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The importance of (physical) security is increasingly acknowledged by society and the scientific community. In
light of increasing terrorist threat levels, numerous security assessments of critical infrastructures are conducted and
researchers continuously propose new approaches. Moreover, consideration is given to how security measures need to
be (re)designed to address the findings of the assessments, taking into account the potentially costly nature of security
investments. At the same time, however, assessments suffer from the fundamental problem of inherent uncertainties
regarding threats and capabilities of security measures due to little evidence of actual attacks. In this paper, we
combine previous work on the concept of security margins with an approach for cost-benefit optimal allocation of
available resources considering budgetary constraints to form a three-step approach. In a first step, a security system
is assessed for potential vulnerabilities. If such are found, most relevant model parameters are identified on barrier
level via sensitivity analysis in a second step. In a third step, security margins are determined for these parameters
by optimization, taking into account uncertainties in the assessment as well as cost constraints due to total available
budget. The approach is demonstrated using a notional airport structure as an example. The optimization is performed
for various budgets to investigate the influence of the budget on system vulnerability and allocation of resources to
security measures.
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1. Introduction

Increasing awareness of terrorist activity has
brought the security of critical infrastructures into
the focus of operators as well as politics. New
risk policies and laws result in a growing de-
mand for security risk assessment (SRA) and cost-
benefit oriented optimization methods to ensure
the (physical) security of critical infrastructures.
Field experience shows that assessment and op-
timization remain difficult tasks, mostly covered
by qualitative methods. In contrast, quantitative
methods and models for assessment are rarely
used, although new approaches have emerged, e.g.
those by Flammini et al. (2013) and Landucci et al.
(2017). Despite the fact that quantitative results
allow for more detailed analysis, the main reasons

for this limited application are the complexity of
implementation and the availability of quantitative
data.
Additionally, SRA and corresponding cost-

benefit optimization is fraught with inherent un-
certainties. The reason is a lack of evidence of
actual attacks with a terrorist background regarding
threat scenarios as well as the capabilities of
security systems (Abrahamsen et al., 2015). Thus,
the subsequent optimization is often backed by
vague data or elicited expert knowledge that may
represent a rather subjective perspective. As shown
in Lichte et al. (2021), the outlined uncertainties
can have a significant impact on the effectiveness
of a security system. The approach described there
takes these uncertainties into account in the form
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of security margins and a predefined level of
security measure effectiveness. In the presented
paper, we enhance the approach by adding basic
cost functions for security measure effectiveness.
These underlying cost functions represent life cycle
costs. The enhanced security margin concept is
then applied to cost-benefit optimization under bud-
getary constraints using an evolutionary algorithm.
We demonstrate the benefit of the approach

using the example of a notional airport infrastruc-
ture. Critical barriers within the analyzed security
system are revealed via sensitivity analysis and
improved security configurations are derived by
optimization for various budgets. The optimization
results are discussed.

2. Background

2.1. Cost-benefit analysis and optimization
in physical security analysis

Generally, a cost-benefit analysis of security mea-
sures proves to be difficult as the benefits of
measures are hard to evaluate (Butler, 2002). Thus,
the support of decision-making concerning security
investments is a continuously developing field of
research (Abrahamsen et al., 2015). In addition,
cost-benefit estimations are hampered by the under-
lying inherent uncertainties in SRA which already
complicate the evaluation of the effectiveness of
the security system (Lichte et al., 2021).
Only a few approaches exist in physical SRA

that provide strategies for decision-making with
respect to security measures. Wyss et al. (2010)
propose a security risk metric based on vulnerabil-
ity analysis. The approach is based on the idea that
applied measures should increase the difficulty of
the easiest paths towards a successful attack con-
sidering the constraints of costs, operational and
programmatic restrictions. The variety of possible
security measures and their threat specific effec-
tiveness lead to a large search space for appropriate
solutions. Genetic algorithms are used to address
this optimization problem. For instance, Flammini
et al. (2011) determine an optimal coverage of
specified security measures at a site regarding
their return on investment and a budget constraint.
While different threats are considered, the effect
mechanisms of security measures are modeled in

a highly simplified way. Also based on return on
investment and a budget constraint, but relying
on a barrier-oriented and time-based vulnerability
model, Lichte et al. (2019) optimize the effec-
tiveness of security measures at barriers along
attack paths using an evolutionary algorithm. Here,
measures are described by their effectiveness and
costs are related by cost functions.
Another time-based approach, taking the topol-

ogy of barriers into account, is given by Čakija
et al. (2020). In the optimization outlined there,
elements of a predefined set of available security
measures are applied to facility elements, with
costs assigned to each available measure. Although
uncertain model parameters are considered in the
underlying vulnerability model in general, the
approach does not aim at mitigating the impact
of their uncertainties explicitly. In contrast, Lichte
et al. (2021) tackled the challenge of addressing
the uncertainty regarding the security measure
effectivity by proposing the concept of a security
margin. The approach is based on variance based
sensitivity analysis (see e.g. Saltelli et al., 2004)
and a barrier-oriented quantitative vulnerability
model (see Section 2.2). This approach allows
for minimization of residual uncertainty regard-
ing security barrier effectivity and provides the
opportunity to make cost-benefit considerations by
extending the approach with cost functions.

2.2. Underlying vulnerability model

The vulnerability model underlying the security
margin concept relies on basic assumptions, which
characterize the most relevant behavior of a secu-
rity system of an infrastructure (see Lichte and
Wolf, 2017). The resulting model consists of three
main input parameters that characterize the sys-
tem capabilities provided by the installed security
measures at each of its barriers: protection time
tP, observation time tO and intervention time tI.
Each of these parameters is described as a random
variable with an associated time-based probability
density function (pdf). Capabilities are described
as relations between these parameters.
Detection of an attacker is triggered if the pro-

tection at a barrier prevents an attacker from a
break-through until an observation is successfully
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completed. This is described by the conditional
probability D:

D = P (tO < tP) (1)

Herein tP is the time an attacker needs to
overcome the protection and tO the time needed to
observe for successful detection.
Timely intervention is the second key relation

in the vulnerability model. It is based on the time
needed for successful intervention tI and the resid-
ual protection time tRP. The residual protection
time tRP at a barrier i is the sum of all protection
along the residual barriers i to n on an attack path
minus the time needed for detection.

tRP =
n∑

j=i

tP,j − tO,i (2)

The conditional probability for timely interven-
tion T is thus defined by:

T = P (tI < tRP) (3)

The vulnerability of a barrier VB is then repre-
sented by

VB = 1−D · T (4)

The product of the barrier-specific vulnerabili-
ties leads to the vulnerability of the whole attack
path VP:

VP =
n∏

j=1

VB,j (5)

System vulnerability VS is determined by the
weakest path:

VS = max(VP,1, . . . , VP,m) (6)

In case of numerical sampling, e.g. Monte Carlo,
we reformulate the definition of system vulner-
ability due to the binary characteristic of path
vulnerability at each sample. At a sample, the
system is defined to be vulnerable when any path is
vulnerable (see Eq. (6)). The mean of all samples
then describes the overall system vulnerability.

3. Approach

In the following, an approach for the consideration
of uncertainties in cost-benefit optimal (re)design
of physical security systems is presented. The

approach utilizes the vulnerability model described
in Section 2.2 and is demonstrated by applying it to
a notional airport structure which was subject to a
SRA in Lichte and Wolf (2017). This structure was
also used in the derivation of the usage of security
margins in Lichte et al. (2021). The airport system
and the identified security barriers are depicted in
Fig. 1. Additionally, the figure outlines feasible
attack paths within this structure.
The approach consists of three steps. First, the

current airport security system is assessed for
potential vulnerabilities. If such are found, most
relevant model parameters are identified on barrier
level via sensitivity analysis in a second step. In
a third step, the optimal allocation of security
margins to the parameters are determined by an
optimization based on cost functions and a speci-
fied budget.

3.1. Vulnerability assessment of exemplary
airport structure and security system

The initial security measure performances and the
associated uncertainties are assumed as in Lichte
et al. (2021). Herein, the security parameters are
characterized by normal pdfs with mean values
μPi, μOi, μIi and respective variances σ2

Pi, σ
2
Oi,

σ2
Ii that represent the uncertainty. Used input data
for the configuration of the security system is
shown in Table 1.
Scalar calculation of system vulnerability VS

solely based on mean values results in zero vul-
nerability, i.e. VS = 0. However, if we consider
variances according to the relationships given in
Section 2.2 and calculate VS by Monte Carlo
simulation, we obtain

VS = 0.811 (7)

which points to a vulnerable system.
The barriers that cause high vulnerability remain

initially unknown. Therefore, sensitivities are fur-
ther investigated in the second step by analyzing
the introduced variances.

3.2. Uncertainty impact assessment on
barrier level

In this step, we analyze which uncertain param-
eters impact system vulnerability as shown in
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Path Structure

1 B1 B2b B5a A

2 B1 B3 B5a A

3 B1 B2c B4 B5a A

4 B1 B2c B5b A

5 B1 B2b B4 B5b A

6 B1 B3 B4 B5b A

7 B1 B2a B7 A

8 B6 B2a B2b B5a A

9 B6 B2a B3 B5a A

10 B6 B2a B2c B4 B5a A

11 B6 B2a B2c B5b A

12 B6 B2a B2b B4 B5b A

13 B6 B2a B3 B4 B5b A

14 B6 B7 A

15 B8 B9 A

Fig. 1. Notional airport structure with feasible attack paths

Table 1. Initial configuration of notional airport secu-
rity system

Barrier tP tO tI

μP σP μO σO μI σI
(s) (s) (s) (s) (s) (s)

2a 120 18 100 15 172 21
2b 120 18 100 15 115 18
2c 120 18 100 15 115 18
3 108 18 90 15 115 18
4 36 6 30 6 115 18
5a 144 24 120 18 115 18
5b 144 24 120 18 115 18
6 288 45 240 36 172 27
7 216 33 180 27 172 27
8 216 33 180 27 288 75
9 360 54 300 45 288 45

Lichte et al. (2021). By applying a variance based
sensitivity analysis, we reveal the influence of all
parameters on barrier level. For this purpose, we
investigate the total effect sensitivity indices ST

of the model output VS to the input parameters tP,

tO and tI. By generating samples based on Sobol
sequences and calculating the sensitivity indices
using the software SALib (Herman and Usher,
2017), we obtain ST for all input parameters shown
in Table 2.

Table 2. Total effect sensitivity in-
dices ST for all parameters, with val-
ues above 0.1 highlighted

Barrier ST,P ST,O ST,I

2a 0.199 0.168 0.032
2b 0.198 0.166 0.035
2c 0.209 0.171 0.035
3 0.219 0.180 0.035
4 0.001 0.001 0.001
5a 0.091 0.002 0.002
5b 0.057 0.001 0.000
6 0.204 0.161 0.018
7 0.063 0.002 0.002
8 0.217 0.177 0.107
9 0.079 0.001 0.001
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On the one hand, the results reveal, that the
uncertainty added to some of the input parameters
does not have an impact on the model output of
system vulnerability, as the total effect sensitivity
indices are near zero, e.g. all input parameters
at barrier 4. On the other hand, the uncertainty
of some input parameters seems to have a major
impact on the results, e.g. at the barriers 2a, 2b,
2c, 3, 6 and 8. It can be concluded, that uncertain
parameters for security measures only have an
impact on certain points, i.e. barriers within the
security system.

3.3. Optimization of physical airport
security

In order to address the revealed vulnerability, we
search for an improved security system design. The
new design should minimize system vulnerability
while keeping costs low. To do this, we set up
an optimization of system vulnerability for fixed
budgets. We assume that the security measures
currently installed cannot be easily downgraded
in order to save costs. Hence, in the optimization,
we focus on the most critical model parameters
identified in the previous conducted sensitivity
analysis. This reduces the number of design vari-
ables and restricts cost analyses to certain barriers.
For security systems being designed for the first
time, it might instead be appropriate to include
all barriers to reduce costs where high-effective
security measures are not required (see Lichte et al.,
2019). For the example, we select the parameters
with high sensitivity indices as highlighted in
Table 2 for optimization.

3.3.1. Security margins, objective and budget
constraint

We take the configuration of the analyzed secu-
rity system and apply security marginsM to the
selected model parameters t. This results in new
parameter values t′ for protection, observation and
intervention:

t′P = tP +MP (8)

t′O = tO −MO (9)

t′I = tI −MI (10)

where margins are defined to be positive:

MP ∈ [0,∞) (11)

MO ∈ [0, tO) (12)

MI ∈ [0, tI) (13)

In doing so, the application of security margins
represents an improvement of security measures.
The objective of the optimization is minimizing

system vulnerability. Thus, we define the optimiza-
tion problem by

min
�M∈X

(VS), (14)

where VS is the objective, �M the vector of design
variables, i.e. the security margins, and X the
design space as given by Eq. (11) to (13).
Rationally, the value of security margins is lim-

ited. Here, we define an available budget Cbudget.
We assume that any security margin causes costs
that can be described by a corresponding cost
amount Ci. Both, budget and cost refer to the same
time period. The requirement that the sum of all
expenditures must be within the budget is then a
constraint on optimization:

n∑

i=1

Ci ≤ Cbudget (15)

3.3.2. Cost functions of security margins

In order to include costs in the optimization, we
establish a relation between the level of security
marginM and the corresponding costs Ci. For this
purpose, we define cost functions that are assumed
to be the result of separate cost analyses. We use a
simple polynomial for modeling a disproportional
increase in costs over security margin. This model
reflects the assumption that more and more effort
is needed to increase the effectivity of security
measures. Further, we add a separate cost increase
ΔC that reflects additional costs for modifying
the measures currently installed, but is zero if no
security margin is applied (ΔC =0 ifM =0). The
cost functions for the different security parameters
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Table 3. Parameters of cost functions for notional airport structure

Barrier tP tO tI

CP mP ΔCP CO mO ΔCO CI mI ΔCI

(C) (C/s) (C) (C) (C/s) (C) (C) (C/s) (C)

2a 100 000 10 000 10 000 120 000 −2 000 30 000 — — —
2b 100 000 10 000 10 000 120 000 −2 000 30 000 — — —
2c 100 000 10 000 10 000 120 000 −2 000 30 000 — — —
3 1 000 000 40 000 100 000 1 000 000 −40 000 100 000 — — —
6 150 000 10 000 20 000 200 000 −5 000 50 000 — — —
8 500 000 50 000 300 000 1 500 000 −20 000 200 000 2 000 000 −30 000 100 000

are then:

C ′
P = cP · (tP +MP)

dP +ΔCP (16)

C ′
O = cO · (tO −MO)

dO +ΔCO (17)

C ′
I = cI · (tI −MI)

dI +ΔCI (18)

It should be noted that, in principle, other cost
functions can be utilized that may better reflect the
outcome of cost analyses carried out.
We use the current system design as a reference

point and calculate c and d from the current costs
C attributed to the model parameter and the local
cost gradientm:

d =
m · t
C

c =
C

td
(19)

Figure 2 illustrates the parameters used to de-
scribe the cost functions. For the airport example,
hypothetical values are given in Table 3.

0
0

tO, tI tP

CO, CI

CP

ΔCP

mP

ΔCO,ΔCI

mO,mI

MPMO,MI

t′

C′
C′

O, C
′
I

C′
P

Fig. 2. Parameterization of cost functions

3.3.3. Optimization strategy

Besides the potentially large number of design
variables, VS( �M) shows non-linear, non-smooth
and non-convex behavior caused by the under-
lying vulnerability model. Therefore, we choose
an evolutionary algorithm for optimization. We
use the differential evolution algorithm (Storn and
Price, 1997) implemented in SciPy (Virtanen et al.,
2020). The budget constraint is enforced according
to the approach by Lampinen (2002). We set the
algorithm to terminate when standard deviation of
population is less then or equal to 0.01. Apart from
that, we use default options.
One problem caused by the optimization algo-

rithm is to find solutions where security margins
M are exactly zero. Therefore, we assume that no
security margin is applied ifM < 1 s. Accordingly,
we set ΔC = 0 ifM < 1 s.

3.4. Optimization results for different
budgets

To study the impact of additional budget on vul-
nerability reduction as well as the allocation of
security margins, we set several hypothetical bud-
gets and perform optimization for each of them.
Each optimization yields a new configuration of
the security system. In the example, we increase
the amount of additional budget in steps of 0.5 mil-
lion C to a maximum of 3.5 million C, starting
from the initial configuration. Figure 3 plots the
resulting vulnerability and security margins against
the additional budget.
The resulting system configurations show a

continuously decreasing vulnerability with respect
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Fig. 3. Vulnerability and optimal allocation of security
margins for different budgets

to the available budget. Furthermore, the transition
between the values of single security margins
is reasonably smooth. Both indicate that the op-
timization algorithm provides consistent results.
In addition, the sum of all costs is close to the
limit of the budget. However, due to the nature
of evolutionary algorithms, global optima are not
guaranteed.
Figure 3 shows that the allocation of security

margins varies depending on the budget: when the
budget is low, security margins are concentrated
on a few parameters (see MO,2a, MO,2b, MO,2c,

MP,6,MO,6), while security margins are applied
to more parameters as the budget increases (see
MP,3,MO,3,MO,8). Besides the effect of the cost
functions, this hints to the varying impact of the
different barriers for system vulnerability that is
taken into account by the proposed optimization
procedure.
Additionally, also the allocation of security mar-

gins to protection, observation and intervention
may be significantly different and even lead to
partially reduced security margins for increasing
budget. For many barriers, security margins con-
centrate to observation parameters (see B2a, B2b,
B2c, B6, B8), but there is also a barrier where,
depending on the budget, security margin of pro-
tection dominates or security margins of protection
and observation are similar (see B3).
In general, security margins increase as the

budget increases. However, a slight reduction in
some security margins is observable in tandem
with the initial application of security margin to
another parameter, e.g. the initial increase ofMO,8

at 2 million C. One possible explanation is that
the cost increase ΔC first inhibits the application
of security margin, but the lower cost gradientm,
once overcome, then leads to a partial focus on this
parameter.

4. Conclusion

The paper presents an approach to reach a cost-
benefit optimal (re)design for security systems. The
process is explained in detail by applying it to a
notional airport infrastructure and the results of the
conducted optimization are discussed.
The approach extends the previously introduced

concept of security margins to address uncertain-
ties regarding the effectiveness of security mea-
sures by combining it with cost functions. In this
way, budgetary restrictions are considered in the
determination of optimal security margins. At the
same time, the determination takes into account the
structure of the security system, since the impact
of the individual barriers on system vulnerability is
an inherent part of this approach. In the presented
approach, the optimal characteristics of security
measures at the respective barriers are described
by the introduced security margins. This concept
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enables a solution-neutral derivation of appropriate
measures, while e.g. the approach of Čakija et al.
(2020) is limited to a premade selection.
The example calculation shows that the alloca-

tion of security margins to the individual barriers
and effect mechanisms is based on their impact
as well as on the ratio of costs and benefits, i.e.
the reduction of vulnerability. It is shown that the
allocation focuses on specific measures and can
differ depending on the available budget.
In future work, the approach could be extended

to include varying consequences in different sce-
narios to broaden the presented vulnerability con-
sideration and analyze profitability of the security
system on the basis of risk.
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