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ABSTRACT
Establishing the structure–property relationship is an important goal of glassy materials, but it is usually impeded by their disordered
structure and non-equilibrium nature. Recent studies have illustrated that secondary (β) relaxation is closely correlated with several prop-
erties in a range of glassy materials. However, it has been challenging to identify the pertinent structural features that govern it. In this work,
we show that the so-called polyamorphous transition in metallic glasses offers an opportunity to distinguish the structural length scale of
β relaxation. We find that, while the glass transition temperature and medium-range orders (MROs) change rapidly across the polyamor-
phous transition, the intensity of β relaxation and the short-range orders (SROs) evolve in a way similar to those in an ordinary reference glass
without polyamorphous transition. Our findings suggest that the MRO accounts mainly for the global stiffening of the materials and the glass
transition, while the SRO contributes more to β relaxation per se.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0123202

Glass represents a unique state of matter, wherein the
distinction between solid and liquid structures is diminished. The
absence of long-range atomic order in glass leads to numerous possi-
ble configurational arrangements, as opposed to a limited few for the
crystalline counterparts, thus featuring diverse dynamic processes,
denoted as relaxations, over a wide range of temperature and
time scales.1–7 Among others, a so-called Johari–Goldstein (or sec-
ondary β) relaxation has received considerable attention in recent
decades.2,7 It has been observed in a wide variety of glassy mate-
rials, such as molecular,8–12 oligomeric,13 polymeric,14–16 ionic,17,18

metallic,7,19,20 and chalcogenide glasses.21 In some glassy materi-
als, it manifests as a pronounced peak, as probed by dielectric or
mechanical spectra, while in some other materials it behaves as the
so-called excess wing.8–12

Remarkably, several important properties of glasses were
revealed, as correlating to β relaxations. For example, mechani-
cal ductility has been linked to the presence of β relaxations near
or below room temperature in polymers20 and metallic glasses
(MGs).7,19,22 Functional properties, such as the decoloration kinetics
of photochromic dyes in co-polycarbonates14 and the soft magnetic
properties of MGs have also been proposed to be related to β relax-
ation.23 Recently, Peng et al. reported that β relaxation might play
a role in facilitating the crystallization of amorphous phase-change
materials, which are the basis of non-volatile, phase-change mem-
ory devices.21 By considering the characteristics of β relaxation as a
strategy, Qian et al. designed polymers with a low dielectric constant
and loss for high-frequency electronic circuits used in 5G wireless
networks.24 The studies of their underlying mechanism suggested
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that the β relaxation acts as a kind of “flow unit” that allows atoms
to rearrange in the seemingly rigid glass.

From the glass-transition perspective, accumulating evidence
has suggested that the (de)vitrification kinetics are not driven by
the structural α relaxation alone, as conventionally thought.2,25,26

Instead, β relaxation must also play a role in reducing the activation
energy barrier and facilitating atomic dynamics.20,27,28

Despite its technological relevance and theoretical significance,
the structural origin of the β relaxation has not been established and
represents an example of the long-standing challenge in glass materi-
als and physics, that is, to predict the dynamics of glass from its static
structures. In particular, the characteristic structural length scale for
β relaxation is still under debate. It is a prerequisite to identify the
pertinent structural length scale for a fundamental understanding
of the origin of the β relaxation. Even so, such a length scale has
been estimated to range from very local (the first atomic shell) to
quite extended (approximately tens of nanometers) based on dif-
ferent investigations.29–35 Table S1 (see the supplementary material)
summarizes the reported structural length scale of β relaxation in
MGs known at present, which is compared with molecular
glasses.36–41

One major obstacle to overcome is the difficulty in controlling
and probing the disordered structures of glasses to allow a system-
atic change in the β relaxation as a function of structural length
scales. The short- and medium-range structures usually change in
a coupled way in most model systems in experiments, which are fur-
ther entangled with the effects of different chemical compositions.
Coming to the rescue are the recently discovered polyamorphous
transitions, which refer to the phenomenon wherein one amor-
phous substance can transform between two or more distinct amor-
phous phases with different properties in the same composition.42–45

According to the two-order-parameter model,45 these amorphous
phases have different structures, configurational entropy, and relax-
ation dynamics.46–53 Hence, they might serve as ideal model systems
to provide crucial information on these poorly understood problems
if structural changes can be finely controlled in the same chemical
composition.

In this work, we investigate the β relaxation in a La65Co25Al10
MG with a polyamorphous transition in the supercooled liquid
region and compare it with that in an ordinary La50Ni35Al15 MG.
Both of them have pronounced β relaxation peaks, which facili-
tate the discernment of their different behaviors. Figure 1(a) shows
the heat flow curve of the as-cast La65Co25Al10 MG measured by a
differential scanning calorimeter (DSC). It has a glass transition tem-
perature Tg ∼ 432 K followed by a heat-releasing peak at ∼469 K. As
demonstrated by Lou et al.46 for the same MG and Shen et al.47 for
a similar composition, this peak is not due to the crystallization of
the glass, but to a polyamorphous transition instead. By cooling the
heated sample from Ta = 493 K (the finishing temperature of the
transition peak) at a rate of 3 K/min, we obtained a sample that had
experienced a polyamorphous transition (denoted as PT-MG). The
controlled temperature program in which the samples were heat-
treated by a dynamical mechanical analyzer (DMA) is shown in
the supplementary material (Fig. S1). We verified that our samples
remained amorphous (supplementary material Fig. S2). Figure 1(a)
also shows the heat flow curve of the PT-MG. We find that the
heat-releasing peak at ∼469 K disappears, and a new glass transition
at Tg ∼ 485 K can be observed. Thus, the Tg increases by 53 K,

which suggests higher kinetic stability of PT-MG.51,54,55 Further-
more, the phenomenon of an enhanced glass transition temperature
for La65Co25Al10 MG after the polyamorphous transition was also
confirmed by temperature-modulated DSC (TMDSC) experiments
(see Fig. S3 of the supplementary material).

Figure 1(b) presents the damping factor tan δ as a function of
the temperature of the as-cast MG and PT-MG for La65Co25Al10,
measured at a frequency of f = 1 Hz. The intensity and peak temper-
ature of the β relaxation of PT-MG change compared significantly
with those of the as-cast sample. Quantitatively, the peak intensity
of β relaxation is suppressed from tan δ = 0.041 for the as-cast state
to tan δ = 0.013 for PT-MG. The latter corresponds to a factor of
0.32 of the former. Meanwhile, the peak position of β relaxation
increases from Tβ = 331 K for the as-cast state to Tβ = 383 K
for PT-MG. Thus, the peak temperature increases by 52 K for the
β relaxation. This change is remarkable, considering that, in the
absence of chemical composition changes, physical methods can
only slightly increase the temperature of the β relaxation peak.

For comparison, we performed similar experiments on an
ordinary reference (La50Ni35Al15) MG without a polyamorphous
transition. Similar to La65Co25Al10, we prepared two samples: one
sample was the as-cast, and the other was pretreated by heating to
Ta = 473 K before subsequent cooling to room temperature. As
shown in Fig. 1(c), the DSC curves indicate that there is a change
only in the relaxation enthalpy due to structural relaxation, while
Tg remains almost unchanged. From dynamic mechanical spec-
troscopy, as shown in Fig. 1(d), we find that the intensity of the
β relaxation of La50Ni35Al15 MG decreases from tan δ = 0.033 to
0.0165, which corresponds to a factor of 0.5. Notably, the charac-
teristic temperature of the β relaxation increases slightly by only
9 K, which is in sharp contrast to the increase of 52 K for the
La65Co25Al10 MG that has a polyamorphous transition.

We next progressively vary the finishing temperature Ta of
the first heating to systematically study how the annealing and the
polyamorphous transition influence the evolution of the β relax-
ation. This protocol is meant to separate the different effects of aging
and polyamorphous transition, as both might have played a role.

Figures 2(a) and 2(b), show a three-dimensional curve plot
and a two-dimensional map of the damping factor tan δ curves of
La65Co25Al10 MG that were heat-treated at different Ta, measured at
a frequency f = 1 Hz, respectively. We find that the intensity of the
β relaxation peak decreases monotonously in all the studied Ta tem-
perature ranges. On the other hand, the characteristic temperature of
the β relaxation peak first changes very little when Ta < 440 K, but it
increases considerably after that temperature. We have verified that
other frequencies (between 0.5 and 32 Hz, accessible by mechanical
spectroscopy) give the similar results.

Similarly, Figs. 2(c) and 2(d) display the temperature-
dependent tan δ under different Ta values for the reference
La50Ni35Al15 MG. We find that the intensity of the β relaxation
peak gradually decreases in a manner similar to that of La65Co25Al10
MG. However, the characteristic temperature of β relaxation, Tβ,
increases only slightly. This mimics the Tβ behavior of La65Co25Al10
before the polyamorphous transition occurs, but not after that.

We next show quantitative comparisons between them in
Figs. 2(e) and 2(f). Figure 2(e) shows ΔTβ = Tβ@Ta − Tβ@as-cast as
a function of Ta for the two MGs. As outlined above, it demon-
strates a clear difference: La65Co25Al10 (which has a polyamorphous
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FIG. 1. (a) DSC heat flow curves of the as-cast and PT samples (after polyamorphous transition) of La65Co25Al10 MG, measured with a heating rate of 40 K/min.
(b) Temperature dependence of the damping factor tan δ of the as-cast and PT La65Co25Al10 MG, measured at a frequency of 1 Hz. (c) Comparison of heat flow
curves of as-cast and pre-treated samples for La50Ni35Al15 MG (40 K/min). (d) Correspondingly, the change of the β relaxation peak of La50Ni35Al15 MG before and after
pre-treated (1 Hz).

transition) shows a substantially larger ΔTβ with a maximum value
of 52 K, while for ordinary MG, ΔTβ is below 10 K in the full tem-
perature range. Moreover, the abrupt increase in Tβ takes place in
the range 450 to 500 K, which coincides with the temperature range
of the polyamorphous transition. These results suggest that the dra-
matic increase in ΔTβ in La65Co25Al10 is not due to structural aging,
but results from the underlying polyamorphous transition.

Figure 2(f) compares the evolution of the magnitude of the
β relaxation peak for the two MGs. For this purpose, we define
Δtan δ/tan δas-cast, where Δtan δ = tan δas-cast − tan δTa, to character-
ize how large the fraction of the β relaxation is reduced. One can see
that the two MGs show almost the same behavior. This implies that
the suppression of β relaxation is mainly attributed to the effects of
aging, while the polyamorphous transition contributes marginally to
the suppression of β relaxation intensity. Therefore, the polyamor-
phous transition mainly influences the peak temperature, but not the
intensity of the β relaxation of MGs.

Figure 2(g) shows the storage modulus E′ of the La65Co25Al10
and La50Ni35Al15 MGs as a function of temperature, measured with
a frequency f = 1 Hz, upon heating from room temperature. For the

ordinary MG (La50Ni35Al15), E′ drops sharply when the primary (α)
relaxation is approached, which suggests a glass softening process.
On the other hand, for La65Co25Al10, the drop in E′ around the α
relaxation is small because the polyamorphous transition takes place
soon after the α relaxation, and the polyamorphous transition is a
structural ordering process that competes with the α relaxation; thus,
the glass stiffens again.

Why does the characteristic temperature of β relaxation in the
polyamorphous MG increase so much higher than that in ordi-
nary MGs? Figure 1 shows that PT-MG also exhibits an enhanced
glass transition temperature Tg . This implies a possible connection
between them. We validated this correlation using Fig. 3, which
plots Tβ against Tg for La65Co25Al10 MG after cooling from different
Ta values. We used a Flash-DSC with a heating rate of 500 K/s to
determine Tg

56 and avoid overlap between the polyamorphous tran-
sition and the glass transition (supplementary material Fig. S5). Such
overlap could occur at lower heating rates in the conventional DSC.
The data in Fig. 3 show a linear relation between Tβ and Tg . There-
fore, the enhanced Tβ in PT-MGs can be attributed to the higher Tg .
This relation is also consistent with the coupling model and some
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FIG. 2. Temperature dependence of damping factor tan δ for heat-treated La65Co25Al10 MG [top column (a) and -(b)] and La50Ni35Al15 MG [bottom column (c) and (-d)] at
different Ta (1 Hz), respectively. The position (e) and intensity (f) of the β relaxation peak evolve with Ta for the two MGs. (g) Temperature dependence of storage modulus
E′ for the two MGs, measured with a frequency of 1 Hz.

previous experimental results,26,27,57 where the temperatures of the
β and α relaxations are always connected and a change of one would
influence the other.

In situ, high-energy XRD experiments were performed on the
as-prepared La65Co25Al10 MG at temperatures from room temper-
ature to 600 K (see Methods for details). Figure 4(a) shows the

FIG. 3. Relation between the glass transition temperature Tg and the characteristic
temperature of β relaxation Tβ for the La65Co25Al10 MGs, which are cooled from
different Ta. Here, the glass transition temperature Tg is measured by Flash-DSC
at a heating rate of 500 K/s.

structure factors S(q) upon heating. We find that the S(q) profile
changes appreciably when heating above 450 K, which is approx-
imately the temperature of the polyamorphous transition of MG.
An additional diffuse scattering peak emerges around q = 4.46 1/Å.
As demonstrated by previous work, the S(q) profile does not result
from Bragg diffraction peaks caused by crystallization, but due to
the transition to a more ordered amorphous phase.46,47 Meanwhile,
above 450 K, the peak intensities of the second, third, and fourth
maxima of S(q) are all enhanced, and the profile of these peaks
becomes narrower, implying an enhanced ordering of amorphous
structures.

To more clearly show the structural evolution of the
La65Co25Al10 MG during heating, the reduced pair-correlation func-
tion G(r) in real space is obtained by Fourier transforming S(q) from
the reciprocal space, as shown in Fig. 4(b). One can see that the oscil-
lation of G(r) at a temperature below 450 K dampens quickly for
r > 12 Å, while it shows obvious enhancement at a tempera-
ture above 450 K, which extends over 20 Å. This reveals that
a more ordered amorphous structure is formed by a polyamor-
phous transformation. Pronounced changes are observed in G(r)
at the r range 5–17 Å, which is identified as a typical struc-
tural feature associated with medium-range orders (MROs). Our
results are consistent with previous studies showing that PT-MG
has structural ordering at larger length scales, although it is still
amorphous.46,47,49,51,53

It is interesting to note that the position of the first maximum
and the features for r < 5 Å of G(r) show negligible changes over
the entire studied temperature range, as shown in Fig. 4(b) and a
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FIG. 4. Temperature dependence of the structural factor S(q) (a) and the pair-
correlation function G(r) (b) for La65Co25Al10 MG during heating, with a heating
rate of 10 K/min. (c) Two representative pair-correlation functions at different tem-
peratures (437 and 466 K) were selected to compare with the as-cast one (310 K),
to illustrate the different effects of physical aging and polyamorphous transition on
the structure.

selected plot in Fig. 4(c). Thus, the short-range order (SRO) of MG
changes little over the polyamorphous transition.

It is clear from the above analysis that the polyamorphous tran-
sition mainly involves changes in MROs. Hence, the abrupt large
increase in Tβ (and Tg) in La65Co25Al10 [Fig. 2(e)] can be attributed
to the ordering of MROs. This implies that the MROs account
mostly for the global stiffening of the glass (which leads to enhanced
levels of both Tg and Tβ). On the other hand, the intensity of the
β relaxation peak shows no sudden change upon the polyamor-
phous transition [Fig. 2(f)]. This indicates that the magnitude of

β relaxation is dominated by the changes in SROs introduced
through aging, not by the MROs. As such, the effects of MROs
and SROs on β relaxations can be unambiguously separated in the
polyamorphous system.

Molecular dynamics simulations revealed that cooperative,
string-like atomic motions are the structural rearrangements gov-
erning the β relaxation in MGs. The string-like motions are related
to the cage-breaking ability from confinements of the nearest neigh-
bors.31 A more detailed study showed that the string-like motions
involve atomic rattling in nearest neighboring cages and cage-
breaking events. The β relaxation, which corresponds to string-like
motions, must be a sequentially activated process. One atom jumps
away and leaves a vacancy-like free site, and one nearby atom jumps
to the free site, and the process is repeated. In this connection,
SRO is the foremost factor that influences the cage-breaking event
and the formation of string-like motions. Hence, our findings can be
interpreted in this microscopic picture and provide evidence for the
simulations from a structural perspective.

Finally, the recognition of the difference between the influences
of SRO and MRO might have implications for some longstand-
ing issues about β relaxation. In particular, it is puzzling that
β relaxations depend crucially on the chemical composition of the
materials7,20 but can be less tuned by physical methods such as
annealing or cooling conditions.19,20,58 This might be understood by
considering that chemical compositions can modify the SROs more
readily, while physical methods such as annealing are less effective
in changing SROs, but affect MROs more. This work represents
a step forward in establishing the structure–dynamics relation, the
ultimate goal of glassy physics.

SUPPLEMENTARY MATERIAL

This supplementary material provides the details of the exper-
iments, including sample preparation, heat treatment procedures,
structure characterizations, dynamical mechanical spectroscopy,
and calorimetry measurement.
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