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Abstract—The exploration of our solar system for understanding
its creation and investigating potential chances of life on other
celestial bodies is a fundamental drive of human mankind. After
early telescope-based observation, Apollo 11 was the first space
mission able to collect samples on the lunar surface and take
them back to earth for analysis. Especially in recent years this
trend accelerates again, and many successors were (or are in the
process of being) launched into space for extra-terrestrial sam-
ple extraction. Yet, the abundance of potential failures makes
these missions extremely challenging. For operations aimed
at deeper parts of the solar system, the operational working
distance extends even further, and communication delay and
limited bandwidth increase complexity. Consequently, sample
extraction missions are designed to be more autonomous in
order to carry out large parts without human intervention.
One specific sub-task particularly suitable for automation is the
identification of relevant extraction candidates. While there
exists several approaches for rock sample identification, there
are often limiting factors in the form of applicable training
data, lack of suitable annotations of the very same, and unclear
performance of the algorithms in extra-terrestrial environments
because of inadequate test data. To address these issues, we
present ReSyRIS (Real-Synthetic Rock Instance Segmentation
Dataset), which consists of real-world images together with their
manually created synthetic counterpart. The real-world part is
collected in a quasi-extra-terrestrial environment on Mt. Etna
in Sicily, and focuses recordings of several rock sample sites.
Every scene is re-created in OAISYS, a Blender-based data
generation pipeline for unstructured outdoor environments, for
which the required meshes and textures are extracted from the
volcano site. This allows not only precise re-construction of the
scenes in a synthetic environment, but also generation of highly
realistic training data with automatic annotations in similar
fashion to the real recordings. We finally investigate the general-
ization capability of a neural network trained on incrementally
altered versions of synthetic data to explore potential sim-to-
real gaps. The real-world dataset together with the OAISYS
config files to create its synthetic counterpart are publicly avail-
able at https://rm.dlr.de/resyris_en. With this novel
benchmark on extra-terrestrial stone instance segmentation we
hope to further push the boundaries of autonomous rock sample
extraction.
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Figure 1: ReSyRIS consists of a set of real-world images
from rocks in lunar-analogue environments (left), and a
mimicked synthetic version (right) with corresponding

instance annotations for both parts (colored overlay and
green boxes). The created synthetic rock models and
texture allow for infinitely many variations thereof.

1. INTRODUCTION
The autonomous detection of rocks is an essential capability
for future space exploration missions. The majority of obsta-
cles on extra-terrestrial surfaces, like Mars or the Moon, are
rocks. A collision between an autonomously exploring rover
and a mis-detected rock can cause severe damage leading to
mission failure. Besides safety reasons, rocks are also valu-
able for scientific analysis, since their shape and size contain
significant geologic clues. However, the manual investigation
and collection of statistics is extremely time intensive [1].
Furthermore, the collection of organic matter is an important
goal of future space missions. Such complex tasks require
capabilities which enhance the rover’s autonomy, such as the
detection of rock samples.

There readily exists a plethora of (often deep-learning based)
algorithms for image-based identification of rocks. Yet,
training data is usually extremely scarce and merely contains
a few images. For instance, in [2] an adapted U-net is
trained with solely 300 images of a Mars-like environment.
Schenk et al. [3] manually label data of a muck pile of stones
set-up in their laboratory. The works in [4] and [5] address
this problem by using synthetic training data for the applied
networks. While synthetic renderings represent a promising
alternative, the environment and its textures need to be prop-
erly modeled to support sim-to-real transfer, thereby allowing
for a better applicability of the model on real-world imagery.
This results in a circularity problem, since the generalization
capability of the algorithm can solely be verified by the
already mentioned hardly available on-site test data. For the
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minority of large-scale data recorded on celestial bodies, thor-
oughly annotated images are generally difficult to obtain due
to the laborious effort and often ambiguous interpretations.
Furthermore, most of the existing datasets focus on pixel-
wise semantic segmentation for rover traversability, which
lacks separate annotations for each individual instance.

In this work, we propose to address these issues by presenting
ReSyRIS, a real-world dataset for stone instance segmenta-
tion and its mimicked, synthetic counterpart (see Figure 1).
The real-world part is collected on Mt. Etna in Sicily, Italy,
which resembles the geological structure of celestial bodies.
It focuses on several rock sample sites recorded with different
sensors, where all suitable candidates are manually pixel-
wise labeled in each frame. Every scene is re-created in
OAISYS [4], a simulation environment specifically targeted
at planetary robotics. To provide the required information,
we generate high-quality textured meshes of the rocks by
photogrammetric 3D reconstruction. Gravel texture is ex-
tracted from a collection of image patches recorded on the
volcano. Given the possibility to generate large amounts
of synthetic training data accompanied with the real-world
pendant, ReSyRIS is an ideal dataset for benchmarking rock
detection and instance segmentation algorithms.

Additionally, since OAISYS allows for arbitrary texture prop-
erties, sample placements and the like, ReSyRIS enables the
generalization capabilities for incrementally altered training
data given the assets at hand. In other words, we are able to
investigate the sim-to-real gap in detail. To this end, we fine-
tune a Mask-RCNN [6] on different sets of training data to
explore the contributions for bridging the sim-to-real gap.

In summary, we propose the following contributions:

• A novel real-world dataset for rock sample segmentation
recorded in a lunar-analogue environment with corresponding
pixel-wise annotations.
• Highly realistic synthetic assets comprised of textured rock
meshes and gravel texture.
• A synthetically mimicked version of the real-world dataset,
and configuration files to create (almost) infinite variations
thereof.
• A novel benchmark for extra-terrestrial rock instance seg-
mentation including both synthetic and real data.
• An elaborative study on the generalization capabilities of
neural networks for the task of rock instance segmentation.

This paper is organized as follows: In the next section, we
give an overview on existing rock datasets within our scope
of work. Then, we go in detail on the recording procedure
of the real-world data on Mt. Etna, and explain the creation
of the synthetic assets. Last but not least, we explore the
generalization capability of a neural network on different
variations of synthetic data trained on the test scenes.

2. RELATED WORK
A major part of literature on extracting information of rocks
from 2D images focuses on classification of stones and
minerals on earth (e.g. [16], [17]) as well as on celestial
bodies [18]. The detection of the respective substances is a
necessary prerequisite, yet often limited by sufficient data.
Importantly, together with successive instance segmentation,
it is a substantial step for autonomous sample extraction. The
following section attempts to give an overview on existing
datasets from (quasi-) extra-terrestrial domains which are

in scope of our work, and discuss their applicability for
rock sample extraction. A tabulated overview of datasets
particularly relevant to our approach is listed in Table 1.

For clarification, in the following we will refer to the task of
(semantic) segmentation for classifying pixels into semantic
categories (e.g. sky, rocks, sand). Detection refers to local-
izing specific instances in an image, usually by drawing a
bounding box around them, and classifying them (e.g. rock1,
rock2, ...), while instance segmentation additionally provides
a binary mask for every detected item.

ADE20K [10] is initially proposed for Panoptic Segmentation
(the combination of semantic and instance segmentation), and
also includes approximately 1,150 images depicting various
kinds of rocks. All images are recorded on earth, and many
are insufficient for planetary rock segmentation since they
depict stones in arbitrary environments (see Figure 2a).

While intended for localization and mapping in GNSS-
denied environments, the Katwijk Beach Planetary Rover
Dataset [7] additionally includes a collection of approxi-
mately 20,000 stereo images. For navigation purposes, artifi-
cial rock models in three different sizes (0.7 - 1.9 m diameter)
were placed before recording; yet, their given poses are
limited to 2D locations, making automatic labeling infeasible.
In an attempt to produce large-scale annotations from this
data, Kuang et al. [19] artificially extend a small set of images
by pasting manually annotated rocks on background area. A
mathematical model is established to finally determine the
grayscale value of the added stone, which is comprised of
a set of averaged pixel values of the target area, the approx-
imate density of rays, and a correction constant. Different
from our proposed approach, the algorithm is limited to
generating morphological altered, grayscale versions from
a set of labeled source images, and its incremental nature
allows to solely add rock samples to the scene.

The Artificial Lunar Landscape Dataset [11] is a collection
of renderings from a synthetic lunar environment created with
the software Terragen. The dataset consists of semantic an-
notations for all 9,766 images into four classes (sky, ground,
small and large rocks). Bounding boxes derived by blob
detection are provided for large rocks above a certain pixel
area. Aside the synthetic renderings, a small annotated test
set of 36 real moon imagery is provided (Figure 2b).

Between 2012 and 2018, the Curiosity rover took a plethora
of images on Mars, and a collection of its Mastcam recordings
is formed by the mars32k1 dataset (Figure 2c). To further
artificially increase the amount of labeled data, a selection
of mars32k is first manually classified into five categories
in [20], and then employed to train a Style-GAN to cre-
ate novel images. While the algorithm provides means to
synthesize different shape and texture properties, the overall
system behaves like a black-box where camera angle, light
conditions and the like cannot be controlled arbitrarily, and
pixel-wise instance labels cannot be derived. Xiao et al. [12]
develop a kernel principal component - based rock detection
framework, and in scope of their work annotate 405 images
of mars32k. The annotations of the around 20,000 stones are
available as semantic data (see Figure 2d).

SPOC [13] presents an approach for slip prediction based
on terrain classification of Marsian images for predicting
traversability classes. The respective data is a collection

1https://dominikschmidt.xyz/mars32k/
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Table 1: Comparison of existing Rock Datasets for Segmentation Tasks.

Dataset Modality No. Images Real / Synthetic Annotation
Katwijk Beach Planetary Rover Dataset [7] Stereo-RGB 20,000 real -

�

[2] RGB 331 real instance-level (detection)
Devon Island Rover Navigation Dataset [8] Stereo-RGB 49,410 real -

�

[9] RGB 400 real semantic

�

[2] RGB 1,600 real instance-level (detection)
ADE20K [10] (subset) RGB ∼1,150 real instance-level
Lunar Landscape Dataset [11] RGB 9,766 synthetic semantic†

mars32k RGB 32,368 real -

�

[12] RGB 405 real semantic
SPOC [13] Grayscale 700 real semantic
AI4Mars [14] Grayscale 35,000 real semantic‡

S5Mars [15] RGB 6,000 real semantic‡

ReSyRIS Stereo-RGB both instance-level
† Additional bounding box annotations are provided for large stones
‡ Only sparsely annotated

(a) ADE20K (b) Lunar Landscape Dataset (c) mars32k (d) mars32k labeled

Figure 2: Exemplary images of relevant datasets; green overlay denote semantic masks for (small) rocks and orange
color other semantic classes. ADE20K (a) depicts stones in arbitrary environments. (b) shows a rendering (top) and
real image (bottom) of the lunar surface with corresponding semantic annotations. For mars32k (c), there exist various
annotations (d), but regarding stones these are limited to semantics.

of around 700 semantically labeled images from Curiosity’s
Navcam, including small and large rock classes.

Going beyond the scope of Curiosity’s recordings, the pub-
licly released AI4Mars [14] forms a collection of 35K images
from Curiosity, Opportunity and Spirit rovers. Being particu-
larly targeted for traversability of Mars rovers, the dataset is
sparsely semantically annotated into sand, soil, bedrock and
big rocks regions. To this end, every image is independently
labeled by several people through crowd-sourcing, and the
resulting masks are merged by accordance criteria. As a
downside, this process results in further unlabeled regions
due to inconsistencies across the annotators. [21] make use
of AI4Mars in a semi-supervised setting for terrain segmen-
tation. Specifically, a semantic segmentation network is first
pre-trained in self-supervised fashion using classical con-
trastive loss settings. A subsequent supervised fine-tuning on
161 images (∼1% of the data) leads to improved performance
than plain supervised learning.

S5Mars [15] deals with a similar issue for semantic label-
ing of 6,000 Curiosity’ Mastcam images, and proposes to
solely annotate regions with high human confidence. In a
first step, a segmentation network is pre-trained on restoring
masked images in RGB color space. Since objects in images
from extra-terrestrial domains usually have similar colors
and indistinguishable contours, reconstruction is additionally
constrained by a texture-aware operator. Finally, by using
task uncertainty, confident pseudo-labels can be used to in-
corporate unlabeled image regions into the training.

The Devon Island Rover Navigation Dataset [8] is recorded
at a Moon/Mars analogue site on Devon Island located in the
Canadian High Arctic, and intended for localization in GPS-
denied environments. The various data logged during the 10
km rover traverse includes almost 50K color stereo image
pairs, captured approximately every 20cm. A selection of
400 images is hand-labeled in [9] for semantic segmentation
of rocks with the goal of aiding navigation with obstacle
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detection. In a subsequent work [2], a larger selection
(1,600 images) is labeled for rock detection, consisting of
more than 8,000 candidates. A SSD (Single-shot Multibox
Detector) is then trained on the data at hand, and authors
also showcase generalization on the Katwijk Beach Planetary
Rover Dataset.

In summary, two important finds can be drawn from current
literature: First, data from environments relevant for exe-
cution is often scarce. Annotations thereof are difficult to
obtain due to unclear object boundaries, labeling ambigu-
ity and the like. Second, while all of the aforementioned
datasets depict rocks in (analogous) planetary environments,
their applicability for autonomous rock sample extraction is
impractical, if not impossible: Most of them concentrate
on terrain segmentation for traversability prediction and ob-
stacle avoidance, providing annotations for semantic use-
cases. While some works provide pixel-wise instance-level
annotations of rocks, information on the rock size in order to
determine its suitability for grasping is not available.

To fill this gap, we present a real-world dataset recorded
in a lunar-analogous environment depicting stones in arbi-
trary configurations, and corresponding instance annotations.
Furthermore, we meticulously re-create the natural scene in
OAISYS while carefully mimicking geometric and texture
properties. The required textured rock meshes as well as
the gravel texture allow for the creation of infinitely many,
arbitrarily varied versions thereof and can well serve as
training data.

3. RESYRIS
In the following section, we will introduce ReSyRIS, explain
the recording setup of the real-world data as well as the
annotation format, and in detail explain the creation of its
synthetic counterpart for rendering in OAISYS.

Real-world Data

Real-world imagery is recorded in the valley between
Cratere del Laghetto and La Cisternazza on Mt. Etna in
Sicily, Italy. A collection of 36 stones is iteratively placed
in small sets (6-9 per image) in close and spread out con-
figurations on the floor. For each set around 20 images are
recorded while moving a camera stack circularly around the
scene of interest. The stack consists of a rc visard 65 and two
Manta G-201 monochrome cameras with 8mm F1.8 lenses,
and is depicted in Figure 3. Data for intrinsic and extrinsic
calibration of the cameras is recorded on-site. Finally, every
left color image of the rc visard is manually annotated to
yield pixel-wise masks for every rock. An additional selec-
tion of recorded images can be found in Figure 4.

Synthetic Data Creation

As readily explained we aim for two sets of synthetic data:
(1) a mimicked test set with equivalent synthetic meshes and
texture, and (2) assets to create synthetic training data. Both
require precise textured mesh models of the rock samples
from Mt. Etna, and corresponding gravel texture for the
scene. In the following, the proposed pipeline to obtain the
required assets for OAISYS is described. The workflow is
depicted in Figure 5.

3D Stone Reconstruction—For every rock a synthetic counter-
part is generated by photogrammetric 3D reconstruction with

Figure 3: Camera stack used to record the real-world
data, consisting of a rc visard 65 (bottom) and two Manta

cameras (top).

the publicly available software Meshroom2. A Sony ILCE-
7M4 with a 35mm F1.8 lens is used to capture images of
the object slowly rotating on a white table in a well-lit envi-
ronment. The camera height is adjusted several times during
recording to capture various viewing angles. In total, around
200 images per stone are aggregated. The collection of
images is first processed in Darktable3, where exposure and
white balance are corrected according to a gray card placed
aside the rock sample, and auto-corrections such as filmic
rgb and highlight reconstruction are disabled. Every image
is then cropped to the region of interest, and masked such
that all background pixels are set to a uniform (white) value.
We observe that this further facilitates the matching process
in Meshroom, since feature extraction should primarily focus
on the rock. Meshroom’s photogrammetry pipeline is finally
used to generate a high-quality textured mesh. Exemplary,
this process is visualized in Figure 6, and all reconstructed
rocks are depicted in Figure 7.

Texturing—Aside the comparably low resolution, the varying
lighting conditions affecting the auto exposure and white
balancing of the cameras used for recording on Mt. Etna
prohibit the creation of a high-quality texture. Instead, the
previously mentioned Sony camera is employed to record
an approximately 25m2 gravel area in small patches from
above (∼50cm distance), resulting in a collection of more
than 150 images of volcano gravel. To almost nullify sunlight
influence, a shading plane is held above the captured area.
Given enough overlap between the images, we can re-use
the same 3D reconstruction pipeline as explained above, with
one minor difference: Prior to reconstruction, a second set of
images is exported in Darktable, with particular emphasis on
contrast and sharpness in order to boost fine detail and aid the
reconstruction. The first image set is solely used at the very
end for texturing. Note that the effect of a separate texture set
was not necessary for rock reconstruction since cameras were
matched successfully with the default texture images.

For a realistic texture it is desirable to not only have RGB in-
formation available, but also capture the geometric structure
of the surface. To this end, we also extract a displacement
and normal map from the mesh by baking in Blender. Pre-
cisely, we iteratively decimate the mesh up to retrieving an
almost flat surface, followed by a re-calculation of UV-maps.
Then, the mesh is subdivided again alongside a shrinkwrap

2https://github.com/alicevision/Meshroom.
3https://github.com/darktable-org/darktable.
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Figure 4: Two close and one spread out examples of the recorded test data (best viewed magnified and in color). Every
set of tiles depicts the rc visard stereo images in the top, and the grayscale images of the two Mantas in the bottom.

Every left rc visard colour image has been annotated manually. Bounding boxes have been added to increase visibility.

Figure 5: Our suggested pipeline to create a synthetic, mimicked version of the recorded test scenes. The five main
input types to OAISYS (surface, stones, stone poses, camera poses and texture) can be varied arbitrarily to generate

synthetic training data.

modifier, which constrains the surface to the original, un-
decimated mesh. This displacement from a (relatively) low-
face-count mesh to the high-polynomial mesh achieved by the
constrained subdivision can then be captured into a displace-
ment, normal, and color map. While one advantage is the
almost identical visual appearance, the rendered images can
now be used as material in OAISYS to create realistic looking
terrains on a large scale.

Synthetic Test Set Reconstruction—One aim of this work is the
creation of a synthetic equivalent of the real-world recordings
on Mt. Etna. The processing of the rock meshes as well as
the gravel has readily been explained in the previous sections,
and the camera poses can be obtained from the photogram-
metric pipeline. While of insufficient quality for rendering
synthetic data, the derived mesh of the test scene from the
reconstruction pipeline is utilized to loosely estimate a rock’s
pose. Afterwards, the scenes can be rendered in OAISYS to
obtain the synthetic test counterpart. A comparison between
the two domains is shown in Figure 1 and in Figure 8.

4. EXPERIMENTS
Last but not least, we would like to explore the possibili-
ties of synthetic data creation with the generated real-world
assets and OAISYS. Specifically, we are interested in the
performance of neural networks for the task of stone instance
segmentation trained on synthetic data with varying quality,
and would like to investigate (1) How important are geomet-
rically representative, textured stone meshes?, and (2) How
important is the realism of the texture in the scene? To
elaborate on these questions, we generate several small sets
of training data for fine-tuning (each around 1000 samples),
where we vary between (a) our 3D reconstructed rocks and
more simpler, less realistic stone meshes; (b) a default texture
from OAISYS and our volcano texture; and (c) between a
bright and dark light setting. For all generated data, camera
poses are sampled in similar height and angle as in the real-
world imagery. Then, a Mask-RCNN is trained on the data at
hand, following default configurations as presented in [22].
Results on the validation set (90/10 split), the synthetic test
set and its real-world counterpart are listed in Table 2.

Overall, the network performs considerably well on the
synthetic validation data, reaching average precision values
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Table 2: Quantitative results on diverse variations of synthetic training data. Results in bold denote the best performer;
underlined values the second-best. All values are in [%].

Synth. Training Setting Synth. Val. Set Synth. Test Set Real Test Set
Rocks Texture Light AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

7 7 1 81.04 98.93 95.25 48.84 76.59 58.04 28.44 58.54 25.58
7 7 2 80.07 98.83 93.33 50.12 80.4 58.74 15.91 37.61 10.02
3 7 1 68.78 95.48 79.19 66.73 96.71 82.53 44.77 77.97 48.62
3 7 2 72.18 96.54 85.63 67.75 96.79 84.0 50.54 78.37 59.7
7 3 1 80.87 98.79 96.27 45.65 77.22 50.65 31.35 65.55 25.74
7 3 2 78.67 99.86 94.08 46.78 80.3 52.96 36.07 70.73 34.46
3 3 1 72.81 97.94 86.62 58.69 87.61 71.89 40.64 72.29 42.52
3 3 2 64.78 95.72 73.7 61.9 94.26 74.78 47.5 78.67 51.12

Figure 6: Process of reconstructing a high-quality 3D
textured mesh. Top left: exemplary cropped and masked

stone image; top right: reconstructed cameras in
Meshroom; bottom: fully textured mesh rendering in

Blender with close-up.

of above 80%. While the plainest version (first two rows,
referred to as baseline in the following) performs compar-
atively best on the validation set, the generalization onto
the test set variants is seemingly difficult. By replacing the
more basic rocks with our scanned assets (third and fourth
row), the average precision on the test sets increases by 18
and 16 percent points, respectively, when compared to the
baseline. The darker renderings (fourth row) further increase
performance - a plausible trend that can be observed for most
variants, since the test set features darker light conditions.
Albeit not as strong, similar can be observed for replacing
the scene texture with the real-world counterpart from the
volcano (fifth and sixth row). From these findings, a logical
conclusion would be that replacing both rocks and scene
texture with our synthetic scans (last two rows). Interestingly,
this is not completely evident given the results: While the
models perform superior to the baseline and replacing scene
texture only (row five and six), it merely comes close to or

Figure 7: A rendering of all 36 reconstructed stones
scaled randomly (best viewed magnified and in color).

performs en par with the version with rock-replacement only
(fourth row). Undeniably, there are an abundance of other
crucial aspects influencing a model’s performance on data
of a different domain, and we believe that our experiments
support this claim. Qualitatively, similar findings can be seen
in Figure 8: For relatively easy scenes (left column), most
models perform well. As rock texture blends in with the floor,
the baseline model fails to identify most instances (middle
column). For difficult settings (right column), only the best
performing setting seems to reliably perform the task at hand.

5. CONCLUSION
In this work, we present ReSyRIS, a collection of real-world
scans from lunar-analogue environments with a synthetic
counterpart for the task of rock instance segmentation. The
laboriously created high-quality textured meshes and terrain
texture are particularly suitable for synthetic data generation,
and will be made publicly available. In an additional exper-
imental evaluation we investigated performance on different
data altered in various dimensions, where we could confirm
the contributions of our real-world scanned assets for aiding
the generalization capabilities of neural networks on the task
of extra-terrestrial stone segmentation. Given the undeniable
existence of other important contributions for reducing the
sim-to-real gap beyond our exploration, we think that further
investigation in this direction is an interesting area of future
work. Altogether, we believe that the introduced rock meshes
alongside the volcano texture provide a sufficient starting
point for pushing the boundaries of autonomous robotic sys-
tems in extra-terrestrial environments.
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Figure 8: Qualitative results on the two test sets (left columns: real-world data; right columns: synthetic counterpart).
After the plain rgb images, the rows from top to bottom are predictions in the same order as in Table 2.
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