h), establish its retrograde rota-
tion, and derive a preliminary convex shape model. Souza-
Feliciano et al. (2020) performed visible spectroscopy of
Eurybates at three discrete rotational phases and suggested the
presence of spectral slope variations with rotation, implying
compositional heterogeneity over the surface.
Noll et al. (2020) discovered the existence of a ∼1 km sized

satellite—Queta—in orbit around Eurybates from images
obtained with the Hubble Space Telescope. The presence of a
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satellite, a likely remnant of the collisional past of the object,
holds the promise of an accurate determination of the bulk
density of the system, once its orbit is firmly established.

Orus, too, lies on an orbit with an inclination of 8°. Usui
et al. (2011) estimated a geometric albedo pV= 0.083± 0.015
and a mean diameter Ds= 53.87± 4.08 km from AKARI data,
while Grav et al. (2012) determined a geometric albedo
pV= 0.075± 0.014 and a mean diameter D= 50.810± 0.809
km from NEOWISE radiometry. Emery et al. (2010) measured
low-resolution near-IR (NIR) spectra for Orus that place the
object in the region of the so-called redder objects in their
color–color diagram. Such a region is associated with the
taxonomic D type (Emery et al. 2010; Levison et al. 2017). No
membership to a collisional family has yet been proposed, and
no satellite has been discovered orbiting around Orus, so far.

Mottola et al. (2011) reported the first determination of the
rotation period of Orus, while Mottola et al. (2016), based on a
subset of the data reported in this paper, obtained preliminary
results about Orus’s sidereal rotation period (Psid=13.48617±
0.00007 h), its retrograde rotation, and a preliminary convex
shape model.

2. Observations and Data Reduction

This paper reports unpublished photometric observations of
(3548) Eurybates and (21900) Orus acquired during most
apparitions of the L4 Trojan cloud in the decade between the
end of year 2011 and the end of 2021, thereby covering nearly
one complete orbital cycle around the Sun. The observations
were performed with the 1.2 m telescope at Calar Alto, Spain;
the two 24″ telescopes at the Sierra Remote Observatories
(SRO), Auberry, CA, USA, owned and operated by the
Southwest Research Institute (SwRI); 1.0 m telescopes from
the Las Cumbres Observatory Global Telescope (LCOGT)
network; and the 1.2 m MONET South telescope, Sutherland,
South Africa. All of the observations were either performed
robotically or operated remotely from the observer’s home
institution.

The bulk of the observations were performed in the Cousins
RC filter, in the Sloan Digital Sky Survey (SDSS) ¢r filter, or in
a VR bandpass, according to the respective telescope’s
instrumentation, in order to maximize throughput. However,
whenever possible, we also acquired frames in the Johnson V
band, in order to allow an accurate determination of the H-
value. The 2020 campaign in Calar Alto was designed to detect
possible rotation-induced color variations. For this reason we
acquired high-cadence time series with B, V, R, and I Johnson–
Cousins filters. The observations were conducted on con-
secutive nights for the period necessary to cover at least two
complete rotations of the targets, thereby allowing for
confirmation in the case of a positive color variation detection.
Details about the observatories, observers, and observing
geometry are given in Tables 1 and 2 for Eurybates and Orus,
respectively. The observing techniques, the instrumentation,
the data reduction methods, and the software tools used for
these observations closely follow those described extensively
in Mottola et al. (2020) for the respective telescopes.

In addition to the new data reported here, for the shape
inversion and photometric analysis we used dense historical
data from Mottola et al. (2011), Stephens (2010), Pál et al.
(2020), and Stephens & Warner (2021). Furthermore, we made
use of sparse data from the Gaia Second Data Release (Gaia
Collaboration et al. 2018), the ZTF project (Bellm et al. 2019;

IRSA 2022), the Pan-STARRS1 DR2 database (Flewelling
et al. 2020), and the ATLAS project (Tonry et al. 2018),
retrieved with the methods described in Mottola et al. (2020).

3. Convex Shape Modeling

The photometric observations described in the previous
section have been used to apply the convex inversion technique
described in Kaasalainen et al. (2001, 2002) and references
therein to retrieve the rotation state, the photometric properties,
and a convex approximation of the shape of the targets.
Although methods have been proposed for the nonconvex
inversion of light curves (Kaasalainen & Torppa 2001;
Viikinkoski et al. 2015; Bartczak & Dudziński 2018), those
produce models that are intrinsically nonunique when applied
to light-curve data alone and can result in a variety of shapes
that can equally fit the observed data within the photometric
uncertainties (Viikinkoski et al. 2017). This ambiguity is
particularly severe for disk-integrated photometric observations
of Trojan asteroids performed from Earth, since they are always
performed at small solar phase angles and contain virtually no
information about concavities (Ďurech & Kaasalainen 2003).
The models from the convex inversion technique, on the other
hand, are unique (Kaasalainen & Torppa 2001) and result in a
polyhedral approximation of the body shape if the body is
globally convex, or approach the convex hull of the body if the
object contains global concavities.
For the purpose of convex inversion, we used the

implementation and notation described in Mottola et al.
(2020), with further modifications and extensions as described
in the following subsections.
Formal 1σ uncertainties on the rotational and photometric

parameters have been estimated by using the statistical
bootstrap method (Press et al. 1992). To this end, 500 synthetic
data sets have been generated by randomly sampling the
original data set, on a light-curve-by-light-curve basis, and by
running corresponding instances of the inversion procedure.
The uncertainties were then determined by computing the
standard deviation of each resulting best-fit model parameter.

3.1. Levenberg–Marquardt Nonlinear Optimization

The core optimization in the convex inversion method is
performed via Levenberg–Marquardt (LM) nonlinear fitting
(Kaasalainen & Torppa 2001). In order to improve the
robustness and performance of the LM method for problems
with a large number of residuals, we have applied several
modifications to the original method as suggested by Transtrum
et al. (2011). In particular, we have implemented the methods
of bold acceptance, delayed gratification, and modified
damping matrix that help mitigate the problems of slow
convergence and parameter evaporation (Transtrum &
Sethna 2012).

3.2. Relative, Absolute, and Semi-absolute Photometry

The convex inversion technique exploits the observed
variations in the brightness of an unresolved body in order to
retrieve information about its spin state, shape, and photometric
properties. These variations have both rotational and long-term
components. The rotational component mostly carries informa-
tion about the body elongation (or about its a and b semiaxes in
the body-fixed X-Y plane). The long-term component, on the
other hand, can carry information about the vertical extent of
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the body (or the c/a ratio). For rotation periods that are not
much longer than a typical observing session, relative
photometric measurements are generally adequate for capturing
the rotational component on subsequent nights. Recording the
long-term component, on the other hand, requires accurate
absolutely calibrated measurements that are consistent over
many apparitions, which is a much more demanding task for a
ground-based observer. Therefore, photometric errors in

ground-based light curves of asteroids are often dominated
by the uncertainties of the absolute-calibration zero-points,
rather than by their signal-to-noise ratio (S/N). In such cases, if
absolute magnitudes are used in the shape inversion, the
calibration errors tend to obfuscate the signature of the best
solution in the merit function. Although this issue has recently
been partially mitigated by the advent of accurate all-sky
photometric catalogs and by the increasing availability of

Table 1
Observational Circumstances for (3548) Eurybates

Date λ β α r Δ
λ (PAB) β Band Observatory Observers

(UT) (deg J2000) (deg) (au) (au) (deg J2000)

2012 Feb 25.9 126.5 +9.8 6.056 4.9210 4.0506 129.4 +9.0 RC 493 SMo, SH
2012 Feb 28.9 126.2 +9.8 6.580 4.9228 4.0760 129.4 +8.9 RC 493 SMo, SH
2012 Mar 28.9 124.7 +9.0 10.466 4.9406 4.4210 130.0 +8.6 RC 493 SMo, SH
2012 Apr 25.9 126.0 +8.2 11.710 4.9583 4.8521 132.0 +8.2 RC 493 SMo, SH

2013 Feb 4.1 169.1 +8.4 6.265 5.1498 4.3091 166.0 +7.7 RC 493 SMo, SH
2013 Apr 2.0 162.1 +8.1 5.710 5.1890 4.3073 164.9 +7.4 RC 493 SMo, SH
2013 May 2.9 160.4 +7.2 9.861 5.2100 4.6641 165.3 +6.9 RC 493 SMo, SH
2013 May 7.9 160.4 +7.1 10.272 5.2135 4.7371 165.5 +6.8 RC 493 SMo, SH

2014 Feb 2.2 202.0 +4.6 9.834 5.3872 4.9549 197.1 +4.4 RC 493 SMo, SH
2014 Feb 8.1 202.0 +4.6 9.389 5.3906 4.8716 197.3 +4.4 RC 493 SMo, SH
2014 Apr 22.9 195.0 +4.2 3.287 5.4328 4.4679 196.6 +3.9 RC 493 SMo, SH
2014 Apr 23.9 194.9 +4.2 3.467 5.4333 4.4729 196.6 +3.8 RC 493 SMo, SH

2017 Aug 1.5 277.7 −8.3 5.614 5.5692 4.6862 280.5 −7.6 r′ Q63 MB, AZ
2017 Aug 2.2 277.7 −8.3 5.707 5.5690 4.6910 280.5 −7.6 r′ W85 MB, AZ

2018 Aug 2.8 310.8 −9.9 1.858 5.3951 4.3926 310.7 −9.0 r′ K95 SMo, SH
2018 Aug 10.7 309.8 −9.9 2.370 5.3905 4.3970 310.5 −9.0 r′ K95 SMo, SH
2018 Aug 15.9 309.1 −9.9 3.114 5.3874 4.4099 310.4 −9.0 r′ K95 SMo, SH

2018 Sep 30.2 305.7 −9.0 9.437 5.3605 4.8077 310.5 −8.6 VR G80 MB
2018 Oct 2.1 305.7 −8.9 9.604 5.3593 4.8341 310.6 −8.5 VR G80 MB
2018 Oct 14.1 305.9 −8.6 10.360 5.3521 5.0024 311.1 −8.4 VR G80 MB
2018 Oct 28.1 306.6 −8.2 10.709 5.3435 5.2117 312.0 −8.2 VR G80 MB
2018 Nov 6.1 307.4 −8.0 10.646 5.3379 5.3478 312.8 −8.1 VR G80 MB

2019 Jun 29.1 348.1 −8.0 10.713 5.1849 4.7711 342.7 −7.7 RC 493 SH, SMo
2019 Jul 9.1 348.2 −8.2 9.997 5.1782 4.6246 343.2 −7.8 RC 493 SH, SMo
2019 Jul 30.1 347.4 −8.6 7.520 5.1641 4.3619 343.6 −7.9 V, RC 493 SH, SMo
2019 Aug 9.9 346.4 −8.7 5.768 5.1567 4.2592 343.6 −7.9 V, RC 493 SH, SMo
2019 Aug 30.0 344.1 −8.8 2.305 5.1432 4.1505 343.3 −7.9 RC 493 SH, SMo

2019 Jun 30.4 348.1 −8.1 10.636 5.1840 4.7512 342.8 −7.7 VR G80 MB
2019 Jul 28.4 347.5 −8.5 7.757 5.1652 4.3795 343.6 −7.9 VR G80 MB
2019 Aug 29.4 344.2 −8.8 2.405 5.1437 4.1524 343.3 −7.9 VR G80 MB
2019 Sep 30.3 340.2 −8.4 5.194 5.1222 4.2132 342.7 −7.6 VR G80 MB
2019 Oct 20.2 338.6 −7.9 8.349 5.1088 4.3901 342.7 −7.3 VR G80 MB

2020 Aug 22.0 24.0 −4.6 9.709 4.9151 4.2649 19.1 −4.3 V, RC 493 SMo, SH
2020 Aug 25.1 23.9 −4.6 9.333 4.9134 4.2264 19.2 −4.3 V, RC 493 SMo, SH
2020 Oct 11.9 18.8 −4.2 0.952 4.8859 3.8911 19.0 −3.8 B, RC , I 493 SMo, SH
2020 Oct 12.9 18.9 −4.2 0.881 4.8865 3.8909 19.0 −3.8 B, RC , I 493 SMo, SH
2020 Oct 13.9 18.8 −4.2 0.952 4.8859 3.8911 19.0 −3.8 B, V, RC , I 493 SMo, SH
2020 Oct 14.9 18.6 −4.2 1.071 4.8854 3.8915 18.9 −3.8 B, V, RC , I 493 SMo, SH

2021 Aug 18.1 60.9 +0.7 12.212 4.7613 4.7554 54.7 +0.7 RC 493 SMo
2021 Aug 20.1 61.1 +0.8 12.240 4.7608 4.7242 55.0 +0.8 RC 493 SMo
2021 Dec 27.9 53.5 +3.0 8.087 4.7373 3.967 57.6 +2.8 RC 493 SMo
2021 Dec 30.9 53.3 +3.0 8.567 4.7370 3.9992 57.6 +2.8 RC 493 SMo

Note. This table is an excerpt. The observational circumstances for all of the observation nights are reported in the online material. λ and β are the topocentric ecliptic
longitude and latitude of the target, respectively. α is the solar phase angle, r is the heliocentric distance, and Δ is the topocentric range of the target. λ and β (PAB)
are the topocentric ecliptic longitude and latitude of the phase-angle bisector, as defined in Harris et al. (1984). The last column reports the initials of the observers.

(This table is available in its entirety in machine-readable form.)
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space-based asteroid photometric data—as in the Gaia (Gaia
Collaboration et al. 2018), TESS (Ricker et al. 2014), and K2
(Borucki et al. 2010) surveys—it is often still a problem.
Frequent reasons are (1) a small field of view of the imaging
system that does not allow for a sufficient number of catalog
stars, (2) a nonstandard filter/detector combination that does
not allow for robust transformations to a standard photometric
system, and (3) use of heterogeneous instrumentation for

different data sets. In such cases it is customary to perform the
inversion by using relative magnitudes (normalized to their
maximum or average value) in order to obtain a viable solution,
thereby sacrificing information about the vertical extent of the
body (Bartczak & Dudziński 2019; Kaasalainen & Ďurech
2020).
In order to address this issue, which is particularly severe for

bodies with a low light-curve amplitude, we have introduced

Table 2
Observational Circumstances for (21900) Orus

Date λ β α r Δ
λ (PAB) β Band Observatory Observers

(UT) (deg J2000) (deg) (au) (au) (deg J2000)

2011 Dec 18.1 89.9 −1.9 0.934 4.9430 3.9616 89.5 −1.7 RC 493 SMo, SH
2011 Dec 18.9 89.8 −1.9 0.748 4.9431 3.9608 89.4 −1.8 RC 493 SMo, SH
2011 Dec 20.0 89.6 −2.0 0.555 4.9431 3.9601 89.4 −1.8 RC 493 SMo, SH
2012 Feb 20.9 84.3 −2.6 10.631 4.9468 4.4809 89.6 −2.5 RC 493 SMo, SH
2012 Feb 22.9 84.3 −2.7 10.777 4.9469 4.5089 89.7 −2.5 RC 493 SMo, SH

2012 Dec 11.1 130.3 −6.7 8.880 4.9852 4.3110 125.8 −6.2 RC 493 SMo, SH
2012 Dec 17.1 130.0 −6.9 8.012 4.9863 4.2410 125.9 −6.4 RC 493 SMo, SH
2012 Dec 18.1 129.9 −6.9 7.867 4.9865 4.2307 126.0 −6.4 RC 493 SMo, SH
2013 Feb 7.9 123.6 −7.8 3.377 4.9967 4.0464 125.2 −7.1 RC 493 SMo, SH
2013 Apr 4.8 120.5 −7.3 11.105 5.0085 4.6498 126.1 −7.1 RC 493 SMo, SH

2014 Jan 26.1 164.9 −9.9 7.180 5.0823 4.2902 161.4 −9.1 RC 493 SMo, SH
2014 Feb 8.1 163.7 −10.2 4.978 5.0859 4.1845 161.3 −9.3 RC 493 SMo, SH
2014 Feb 21.0 162.1 −10.3 2.757 5.0894 4.1253 161.1 −9.4 RC 493 SMo, SH
2014 Feb 24.9 161.7 −10.4 2.361 5.0902 4.1187 161.0 −9.4 RC 493 SMo, SH
2014 Mar 17.9 158.7 −10.3 3.998 5.0962 4.1542 160.5 −9.4 RC 493 SMo, SH

2016 May 26.2 224.9 −5.2 3.925 5.2825 4.3237 226.8 −4.7 r′ W86 MB, AZ
2016 May 26.3 224.9 −5.2 3.935 5.2825 4.3237 226.8 −4.7 r′ W87 MB, AZ
2016 Jun 3.2 224.0 −5.0 5.385 5.2836 4.3753 226.7 −4.6 r′ V37 MB, AZ
2016 Jun 6.2 223.7 −5.0 5.900 5.2840 4.3987 226.6 −4.5 r′ W87 MB, AZ
2016 Jun 21.0 222.6 −4.6 8.130 5.2860 4.5445 226.7 −4.3 r′ W86 MB, AZ
2016 Jun 22.2 222.5 −4.6 8.288 5.2862 4.5585 226.7 −4.3 r′ V37 MB, AZ
2016 Jul 5.9 222.1 −4.3 9.777 5.2879 4.7343 227.0 −4.1 r′ W86 MB, AZ

2018 Jul 14.9 289.5 +5.5 1.179 5.2805 4.2686 289.8 +5.0 RC 493 SH, SMo
2018 Jul 15.9 289.4 +5.5 1.283 5.2803 4.2694 289.8 +5.0 RC 493 SH, SMo
2018 Jul 16.9 289.3 +5.5 1.406 5.2802 4.2705 289.7 +5.0 V, RC 493 SH, SMo

2018 Aug 31.2 285.1 +5.6 8.750 5.2733 4.5991 289.4 +5.3 VR G80 MB
2018 Sep 1.2 285.0 +5.6 8.867 5.2731 4.6117 289.5 +5.3 VR G80 MB
2018 Sep 4.2 284.9 +5.6 9.192 5.2726 4.6501 289.5 +5.3 VR G80 MB
2018 Sep 14.1 284.8 +5.6 10.065 5.2710 4.7856 289.9 +5.3 VR G80 MB
2018 Sep 21.2 285.0 +5.5 10.500 5.2698 4.8884 290.2 +5.3 VR G80 MB

2019 May 4.4 324.7 +6.8 10.912 5.2250 5.3265 319.2 +6.9 VR G80 MB
2019 Jun 29.4 327.0 +8.5 8.639 5.2118 4.5040 322.7 +7.9 VR G80 MB
2019 Jul 2.4 326.8 +8.6 8.260 5.2111 4.4691 322.7 +8.0 VR G80 MB
2019 Jul 6.4 326.6 +8.7 7.725 5.2101 4.4257 322.8 +8.0 VR G80 MB
2019 Nov 24.1 319.7 +7.9 10.784 5.1743 5.2769 325.2 +8.0 VR G80 MB

2019 Jun 2.1 327.0 +7.7 10.877 5.2183 4.8820 321.6 +7.4 V, RC 493 SH, SMo
2019 Jul 11.1 326.3 +8.8 7.039 5.2090 4.3784 322.8 +8.1 V, RC 493 SH, SMo
2019 Aug 4.0 323.8 +9.3 3.022 5.2031 4.2189 322.5 +8.4 V, RC 493 SH, SMo
2019 Aug 9.9 323.0 +9.4 2.171 5.2016 4.2034 322.4 +8.5 V, RC 493 SH, SMo
2019 Aug 10.9 322.9 +9.4 2.065 5.2014 4.2018 322.4 +8.5 V, RC 493 SH, SMo

2020 Aug 17.0 0.2 +10.1 6.880 5.1004 4.2563 356.8 +9.3 B, V, RC 493 SH, SMo
2020 Aug 18.0 0.1 +10.1 6.717 5.1002 4.2473 356.8 +9.3 B, V, RC 493 SH, SMo
2020 Aug 19.0 0.0 +10.2 6.554 5.0999 4.2386 356.8 +9.3 B, V, RC 493 SH, SMo
2020 Aug 20.0 359.9 +10.2 6.394 5.0996 4.2304 356.8 +9.3 B, V, RC 493 SH, SMo
2020 Aug 21.0 359.8 +10.2 6.221 5.0993 4.2218 356.8 +9.3 B, V, RC 493 SH, SMo

Note. This table is an excerpt. Definition of columns is the same as in Table 1.

(This table is available in its entirety in machine-readable form.)
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the concept of what we call—in a rather facetious way—semi-
absolute photometry. In addition to the two different metrics
for absolute and relative photometry (see Mottola et al. 2020
and references therein), we have defined a merit function for
the semi-absolute photometry as
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where the indices j and k run over the light curves and
individual data points, respectively, and n is the total number of
light curves. The L terms represent the intensities, where the
superscript specifies whether they are observed or modeled. An
overline specifies that the intensity is averaged over the jth light
curve. The term σk,j represents the photometric uncertainty of
the individual data points, expressed in intensity, while òj is the
photometric uncertainty of the average observed intensity
caused by the error on the zero-point of the jth light curve. The
term λ is a positive coefficient that represents the weight of the
contribution of the absolute photometry uncertainty to the merit
function, and it can be seen as a Pareto coefficient (see, e.g.,
Caramia & Dell’Olmo 2008) in a multiobjective optimization.
Alternatively, λ can be seen as a regularization coefficient that
penalizes solutions that depart from the best-fit phase function.
In practice, the residual vector is augmented by the n elements
that contain the residual of the mean intensity for each semi-
absolute light curve, with the corresponding elements of the
Jacobian matrix being computed as usual for the LM
optimization.

With this formalism we effectively separate the contribution
of the relative accuracy (first term of the sum; see Mottola et al.
2020) from that of the calibration accuracy (second term),
which can therefore be weighted independently through the
coefficient λ. As a means to determining an appropriate value
for the λ weight, we perform several runs by starting from a
value of zero and subsequently increasing it. We then select the
value of λ that reduces the absolute photometry residuals,
without significantly increasing the relative photometry
residual term.

3.3. H, G1, G2 Surface Phase Function

In the convex inversion scheme, the photometric properties
of the surface are described through a photometric function. A
common and convenient choice is to use a photometric
function that is separable in the product of a disk and a surface
phase function (see the Appendix). For the disk function we
use a linear combination of the Lommel–Seeliger function (to
account for the single-scattering component) and the Lambert
function (for approximating the multiple-scattering comp-
onent). As a surface phase function, a simple three-parameter
linear exponential expression is often used (Kaasalainen et al.
2001). Although such a linear exponential surface phase
function is able to reproduce quite reasonably the phase-angle
behavior of many planetary surfaces and has proven to be a
successful general-purpose tool for the convex shape inversion
(Kaasalainen et al. 2001), it is a simple analytical function that
is neither derived from theoretical considerations about light

scattering nor based on empirical analysis of observed
photometric data. Two of the most obvious drawbacks of the
linear exponential function are (1) the inability to adequately
reproduce the opposition surge (Belskaya & Shevchenko 2000)
for very small phase angles (�2°) and (2) its tendency to
assume negative values at very large phase angles. Further-
more, its three model parameters are not readily translated into
those of a standard photometric system for phase curves, such
as the (now-deprecated) HG system (Bowell et al. 1989) or the
IAU-adopted H, G1, G2 (Muinonen et al. 2010) system, widely
used by observers. For this reason, in addition to using the
linear exponential surface phase function, we also introduce the
H, G1, G2 surface phase function for the Lommel–Seeliger–
Lambert disk function, which has the property of resulting in
sphere-integrated phase curves (Mottola et al. 2020) that
directly follow the H, G1, G2 function. With this approach we
generalize the definition of the H, G1, G2 surface phase
function for Lommel–Seeliger surfaces by Muinonen et al.
(2015) by extending it to the Lommel–Seeliger–Lambert disk
function, as detailed in the Appendix. One important aspect of
the H, G1, G2 model is that it is founded on basis functions that
encompass the observed phase functions of a sizable set of
asteroids and natural satellites. As such, it has an empirical
justification. It is also worth noting that a strong correlation has
been found between the location of an object in the G1, G2

parameter space and its taxonomic type (Penttilä et al. 2016;
Shevchenko et al. 2016), which, although no proof, can provide
an independent confirmation of a taxonomic classification
made through spectral measurements. Further, the use of this
function in the convex inversion natively returns model
parameters in an IAU-endorsed system. Last but not least, the
normalized version of the H, G1, G2 surface phase function
only depends on two parameters, as opposed to the three-
parameter linear exponential function, thereby making the
inversion procedure more stable, even in the case of data sets
that do not optimally sample the phase-angle domain.
Our approach is not unsimilar to the one recently described

by Martikainen et al. (2021) when determining the phase-curve
parameters of a large sample of asteroids from Gaia photo-
metry, although the two methods differ in a number of details.
Martikainen et al. (2021), similarly to our approach, derive a
surface function based on the H, G1, G2 formalism, although
coupled to a Lommel–Seeliger disk function, as opposed to the
Lommel–Seeliger–Lambert function used in our case. During
the inversion of the photometric properties of the targets,
Martikainen et al. (2021) solve for the linear slope βS of the
surface phase function, which is linked to the single parameter
G12 (Muinonen et al. 2010). By using this parameter, the
authors construct the reference phase curves, by averaging the
light-curve brightness over one full rotation for selected phase
angles. These reference phase curves are similar, but not
identical, to our sphere-integrated phase curves, as the former
still contain a weak dependence on the shape of the target
(Helfenstein & Veverka 1989). Finally, Martikainen et al.
(2021) fit their reference phase curves to derive G1 and G2

parameters, as opposed to our approach, where G1 and G2 are
directly derived in the inversion procedure. In summary, our
method represents a more direct approach to the retrieval of the
phase-curve parameters and is well suited for the application to
well-sampled data sets. The method by Martikainen et al.
(2021), on the other hand, due to the simplified parameteriza-
tion, may offer a more stable solution in the case of sparse and
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not optimally sampled data sets. However, all in all these
differences should be small enough, so that the two methods
should produce results that are directly comparable in most
situations.

3.4. Direct Facet-area Polyhedral Inversion

The convex inversion method seeks to retrieve a convex
approximation of the object’s shape in two steps. First, the
extended Gaussian image (EGI; Horn 1984) of the shape is
constructed during the inversion process. The EGI of a
polyhedron is defined on the unit sphere and associates a
scalar field consisting of the surface areas (or the product of the
surface area times the facet’s albedo) of the polyhedron facets
with the directions defined by the normals to the original facets.
The EGI can also be seen as the equivalent in the discrete case
of the Gauss surface density for the continuous case. The EGI
uniquely defines a convex polyhedron (Minkowski 1897).
Furthermore, the light curves produced by a convex object only
depend on its EGI, since for a convex object neither shadowing
nor self-obstruction is present. However, the EGI lacks explicit
information about the shape of the facets and their connectivity.
In order to reconstruct the 3D shape of the target from its EGI,
the Minkowski problem needs to be solved in the second step,
for which Lamberg (1993) and Lamberg & Kaasalainen (2001)
gave a practical implementation.

Because of the large body of photometric data available for
the two observed targets—and their good photometric accuracy
—the convex shape was retrieved via direct inversion of the
facets’ areas of the EGI as opposed to the inversion of its
spherical harmonics expansion (Kaasalainen & Torppa 2001).
With this procedure we effectively lift the regularization on the
facets’ areas operated by the spherical harmonics functions and
can obtain a more realistic approximation of the shape.

Contrary to Kaasalainen & Torppa (2001)—who use a
conjugate gradient minimization algorithm for this purpose—
we optimize the polyhedron facets’ areas by applying the
modified LM method mentioned above. Because the LM
method makes explicit use of the quadratic form of the χ2 merit
function, it arguably offers better convergence and parameter
sensitivity than conjugate gradients, at the expense of a higher
computational cost. The latter drawback, however, is offset by
recent advances in computer technology that make even large
problems (of the order of a few thousand residuals) tractable
with LM on desktop computers.

The direct facet-area polyhedral inversion was performed by
fixing the rotation and photometric models to their best-fit
values previously determined via a global smooth-function fit
and by leaving only the facets’ areas as free parameters. The
number of facets is chosen for each model based on the total
number, accuracy, and distribution of the data points and
typically ranges from one to a few thousand. We typically
performed several shape inversion runs starting from slightly
varied initial conditions for the parameter vector and verified
that all solutions converged to a nearly identical shape. The
reconstruction of the convex shape from its EGI—the
Minkowski problem—was performed by using the procedure
described in Lamberg (1993) and Lamberg & Kaasalainen
(2001).

The orientation of the body reference system and the
maximum body dimensions we use in this paper follow the
definitions given in Mottola et al. (2020).

4. Eurybates

4.1. Light Curves

For the convex inversion of Eurybates we used new and
historical data for a total of 1960 photometric data points
spanning a period of 29.6 yr. Although the new data presented
here already allow a reliable solution to be determined, the
additional historical and sparse data enable a more accurate
period determination and the application of direct facet-area
inversion, as explained in Section 3.4. Figures 1 and 2 show
selected light-curve data for Eurybates during different
apparitions. Given the small variation of the illumination and
viewing angles during each apparition—and the consequent
small intra-apparition variation of the shape of the light curves
—all the data for a particular year have been composited
together for a given observing station, with the respective best-
fit synodic period. The composites show asymmetric light
curves, characterized by a small amplitude during most
apparitions and by three pairs of extrema. Observations during
the 2017 apparition occurred when Eurybates’s apparent
location was close to the galactic center. For this reason, those
observations show larger residuals and systematics that are due
to imperfect star subtraction. These observations have been
weighted accordingly in the inversion.

4.2. Colors and Color Variations

In 2020 October Eurybates was observed with a high
cadence from Calar Alto in the BRI Johnson–Cousins
photometric bands for four consecutive nights in order to
assess the presence of possible color variegation over the
surface. Occasionally, frames were acquired in the Johnson V
filter to determine the corresponding color indices. The four
nights were of photometric quality, and the resulting time series
covered more than three Eurybates complete rotations, with a
typical S/N for the individual measurements ranging from 125
for the B-filter exposures to 280 for the R-filter ones. The light
curves in the R filter—the ones with the highest accuracy—
were fitted with a 14th-order Fourier polynomial, in order to
provide the baseline against which the time-resolved color
indices were computed. The results are presented in Figure 3.
The top panel shows the R-band light curve along with the
Fourier-series fit, while the second panel from the top shows
the R-band residuals to the fit. The rms of the residuals in the R
band is σ= 0.0045 mag, which is quite compatible with the S/
N of the measurements, showing both the adequacy of the
chosen fit order and the good reproducibility of the measure-
ments across the four nights of observation. The third and
fourth panels from the top represent the B− R and R− I color
indices, computed by subtracting the R-band Fourier fit from
the B and I magnitudes, respectively. The rotationally averaged
B− V, V− R, and R− I color indices are reported in Table 3.
Figure 3 shows that no systematic, repeated color variations

are detected for Eurybates in the observed bands. A fit to the
residuals produces curves with an amplitude smaller than 0.01
mag. To give some context, the hemispherical color-index
variations for (4) Vesta for the bands 954–720 nm (comparable
to the I− R index) amount to about 6% (Jaumann et al. 1996).
The observations were carried out close to exact opposition,

with nearly a complete rotation observed during each night.
Furthermore, at the time of the observations the object
presented the observer with a near-equatorial aspect, with a
subobserver latitude of about −18° (see Section 4.3). From this
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observation geometry, most of the object’s surface (�97%) is
exposed to the observer during one rotation. As a consequence,
we conclude that no major global-scale color variegation is
present on Eurybates in the observed bands, although small-

scale color heterogeneity might still exist. In addition, the
measurements performed are not diagnostic for spectrum-
neutral albedo variations, which, although unlikely, might be
present even on a global scale.

Figure 1. Composite light curves of Eurybates for the period 2012–2018. The data points beyond rotational phase 1.0 are repeated for clarity. Psyn is the exact value of
the synodic period used for folding the light curves, and as such, it is quoted without error. The reference epoch T0 is one-leg light-time corrected and expressed in the
TDB uniform frame. The magnitudes are reduced to the distance of 1 au from the Sun and from the observer. A small correction is applied to the magnitudes to reduce
them to the reference phase angle of each observation set, shown in the respective y-axis label. Each symbol corresponds to an individual night of observation,
centered at the UT epoch listed in the label. Observations on different nights reported with the same color have been reduced with the same set of catalog stars and are
therefore tied in an absolute way. Observations reported in different colors have been performed with different sets of catalog stars and have been arbitrarily shifted in
magnitude to account for catalog uncertainties. The applied shifts are typically smaller than 0.01 mag. The solid gray curve is the synthetic light curve obtained for the
respective T0 epoch with the best-fit shape model and photometric parameters (see text).
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4.3. Sidereal Period, Pole, and Shape

The sidereal period for Eurybates was searched for by
performing about 21,000 full convex inversion runs on the
whole data set using, as initial conditions, 12 different pole
directions, equally spaced on the celestial sphere, and a series
of trial periods densely covering the range of possible period
solutions. All shape, photometric, and rotation parameters
(including the rotation period) were optimized. The resulting
period scan (see Figure 4) shows an unequivocal global
minimum at Psid= 8.7027283± 0.0000029 h, thereby confirm-
ing and improving on the previous sidereal period determina-
tions mentioned in the introduction. This best-fit sidereal period
was used as starting value for the χ2 map in Figure 5, which
was generated by running the shape inversion procedure for
about 20,000 fixed discrete directions on the celestial sphere,
while simultaneously solving for sidereal period, shape, and
photometric properties. For the generation of the χ2 map the

EGI was approximated with a spherical harmonics polynomial
of degree and order 6 sampled with a Lebedev rule of order 302
(Lebedev & Laikov 1999; Kaasalainen et al. 2012).
The χ2 map shows the presence of two equally likely

retrograde solutions characterized by an ecliptic longitude
difference of about 180°. This fundamental phenomenon is
known as the longitude ambiguity (Kaasalainen & Lamberg
2006) and occurs whenever unresolved measurements are
confined to a geometry (defined by the Sun, observer, and
target) close to the same plane for all of the observations. In
this case this condition occurs because, due to its orbital
inclination, the geocentric ecliptic latitude of Eurybates never
exceeds ±10°.
Keeney et al. (2021), as a part of their program for the

determination of size and shapes of the Lucy targets via stellar
occultations (Buie et al. 2021), have reported their preliminary
results about a Eurybates event recorded on 2021 October 20.5

Figure 2. Composite light curves of Eurybates for the period 2019–2020. Notation is the same as in Figure 1.
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UT with nine usable chords. By projecting the shape models
corresponding to our two solutions onto the plane of the sky at
the time of the occultations and by overplotting the occultation
chords, it was possible to unambiguously identify the correct
pole solution, which is marked in Figure 5 with a red circle.

The obliquity of the spin axis with respect to its orbital pole
is about 158°, which makes Eurybates experience only
moderate seasonal variations along its orbit.

The final convex shape model has been computed by direct
inversion of the facet areas of a polyhedron with 1454
polygonal facets, as detailed in Section 3.4. The corresponding
synthetic light curves are plotted as gray solid curves in
Figures 1 and 2, showing that the model follows the observed
light curves down to the data scatter. The deviation from a
perfectly closed convex shape (Kaasalainen & Torppa 2001) is
a small 0.11% of the total surface, encouraged through a mild
regularization coefficient. This small residual, often referred to
as a dark facet, implies that the observed light curves can be
satisfactorily explained by a convex shape with uniform
albedo, and hemispherical-scale albedo variations are not
required. The geometric principal axis of inertia of the convex
shape computed by assuming constant bulk density is tilted by
about 8° from the spin axis. This deviation could be a hint that
the object displays some degree of nonconvexity and/or its
density distribution is not uniform.

Figure 6 shows three different views of the best-fit convex
shape model of Eurybates. The body has an irregular shape

with a moderate elongation, with axial ratios reported in
Table 3.
The availability of occultation data also allowed us to fix the

absolute scale of the model, by minimizing the Euclidean
distances of the occultation transition points and the projection
of the shape model at the time of the event (see Mottola et al.
2020). Figure 7 shows the occulting silhouette of Eurybates at
the time of the 2021 October 20 event, along with the recorded
chords. The model corresponding to the rejected pole solution
is overplotted in gray for comparison. The size of the red
circles roughly corresponds to the uncertainty on the timing of
the ingress or egress events. Considering that the occultation
data have not been used in the determination of the rotation and
shape models (other than resizing), we regard the match with
the occultation chords as remarkable, although hints of
nonconvexities are present.

4.4. Photometric Properties

In addition to performing the convex inversion for Eurybates
with the H, G1, G2 surface phase function, we also used the
linear exponential function, for the purpose of comparison. The
respective best-fit parameters are shown in Table 3, while
Figure 8 shows the sphere-integrated phase curve. This
representation leverages the known shape model and observa-
tion geometry to remove the effects on the phase curve due to
varying rotation phase and aspect angle during different
apparitions. The result corresponds to the phase curve of a

Figure 3. Time-resolved color observations of Eurybates during the 2020 apparition. The top panel shows the R-band light curve along with the corresponding Fourier
fit. The second panel from the top shows the R-band residuals to the fit, while the third and fourth panel show the B − R and R − I time-resolved color indices,
respectively. See text for details.
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hypothetical spherical object with the same regolith photo-
metric properties as the target (Mottola et al. 2020). For this
reason, the scatter in the individual data points (blue squares) is
almost entirely due to the measurement noise, and not to the
varying observation geometry. This representation also high-
lights the very high accuracy of the absolute photometry of our
measurements, which is mainly due to two factors. First, the
absolute measurements used for the phase curve have been
acquired with the same telescope/instrument/filter combina-
tion over the whole decade spanned by the observations, which
provides for good internal consistency. Second, the accuracy
and consistency of the Gaia photometric catalog, the large field
of view of the camera containing a large number of in-field
catalog stars, and the availability of accurate transformations
between the Gaia and the Johnson photometric systems

(Evans et al. 2018) allowed for reliable absolute-magnitude
determinations over the whole sky.
The phase curve covers the range 0°.8–12°.3 in solar phase

angle and shows a nearly linear trend with a very subdued
opposition effect, as already observed for other Trojan asteroids
(Shevchenko et al. 2012; Buie et al. 2018; Mottola et al. 2020).
The magnitude difference between 1° and 11° solar phase is
ΔM(1°;11°)=−0.548. Within the observed range the H, G1, G2

and the linear exponential fits produce accurate, virtually
indistinguishable results. On the other hand, the old HG system
—a fit to which is also shown in Figure 8 for reference—shows
systematic deviations and fails to reproduce the nearly linear
trend of the data.
In the phase-angle range �0°.8—unconstrained by the data

—the linear exponential and the H, G1, G2 functions conduce
to different results, which, in turn, produces the two slightly
different H and pV sets of values reported in Table 3 for the two
photometric systems. These differences have virtually no effect
for nearly all practical applications, as long as those H-values
are used in conjunction with the respective phase functions.
This effect highlights the importance of always specifying the
function used to extrapolate the observations to zero phase.
Analyzing our phase curve with the unsupervised H, G1, G2,

the unidimensional classification tool by Penttilä et al. (2016)
assigns Eurybates to the taxonomic type C, solely based on the
shape of the phase curve, thereby independently confirming the
classification by Fornasier et al. (2007) based on visible
spectroscopy. This independent confirmation is particularly
important, given the scarcity of C-type objects present in the
Trojan clouds.

4.5. Size and Albedo

In addition to breaking the longitude ambiguity of the pole
solutions, the stellar occultation measurements by Keeney et al.
(2021) also fix the absolute scale of our shape model and, in
conjunction with our absolute-magnitude determination, its
geometric albedo. The spherical-equivalent diameter is
Ds= 69.3± 1.4 km, where the error has been determined by
estimating the uncertainty of the cross-sectional area at the time
of the occultation event at 4% and the influence of the
uncertainties from the other parameters by using the bootstrap
method. In Table 3 we report the values of pV obtained for both
the linear exponential and H, G1, G2 photometric systems. The
albedo determination by Grav et al. (2012) mentioned in the
introduction (pV= 0.052± 0.007) is compatible with our own,
with the error bars of the respective measurements marginally
overlapping. The determinations by Tedesco et al. (2004) and
Usui et al. (2011), on the other hand, are both considerably
brighter than our occultation-derived value. The reason for that,
however, can be easily traced back to the literature H-value
used in the last two works (H= 9.50), which overestimates the
object’s brightness. Adopting our value for H and recomputing
the albedo with the method proposed by Harris & Harris (1997)
resolves the discrepancy.
The size determinations by Tedesco et al. (2004) and Usui

et al. (2011) are compatible with our own, within the respective
error bars, while Grav’s diameter is about 8% smaller than our
value.

Table 3
Results

Eurybates Orus

Sidereal period (h) 8.7027283 ± 0.0000029 13.486190 ± 0.000017
Pole ecl. long., lat. (deg

J2000)
320, −60 33, −59

Pole R.A., decl. (deg
J2000)

7, −67 54, −42

Error ellipsea of pole
coords. (deg, 1σ)

3, 5 3, 5

Ecliptic obliquity of
pole (deg)

150 149

Orbital obliquity of
pole (deg)

158 154

T0 (JDTDB) 2,448,765.0 2,455,116.0
Φ0 (deg) 65.418 60.854
W0 (deg) 229.156 17.413
W (deg day−1) 992.79211 ± 0.00033 640.65535 ± 0.00081
A0 0.55 ± 0.04 0.41 ± 0.06
D (rad) 0.133 ± 0.005 0.143 ± 0.014
k (rad−1) −1.16 ± 0.04 −0.89 ± 0.08
c (fixed) 0.1 0.1

-HV linexp (sph. int.) 9.854 ± 0.005 10.241 ± 0.007

-HV H G G, ,1 2 (sph. int.) 9.800 ± 0.007 10.204 ± 0.006

G1 0.862 ± 0.019 0.689 ± 0.012
G2 −0.028 ± 0.011 0.193 ± 0.007
pV (lin-exp) 0.042 ± 0.003 0.039 ± 0.002
pV (H, G1, G2) 0.044 ± 0.003 0.040 ± 0.002
B − V 0.739 ± 0.026 0.799 ± 0.031
V − R 0.384 ± 0.021 0.454 ± 0.021
R − I 0.355 ± 0.015 L
LX (km) 77.5 70.7
LY (km) 71.3 63.0
LZ (km) 61.8 51.4
LX/LY 1.09 1.12
LY/LZ 1.15 1.23
Surface-equiv. sphe-

rical diam. (km)
69.3 ± 1.4 60.5 ± 0.9

Photometric surface
(km2)

1.51 × 104 1.10 × 104

Convex shape volume
(km3)

1.67 × 105 1.13 × 105

Notes. Please refer to the text and to Mottola et al. (2020) for the definition of
the respective quantities.
a Semiaxes of the error ellipse projected onto the sky plane for the ecliptic
longitude and latitude directions, respectively.
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5. Orus

5.1. Light Curves

The photometric data set used for the inversion of Orus
consists of a total of 3082 data points encompassing a time
span of 12.2 yr. Figures 9 and 10 show selected composite light
curves for Orus during various apparitions. The composites
show asymmetric two-maxima, two-minima light curves during
most apparitions, with a less pronounced and broader
secondary maximum. The observed maximum amplitude of

0.23 mag occurred during the 2017 apparition, while the
minimum amplitude of 0.17 mag was registered in 2019.

5.2. Colors and Color Variations

In 2020 August Orus was observed at high cadence with the
Johnson–Cousins filters BVR for five consecutive nights, in order
to assess its color heterogeneity over the surface, as described
earlier for Eurybates. Unfortunately, differently from the
Eurybates case, at the time of observation the I filter was not

Figure 4. Sidereal period scan for Eurybates. Trial periods correspond to the start values for each individual optimization run, while fit periods are the resulting
optimized values.

Figure 5. Polar azimuthal equidistant projection of the χ2 of the pole solutions for Eurybates. The coordinates are expressed in the J2000 ecliptic frame. The left panel
is centered on the north ecliptic pole and the right one on the south ecliptic pole. The equatorial region (ecliptic latitudes −30° to +30°) is mapped in both panels. The
loci of the two complementary best solutions are clearly visible as white regions. The red circle marks the correct solution identified through its match with the stellar
occultation chords by Keeney et al. (2021).
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available at the telescope, thereby limiting somewhat the
monitored spectral range. The subobserver latitude of Orus at
the time of the observations was −16°, implying a viewing aspect
close to equatorial, with most of the surface being observed during
a rotation. The five nights of observation, all of photometric
quality, enabled us to cover the 13.5 h rotation period twice,
providing for confirmation in case of the detection of a color
variation. Typical S/N levels for the individual exposures ranged
from 80 in the B band to 200 in the R filter—somewhat lower than
in the case of Eurybates, due to the lower apparent brightness of
Orus. The light curve in the R filter was fitted with a 15th-order
Fourier polynomial (shown in Figure 11 as a gray solid curve) and
used as a baseline for subtracting the observations in the other

filters, thereby obtaining the time-resolved B−R and V−R
indices shown in the third and fourth panels from the top in
Figure 11. The residuals in the R band, shown in the second panel
from the top in Figure 11, have an rms value σ= 0.0065 mag.
Again, as in the case of Eurybates, no systematic, repeated color
variations are detected for Orus, which excludes global-scale
spectral variations over the observed spectral range, although local
variations remain possible. The rotationally averaged B−V and
V−R color indices are reported in Table 3.

5.3. Sidereal Period, Pole, and Shape

The period scan for Orus (Figure 12) was obtained by
performing about 30,000 full inversions starting from 12

Figure 6. Three orthographic views of the Eurybates convex shape model.

Figure 7. Occulting silhouettes of the best-fit convex model of Eurybates (solid black line) along with the rejected complementary model (displayed in light gray) at
the time of the 2021 October 20 occultation. The red, green, and blue arrows represent the X-, Y-, and Z-axes in the body-fixed reference frame, respectively.
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discrete pole directions and from initial sidereal periods densely
covering the range of possible solutions. The scan shows
a well-defined global minimum at a sidereal period Psid=
13.486190± 0.000017 h. A secondary side minimum is also
present that corresponds to a χ2 larger by about 50% than the
primary minimum. This spurious solution corresponds to a
model in which the primary and secondary light-curve maxima
are swapped for some of the observations.

As in the case of Eurybates, the χ2 map in Figure 13 shows
the presence of two indistinguishable, retrograde, equally
probable solutions for the spin axis vector, which is due again
to the 180° longitude ambiguity, given the low orbital
inclination of the object and the consequent small range of
geocentric ecliptic latitudes (±10°) at which the object was
observable.

Keeney et al. (2021) report results about an Orus stellar
occultation event recorded on 2021 October 16.1 UT in
Senegal. Preliminary reduction of the occultation data resulted
in six positive chords and a close-miss negative detection for
this event. The location of the chords is compatible with our
Solution 1, marked with a red circle in Figure 13, and excludes
Solution 2, thereby resolving the pole ambiguity.

The obliquity of the spin axis with respect to its orbital pole
is 154°, making Orus, similarly to Eurybates, an object with a
moderate seasonal cycle.

The final model shape has been computed by direct inversion
of the facet areas of a polyhedron with 2354 facets, as detailed
in Section 3.4. The resulting synthetic light curves are reported
as solid gray lines in Figures 9 and 10.

The convexity residual is low, at 0.2% of the total surface,
showing that also in the case of Orus hemispherical-scale
albedo variations are not required to explain the observed light
curves.

The tilt of the principal axis of inertia of the convex shape
with respect to the spin axis is about 3°. Considering that the
convex shape is a photometric and not dynamical representa-
tion of the body and that the principal axis of inertia is totally
unconstrained during the optimization, the alignment of the two
axes is very good.

Figure 14 shows different views of the Orus convex shape
model. The body has an irregular shape with a moderate
elongation. The extent of the body along its axes (see Mottola
et al. 2020 for definition), along with its axial ratios, is reported
in Table 3.
As in the case of Eurybates, the availability of occultation

data also allowed us to fix the absolute scale of the Orus model.
Figure 15 shows the occulting silhouette of Orus at the time of
the 2021 October 16 event, along with the recorded chords. The
model corresponding to the rejected pole solution is overplotted
in gray for comparison. Also in this case, the match with the
occultation chords is very good. No hints of a major
nonconvexity are seen in this observation geometry.

5.4. Photometric Properties

The best-fit photometric parameters for Orus are shown in
Table 3, while Figure 16 shows its sphere-integrated phase
curve. The phase curve covers the range 0°.5–11° and, with a
ΔM(1°;11°)=−0.428, is shallower than Eurybates’s in the
observed phase-angle range. As in the case of Eurybates, the
curve is nearly linear and lacks a pronounced opposition effect,
with both the linear exponential and the H, G1, G2 functions
resulting in near-identical fits reproducing the trend with high
fidelity. The two functions only split in the unconstrained
phase-angle range below 0°.5. Again, the HG system function
fails to reproduce the linear behavior of the curve.
The tool by Penttilä et al. (2016) applied to the Orus phase

curve assigns the object to the taxonomic type D, which
supports the previous classification based on NIR spectra.

5.5. Size and Albedo

By rescaling our Orus shape model to match the observed
occultation chords by Keeney et al. (2021), we obtain a
spherical-equivalent diameter Ds= 60.5± 0.9 km and geometric
albedo values of pV= 0.039± 0.002 in the case of the linear
exponential surface phase function and pV= 0.040± 0.002
in the case of the H, G1, G2 function. Our new determinations
differ considerably from those of Grav et al. (2012) and

Figure 8. Sphere-integrated phase curve for Eurybates. The blue squares represent the geometry-corrected individual data points for the subset of the observations for
which a reliable transformation to the Johnson V band could be determined.
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by Usui et al. (2011) reported in the introduction (pV=
0.075± 0.014 and pV= 0.083± 0.015, respectively). Part of
the discrepancy in the albedo can be explained by considering
that both Grav et al. (2012) and Usui et al. (2011) use literature
H-values (H= 9.9 and H= 9.8, respectively) that overestimate

the object brightness by a large amount with respect to our best-
fit H-value in the HG system. By using our own determination
for H and applying the method by Harris & Harris (1997) to
recalculate Grav’s and Usui’s geometric albedos, we obtain
pV= 0.060 for both cases, which, although reducing the gap, is

Figure 9. Composite light curves of Orus for the period 2012–2017. Notation as in Figure 1.
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still an overestimation. We conclude that, in addition to an
incorrect H-value, the radiometric determinations and/or the
thermal modeling for Orus by Grav et al. (2012) and Usui et al.
(2011) are affected by systematics that exceed by far the quoted
uncertainties.

6. Discussion and Conclusions

We have collected new, accurate light-curve observations
over the past decade that cover nearly one complete revolution
of the targets around the Sun and combined them with
historical observations to determine photometric properties and
rotation and convex shape models for two of the Lucy mission
targets. We have introduced a surface phase function that, in
combination with the Lommel–Seeliger–Lambert disk func-
tion, allows direct inversion of the H, G1, G2 parameters. The
advantage of this formalism is that the description of the
photometric properties is made directly in a standard IAU
photometric system, which allows for simple comparison with
literature results and holds the potential for a photometry-based
taxonomic classification. Further, we have introduced the
concept of semi-absolute photometry, which enables full
exploitation of absolute photometry information in the convex
inversion of light curves, regardless of the degree of accuracy,
and have applied several other improvements that have
increased the accuracy, efficiency, and stability of the convex
inversion scheme.

Matching our shape models with stellar occultation chords
by Keeney et al. (2021) has resolved the longitude ambiguity of
the pole directions of Eurybates and Orus, has fixed their
absolute size, and has allowed us to determine their geometric
albedo.
Both Eurybates and Orus are low-elongation, irregular

bodies for which the derived convex shape model can
reproduce all of the observed light curves down to the scatter
of the data points. This condition, however, is not sufficient to
exclude the presence of even large concavities because disk-
integrated light curves acquired at small phase angles (as
unavoidable for distant objects) carry little or no information
about nonconvex features (Ďurech & Kaasalainen 2003). The
use of complementary techniques, as stellar occultation
observations, will be fundamental in establishing the presence
of possible significant deviations from convexity. A major
observational effort has been initiated to that end with the aim
of retrieving dense chord coverage for all of the Lucy targets
(Buie et al. 2020).
Noll et al. (2020) reported the discovery of Queta, a satellite

orbiting Eurybates—a likely testimony to its intense collisional
past. With a size of about ∼1 km, however, this satellite is too
small to imprint a detectable signature on our light curves.
Similarly, we did not observe in the light curves any hint of a
possible, still-undetected further companion—neither for Eur-
ybates nor for Orus.
With very low convexity residuals, the shape models for

both objects do not suggest the presence of strong, global-scale

Figure 10. Composite light curves of Orus for the 2019 apparition. Notation as in Figure 1.
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albedo contrast. In addition, our time-resolved, repeated
color observations in several spectral bands have not revealed
hemispheric-scale variegation in the visible range larger
than 1%. These observations seem to refute previously
reported putative large spectral slope variations for Eurybates

(Souza-Feliciano et al. 2020). However, it is still possible that
the objects could display albedo or color contrast at scales
that are small with respect to their diameter.
The unsupervised classification tool by Penttilä et al. (2016)

identifies Eurybates as a C type and Orus as a D type based on

Figure 11. Time-resolved color observations of Orus during the 2020 apparition. The top panel shows the R-band light curve along with the corresponding Fourier fit.
The second panel from the top shows the R-band residuals to the fit, while the third and fourth panels show the B − R and V − R time-resolved color indices,
respectively. See text for details.

Figure 12. Sidereal period scan for Orus.
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photometry alone, thereby independently supporting current
taxonomic memberships based on NIR spectroscopy. Espe-
cially for Eurybates this is an important confirmation, as the C
taxonomic type is quite rare in the Trojan region.

With an accuracy of the sidereal rotation period determina-
tion of about 10 and 61 ms for Eurybates and Orus,
respectively, the rotation phase of these objects during the
respective encounters with Lucy can be predicted with an
uncertainty of a mere few degrees—precious information for
the planning of the Lucy encounters.

During Lucy’s fly-by with Eurybates on 2027 August 12, the
subsolar latitude will be −5°. This geometry will allow Lucy to
map the object up to very high latitudes, with a coverage of
about 98% of the surface with a sampling better than
500 m pixel−1 and 60% better than 100 m pixel−1. Orus’s
subsolar latitude at the time of the Lucy close encounter on
2028 November 11 will be +22°. This encounter geometry
should enable Orus to be mapped for more than 90% of its
entire surface with a spatial sampling better than 1 km pixel−1

and for more than 50% with a sampling better than
100 m pixel−1.
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Figure 13. Same as Figure 5, but for Orus.

Figure 14. Three orthographic views of the Orus convex shape model.
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images and catalogs from the survey area. The ATLAS science
products have been made possible through the contributions of

the University of Hawaii Institute for Astronomy, the Queen’s
University Belfast, the Space Telescope Science Institute, and
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Figure 15. Occulting silhouettes of the best-fit convex model of Orus (solid black line) along with the rejected complementary model (displayed in light gray) at the
time of the 2021 October 16 occultation. The blue line represents a negative detection. The red, green, and blue arrows represent the X-, Y-, and Z-axes in the body-
fixed reference frame, respectively.

Figure 16. Sphere-integrated phase curve for Orus. The blue squares represent the geometry-corrected individual data points for the subset of the observations for
which a reliable transformation to the Johnson V band could be determined.
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Appendix
H, G1, G2 Surface Phase Function for the Lommel–

Seeliger–Lambert Disk Function

For the purpose of convex inversion we describe the
photometric properties of the surface with a photometric
function that is the product of a Lommel–Seeliger–Lambert
disk function and a surface phase function (Kaasalainen et al.
2001; Schröder et al. 2013). The corresponding radiance factor
(I/F) can be written as

( ) ( )m
m m

a=
+

+I F A c f
1

. A1LSL 0
0

⎜ ⎟
⎛
⎝

⎞
⎠

ALSL is the Lommel–Seeliger–Lambert albedo; α is the solar
phase angle; μ0 and μ are the cosines of the incidence and

emission angles, respectively; and c is the partition coefficient
for the Lambert contribution. The term f (α) is the surface phase
function (expressed in intensity). One of the advantages of this
formalism is that the disk and phase functions depend
separately on the phase angle and on the incidence and
emission angles. Furthermore, there exists an analytical
expression for the integral of the Lommel–Seeliger–Lambert
disk function over a sphere that allows direct computation of
the disk-integrated phase function (see, e.g., Li et al.
2015, 2020; Mottola et al. 2020):

with α expressed in radians. A popular choice for the surface
phase function is a simple three-parameter linear exponential
function (Kaasalainen et al. 2001), which has proven to be
quite successful for the purpose of shape inversion and has the
form

( ) ( )‐ a a= + +a-f A e k 1. A3D
lin exp 0

Here A0 is the amplitude of the opposition surge, D is the
angular width of the opposition region, and k is the slope of the
linear part of the function. The function is normalized such that
its linear component is unity at zero phase.

Alternatively to the linear exponential function, we propose
the H, G1, G2 surface phase function in conjunction with the
Lommel–Seeliger–Lambert disk function, which has the
property of producing an H, G1, G2 disk-integrated phase
function when the corresponding radiance factor is integrated
over a sphere.

The H, G1, G2 disk-integrated phase function (Muinonen
et al. 2010), adopted by the IAU in 2010 and intended to

supersede the old HG system, is defined as

( ) ( ) ( )
( ) ( ) ( )

a a a
a

F = F + F
+ - - F
G G

G G1 , A4
H G G, , 1 1 2 2

1 2 3

1 2

where the Φi(α) functions (normalized to unity at zero phase)
are defined in Muinonen et al. (2010) as cubic splines and in
Penttilä et al. (2016) in tabulated form.
Analogously to Muinonen et al. (2015), we then define a

two-parameter H, G1, G2 surface phase function for the
Lommel–Seeliger–Lambert disk function—also normalized to
unity at zero phase—as

With this choice, the disk-integrated phase function for a
sphere has the form of Equation (A4). By using Equation (A5)
in conjunction with Equation (A1) during the optimization
process, we can determine the G1 and G2 parameters directly
during the inversion, simultaneously with the shape model and
rotation state.
Given the used normalization, when using the H, G1, G2

surface phase function for the Lommel–Seeliger–Lambert disk

function, the geometric albedo of a sphere is

( )= +p A c
1

2

2

3
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