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Latest approaches in IT security assessments interpret the Common Vulnerability Scoring System (CVSS) 
parameters as barriers connected in series. In contrast to the classic multiplicative approach according to CVSS for 
determining exploitability via numerical values associated with the CVSS parameters, an additive approach is 
proposed in Braband (2019). Logarithmized CVSS scores are introduced to overcome the computational limitations 
with ordinal values. The log score sum across all barriers is sorted on a scale corresponding to a likelihood of 
exploitability (LoE) category. CVSS world is not only decomposed and remodeled into a mathematically admissible 
algorithm, but also contains an inherent defense-in-depth (DiD) effect. With each barrier added, the LoE decreases. 
This architectural interpretation can neither be falsified nor confirmed with previous CVSS metrics. Unlike in the 
IT security domain, tools exist in physical security to compute DiD in an objectively consistent manner. In our 
paper, we apply these considerations to a physical security setup in order to replicate his systemic modification 
based on CVSS. In a detailed analysis, we examine the boundary conditions and measures that must be taken in 
quantitative physical security metrics to emulate the DiD effect in IT security. 
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1. Introduction 
For the design of a security system, a well 
thought-out evaluation of the security functions in 
the application is required. In both physical 
security and safety, quantitative metrics are used 
for this purpose (Garcia 2005; Zio 2012). In 
physical security, the probability that an attacker 
reaches an asset faster than the defender reaches 
the attacker is used as the basis for evaluation 
(Lichte et al. 2016).  
In safety, the evaluation metric is classically a 
failure rate or a system reliability over a specific 
period of time (Lichte et al. 2019). The underlying 
metrics in the disciplines are based on a time-
based probability related to physical processes 
and states. In IT security, it is common to use 
scores, i.e., semi-quantitative assessments, 
because this underlying metric is missing (Yee 
2013).  
Common IT security metrics do actually not map 
the physical processes as in physical security or 
safety. This is partly because the paradigms in IT 
differ from those in the physical world. Whereas 
in IT, different entry points can be used to get to 
an asset (Wheeler 2011), a physical attacker is 
guided along a path determined by the placement 

of barriers and their openings to convenient 
authorized access (Garcia 2005).  
In addition, the use of probabilities in IT is a 
different interpretation than in physical security or 
safety. In IT, probability means, for example, that 
90% of publicly known vulnerabilities are 
identified and closed (Jones 2007). In physical 
security, on the other hand, probability means 
that, for example, 65% of the time it takes an 
attacker 30 seconds to overcome a barrier (Lichte 
et al. 2016). In both cases, these are probabilities. 
However, these do not fit together properly. 
In physical security, risk is assessed on the basis 
of vulnerability via the interaction of protection, 
observation and intervention. Since scenarios are 
considered that have not yet occurred, the 
epistemic probability of attack is assumed to be 
100%. Physical vulnerability is thus assessed on a 
very concrete, performance-based level.  
In addition to the quantitative intervention 
capability metric (ICM) of Lichte et al. (2016), in 
which uncertainties about the security functions 
of a physical system are taken into account in the 
form of density functions for protection, 
observation and intervention, there is also the 
semi-quantitative scoring system Performance 
Risk-based Integrated Security Methodology 
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(PRISM) of the Harnser Group (Harnser 2010). In 
PRISM, the integral parameters of protection, 
detection, and intervention are scored between "1" 
(low) and "5" (high) and summed. This leads to 
deviations compared to the quantitative metric: 
For example, if protection were at "3," detection 
were at "1" (minimum design), and intervention 
were at "5," then the vulnerability score according 
to the PRISM would be in the midrange (score of 
"9"). However, according to the ICM, the system 
would be maximally vulnerable under these 
constraints. A certain interplay of the three 
performance mechanisms is required to achieve a 
protective effect.  
In the context of metric accuracy, Krisper (2021) 
and Termin et al. (2021) analyze problems with 
the use of semi-quantitative approaches. 
In IT security, this performance mechanism is 
obviously missing. A common metric used 
internationally is the Common Vulnerability 
Scoring System (CVSS) v3.1 (First.org 2022). An 
exploitability score is calculated using the 
scenario-describing parameters Attack Vector 
(AC), Attack Complexity (AC), Privileges 
Required (PR) and User Interaction (UI), to which 
numerical values are assigned.  
The association of these values corresponds to 
ISO/SAE 21434 of an Attack Feasibility category 
(SAE 2022). From a physical perspective, this is 
the threat probability (Witte et al. 2020).  
For CVSS, in addition to the Exploitability, the 
Impact, consisting of the protection goal violation 
of confidentiality, availability and integrity, is 
further used to determine the Vulnerability Score. 
Since the numerical values of the parameters are 
on an ordinal scale and actually only a ranking is 
possible, building log values of the numerical 
CVSS score values is suggested in Braband 
(2019).  
A barrier-based approach is applied to CVSS 
metrics, postulating a defense-in-depth (DiD) 
effect. From these considerations, the scientific 
question arises: How can the hypothesis on the 
DiD effect be assessed or confirmed? With our 
paper, we want to contribute to the genesis of a 
metric tool to evaluate the quality of metrics or 
metric modifications respectively. For this 
purpose, we adapt approaches from IT and 
transfer them to physical security to analyze 
metrical considerations quantitatively 
 
2. Background  
 
The CVSS parameters Attack Vector (AV), 
Attack Complexity (AC), Privileges Required 
(PR) and User Interaction (UI) can be interpreted 
as barriers connected in series, which corresponds 
to the principle of defense in depth (DiD) 
(Braband 2019). The following classifications can 
be used: AV represents the location of the IT 

attack (physical barrier), AC the complexity of the 
attack from a technical point of view (technical 
barrier) and PR the rights required on the part of 
the user or UI the need for user interaction 
(organizational barrier). 
As proposed in Braband (2019), the parameters 
AV to UI can be interpreted as the likelihood of 
exploitation (LoE). LoE describes that an attacker 
will successfully overcome the barriers AV to UI. 
In order to determine the LoE, the numerical 
values of CVSS are converted into a semi-
quantitative approach on an interval scale. This is 
done by applying the logarithm to the CVSS base 
metrics of the AV to UI.  
Here, the absolute parameter values range from 
0.2 to 0.8 in the base metric, which is why the 
logarithm of the respective numerical values is set 
to the base of 0.6. That is the difference between 
the upper and lower limit of possible numerical 
values. As an example, this is done in Eq. (1) for 
the characteristic "Physical" of the parameter AV:  
 

    (1) 
 

 

Secondly, LoE score is calculated by building the 
sum of the logarithmic scores, which depend on 
the characteristics of the parameters (see Eq. (2)). 
 

 
 

 

The result space of the LoE scores is divided into 
intervals. The lowest score sum, "0", corresponds 
to a very high probability level, scores "1-3" to a 
high probability level, and so on. (see Table 1). 
The following abbreviations are used: “Very 
Likely = VL”, “Likely = L”, “Possible = P”, 
“Unlikely = UL”, “Very Unlikely = VUL”. 
 

Table 1. LoE Intervals With Corresponding Barriers  
(Source: Braband (2019))  

Like-
lihood 

VL L P UL VUL 

LoE-
Score 

0 1-3 4-5 6-7 8-9 

Barriers 0 1 2 3 4 
 
Thirdly, the probability levels of the LoE scores 
can be assigned to a number of barriers (compare 
Table 1 third line). In addition to the specific 
protection effect (the LoE score), barrier depth 
can be included in the evaluation.  
Adding another barrier, as contended in Braband 
(2019), reduces the LoE. Assuming that the 
variable "System Check" (SC) is taken into 
account as a “procedural barrier” with the 
exemplary characteristics Low (score "0") and 
High (score "1") in Braband's scheme, the LoE 
score (here LoEmod) results in Eq. (3). 
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                           (3) 
 

Using LoEmod, the LoE intervals can be extended 
with the section “Very very unlikely = VVUL” 
(compare Table 2). 

Table 2.  LoEmod Intervals With Corresponding 
Barriers (Barrier-Based CVSS Scheme Extended) 

Like-
lihood 

VL L P UL VUL VV
UL 

LoE-
Score 

0 1-3 4-5 6-7 8-9 10 

Bar-
riers 

0 1 2 3 4 5 

 

As can be interpreted from the previous table, 
every additional barrier can potentially reduce 
exploitability. The argument that the barrier-
based approach to assess exploitability provides 
better results than the classical CVSS is difficult 
to verify or falsify with the CVSS metrics. In this 
a quantitative tool is needed to systematically 
analyze the DiD effect. 
 
3. Approach 
 
Unlike in IT security, tools exist in physical 
security to compute DiD in an objectively 
consistent manner. Considerations presented in 
the background chapter can be applied to physical 
security to emulate the systemic modification of 
the scientist.  
Security functions in the physical world are 
evaluated via the interplay of protection (P), 
observation (O) or detection (D), and intervention 
(I). According to the semi-quantitative Harnser 
metric (Harnser 2010), protection, detection and 
intervention are assessed using scores between 
“1” (low) to “5” (high) (compare Table 3).  
 

Table 3. Harnser Score Levels To Compute 
Vulnerability (Source: Harnser (2010)) 

 

Protection 
Score (P) 

Detection 
Score (D) 

Intervention 
Score (I) 

1 1 1 

2 2 2 
3 3 3 

4 4 4 

5 5 5 
 
In a similar way to CVSS, numerical values can 
be assigned to these scores (compare Table 4). 
Despite the fact that the assessment parameters in 
physical security are on a much more concrete 

level than the scenario-describing parameters of 
CVSS, they could be interpreted in the same way 
(compare Fig. 1). 
 

Table 4. Harnser Score Levels With Corresponding 
Numerical Values (Source: Harnser (2010) Extended) 

 

P D I Numerical 
Value 

1 1 1 0.83 

2 2 2 0.66 

3 3 3 0.5 

4 4 4 0.33 

5 5 5 0.16 

Fig. 1. Mapping The Barrier-Based CVSS Principle To 
Physical Security (Source: Braband (2019)) 

 
Instead of the LoE, likelihood of vulnerability 
(LoV) categories are determined here. For this, 
we logarithmize the numerical Harnser scores 
according to the proposed aggregation scheme. 
The base b to which log values are built is set to 
0.6. It approximates the range from 0.16 to 0.8 
quite well. Thus the LoV results in Eq. (4): 
 

 
 
Using Eq. (4), log scores can be calculated and 
mapped to the numerical Harnser scores (compare 
Table 5). 
 

Table 5. Harnser Score Levels With Corresponding 
Numerical Values And Log Scores 

 

P O I Numerical 
Value 

log Score  
(b = 0.6) 

1 1 1 0.83 0 

2 2 2 0.66 1 

3 3 3 0.5 2 

4 4 4 0.33 3 
5 5 5 0.16 5 
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Following the categorization of Table 1, the LoV 
can be classified as follows (compare Table 6): 
 
Table 6. LoV Intervals With Corresponding Barriers 

 

Likelihood Likely Possible  Unlikely 

LoV-Score 0-5 6-10 11-15 

Barriers 1 2 3 
 
The definition of the category "Likely = log score 
sum 0-5" is based on the fact that a minimum log 
score sum of "0" and only a maximum log score 
sum of "5" can be achieved in the presence of a 
single barrier. If a second barrier is now added, a 
maximum log score of "10" can be achieved. This 
is again the upper limit of the second category, 
and so on. 
As a first step, we substitute the parameter 
“detection” by “observation”. This is done 
because detection is an event that has protection 
and observation components, so the protection 
would be considered "twice".  
In a second step, it is important to consider what 
the interpretation of these performance 
mechanisms as barriers means in terms of the 
security functions of a physical system. Since a 
protective effect is only given if elements of 
protection, observation and intervention interact, 
the interconnection of the performance 
mechanisms as barriers would only be possible 
under the assumption that they are “performance-
activated”.  
In the case of the protection barrier, for example, 
the protection performance mechanism is 
particularly dominant, but there are also portions 
of observation and intervention.  
However, these two are less developed than 
protection, e.g. as the protection score increases, 
the protection time also increases, whereas the 
other two performance mechanisms remain the 
same (compare Fig. 2). Similarly, the 
performance principle is applied to the detection 
and intervention barrier. 
In the time-based intervention capability metric 
(ICM), as introduced by Lichte et al. (2016), 
density functions are assigned to the performance 
mechanisms to account for uncertainties in the 
performance of security functions. The mean and 
standard deviation are control variables to 
describe these density functions. In order to 
analyze and evaluate the postulated DiD effect, 
performance-activation must be emulated within 
the ICM. 
The system under consideration consists of a 
protection, observation, and intervention barrier, 
i.e., DiD = 3. Consequently, when protection, 
observation and intervention are connected in 
series according to the modified evaluation 
scheme for CVSS, there is a protection-activated 

barrier, an observation-activated barrier, and an 
intervention-activated barrier (compare Fig. 3). 
 

 
 
 
 
 
 
 
 
 

 
Fig. 2. Principle Of Designing Protection-Activated Barriers 

Fig. 3. Boundary Conditions of Barrier-Based CVSS 
Principle From A Physical Security Perspective 

 
Mapping the barrier-based CVSS approach to the 
fictitious system under consideration, DiD = 3 
results in the aforementioned LoV categories: 
"Likely", "Possible" and "Unlikely" (compare 
Table 7). These can each be assigned a 
corresponding probability interval, e.g., "Likely" 
(DiD =1) 0.66-1, etc. (compare Table 7).  
Thus, with a single barrier (DiD = 1), an LoV of 
0.66-1 can be achieved when considering either a 
protection barrier, an observation barrier or an 
intervention barrier that each can be scored from 
“1” to “5”. 
 

Table 7. Likelihood Of Vulnerability (LoV) Scale 
Category: Likely Possible Unlikely 

LoV-Score 0-5 6-10 11-15 

Barriers 1 2 3 

Transf. Prob. 0.66-1 0.33-0.66 0-0.33 

Upper Value 1 0.66 0.33 

Lower Value 0.66 0.33 0 

Mean 0.83 0.495 0.165 
Interpretation Weak Medium Strong 

 

A barrier depth of one (DiD = 1) corresponds to 
the weakest configuration, whereas a DiD = 3 
corresponds to the strongest configuration, 



1538 Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)

respectively. If, for example, there is an LoE (in 
physical security an LoV) of "Unlikely", then it 
can be assumed that it is the same as saying there 
are three barriers (DiD) or, for example, only one 
strong barrier or three weaker barriers.  
Consequently, there is the claim that in both cases 
- calculation of the LoV via the log score sum of 
the integral parameters and determination of the 
LoV via the number of barriers - the result is the 
same. In the following, the DiD effect is emulated 
using the proposed quantitative metric. 
 
3.1 Strength equals vulnerability 
 
In a first step, the strength of a barrier is 
interpreted as reduction of vulnerability. A total 
of five barrier configurations are considered as 
examples (compare Table 8). 
 

Table 8. Analysis Run I, DiD = 3 
 

Barrier 1 (B1) Barrier 2 (B2) Barrier 3 (B3) 

Strong None None 

Strong Weak Weak 
Weak Weak Weak 

Strong Medium Weak 

Medium Medium Weak 
 

Adapting the classification presented in chapter 3, 
"Strong" can be described by a vulnerability 
interval of 0 - 0.33 with a mean value of 0.165, 
i.e. if a barrier of the type "Strong" is present, then 
it can also assume vulnerability values of 0 - 0.33. 
In the following analysis, only the upper, mean 
and lower value of an interval that a barrier 
strength can have are assumed for simplicity. For 
the "Strong" category, these are 0.00, 0.165 and 
0.33. The vulnerability values for the other two 
categories are defined in similar manner.  
According to the ICM, vulnerabilities of a set of 
barriers are multiplied across the path under 
consideration (Lichte et al. (2016). In a further 
step, all possible permutations are calculated and 
the results are plotted (compare Fig. 4). 
With the exception of the configuration "B1 = 
weak, B2 = weak, B3 = weak", the results of the 
configurations considered lie largely within the 
interval limits of the category “Unlikely” which 
reach from Lower (0) to Upper (0.33). In 
principle, additional barriers cannot make the 
overall vulnerability worse. 
Vulnerability is a probabilistic value between 
0.00 (minimum vulnerability) and 1.00 
(maximum vulnerability). 
Assuming the vulnerability of a barrier one 
(V_B1) is 0.5 and vulnerability of a barrier two 
(V_B2) is 0.4, then the total vulnerability (V_tot) 
is (0.5x0.4 =) 0.2. This is the product of the 
vulnerability of each barrier along a path. If now 

a third barrier is added, which has a V_B3 of 1.00, 
then the vulnerability is not changed (0.5x0.4x1 = 
0.2).  
 

Fig. 4. Comparison Of Barrier Configurations At DiD = 3; 
Strength = Vulnerability 

 
If, on the other hand, V_B3 is minimal, i.e. 0.00, 
then the product of the individual barrier 
vulnerabilities also becomes (0.5x0.4x0.00 =) 
0.00. The vulnerabilities V_B1 and V_B2 can 
then be arbitrarily high or low. As long as a barrier 
has a vulnerability of 0.00, the total term is 0.00.  
In conclusion, the postulated DiD effect is 
demonstrably partially correct with his 
hypothesis, insofar as barrier strength is 
interpreted as vulnerability. 
 
3.2 Strength equals performance-activation of 
barriers, small scatter 
 
From a scientific point of view, it is difficult to 
assess vulnerability directly without knowing the 
interplay of protection, observation and 
intervention.  
In a further consideration, the question arises 
whether the hypothesis of DiD effect can be 
recalculated, insofar as the "strength" of the 
barriers is not interpreted as the vulnerability of 
the barriers, but as the activation of performance-
activation of the barriers.  
If there is only one barrier, for example a 
protection-activated barrier, then the question 
arises how the parameters of protection, 
observation and intervention of this barrier must 
be defined in the approach of the intervention 
capability, so that protection-activation prevails 
and vulnerability values of 0.66 to 1 can be 
represented in the result. This is the probability 
interval, which can be assigned to the category 
"Likely" or to DiD = 1. 
First, it must be determined what protection-
activated specifically means. The following 
considerations can be made:  
It is known that the "control variables" in the ICM 
are the mean (μ) and the standard deviation (σ). 
To define e.g. "protection-activation", 
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simplifications and assumptions are generally a 
good first step. Thus, the hypotheses to achieve 
vulnerability values between 0.66 and 1 (in the 
full bandwidth) are intuitively: 
 

� Protection (time) increases with increasing 
score, e.g., for score “1” or log score “0” μ_P 
= 10 (sec) and for score “5” or log score “5” 
μ_P = 30 (sec). 

� The dispersion of P is constant and small with 
increasing score, e.g., σ_P = 5 (sec). 

� The intervention time is "poor", i.e., quite 
high. The scatter is very high.  

� The observation time is also quite high. The 
scatter is very high. 

 

Then, permutations (different combinations of μ 
and σ) can be analyzed to find the "best fit" of 
parameter combinations that yields vulnerability 
values between 0.66 and 1. This is an optimization 
problem, which is addressed here by systematic 
parameter setting. The analysis to find the best fit 
is not presented here in detail. In summary, the 
distribution of parameters for reaching 
performance-activation is as follows: 
 

� P: {"t_P": norm((10, 15, 20, 25, 30), 5), 
"t_O": norm(5, 4), "t_I": norm(35, 30)} 
V: [0.87 0.80 0.74 0.68 0.62] 

� O: {"t_P": norm(35, 25), "t_O": norm((10, 
15, 20, 25, 30), 5), "t_I": norm(35, 30)} 
V: [0.66   0.72 0.77  0.82 0.87] 

� I: {"t_P": norm(20, 10), "t_O": norm(12, 
10), "t_I": norm((10, 15, 20, 25, 30), 10)} 
V: [0.67 0.75 0.82 0.88 0.92] 

 

In order to be able to map the vulnerability results 
obtained by the integral parameters via the BICM 
over the entire interval (here 0.66 to 1), the 
barriers that are actually "singular"-activated, i.e., 
purely protective, observational, and intervention, 
must be at least "double-activated," i.e., two 
parameters are actually strongly activated and one 
is less activated.  
Now the twist is to prove that the approach 
presented in the background chapter brings 
improvements. For this reason, a budget of 
resources is required. Within the Harnser metric, 
a maximum of five points per value, which 
basically represent resources, can be allocated. 
These scores can be interpreted as coins that can 
be distributed by a system operator.  
If fifteen coins are available, all slots can be filled 
up. In reality, resources are classically restrictive 
(Sowa 2011). For example, only ten coins are 
available and a decision must be made on how to 
distribute them. This could be an equal 
distribution to all barriers or a concentration on 
specific barriers.  
In this paper, we suppose there are five coins. The 
initial question is now: Should a system operator 

focus on one barrier or distribute the coins over all 
three barriers? For answering the question, 
different configurations (permutations) need to be 
calculated and analyzed.  
According to the purely additive Harnser metric, 
vulnerability would be identical for the 
permutations because the identical number of 
coins are given. In the quantitative approach, the 
five coins are distributed in different 
configurations to one to three barriers. It is to be 
examined to what extent the protection capability 
changes when certain parameters (combinations) 
are "turned up", i.e. activated more strongly. The 
experimental setup and the vulnerability results 
(DiD V Values) shown in Table 9. 
 

Table 9. Excerpt Of Experimental Setup;  
5 Coins On DiD = 1 (Config. 1-3), DiD = 2 (Config. 

4-15) And DiD = 3 (Config. 16-18) 
Confi-

guration 
P O I Defense-in-Depth (DiD) 

Vulnerability Value (V) 

1 5 0 0 0.628 
2 0 5 0 0.665 

3 0 0 5 0.676 

4 4 1 0 0.509 

5 3 2 0 0.526 
6 2 3 0 0.54 

7 1 4 0 0.56 

8 4 0 1 0.41 
… … … … … 

16 3 1 1 0.22 

17 1 3 1 0.27 

18 1 1 3 0.277 
 
The results are illustrated in Fig. 5. In the light 
blue graph (compare Fig. 5), the DiD 
vulnerability results are shown according to 
configuration. Additionally, the corresponding 
interval boundaries lower and upper for DiD = 1, 
DiD = 2 and DiD = 3 are inserted. As can be seen 
from the graph, the DiD vulnerability curve is 
largely within the interval boundaries (orange and 
grey graphs).  
Moreover, the lower and upper interval limits for 
the case of the integral parameter combination are 
compared with the DiD V values via the addition 
(dark blue and yellow graphs). The DiD 
vulnerability curve lies largely below the curves 
of the interval limits. Since five coins are 
involved, the same vulnerability level is obtained 
for any configuration. With the exception of 
configurations one to three (DiD = 1), DiD 
provides different results than the calculation of 
the integral parameters via addition. Under the 
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given boundary conditions, the DiD effect can be 
confirmed. 

Fig, 5. Comparison Of Barrier Configurations At DiD = 1,…, 
DiD = 3; Strength = Performance-Activation; Small Scatter 
 
3.3 Strength equals performance-activation of 
barriers, large scattering 
 
The parameters of the BICM require a double 
activation if the scatter of the parameter that is to 
be particularly activated is low. From a scientific 
point of view, the question arises of possibilities 
to set the parameters of P, O, and I in such a way 
that the principle of performance-activation can 
actually be replicated by considering only one 
activated parameter. 
For this, we examine vulnerability results using 
the BICM considering large variations of the 
mean values. Our analysis provides the following 
results:  
 

� P: {"t_P": norm((10,30,50,70,90), 40), 
"t_O": norm(50, 40), "t_I": norm(50, 40)} 
V: [0.97 0.94 0.8 0.78780897 0.66] 

� O: {"t_P": norm(50, 40), "t_O": 
norm((10,30,50,70,90), 40), "t_I": norm(50, 
40)} 
V: [0.66 0.78 0.88 0.94 0.97] 

� I: {"t_P": norm(50, 40), "t_O": norm(32.5, 
40), "t_I": norm((10,30,50,70,90), 40)} 
V: [0.66 0.78 0.88 0.94 0.97] 

 

Like in the previous analysis, we calculate the 
results for all 18 configurations (compare Fig. 6).  
Here, however, the confirmation of the DiD effect 
is only partially apparent. For the first three 
configurations (DiD = 1), the results of the BICM 
lie in the same probability range as the results of 
the sum of the integral parameters (compare Fig. 
6 dark blue and yellow graphs). For the 
configurations in the case DiD = 2 this is only 
conditionally the case.  
The results of the BICM are either at the upper 
value according to the barrier-based CVSS 
scheme or above it. In the case of DiD = 3, all 
results of the balanced intervention capability 

metric are above the presumed probability 
interval for DiD = 3 at about up to 27% (Config. 
17). If the results of the BICM are compared with 
the assumed probability interval for the sum of the 
integral parameters, it can be seen that the results 
of the BICM matches the results over the sum of 
integral parameters well. 

Fig, 6. Comparison Of Barrier Configurations at DiD = 1,…, 
DiD = 3; Strength = Performance-Activation; Large Scatter 

 
The last question to be answered is: Should a 
system operator now focus more on protection, 
observation or intervention? In a final analysis 
run, we increase the coin count from five to seven. 
Based on the boundary conditions that the 
activated parameter and the less active parameters 
have a high scatter, possible permutations are 
calculated again (compare Fig. 7). 

Fig, 7. Comparison Of Barrier Configurations at DiD = 2,…, 
DiD = 3; Strength = Performance-Activation; Large Scatter 

 
In general, it can be stated that a strong protection-
activation is not beneficial, a strong observation-
activation gives better results than a strong 
protection and a strong intervention-activation 
has the best effect on vulnerability.  This leads to 
the following ranking: 1. intervention barrier, 2. 
observation barrier, 3. protection barrier. 



1541Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)

4. Conclusion and outlook 
 
In this paper, we redesigned the architecture of the 
physical system to emulate postulated DiD effect 
as proposed in IT security assessment. For this, 
we interpret the performance-mechanisms as 
performance-activated barriers. For each barrier, 
a certain interplay of P, O and I has been worked 
out by defining mean values and standard 
deviations. 
A cost function equivalent has been introduced to 
compare vulnerability results over the sum of 
integral parameters and over the BICM. It can be 
confirmed that under certain boundary conditions 
- here: low dispersion of the activated parameter - 
the DiD effect can be demonstrated. If high scatter 
is used (see chapter 3.3), the results can be 
approximated quite well by the sum of integral 
parameters via the BICM.  
In general, it must be questioned whether it makes 
sense to split up barriers into their basic 
functionality in the form of AV to UI and to place 
them one after the other. The reason for this is that 
AV to UI are variables that function on a different 
level than protection, observation and 
intervention. AV to UI are much more abstract as 
concepts than mechanisms considered in the 
physical world.  
AV to UI generally involve more parameters and 
values that contribute than, for example, 
protection, which is a single parameter measured 
over time. Protection probability is an elementary 
level considered in physical security represented 
by a distribution over time (Lichte et al. 2016).  
An AV is initially a whole scenario mapping that 
is described in general terms. This is, of course, a 
much larger construct, with much more and 
potentially uncertain information behind it than is 
typically required for the mechanisms of 
protection, observation and intervention.  
Looking at this background, it is not likely that 
DiD is a proper description of the mechanisms 
reducing vulnerability via the mapping of the AV 
to UI variables from a physical point of view, 
because DiD describes countermeasures to 
prevent AV in advance. Still our results show that 
the DID add on in CVSS assessment proposed 
yields better results for some scenarios. 
Overall, we have shown that quantitative tools 
from physical security can be used to emulate 
metric considerations from IT in a quantitative 
and objective way. In this context, it is necessary 
to adapt the quantitative metric to the boundary 
conditions assumed for the semi-quantitative 
metric.  
In future research, we intend to use the findings to 
develop a generic toolbox that can be used to 
analyze the quality of metrics. Furthermore, we 
want to develop metric frameworks so that 
security levels for physical security, IT security, 

and cyber-physical security can be derived and 
compared. 
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