

Development of energy assessment methodology and simulation tool in Shift2Rail projects FINE1 and OPEUS

Holger DITTUS¹, Lukas PRÖHL²

¹German Aerospace Center (DLR) ²University of Rostock, Chair of Mechatronics, Rostock

This project has received funding from Shift2Rail Joint Undertaking (JU) under grant agreement No 881791. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Shift2Rail JU members other than the Union.

- 1. Overview: FINE1 and OPEUS
- 2. Development of Energy Simulation Tool
- 3. Energy Baseline
- 4. Energy KPI Evaluation
- 5. Conclusion

FINE1 - Future Improvements on Noise and Energy

FINE1 Main facts:

- 9 partners from 5 countries
- 38 months runtime (09/2016 10/2019)
- CCA for noise and energy
- Coordinator: Bombardier Transportation

FINE1 high level objectives related to energy:

• Assess energy demand and support the quantification of energy improvements of new technologies with a standardized approach

FINE1 was supported by the complementary projects:

- OPEUS for Energy (Coordinator: University of Newcastle)
- DESTINATE for Noise (Coordinator: TU Berlin)

FINE-1 Main Objectives (related to energy)

- Develop and implement **energy calculation methodology** to quantify S2R energy savings
- Develop **energy baseline** as a reference for the analysis of energy savings of new S2R technologies.
- Define operational scenarios for the traffic segments high speed, regional, urban and freight traffic
- Evaluate and document S2R energy savings (→ Energy KPI)

- 1. Overview: FINE1 and OPEUS
- 2. Development of Energy Simulation Tool
- 3. Energy Baseline
- 4. Energy KPI Evaluation
- 5. Conclusion

OPEUS Energy Simulation Tool: Development Process

				C Ref. Ares(2018)2334892 - 02/05/2018		
FINE	Future Improvement for Energy and Noise Grant Agreement Number: 730818	<	FINE	Future Improvement for Energy and Noise Grant Agreement Number: 730818	FINE	Future Improvement for Energy and Noise Grant Agreement Number: 730818
	FINE 1		Report Contributors Executive Summary Abbreviations and Acronyms	TABLE OF CONTENTS	4.14 ESS Battery Converter (C18) 4.15 ESS - Battery (C17). 4.16 DLC Converter (C19) 4.17 ESS - Double Layer Capacitor (C20) 4.18 Auxiliary Converter (at DC-Link) (C22).	28 28 29 30 30
D3.4 - Re	equirement Specification for Energy Simulation Tool Due date of deliverable: 31/08/2017 Actual submission date: 29/09/2017	м	Table of Contents. List of Figures List of Tables. 1. Introduction 2. Requirements for the Energy Simulatio 2.1 General Requirements. 2.2 Functionality Requirements	6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 4.19 Electrical Auxiliary (at DC-Link) (C23) 4.20 Auxiliary Converter (at Transformer) (C24) 4.21 Electrical Auxiliary (at Transformer) (C25) 4.22 Battery Converter (C28) 4.23 Battery Consumption (On-board Supply) (C2 4.24 Infrastructure (C30) 	31 31 32 7)
Leader/Respo Raumfahrt	nsible of this Deliverable: Holger Dittus, Deutsches Zentrum für Luft- und		2.3 Input Data. 2.4 Output Data. 3. Required Traction System Topologies 3.1 AC Supply (TO1). 3.2 AC Supply (E-Transformer) (T02). 3.3 DC Power Supply (T03).			
Calculation	the energy usage of railway vehicles ver defined duty cycles of power requirements and prediction of ment performance in the time-domain		3.4 Electrical Traction System Compo 3.5 Diesel Traction System Componer 4. Component Parameters 4.1 Vehicle (C00) 4.2 Gearbox (C04) 4.3 Induction Motor (C05) 4.4 Synchronous Motor (C06).			
	Interface of STS: Wheel-rail contact to AC or DC catenary	\backslash	 4.5 Motor Converter, basic Semicondu 4.6 Motor Converter, SiC Semiconduc 4.7 Rheostat Converter (C09)	uctors (C07)24		
	Integrated trajectory planning and powertrain simulation Re-configurability for various powertrain architectu		4.11 Transformer (C13) 4.12 Electronic Transformer (C14) 4.13 Line Inductor (C15)	28 	Page 7 of :	14
	Low simulation running times for quick sens analysis	itivity	6	Ghiti Ral	DLR tü	r Lutt- und Raumtahrt

für Luft- und Raumfahrt

OPEUS Tool: General Set Up

Input data and **Output data** of the tool are implemented as Microsoft Excel files:

- Easy and familiar interface;
- Even users with less background in Matlab/Simulink are able simulate;
- Easy processing of the output data.

Track data and train data is organized in Excel libraries:

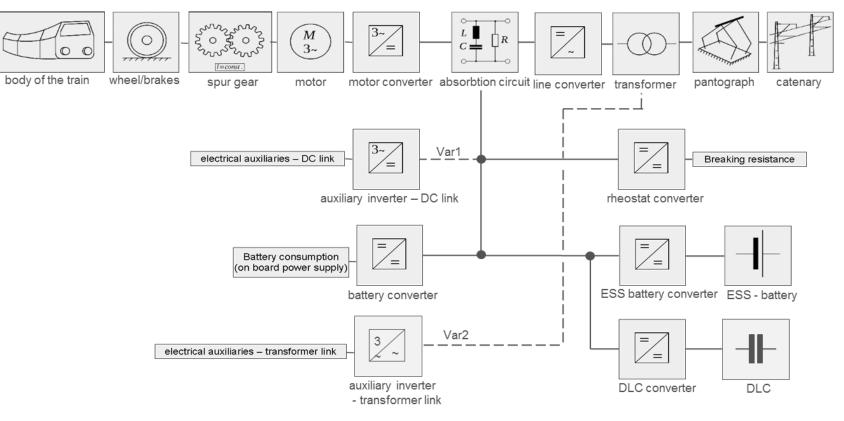
- Clear handling of data;
- Easy possibility to extend the library with own data.

Simulation structure is implemented in Matlab and Simulink:

- Common software for engineering tasks;
- Based on CleanER-D tool (also implemented in Matlab).

Component models are organized in a Simulink library:

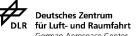
- Avoid ambiguity;
- Easy to implement changes at the component models.



OPEUS Tool: Traction Topology T01 – AC Traction

Deutsches Zentrum

für Luft- und Raumfahrt


OPEUS Tool: 2-Step Validation and Approval

FINE

1) Functional design requir	rements:
checked against FINE1 de	liverable D3.4
Requirement Specification	for Energy Simulation
Tool	

RESULT:

German Aerospace Center

2) calculation results:

checked via simulation of pre-defined train configurations and comparison of the results against established tools and measurements of the individual project partners:

Actual submission date: 19/03/2018

Leader/Responsible of this Deliverable: Holger Dittus, Deutsches Zentrum für Luft- und Raumfahrt

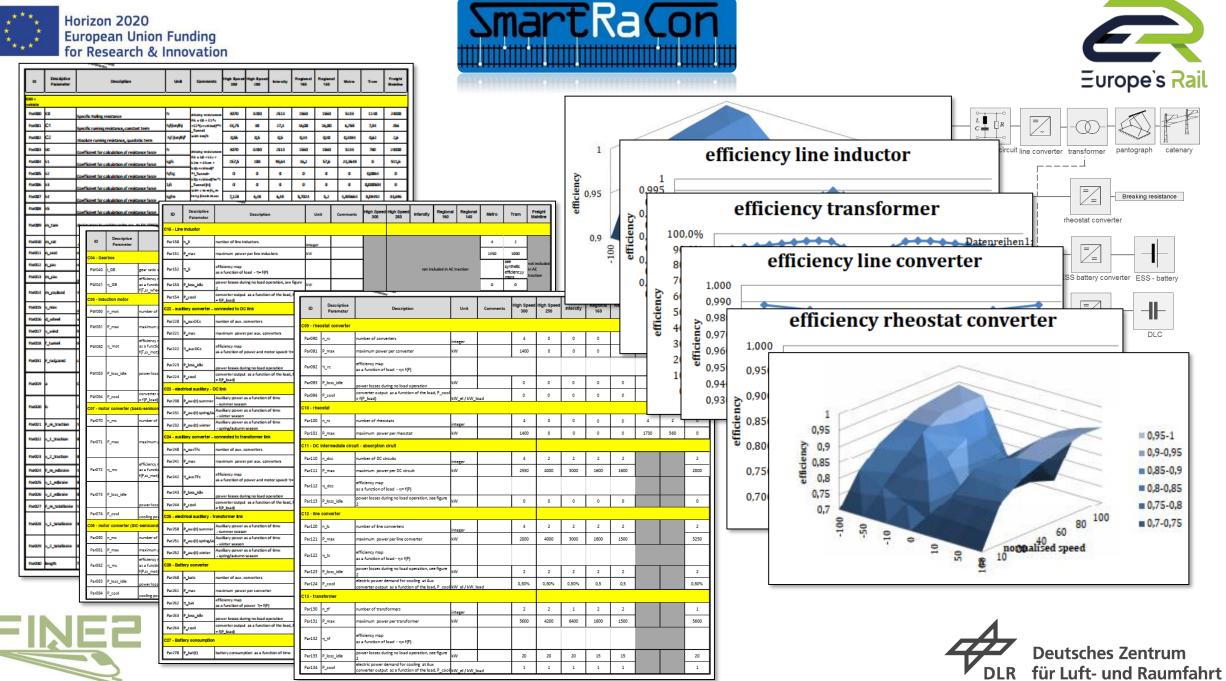
- 1. Overview: FINE1 and OPEUS
- 2. Development of Energy Simulation Tool
- 3. Energy Baseline
- 4. Energy KPI Evaluation
- 5. Conclusion

Energy Baseline

The energy baseline is used as state-of-the-art reference to quantify energy savings achieved in S2R. It consists of:

- Service profiles for high speed, regional, urban and freight including line parameters such as timetables, gradients, speed limits, etc. (see EN50591)
- Definition of reference simulation data consisting of vehicle, line and traction component parameters
- Energy Baseline data is available for SPDs:
 - HST300, HST250
 - Intercity
 - Regional 160, Regional 140
 - Suburban (Metro, Tram)
 - Freight

FINE	Grant Agreement Number: 730818
	FINE 1
D3.	1 Energy Baseline
Due date	e of deliverable: 31/12/2017
Actual su	ubmission date: 13/03/2018
Leader/Responsible of this Deliverat	le: Dr. Jürgen Ernst, Deutsche Bahn AG


les	Main Service Category	Sub Service Category	Max. profile speed [km/h]	Average Station Distance [km]	Station standstill time [min]	Route length [km]	Operational travel time [hh:mm:ss]	Source of profile
Profi	e	High Speed 300	300	150	3	300	01:47:00	prEN 50591
Service Profiles	High Speed	High Speed 250	250	100	3	300	02:03:00	High speed from prEN 50591, but limited to 250km/h, 2 additional stops
ē		Intercity	200	28	2 – 3	250	02:39:00	prEN 50591
FINE1 Energy Baseline: S	Regional	Regional 160	160	15	1-2	250	02:57:00	Intercity from prEN 50591, but limited to 160km/h 7 additional stops
3ase	Re	Regional 140	140	5	1-2	70	01:09:00	prEN 50591
X		Suburban	120	3,6	1	40	00:43:00	prEN 50591
erg	Urban	Metro	80	1,0	0,5	21,5	00:41:00	based on EU-project OSIRIS [7]
L L L	5	Tram	50	0,5	0,5	10,7	00:29:40	based on EU-project OSIRIS [7] incl. UITP suggestions
	Freight	Freight Mainline	100	50	1-5	300	04:17:15	prEN 50591
	Frei	Freight Shunting	42	-	-	37	04:32:00	CleanER-D [8] Pmax 870 kW

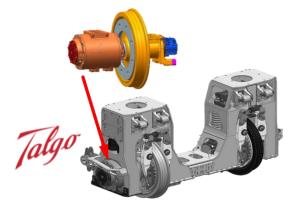
- 1. Overview: FINE1 and OPEUS
- 2. Development of Energy Simulation Tool
- 3. Energy Baseline
- 4. Energy KPI Evaluation
- 5. Conclusion

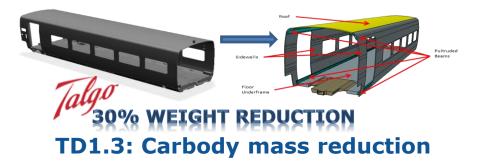
Evaluation of Energy KPIs

State of the art technology	Future technology
Equal Service Profile, Travelti	me (Schedule), Weather Conditions
Classic traction system	E-Transformer, SiC, hybrid drive
Sir	nulations
Energy consumption	Energy consumption
	ift2Rail avings

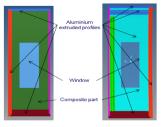
→ Energy KPI quantifies relative savings of the TD innovations compared to the energy baseline

➔ The Energy KPI summarizes overall savings per SPD, assuming technical improvements reported by the TDs are applied




Data Gathering: Improved technologies from S2R-TDs

TD1.5: Mass reduction by new braking systems



TD1.1: direct PM motor-wheelsystem → improved gearbox efficiency

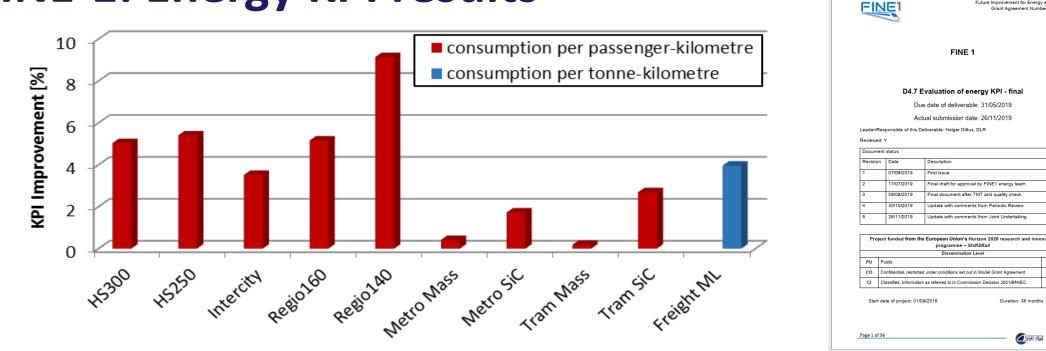
TD3.9: Smart power supply avoids separation sections

TD1.6: Mass reduction doors

Mapping of Technologies and SPDs

SPD	Mass reduction carbody	Mass reduction doors	Mass reduction brakes	Improved line converter (SiC)	Improved motor converter (SiC)	Direct drive with improved gearbox
HST300	X	х	х	Х	Х	Х
HST250	X	Х	Х	Х	Х	X
Intercity		Х	Х	Х	Х	
Regional 160		Х	Х	Х	Х	
Regional 140		Х	Х	Х	Х	
Metro*		Х	Х	n.a.	Х*	
Tram*		Х	Х	n.a.	Х*	
Freight				Х	Х	

*no integrated calculation possible



Future Improvement for Energy and Noise Grant Agreement Number: 730818

FINE-1: Energy KPI results

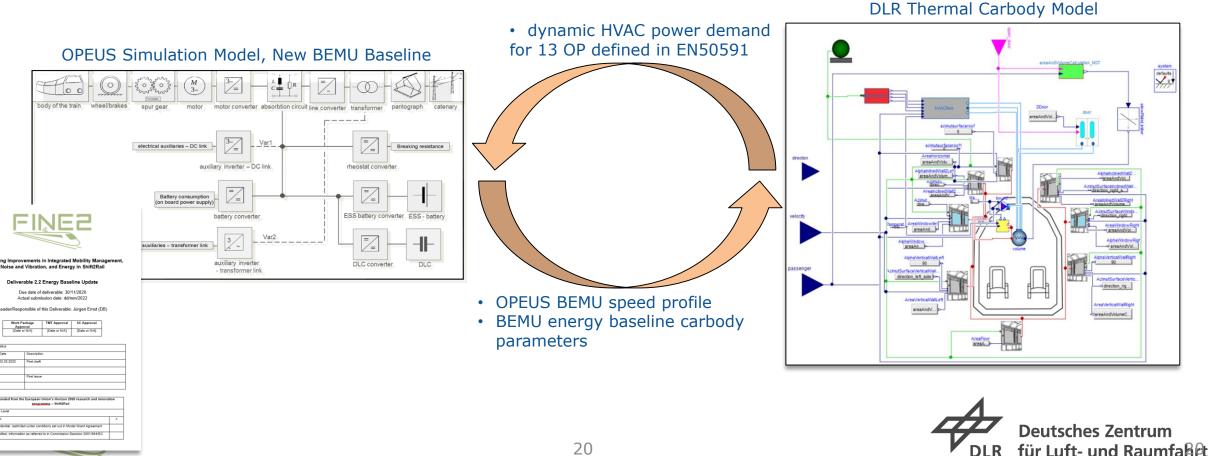
→ Improvements of energy KPI between 3.5% (Intercity) and 9.1% (Regional140)

OPEUS Tool in FINE2 WP3 – Update Energy KPI (pending)

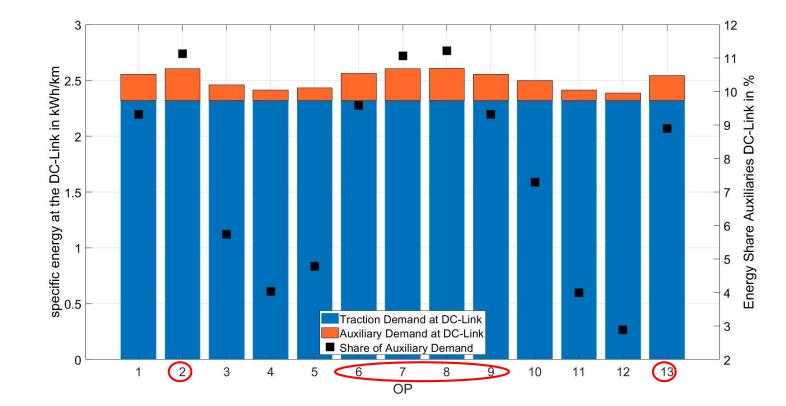
In FINE2 WP3...

- Data gathering process of FINE1 with TDs is repeated
- OPEUS tool is applied to update the energy KPIs
- → Update of energy KPI is available with D3.1 Evaluation of Energy KPI (Now?)

Deliverable Number ¹⁴	Deliverable Title	Lead beneficiary	Type ¹⁵	Dissemination level ¹⁶	Due Date (in months) ¹⁷
D3.1	Evaluation of Energy KPI	12 - SNCF	Report	Public	34
		Description of del	iverables		
	ation of Energy KPI [34]	ask T3.1 including S2R er			



OPEUS Tool in FINE2 - WP4 Combined Traction and HVAC Simulations for BEMU


D4.3 Study on potential HVAC energy savings

For BEMU energy baseline parameters:

Comparison of traction and HVAC energy demand for 13 EN50591 OP

➔ Identification of high HVAC demand

Operation point	Temperature Tamb in °C	Humidity <i>H</i> r, amb in %	Sun radiation in W/m²	Passenger load in %
1	-10	90	0	0
2	0	90	0	100
3	10	90	0	50
4	15	90	0	50
5	22	80	0	100
6	28	70	600	100
7	35	50	700	100
8	-20	90	0	0
9	-10	90	0	0
10	0	90	0	0
11	15	80	0	0
12	22	80	0	0
13	35	50	700	0

D4.3 Study on potential HVAC energy savings

Noise a dy on pote Lea	nd Vibrati ential ener control Due date of Actual subn	on, and Energ)8/2022)9/2022	
Lea	control Due date of Actual subn der/Respons	of HVAC system f deliverable: 30/0 nission date: 01/0	ems 08/2022 09/2022	ıd smai
		TAST &	00.1	
	pproval ate or N/A]	TMT Approval [Date or N/A]	SC Approval [Date or N/A]	
Date	Descriptic	on		
	First issue	e		
tion Level			20 research and innovatio	n
ublic				x
	ricted under cor	nditions set out in Mod	del Grant Agreement	
	t status Date Date t funded from tion Level ublic onfidential, rest	t status Date Descripting Date First issue ct funded from the Europear progrition progrition Level ublic onfidential, restricted under control	t status Date Description First issue First issue ct funded from the European Union's Horizon 20 programme – Shift2Rail programme – Shift2Rail tion Level Jublic onfidential, restricted under conditions set out in Moc assified, information as referred to in Commission D	t status Date Description First issue First issue ct funded from the European Union's Horizon 2020 research and innovation programme – Shift2Rail Idon Level Ublic Inflidential, restricted under conditions set out in Model Grant Agreement assified, information as referred to in Commission Decision 2001/844/EC

Study methodology:

- 1. Definition of HVAC energy saving measures
- 2. Analysis of the impact of these measure on HVAC energy demand and BEMU range

Results:

- <u>Heat pump</u> replacing conventional AC is most promising candidate for energy saving in regional BEMU
- Application of additional <u>heat storage</u> system is effective to reduce energy demand in heating OP.
- <u>Modified passenger compartment temperature control recommended in</u> particular for OP with cooling, low-effort measure
- <u>Reduced heat transfer</u> through the car body by improved insulation has good effect, but high effort.

- 1. Overview: FINE1 and OPEUS
- 2. Development of Energy Simulation Tool
- 3. Energy Baseline
- 4. Energy KPI Evaluation
- 5. Conclusion

- Conclusion
- FINE1 and OPEUS have designed, implemented and applied an **energy simulation tool for single train runs**
- This OPEUS energy simulation tool has been approved for energy KPI calculation in S2R
 → Very fruitful cooperation between CFM- and OC-Project
- The state of the art with respect to energy demand (energy baseline) of railway vehicles in different applications has been defined and documented
- In FINE-1 improvement of the energy KPIs due to S2R technical solutions (SiC, Mass reductions) have been assessed → potential energy savings range between 1% and 9%
- In FINE-2 the OPEUS energy simulation tool...
 - is in use to update energy KPI with improved technologies from the TD projects
 - has been used in combination with thermal carbody model to benchmark innovative HVAC measures for BEMU

Thank you for your attention!

Feel free to ask questions

