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Delayed elasticity of metallic glasses: Loading time and temperature dependences
of the anelastic relaxation

Mehran Nabahat ,1 Narges Amini ,2,3 Eloi Pineda ,1,* Fan Yang ,3 Jichao Qiao ,4 Beatrice Ruta ,5 and Daniel Crespo 1

1Department of Physics, Institute of Energy Technologies, Universitat Politècnica de Catalunya—BarcelonaTech, 08019 Barcelona, Spain
2Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark

3Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
4School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China

5Institut Lumière Matière, Université Claude Bernard—Lyon 1, CNRS, F-69622 Lyon, France

(Received 22 June 2022; revised 7 October 2022; accepted 22 November 2022; published 9 December 2022)

One of the hallmarks of disordered matter is the large amplitude of the anelastic deformation, i.e., the fraction
of reversible deformation that is not instantaneously recovered after the release of load but is delayed in time. In
this paper, this delayed elasticity is studied for the glass-forming Zr46.25Ti8.25Cu7.5Ni10Be27.5 alloy by means of
stress step and recovery experiments. Even at high temperatures, not far from the glass transition, the delayed
elasticity can recover an important fraction of the deformation and endure for a long time. Analyzing the effects
of loading time and waiting time on the strain evolution, we reveal the presence of an anelastic response with
a timescale dependent on loading time and an invariant shape, which indicates the presence of a distribution of
reversible relaxation modes following a τ−n law with exponent n between 0.5 and 1. The underlying distribution
of energy barriers activated at different temperatures is accordingly shape invariant. Moreover, we found that a
distribution of reversible modes corresponding to the high-frequency side of the α-relaxation peak can reproduce
the experimental results. The results establish a direct link between the dynamical spectrum and the distribution
of activation energies, revealing the origin of the transient creep and anelastic recovery behaviors of metallic
glasses.
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I. INTRODUCTION

How the atoms rearrange in amorphous materials is a
fundamental question to understand their rheological and me-
chanical behaviors [1]. Disordered materials show complex
relaxation dynamics at the molecular/atomic scale, involving
various orders of magnitude in both time and length scales, as
the mobility of the molecules (atoms in the case of metallic
systems) is highly cooperative. Mechanical relaxation experi-
ments, i.e., the application of small strains and stresses within
the linear response regime, are a well-known tool to explore
the dynamics of glasses [2]. In the case of metallic glasses
(MGs), whose conductive nature impedes electric relaxation
experiments, mechanical tests become a unique tool to obtain
direct information of the atomic movements.

Above the glass transition, in the supercooled liquid (SCL)
state, the relaxation dynamics of many disordered substances
can be characterized by a stretched relaxation modulus de-
scribed by a Kohlrausch-Williams-Watts (KWW) function.
Recent studies on Zr46.25Ti8.25Cu7.5Ni10Be27.5 (Vit4) alloy
have shown that, in the SCL, the relaxation time, obtained
from stress relaxation and oscillation strain measurements,
follows a Vogel-Fulcher-Tammann (VFT) temperature behav-
ior in accordance with viscosity measurements and with the
microscopic dynamics at the length scale of atomic-atomic
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distances as probed by x-ray photon correlation spectroscopy
(XPCS) [3]. An important aspect is that the viscous liquid
material above the glass transition temperature Tg shows an
invariant relaxation shape, with a KWW exponent between
0.5 and 0.6, indicating the validity of time-temperature su-
perposition in this region and the participation of a broad
relaxation time distribution in the process [3–5].

The relaxation of MGs becomes more complex in the glass
transition region. At these temperatures, due to the super Ar-
rhenius increase of the structural relaxation time, the system
cannot reach the SCL equilibrium configuration within the
laboratory timescale. Therefore, the study of the relaxation
dynamics is always affected by physical aging, and it be-
comes challenging due to the long timescales involved in both
mechanical relaxation and physical aging [6]. Previous stress
relaxation experiments in MGs show a progressive stretching
of the relaxation modulus as the system is driven out of
equilibrium, indicating a broadening of the relaxation time
distribution in the glass state [3,5,7]. One important feature
to understand glass dynamics is the contribution of anelastic
relaxations [8,9], which may have a different temperature
sensitivity than the viscous process governing the relaxation
in the liquid. In most experimental studies, the coincidence
of timescale between anelasticity (or delayed elasticity), the
permanent structural rearrangements due to physical aging,
and the permanent plastic deformation makes it difficult to
disentangle each contribution and obscures the interpretation
of the results.
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The aim of this paper is to focus on the anelastic relaxation
of MGs, unveiling its main features and providing a clear
picture considering the current models and theoretical frame-
works of MG dynamics. With this purpose, we study the creep
and recovery behavior, i.e., the response under stress step
experiments, of the Vit4 MG. We restrict the study to small
stresses and deformations, always within the linear regime,
and a range of temperatures from 0.83 Tg up to near Tg. In the
following sections, we will detail the experimental methods
and we will show how the recovery relaxation function de-
pends on loading time and temperature. We will show that the
intensity distribution of anelastic modes has an invariant shape
over a broad range of times and temperatures. This produces
an anelastic recovery with an amplitude that increases with
temperature and a timescale that is only dependent on the
previous loading time. Finally, we will analyze the shape of
the distribution of anelastic modes and discuss its relationship
with the mechanical relaxation spectrum in the frequency
domain.

II. MATERIALS AND METHODS

Creep and recovery experiments of Vit4 ribbons were per-
formed in tensile geometry in a DMA Q800 apparatus (see
Fig. S0 in the Supplemental Material [10]). The constant
stresses applied during the creep segment went from 20 to
400 MPa. The strain recovery after the creep was followed
while applying a small force of 0.01 N (<0.2 MPa) to main-
tain the straight shape of the ribbon pieces. The experiments
were carried isothermally at temperatures from 520 to 580 K.
Before the creep-recovery experiments, the ribbons were an-
nealed for 60 min at 590 K, just below the onset of the glass
transition, to relax as-quenched stresses and ensure a similar,
initial structural state for all the samples. Different lengths of
the creep and recovery segments have been applied in this
paper. Preliminary tests applying creep times of 10 h and
recovery times of 20 h were performed to better determine
the end of the recovery process (see Figs. S1 and S2 in the
Supplemental Material [10]). The standard experiments were
carried out by applying 10 h of creep and 10 h of recovery to
optimize the experimental time. Preliminary tests, with longer
recovery steps, were used to estimate the final strain value
at the end of the recovery. Additionally, experiments with
different creep times from 200 to 800 min were also done,
always maintaining a recovery time that was longer than the
creep time.

Complementary stress relaxation and mechanical spec-
troscopy experiments were already performed on Vit4 ribbons
[3]. Stress relaxation was measured, applying a constant de-
formation step of ε = 0.1% and monitoring how the stress
decays with time. The mechanical spectroscopy measure-
ments were performed at a heating rate of 1 K/min with
driving frequencies from 0.03 to 30 Hz. The results of stress
relaxation at different temperatures in the glass and SCL states

and the loss modulus obtained from mechanical spectroscopy
were already shown and discussed in Ref. [3]. Here, some
additional tests were performed to complement the informa-
tion on how stress relaxation evolves with aging in the glass
state.

III. RESULTS: PHENOMENOLOGICAL FEATURES
OF THE CREEP-RECOVERY BEHAVIOR

The glass transition of Vit4 is observed at Tg,10 = 622 K
when heating at a rate of 10 K min−1. The glass transition
at a heating rate of 0.1 K min−1 can be estimated to be at
Tg,0.1 = 592 K [11]. Therefore, for isothermal tests, we can
consider that the system is very close to the equilibrium SCL
configuration >590 K. The range of temperatures studied in
this paper goes from T = 0.83 Tg,10 to 0.95 Tg,10, in which
MGs show homogeneous plastic deformation under the strain
rates that are usually tested in mechanical experiments and
applied in some processing technologies like thermoplastic
forming [12]. Figure 1 shows the strain of a Vit4 sample
during a tensile creep-recovery test at 580 K. In this case, the
curve consists of two consecutive creep-recovery cycles, with
creep and recovery segments of 600 min each. The different
magnitudes observed in Fig. 1 are defined as the following:
εec and εer are the elastic jump and drop at the loading and
unloading instants; εpl is the final permanent deformation after
the creep-recovery cycle; εac(t ) is the retardation function
during the transient creep stage, calculated subtracting the
contribution of the viscous deformation ε̇ = σ/η. The appar-
ent extensional viscosity value η is calculated from the slope
ε̇ at the end of the creep segment; εar (t ) is the relaxation
of strain during the recovery, calculated subtracting the final
εpl. The εac(t ) and εar (t ) functions are the difference between
experimental data (symbols) and the dashed lines in Fig. 1. A
notable characteristic of the creep-recovery curves shown in
Fig. 1 is that the creep segment of the first cycle shows a clear
higher amplitude than in the second cycle, while the recovery
segments are essentially equal. This feature is well known in
creep tests of MGs since the work of Maddin and Masumoto
[13], and it will be further discussed below. It must be noted
that the apparent viscosity η, used to plot the dashed lines
in the creep segments of Fig. 1 and to calculate εac(t ), is a
lower bound value of the steady-state viscosity. Longer creep
segments would be necessary to estimate the steady-state,
isoconfigurational viscosity [8]. The implications of this point
will also be discussed in the following section.

One important aspect of mechanical tests is to check if
the experiment is performed in the linear response region.
In this paper, all the curves up to σ = 200 MPa were found
completely linear with stress at all temperatures (see Fig. S3 in
the Supplemental Material [10]). Only >350 MPa at 580 K is
the onset of the nonlinear response observed, characterized by
a non-Newtonian viscosity behavior [14]. Therefore, unless
otherwise stated, all the results shown in this paper will be
considered in the linear region. This allows us to describe the
creep-recovery curves as

J (t ) = ε(t )

σ
=

{
E−1 + Jac0[1 − φac(t )] + t

η
, for t � t∗,

J (t∗) − E−1 + Jar0φar (t ′), for t ′ = t − t∗ > 0,
(1)
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FIG. 1. Evolution of strain during two consecutive creep-recovery cycles at 580 K. Each creep and recovery segment lasted 600 min, the
whole duration of a cycle being 1200 min. To better compare the two curves, the strain and time axes of the second cycle are shifted by setting
ε = t = 0 at the end of the first cycle.

where t∗ is the time at the end of the creep segment, E
is the elastic modulus, η is the extensional viscosity, Jac0 =
εac(t=0)

σ
and Jar0 = εar (t ′=0)

σ
are the transient creep and re-

covery amplitudes, and finally, φac(t ) = εac(t )
εac(0) and φar (t ′) =

εar (t ′ )
εar (0) are the creep-retardation and recovery-relaxation func-
tions going from 1 to 0 as time elapses. Figures 2(a) and
2(b) shows the invariant shapes of φac(t ) and φar (t ) found

for different values of applied stress at 580 K, further
validating the linear response behavior of the whole creep-
recovery curve. For the experiments shown in Fig. 2, all
the creep segments had a duration of t∗ = 600 min, inde-
pendently of the stress and temperature applied, and they
correspond to the results of a single creep and recovery
cycle.

FIG. 2. (a) Creep-retardation φac(t ) = εac(t )/εac(0) and (b) recovery-relaxation φar (t ) = εar (t )/εar (0) functions obtained at 580 K for the
first cycle of creep-recovery tests with different applied stresses. (c) Amplitude of the recovery relaxation and (d) recovery-relaxation functions
at 520, 540, 560 and 580 K. All tests were performed with a creep duration of t∗ = 600 min. The dashed line in (c) is the prediction of change
of anelastic amplitude calculated by means of Eq. (3).
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FIG. 3. (a) Time to reach half recovery after creep segments of duration t∗. (b) Recovery-relaxation functions after creep segments of
duration t∗. (c) Apparent extensional viscosity η = σ/ε̇ calculated at different times during creep segments initiated at two different waiting
times. (d) Creep-retardation and recovery-relaxation functions for two consecutive creep-recovery cycles and a cycle initiated after a waiting
time of 1200 min. All tests in this figure were performed at 580 K.

The amplitudes of creep retardation and recovery re-
laxation are sensitive to temperature. Figure S4 in the
Supplemental Material [10] shows creep-recovery curves
measured at different temperatures. Figures 2(c) and 2(d)
show, respectively, the recovery amplitude and the recovery
relaxation function for the four temperatures studied in this
paper. It can be observed that the amplitude of the relaxation
increases with temperature, but the relaxation function is com-
pletely invariant. Therefore, a notable aspect of the recovery
relaxation function is that its shape and timescale are not
dependent on temperature or stress, which is a first important
property we would like to highlight in this paper.

Conversely, the timescale of the relaxation function de-
pends on the duration of the previous external excitation.
Figure 3(a) shows the timescale of the recovery relaxation,
estimated as the time t0.5 needed to decay to φar (t ) = 0.5,
as a function of the duration of the previous creep segment
t∗, all measurements performed at 580 K. Figure 3(b) shows
the recovery relaxation functions measured after step stress
segments of different duration, showing the progressive shift
to longer times as a function of t∗. Changes of temperature
and stress do not modify the time needed for recovery, as the
normalized φar (t ) function is invariant with respect to such
parameters. As it is shown in Fig. 3(a), the duration of the
recovery relaxation is basically proportional to the time the
system has been under the application of external stress in
the previous creep stage. This is a second basic characteristic
of the recovery process. The implications of this behavior,

together with the athermal character of the relaxation shape
noted above, will be discussed in the following section.

As already noted above in Fig. 1, the amplitude of the
creep process during a first cycle is notably higher than in
a posterior cycle. To check if such a change is because of
the applied stress or because of physical aging driven by the
isothermal annealing, we performed a first cycle of creep-
recovery after annealing for 1200 min at 580 K (see Fig. S5 in
the Supplemental Material [10]). As it is observed in Fig. S5
in the Supplemental Material [10], the reduction of the creep
amplitude in a second cycle is like the one found in a first
cycle after annealing, under the condition that the duration of
the previous isothermal annealing is the same as that of the test
cycle. Therefore, the change in the creep segment between the
first and posterior cycles can be mainly attributed to physical
aging, which drives the glass toward a more stable, denser, and
sluggish configuration. Figure 3(c) shows the change of the
apparent extensional viscosity, calculated as η′(t ) = σ/ε̇(t ),
along two creep segments: one initiated at the beginning of
the isothermal step and the other after a waiting time of 1200
min. Two main aspects can be observed. Firstly, a constant
viscosity is not reached after 600 min at 580 K. This means
that the extensional viscosity values obtained by η = σ/ε̇(t∗)
at the end of the creep segment are just an approximation
to the steady-state extensional viscosity. Secondly, there is a
clear effect of aging on the extensional viscosity, which is not
finished even after 30 h. Below Tg, the equilibrium viscosity
is far above the viscosity of the glass, and aging increases
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viscosity [15] at a rate that can be dependent on composition
and temperature [16]. In the time window explored in this
paper, the extensional viscosity at 580 K is found to follow
approximately an aging law given by η ∝ t0.5. The equili-
bration timescale of the extensional viscosity, of the order
of 104–105 s, is like the one found for shear viscosity in the
same material at similar temperatures [11]. Figure 3(d) shows
the creep-retardation and recovery-relaxation functions, φac(t )
and φar (t ) calculated for the first cycle, second cycle, and
first cycle after a waiting time of 1200 min, i.e., the same
amount of time employed for the first cycle. While the creep-
retardation function during the first cycle shows a clearly
different shape, all the other functions mainly overlap. This
implies that, when the effects of physical aging on viscosity
are diminished, i.e., the rate of change of viscosity along the
creep experiment is small, we found φac(t ) ≈ φar (t ). Figure
S6 in the Supplemental Material [10] shows the φac(t ) func-
tions obtained at different temperatures. In accordance with
the expected increase in aging rate as temperature rises, it has
been observed that the effect of aging on the shape of the retar-
dation function increases with temperature. On the contrary,
as already depicted in Fig. 2(d), the recovery functions are
temperature invariant.

The results shown in Figs. S5 and S6 in the Supplemental
Material [10] and Figs. 3(c) and 3(d) evidence two important
facts. Firstly, a stress-oriented structural relaxation effect, as
found by Khonik et al. [17], is not observed. It is possible that
part of the directional effect described in Ref. [17] is erased
during the recovery step before the second creep-recovery
cycle. It is also possible that different MG compositions may
show different influence of stress on structural relaxation.
In our case, we do not observe differences in deformation
behavior between aging under stress and aging without stress.
Secondly, the transient stage of the creep curve contains the
contribution of a time-dependent viscosity. This implies that
the amount of permanent deformation does not increase lin-
early as t

η
σ because η = η(t ) due to aging. However, if the

aging rate is slower than the timescale involved during the
relaxation, as it is in the case of the creep curves measured
after annealing 1200 min at 580 K, the permanent deformation
can be approached to a linear term with time, and then the
transient stage of the creep is mainly contributed only by
the anelastic retardation. In other words, the coincidence of
retardation and relaxation functions, i.e., φac(t ) ≈ φar (t ), im-
plies that, for the aged samples, the transient stage of creep is
mainly contributed by reversible deformation. This is clearly
shown in Fig. 1, where εac(t ) and εar (t ), indicated by the
colored regions, are equal for cycle 2.

IV. DISCUSSION: TIMESCALE AND SHAPE OF
THE ANELASTIC RESPONSE

Most of the theoretical descriptions of liquids predict
that, below a certain dynamic transition, the relaxation be-
comes dominated by thermally activated mechanisms, while
collisional transport is expected above [18]. These acti-
vated mechanisms become more cooperative as temperature
decreases. Going down on temperature, toward the glass tran-
sition, the increase of the apparent activation energy for flow
can be related to the number of atoms involved in the coopera-

tive relaxation events [19] and to the shape of the cooperative
rearrangement regions [20]. Below Tg, the deformation of
MGs is generally interpreted in terms of soft spots or shear
transformation zones (STZs). Both the size and number den-
sity of such soft spots is expected to decrease with aging
[21]. In the steady state, plastic deformation of MGs under
a constant strain rate is usually described by the thermally
activated operation of STZs and diffusive jumps in regions of
high free volume [22–24]. The creep curves are then usually
interpreted considering an initial, transient stage of nucleation
and distribution of local strain. This process progressively
approaches saturation, leading to a secondary, steady-state
stage with constant strain rate. A tertiary stage characterized
by the onset of structural instability is observed if the creep is
maintained up to large strain values, which is not the case in
this paper.

The creep (stress step) and recovery results presented
above, together with the stress relaxation (strain step) and
mechanical spectroscopy (oscillating strain) measurements al-
ready discussed in Ref. [3], point toward the following picture
of Vit4 glass dynamics. The mobility of the atoms generates
two different contributions: a reversible anelastic or delayed
elasticity behavior and a permanent, irreversible viscouslike
relaxation. The latter process generates a steady-state Newto-
nian viscosity η(Tf , T ) and a corresponding stress relaxation
time τsr (Tf , T ) that dictate the timescale of the irreversible
relaxation and depend on the fictive temperature Tf of the
glass structure. The homogeneous viscous flow of MGs has
been well studied, and it can be well understood in terms
of the free volume model [23,25–27]. The viscous flow is a
thermally activated process which is biased by the application
of stress. As it is observed in many MGs at temperatures com-
parable with the one investigated in this paper, an increase in
stress produces a change from Newtonian to non-Newtonian
flow >200–400 MPa [28]. In the linear response regime, at
small stresses, the viscosity shows a super-Arrhenius (VFT)
behavior above Tg and an Arrhenius-like behavior for a given
isoconfigurational glass state [29]. In practice, aging is always
present in the glass state, and a time-dependent viscosity
η[Tf (t ), T ] must be expected in isothermal experiments ex-
ploring long timescales.

In addition to the viscous irreversible deformation, Vit4
shows a large anelastic response. Figure 1 shows that, for
t∗ = 600 min at 580 K, the fraction of deformation that is
recovered anelastically is larger than the elastic contribution.
Applying the same loading time t∗ at different temperatures,
the amplitude of the anelastic response is reduced as tem-
perature decreases, but the anelastic recovery for t∗ = 600
min at 520 K is still 30% of the elastic deformation (see Fig.
S4 in the Supplemental Material [10]). This temperature is
100 K below the conventional glass transition, as measured
by calorimetry with a heating rate of 20 K/min. The control of
the anelastic deformation and the corresponding recovery are
then important aspects to consider for controlling the mechan-
ical response of MGs in many applications. Such significant
delayed elasticity behavior is a known effect in MGs [30], but
it is still little understood and will be discussed here in detail.

Firstly, it is worth noting again that, in an isoconfigu-
rational glass, the viscosity would be constant at a given
temperature, but in the real aging glass, it increases during
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FIG. 4. Symbols: Master curve of the recovery functions ob-
tained in this paper for different values of stress (σ = 20−400 MPa),
temperature (T = 520−580 K), loading time (t∗ = 200−800 min at
580 K) and aging time (3.2–30 h at 580 K). A total number of 30
recovery functions corresponding to different conditions are plot-
ted. Black dashed line: Kohlrausch-Williams-Watts (KWW) function
with stretching parameter β = 0.45. Red dashed line: Recovery-
relaxation function calculated by Eq. (2) considering D(τ ) ∝ τ−0.64

and t∗ = 1.

the creep test at a rate depending on temperature and the Tf of
the initial state [6]. As seen in Fig. 3(d), this is reflected in the
creep tests, producing a different shape of the retardation func-
tion with respect to the recovery function for the samples that
were not deeply aged previously. If viscosity η is not constant,
it is difficult to disentangle the pure anelastic response and
the shape of the retardation function from the creep segment
by using Eq. (1). On the other hand, the recovery segment
in Eq. (1) is not affected by a time dependent viscosity, and
therefore, it gives access to a better description of the anelastic
response [31,32]. From this point on, we will use the notation
φ(t ) for the recovery functions, as we will focus on them.

Figure 2(d) shows that the recovery relaxation function
φ(t ) is invariant with temperature. The loading time effect on
the recovery, shown in Figs. 3(a) and 3(b), indicates that the
timescale increases with t∗. Figure 4 shows all the recovery
functions φ(t ) experimentally obtained for different tempera-
tures and different loading times as a function of t/t∗. They
can be well described by a master curve following a stretched
exponential φ(t ) = exp[−(	t )β], with a shape parameter β =
0.45 and 	 = 7.6/t∗ (black dashed line).

The loading time effect observed in Figs. 3(a), 3(b), and 5
implies that the anelastic response can be interpreted as the
excitation/relaxation of reversible modes [33,34], each mode
defined by a characteristic time τ . These modes are progres-
sively excited, i.e., strained, during the loading segment t∗,
and they relax back to the original state during the recovery.
In a first approach, the recovery can be modeled as

φ(t ) = A−1
∫ ∞

0
dτD(τ )
(t∗ − τ )exp

(
− t

τ

)

= A−1
∫ t∗

0
dτD(τ )exp

(
− t

τ

)
, (2)

FIG. 5. (a) Master curve of the loss modulus of Vit4 glass as a
function of ωτα , where τα is the α relaxation time. See Ref. [3] for
details. (b) Distribution of relaxation modes (blue dashed line) con-
sidering a distribution of reversible modes D(τ ) ∼ τ−0.64 (dashed
line). The excited modes after loading during t∗ = 200, 400, 600,
and 800 min are shown by the blue, yellow, green, and red ar-
eas, respectively. (c) Recovery functions calculated by Eq. (2) with
D(τ ) ∼ τ−0.64. The legend also shows the calculated times needed
to reach half recovery after different excitation times t∗, which are in
good agreement with the experimental results in Fig. 3(a).

where D(τ ) is the intensity distribution of modes τ , 
(x)
is the Heaviside step function, and A = ∫ t∗

0 dτD(τ ) is the
normalization needed for φ(t ) going from 1 to 0. Each mode
is considered to behave linearly, i.e., with an exponential
relaxation ∝ exp(−t/τ ). This assumption of linearity is ap-
propriate if small stress and strain conditions are assumed
[33], as it is the case in this paper. Equation (2) assumes
that all the modes with τ < t∗ are excited during the loading
segment. The longer the t∗, the more modes become excited,
and their relaxation is then observed in the recovery. The
stretched shape of the φ(t ) function, seen in Fig. 5, is indica-
tive of a broad distribution D(τ ). A distribution of the type
D(τ ) ∝ τ−n, with 0.5 < n < 1, can reproduce similar results
to the ones observed experimentally, as it was already shown
by Ulfert and Kronmüller [9] in their study of the creep-
recovery curves. Figure S7 in the Supplemental Material [10]
shows the fraction of excited modes for different loading times
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t∗, as well as the corresponding calculations of the recovery
function using Eq. (2), for values of n = 0.5, 0.75, and 1.
The insets in Fig. S7 in the Supplemental Material [10] also
show the timescale t0.5 of the calculated recovery functions.
The limiting cases of n = 1, i.e., a completely flat distribution
in the logarithmic scale, and n = 0.5 produce too short and
too long timescales, respectively. In the case of n = 1, the
recovery is too fast because of the presence of a too large frac-
tion of fast modes excited during the loading. Conversely, a
distribution shape determined by n = 0.5 contains a too small
fraction of fast modes. A middle value n ∼ 0.75 reproduces
qualitatively the timescale shown in Fig. 3(a).

Information of the relaxation spectrum is given by the
complex modulus M∗(ω) = M ′(ω) + iM ′′(ω) obtained by
mechanical spectroscopy. In the case of Vit4, the loss mod-
ulus M ′′(ω) shows a broad α relaxation peak with a long
high-frequency wing, as shown in Fig. 5(a), and it can be
perfectly described by a Havriliak-Negami function M∗(ω) =
[1 + i(ωτ )α]−γ [35] with shape exponents α = 0.80 and γ =
0.45. The high-frequency wing of the loss modulus decays
as ω−a with a ≈ αγ = 0.36 [36]. We will make the ansatz
here that the high-frequency range of the mechanical spectrum
contains basically the reversible relaxation modes generating
the anelastic response. From a simple analysis (see Sec. 7 in
the Supplemental Material [10]), it can be shown that a dis-
tribution of the type D(τ ) ∝ τ−n generates a high-frequency
wing decaying as ωn−1. Therefore, the experimental M ′′(ω)
suggests a value of n ∼ 0.64 for the distribution of reversible
relaxation modes in the Vit4 material. Figure 5(b) shows this
distribution of modes, mimicking the mechanical spectrum,
and the fraction of them excited during different loading times
t∗. Figure 5(c) shows the calculated recovery functions us-
ing Eq. (2) and the corresponding t0.5 times needed to reach
half recovery. The timescales of the recovery are in perfect
agreement with the experimental observations in Fig. 3(a).
The shape of the recovery functions is also plotted with a red
dashed line in Fig. 4, showing excellent agreement with the
experimental results.

Now we will explore the effects of temperature on the
anelastic recovery. In their formidable study, Argon and Kuo
[30] demonstrated that the recovery of MGs is thermally
activated, as it can be frozen by immediate quenching after
a creep experiment and posteriorly activated by subsequent
heating. Each relaxation mode was then associated to an
activation energy τ = τ0exp(E/kT ), with τ−1

0 of the order
of the Debye frequency, and they determined experimentally
the distribution of activation energies by a series of creep-
quenching-heating-recovery cycles. The shape of the distribu-
tion D(E ) they found for different materials was qualitatively
like the shape shown in Fig. 5 for D(log10τ ), i.e., an in-
creasing function with a maximum around E∗ ≈ kT ln(t∗/τ0),
which corresponds to the activation energy of the longest
excited modes during the previous loading segment. Also
in Ref. [37], the time distribution of the anelastic recovery
D(log10τ ), obtained from nanoindentation tests, was found to
be an increasing function with a cutoff around t∗. Here, we
have shown in Figs. 2(d) and 4 that the recovery relaxation
function has an invariant shape at different temperatures and
loading times, at least within the experimental time window
which in this paper covers from 1 to 105 s. This also implies

that the underlying distribution of activation energies of the
Vit4 glass has an invariant normalized shape with a maximum
value E∗ determined by temperature and loading time.

Considering that each anelastic mode is associated to an
activation energy, the fraction of modes excited after a loading
time t∗

1 at a temperature T1 must be the same as after time t∗
2

at T2 if T1ln(t∗
1 /τ0) = T2ln(t∗

2 /τ0). Therefore, the temperature
dependence of the amplitude of the anelastic recovery Jar0(T )
for a given loading time t∗ can be calculated as

Jar0(T,t∗ )

Jar0(Tref , t∗)
=

∫ t∗′

t ′
min

dτD(τ )∫ t∗
tmin

dτD(τ )
, (3)

where tmin is the time resolution of the experi-
ment, T ln(t∗′/τ0) = Tref ln(t∗/τ0), and T ln(t

′
min/τ0) =

Tref ln(tmin/τ0). Considering a distribution D(τ ) ∝ τ−n,
Eq. (3) gives (t∗′1−n − t ′1−n

min )/(t∗1−n − t1−n
min ) ∼ (t∗′/t∗)1−n,

which allows us to calculate the relative change of the
amplitude of anelastic recovery at different temperatures.
Figure 2(c) shows with a dashed line the calculation of
Jar0(T, t∗), taking n = 0.64, Tref = 550 K, tmin = 1 s, and
t∗ = 600 min; the latter two are the time resolution and
duration of the creep tests shown in Fig. 2. Two values of
τ0, 10−12 and 10−13 s, were considered to check that the
calculation is not significantly affected by this parameter.
These values of τ0 are like the ones found in Ref. [30] and
of the order of the inverse of the Debye frequency. It can
be seen in Fig. 2(c) that the change of anelastic amplitude
with temperature given by Eq. (3) is in good agreement
with the experimental data. Figure S8 in the Supplemental
Material [10] further illustrates the fraction of activation
energies excited during the same loading time t∗ at different
temperatures, as well as the corresponding recovery functions.
In terms of the amplitude of anelastic recovery, a loading
time of t∗ = 600 min at 510 K is equivalent to loading during
t∗′ = 32 min at 550 K. In the opposite direction, a loading
time t∗ = 600 min at 570 K is equivalent to t∗′ = 2610 min
at 550 K. Therefore, the temporal scale, the functional shape,
and the temperature dependence of the experimental data can
all be replicated by a distribution D(τ ) ∝ τ−n of reversible
modes with n = 0.64, which is coincident with the shape of
the high-frequency tail of the α-relaxation peak.

We have tried different values of n and alternative ways to
compute the fraction of reversible modes excited during the
loading segment. For instance, we performed all the calcu-
lations supposing that the intensity of activated modes was
D(τ )[1 − exp(−t∗/τ )], instead of D(τ )
(t∗ − τ ), which is a
logical assumption considering a linear behavior [33]. With
this approach, the cutoff at t∗ is too smooth to reproduce the
shape and timescale of the experimental recovery functions.
Inspection of Fig. 4 shows that the recovery always finishes
very close to t∗. Therefore, an abrupt cutoff of the excited
modes at t∗ seems necessary to reproduce quantitatively all
the experimental facts. In this paper, we have modeled the
cutoff by a step function 
(t∗ − τ ), but similar results would
be obtained for any cutoff function able to restrict the partici-
pation of relaxation modes up to timescales of the same order
than t∗. It is also worth noting that, in all the calculations,
only the anelastic modes with τ longer than the experimental
resolution, tmin ∼ 1 s in this paper, are considered. Below

125601-7



MEHRAN NABAHAT et al. PHYSICAL REVIEW MATERIALS 6, 125601 (2022)

FIG. 6. (a) Examples of Vit4 stress relaxation curves obtained
at different temperatures. (b) Vit4 stress relaxation times at the
supercooled liquid (SCL) state (light blue circles) and at the glass
state (orange, red, purple, and blue circles). In the glass state, two
relaxation times are displayed for each temperature corresponding to
the as-quenched state and the most aged sample. The arrows indicate
the increase of relaxation time as a function of aging in the glass state.
The blueish area in the time-temperature map corresponds to the
timescales expected for the viscous relaxation, which depend on the
aging state. The higher border of the blueish area is the extrapolated
equilibrium Vogel-Fulcher-Tammann (VFT) line τsr = τ0exp( DT0

T −T0
)

with D = 22.7 and T0 = 372 K, and the lower border is an Arrhe-
nius line with fictive temperature Tf = 600 K and activation energy
E = 270 kJ mol−1.

this limit, the relaxation of faster modes is detected by the
equipment as part of the instantaneous elastic response and
cannot be explored experimentally.

In the opposite direction, toward long times, the experi-
ments performed at 580 K reach timescales like the ones of
the viscous process. Beyond this viscous limit, the stress must
be irreversibly relaxed, thus determining the long-time limit
of the anelastic memory. Figure 6 shows the stress relaxation
curves and their characteristic times τsr, measured both in the
SCL state and in the glass state by means of stress relax-
ation (strain step) experiments. In such tests, once the stress
decays to zero, the applied deformation becomes permanent,
indicating the timescale τsr (Tf , T ) of the irreversible viscous
process. These stress relaxation times are in accordance with
the α relaxation times obtained by mechanical spectroscopy,
as discussed in Ref. [3]. As seen in Fig. 6(b), in the SCL
state, the relaxation times can be described by a VFT be-
havior in accordance with the equilibrium viscosity of Vit4

[3]. Otherwise, in the glass state <600 K, the relaxation time
changes with aging. Figure 6(b) shows two different τsr values
for each temperature in the glass state: one obtained for as-
quenched samples and another after a waiting time of ∼40 h
at each temperature. The blueish area in Fig. 6(b) is meant to
indicate the broad time-temperature region where the viscous
relaxation can be found for different glass states with different
degrees of aging. The yellowish area indicates the timescales
covered by the reversible anelastic relaxation, which expands
from times shorter than the resolution limit in this paper (1 s)
to the timescale of the irreversible viscous process. The effect
of aging on atomic mobility and stress relaxation in Vit4 will
be discussed in future work. Here, we just want to give an
overall picture of the timescale expected for the irreversible
relaxation at different temperatures, while we focus on the
study of the reversible, anelastic contribution.

The effect of the viscous cutoff on the anelastic response
would be to deplete the reversible modes with τ few times
longer than τsr. Therefore, it is expected to affect the tail of
the longest recovery functions at temperatures near the glass
transition. This may be the reason why the amplitude of the
anelastic recovery calculated by Eq. (3) seems to slightly over-
estimate the experimental value at 580 K, as seen in Fig. 2(c).
A series of further experiments, pushing the experimental
times at both the short and long limits, would be interesting
to check the range of validity of the results presented here.

In the last part of this section, we will summarize the
main results of this paper and discuss the observed behavior
within the frame of previous results and current microscopic
models of MG deformation. From the results presented above,
the transient creep and the recovery behaviors of Vit4 can
be described by the presence of a distribution of anelastic
relaxation modes, each relaxation mode associated to an acti-
vation energy E ≈ kT ln(τ/τ0). The main result of this paper
is that the distribution of times, and therefore of activation
energies, shows an invariant normalized shape over different
temperatures and loading times. In addition, the shape of
the distribution can be related to the high-frequency wing of
the mechanical spectrum M ′′(ω). MGs are characterized by
a broad M ′′(ω) peak [38], extending over many decades in
frequency, and this explains the large delayed elasticity effect
in these materials.

It is worth commenting here that Vit4 does not show a
significant secondary relaxation in its mechanical spectrum. In
other MGs, with prominent secondary relaxations, the effect
on the anelastic modes distribution may be important. For
instance, it is well known that aging significantly alters the
intensity of the secondary process [38]. In fact, Castellero
et al. [37] and Lei et al. [32] found that, in other systems
with more prominent secondary relaxation, aging altered the
shape of the underlying distribution of activation energies.
The simple shape of the anelastic mode distribution found
here for different temperatures and different degrees of aging
may be related to the particularly stable structure of the Vit4
glass. The characterization of the recovery process in other
alloys will be crucial for completing the understanding of MG
dynamics and clarify the role played by aging on the distribu-
tion of anelastic modes. It is important to note, however, that
well-controlled conditions and long experimental times are
needed to disentangle the pure reversible anelastic effect from
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free volume changes and other types of structural evolution
that MGs may suffer during the loading and recovery steps. It
should also be noted here that our experiments are restricted
to small stresses, in the linear regime, and relatively high
temperatures >0.83 Tg.

The most accepted microscopic picture of creep defor-
mation of MGs is the presence of localized STZs, with a
corresponding distribution of activation energies. For small
deformations, the STZs are isolated and are reversible when
external stress is released. These isolated STZs would cor-
respond then to the anelastic relaxation modes that originate
the large, delayed elasticity phenomenon in MGs. The com-
mon interpretation is that the activation of STZs is dependent
on their size. The Atzmon model [31,32] proposes a hier-
archical distribution of STZs, leading to a distribution of
relaxation times characterized by consecutive peaks at dis-
crete times τm, with m = 1, 2, . . . , associated to different
types of STZs, each one involving different numbers of atoms.
The experimental results obtained here could also be inter-
preted considering a discrete distribution like the one in the
Atzmon model. Figures S9(a)–S9(d) in the Supplemental Ma-
terial [10] show the recovery functions φ(t ) calculated by
Eq. (2) using multimodal distributions with a peak intensity
∝ τ−0.75

m (i.e., ∝ τ 1−0.75
m in a logarithmic timescale). It can

be observed that they cannot be differentiated from the ones
originated by a continuous D(τ ) ∝ τ−0.75 distribution if the
separation between peaks is <1.5 orders of magnitude in time.
Another microscopic model is the continuous nucleation of
anelastic relaxation sites (or STZs) with a finite lifetime. In
such a model, after their lifetime, the anelastic sites relax
permanently, thus generating the viscous plastic deformation
while they are replaced by the nucleation of new reversible
sites. In the steady-state regime, this produces a distribution
of anelastic relaxation times of the type D(τ ) ∝ τ−n [9]. It
would be interesting to analyze if these and other models
can describe all the different features observed here for the
recovery functions of Vit4.

Within a more general perspective, the presence of a broad
logarithmic or nearly logarithmic relaxation decay is a hall-
mark of many disordered systems after being subjected to
an external excitation [33]. A broad distribution of stress
relaxation modes is also observed in athermal systems like
granular materials or bead packs, in this case originated by
the movement of the particles along stress chains or fields,
one particle pushing its neighbors but without hoppinglike, ir-
reversible rearrangements [34]. This is a kind of multiplicative
process which produces a broad relaxation time distribution.
The broad distribution of modes with a normalized shape
not dependent on temperature and the recovery timescale
proportional to the excitation time, as found in this paper,
indicates that the anelastic deformation and recovery of MGs
could be microscopically like this process. This type of atomic
drift activated by the previous stress history may explain the
compressed exponents and the unexpected short and history-
dependent microscopic relaxation times observed by XPCS
experiments of MGs [3,39–43]. The long timescales, which
are intrinsically associated to temperatures below Tg and
well-relaxed glassy states, make the obtention of microscopic
insights from molecular dynamics simulations difficult, and a
clear microscopic picture that can reproduce all the different

experimentally observed features of MG relaxation dynamics
is still lacking. We think this paper can afford perspec-
tives and inspire models for elucidating these fundamental
issues.

V. CONCLUSIONS

Summarizing, we think that the experimental results and
analysis presented here give significant details of the me-
chanical response of MGs. In this paper, we show that the
anelastic relaxation of MGs have a significant amplitude in
the region of temperatures spanning from glass transition to
100 K below. Many important mechanical and thermal
treatments are applied to MGs in this temperature region
[12,44,45], for instance, shape forming and additive manufac-
ture processes as well as heating/cooling protocols to modify
the structural state or to release internal stresses. The study
of the recovery curves, contrarily to the creep curves, gives
access to the pure anelastic response, minimizing the contri-
bution of the viscous component. This reduces the complex
effects of aging, offering key information on this subject.
The timescale of the anelastic relaxation is found here to
be dependent only on the time of previous loading; this fact
may be very important to consider to fully understand the
results of nanoindentation or other mechanical probes when
applied at different rates. All the results presented can be
interpreted as the excitation/relaxation of a distribution of
reversible deformation modes of the type D(τ ) ∝ τ−n, with
each mode associated to an activation energy and an exponent
n determined by the shape of the loss modulus high-frequency
wing. It is worth noting that Vit4 does not show an evident sec-
ondary relaxation. In MGs with large secondary relaxations,
like Pd-, La-, or Ce-based alloys, a secondary peak will appear
in the distribution of anelastic modes. The shape of φ(t ) in
such systems would be worth investigating. Although this
paper is restricted to Vit4, we think it unveils some impor-
tant features of the anelastic response which may be general
for many disordered systems. This will help the construction
of a complete model that can comprehend both reversible
and irreversible relaxation processes and explain, in a unified
way, the observations in stress step, stress strain, and oscillat-
ing strain experiments of MGs, to eventually understand the
mechanisms of the atomic mobility.
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