
Master Thesis
Deggendorf Institute of Technology, Campus Cham

Faculty of Applied Natural Sciences and Industrial Engineering

Master Mechatronic and Cyber-Physical Systems

German title:

Leistungsbewertung für einen verteilten
On-Board-Computer

English title:

Performance Evaluation for a Distributed
On-Board Computer

Master thesis to obtain the academic degree:

Master of Engineering (M.Eng.)

Submitted by: Mahmoud Mostafa Elbarrawy
Matriculation: 00822092

First examiner: Prof. Dr. Frank Denk

Germany, January 25, 2023

Declaration

Name of the
student:

Name of the first
examiner:

itle of the master thesis:

1. I hereby declare that I have written this master thesis independently. I have not submitted it
for any other examination purposes. I have not used other references or material than
mentioned in the bibliography and I have marked all literal and analogous citations.

Cham, (date) __________ signature of student: ________________________

2. I agree that my master thesis may be made available to a broader public by the DIT library.
Therefore, I hand in a further bound copy of my master thesis.

 yes no

Cham, (date) __________ signature of student: ________________________

I declare and take the responsibility that I am the exclusive owner of all rights concerning the
master thesis, including the right of disposal concerning drafts and attached illustrations, plans or
similar and that no third party rights or claims or legal requirements will be made upon making
this master thesis publicly available.

To be filled in by the first examiner in the event that the author agrees with public accessibility of the master thesis:

Adding a copy of the master thesis into the stock of the library and lending the copy is:

 approved not approved

Cham, (date) __________ signature of first examiner: ________________________

Acknowledgments

I would like to thank God for everything. Thank God for such wonderful, supportive parents.

I would like to thank M. Eng. Patrick Kenny, Dr. Carlos Gonzalez, and Dipl.-Ing. Daniel

Lüdtke for supporting me through this master’s thesis project. I can’t find the words to express

my appreciation for all of you. Special thanks to my professor, Frank Denk, for his continued

support. Thanks to Dr. Andreas Lund for always being there when I needed help, and thanks to

all my teammates. Last but not least, I’d like to express my gratitude to the Deggendorf Institute

of Technology and the Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center

DLR)-Institute of Software Technology for allowing me to work on this fascinating master’s

thesis.

ii

Abstract

Autonomous spacecraft, satellite communications, and Earth observation are examples of the

growing significance of onboard applications with high demands for the processing power of

onboard computers in the space domain. The space-grade hardware used for onboard com-

puters does not cope with the computational demands of the current space applications. As a

result, engineers are increasingly using Commercial off-the-shelf (COTS) components to build

spacecraft. However, the COTS are vulnerable to cosmic radiation. The German Aerospace

Center (DLR) addressed this problem and found a solution by creating a distributed system,

the Scalable On-board computing for Space Avionics (ScOSA) with a heterogeneous number

of nodes. This thesis focuses on selecting and applying a suitable benchmark for performance

evaluation of the ScOSA distributed system. The results of the selected benchmark (OBPMark-

Image Processing) show an increase in performance from 0.968 megapixels/s in one node to

1.538 megapixels/s while using three nodes.

Keywords: space domain, benchmarking, performance evaluation, floating-point operations,

image processing.

iii

Contents

Acknowledgments ii

List of Abbreviations vii

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement . 3

1.3 Contribution and scope . 4

1.3.1 Selection of appropriate benchmarks 4

1.3.2 Adaption of benchmarks to ScOSA system 5

1.4 Structure . 5

2 Literature Review 6

2.1 Benchmark definition . 6

2.2 History of benchmarks . 6

2.3 Benchmark types for performance evaluation 8

2.4 Common performance Benchmarks . 9

2.4.1 Stone age Benchmarks . 9

2.4.2 General purpose CPU Benchmarks 11

iv

2.4.3 Embedded and media benchmarks . 13

2.5 Benchmarks for distributed systems . 15

2.6 Benchmarks for the space domain . 17

2.7 Benchmark comparisons . 20

3 Methodology 22

3.1 ScOSA Middleware architecture . 22

3.2 Benchmarking: . 25

3.3 Benchmark selection . 26

3.4 Hardware . 27

3.5 Benchmark Implementation . 28

3.6 LINPACK Implementation . 28

3.6.1 LINPACK One Node . 28

3.6.2 LINPACK three Nodes . 28

3.7 OBPMark in Details . 29

3.7.1 OBPMark One Node . 32

3.7.2 Benchmark Distribution . 33

3.7.3 Modeling Approach for Distribution 36

3.7.4 OBPMark three Node . 36

4 Results and Discussion 39

4.1 LINPACK . 39

4.2 OBPMark . 41

4.2.1 OBPMark One Node . 41

4.2.2 OBPMark Three Nodes . 41

4.2.3 Team server x86 64 Results Discussion 43

4.2.4 Zynq-7000 Results Discussion . 45

4.3 Verification . 46

5 Conclusion 47

v

6 Future Work 49

7 Appendix 50

References 53

vi

List of Abbreviations

ScOSA Scalable On-board computing for Space Avionics

SPEC Standard performance evaluation corporation

TPC Transactions processing council

IC integrated circuits

COTS Commercial off-the-shelf

DLR The German Aerospace Center

OBC-NG On-Board Computer—Next Generation

CPU central processing units

BLAS Basic Linear Algebra Subroutines

HPN High-performance node

RCN Reliable communication nodes

vii

List of Figures

1.1 ScOSA-illustration example [1] . 3

2.1 EEMBC-product-timeline [2] . 14

3.1 The stack software architecture layout of ScOSA. The middleware is made up

of the three components labeled in blue — System Management Services, the

Distributed Tasking Framework, and the SpaceWire-IPC protocol [1]. 23

3.2 Benchmark Flow Chart . 26

3.3 ScOSA HPN Software Development Model 27

3.4 LINPACK one node setup . 28

3.5 LINPACK three node setup . 29

3.6 OBPMark Image-processing pipeline [3] . 30

3.7 OBPMark one node setup . 32

3.8 Distribution into four quarter sub-frames . 33

3.9 Overlapping Distribution . 35

3.10 OBPMark three node setup . 37

4.1 OBPMark three node Event, Time Diagram Team-server 43

4.2 OBPMark Team server Performance . 44

4.3 OBPMark three node Event, Time Diagram HPNs 45

4.4 OBPMark HPNs Performance . 46

viii

List of Tables

2.1 GPU Bench workloads . 19

2.2 OBPMark overview [4] . 20

2.3 Benchmark Comparison . 21

4.1 Hardware Specification . 39

4.2 LINPACK Results . 40

4.3 OBPMark One Node results . 41

4.4 OBPMark distributed results . 42

7.1 LINPACK One Node development machine detailed three-run results 50

7.2 LINPACK One HPN Node detailed three-run results 50

7.3 LINPACK Three Nodes development machine detailed three-run results 50

7.4 LINPACK Three HPN Nodes detailed three-run results 51

7.5 OBPMark one Node results detailed three-run results 51

7.6 OBPMark distributed results for the development machine three runs 51

7.7 OBPMark distributed results for the HPNs three runs 52

ix

Chapter 1

Introduction

1.1 Motivation

Space domain applications, such as autonomous spacecraft, satellite communications, and

Earth observation, are examples of the growing significance of on-board applications with high

demands for processing power in the space domain. To interpret and evaluate the massive vol-

umes of data produced by sensors and equipment in outer space, these applications will require

cutting-edge computer systems and algorithms.

On-board computers are an essential part of spacecraft and are responsible for managing var-

ious systems and functions on the craft. Unlike typical embedded systems, onboard spacecraft

computers must have certain qualities (e.g., high performance and reliability) due to the harsh

nature of space. The software and hardware for the spacecraft cannot be directly maintained

after the mission has launched, which led to the need for reliability on both the software and

hardware sides. Moreover, the integrated circuits (IC) inside the system are vulnerable to cos-

mic radiation. This may cause soft errors [1] in electronics, which in turn will cause a wide

variety of issues in the spacecraft’s operational software.

1

Chapter 1: Introduction

To avoid such problems, engineers usually use space-grade hardware. Those types of hard-

ware processing units are referred to as ”radiation-hardened” reliable computing nodes. How-

ever, they cost much more than normal processing units, and the computation performance

is lower compared to cutting-edge embedded hardware on the market. For this reason, engi-

neers are increasingly using commercial off-the-shelf COTS parts to construct/build spacecraft,

improving performance and decreasing costs at the expense of reliability. Obtaining both relia-

bility and performance without sacrificing either is one of the scientific challenges in the space

domain at the moment.

DLR started exploring this problem in 2012, which led to the 2013 On-Board Computer—Next

Generation (OBC-NG) project [5] and the 2017 ScOSA project [6]. These projects resulted in a

heterogeneous onboard computer architecture by combining radiation-hardened hardware with

high-performance COTS processors. The ScOSA architecture is designed to ensure that the

spacecraft has access to high-performance and reliable computing power while in orbit. To ac-

complish this, a distributed computer with several heterogeneous processors connected through

a network is used. The ScOSA middleware layer is utilized to control the heterogeneous system

and to create distributed computing applications without worrying about the complexity of an

underlying distributed system.

After the ScOSA project, another project began with the title of the ScOSA Flight Exper-

iment, which started in January 2020. This project goal is an in-orbit demonstration of the

ScOSA onboard computer.

2

Chapter 1: Introduction

Figure 1.1: ScOSA-illustration example [1]

Figure 1.1 shows one possible way of configuring ScOSA system architecture, but not the

only one. In order to communicate with the telecommand and telemetry units, the system relies

on two Reliable communication nodes (RCN)s. SpaceWire routers connect the RCNs to the

N high-performance nodes and the interface nodes, which in turn link the sensors and actuators.

1.2 Problem statement

There are a lot of challenges that distributed computers face. Especially in distributed com-

puting systems that consist of multiple interconnected components (nodes) across a network,

typical challenges that engineers try to overcome while constructing those systems are scalabil-

ity (increasing the number of hardware nodes while ensuring that the overall system functions

efficiently), debugging and monitoring the system while overcoming potential communication

failures, optimizing the latency of data transfer, efficiently managing data across different nodes

in an organized way, and interoperability (of heterogeneous nodes), making sure that they are

compatible to function together and can overcome potential node failures by continuing to func-

tion.

3

Chapter 1: Introduction

The ScOSA system is comprised of N nodes, as illustrated in Figure 1.1. The system is in con-

tinuous development to overcome the previously stated challenges. The challenge that ScOSA

faces is due to the flexibility of the heterogeneous system, which offers the application engi-

neers a wide range of options for the number of processing nodes to select from.

Thus, this thesis addresses the following research question:

”How much processing power do we have and how many nodes should I add to reach the

required performance?”

Evaluating how well these systems and algorithms function (e.g., ScOSA) is difficult due to

the heterogeneity, distribution, and space-domain complexity of their systems. One way to

evaluate the performance and reliability of spacecraft onboard computers is through the use of

benchmarks. A benchmark is a set of tests or metrics that are used to measure the performance

of a system or device. In the context of onboard computers, benchmarks can be used to measure

factors such as computational speed, memory bandwidth, power consumption, and reliability.

This in return generates the following further relevant secondary questions:

• Which benchmarks are more suitable for our distributed system?

• How to adapt or create benchmarks for the ScOSA system?

1.3 Contribution and scope

The goal of this Master Thesis is to design and carry out a performance evaluation of the

ScOSA system by selecting and applying appropriate benchmarks. Determining which is an

appropriate benchmark for this distributed system would be valuable for future developments.

The proposed work includes the following steps:

1.3.1 Selection of appropriate benchmarks

A range of standard benchmarks for computing systems exists, including those aimed at generic

computer systems, embedded systems, and space-specific benchmarks. As ScOSA is a space-

specific, heterogeneous, and distributed computing system, not all benchmarks will be appro-

4

Chapter 1: Introduction

priate. Benchmarks will be selected based on criteria such as their appropriateness for the

ScOSA hardware and software, including their source-code availability and licensing require-

ments, their feasibility of implementation, and their relevance to the application types used in

ScOSA.

1.3.2 Adaption of benchmarks to ScOSA system

The selected benchmarks must be implemented to run on the ScOSA system. This may require

adapting them to the C++ programming language used in ScOSA and having them built using

the ScOSA middleware’s Scons build system for the embedded targets. It will also require

the design of a parallelization strategy to make effective use of all available processing nodes.

In this thesis, the benchmarks will be run on the software development model of the ScOSA

system.

1.4 Structure

The thesis is structured into six chapters. Chapter One is the introduction, which contains the

motivation and importance of performance evaluation for a distributed system as well as our

contribution to the scientific field. Chapter Two is a literature review of the previous techniques

used for performance evaluation and benchmarking. Chapter Three is the methodology part,

where a description and explanation of the thesis work are shown. The results and outcomes

of the thesis work are discussed in Chapter Four. Chapter Five is a conclusion and discussion.

Chapter Six would be a future recommendation for possible scientific explorations in the same

area of research.

5

Chapter 2

Literature Review

This literature review focuses on reviewing benchmarks for performance evaluation. The litera-

ture shows benchmark definitions, history, different types of benchmarking techniques, current

benchmarks for distributed systems, a comparison between current benchmarks with various

aspects, and compatibility for embedded onboard computing systems.

2.1 Benchmark definition

A benchmark is ”a standard method for evaluating and comparing competing systems or com-

ponents based on certain qualities, such as performance, reliability, and security” [7]. This

definition is one of the definitions that focus on the competitive features of benchmarks [8].

2.2 History of benchmarks

Performance benchmarks have contributed significantly to the development of the comput-

ing domain [9]. Since the seventies, there have been standardized tests of central process-

ing units (CPU) and other processors since the seventies. Modern computer workloads con-

tain different types of programs, making it difficult to establish standard benchmarks [10].

Benchmark-based performance assessment has always been contentious. Even recently, peo-

6

Chapter 2: Literature Review

ple have purchased computers primarily based on clock speed or memory capacity, not test

results. In the 1980s, computer performance was measured using small program portions (ker-

nel) taken from applications (e.g., Lawrence Livermore Loops, Linpack, Sorting, the Sieve

of Eratosthenes, the 8-Queens Problem, and the Tower of Hanoi) or synthetic programs such

as Whetstone or Dhrystone [11]. Synthetic benchmarks serve no practical purpose other than

benchmarking, and they have no real-life application usage. Whetstone is a synthetic floating-

point benchmark based on numerous programs. When evaluating floating-point arithmetic per-

formance, the Whetstone benchmark is used. Dhrystone is an additional integer performance

benchmark created in the 1980s. Both were popular for years. Both programs were rudi-

mentary attempts to generate a benchmark suite application. However, many of the findings

calculated by the programs were never published or utilized. Compilers could easily delete a

huge portion of dead code because of the optimization properties of the compiler, or the results

would be invalid because of the compiler’s debug mode, which gets more safety information

on the compiled code to help debug, and which adds overhead to the performance time. Also

according to Weicker’s 1990 study, manufacturers misused/abused synthetic benchmarks to get

a high score for their hardware [12]. Because of all that was mentioned, there was a need for

a standard, agreed-upon way for developers to benchmark the performance. The Standard per-

formance evaluation corporation (SPEC) [13] and Transactions processing council (TPC) [14]

was founded in 1988 to enhance benchmarking and make sure there is no abuse of the compiler

optimization properties.

The user’s application is often cited as the gold standard for benchmarking, based on the

applications that the machine will perform; the evaluation of how well this machine compares

to others is comprehended. However, this is usually unattainable since the software cannot be

installed on all of the machines involved in the system. Also, a slight change in hardware may

cause a speed difference on the software side; an example of that is the cooling of the processing

unit. If the cooling is not good enough, it may cause a lag on the software side. The complexity

of benchmark software increases in proportion to its resemblance to actual applications. This

makes measurements more challenging [11]. The three most popular benchmarks are Whet-

7

Chapter 2: Literature Review

stone, Dhrystone, and Linpack, which are discussed in detail in section 2.4. Results from these

standard benchmarks are often referenced in manufacturer and industry publications. Whet-

stone and Dhrystone are examples of synthetic benchmarks. Linpack is a benchmark that was

derived from a practical program.

2.3 Benchmark types for performance evaluation

Benchmarks are categorized into four different types: real applications, small benchmarks, syn-

thetic benchmarks, and benchmark suites [15]. But those categories do not expand to the types

of distributed or heterogeneous system benchmarks. It was a general explanation of a bench-

mark. In reality, the systems are constructed from distributed nodes as resources, and in some

cases, those nodes are heterogeneous. However, the explanation of these types is essential for

literature.

Real application benchmarks are based on programs that have already been made. They are

made up of the tasks that a typical user does during the day. The benefits of running real appli-

cations are that they directly show how fast programs run. But these benchmarks are usually

very large and take longer to run and move to other machines. Also, it can be hard to find a

processing bottleneck and figure out what instructions need to be improved.

Small benchmarks are only small segments of codes like loops and recursions. It is easily simu-

lated during design to test functionality, and it offers developers a solid understanding of which

part of their workflow is slowing down. However, designers may misuse this information and

create an algorithm that performs well for a single task, but when multitasking occurs in a real

application, the processing power, and speed drop.

Synthetic benchmarks are aiming to provide similar functionality to their more resource-

intensive counterparts while using much less memory and CPU. Although they do not use the

processor’s capabilities in a meaningful task, they can accurately portray the processing power.

When performing a benchmark, several iterations should always be performed; the timings may

vary, therefore taking an average will provide more reliable results [16].

8

Chapter 2: Literature Review

A benchmark suite is a collection of individual benchmarks from several sectors designed to

simulate a wide range of computational demands on a system. To simulate a user’s usual work-

load, many organizations collaborated to agree on a standard collection of applications. Suites

are helpful since they cover a wide variety of qualities and traits. However, they need regular

upgrades to keep up with the changing nature of workloads.

2.4 Common performance Benchmarks

In this section, the most common performance benchmarks are reviewed and categorized into

three categories which are stone age benchmarks, general-purpose CPU benchmarks, and em-

bedded system benchmarks.

2.4.1 Stone age Benchmarks

Stone age benchmarks are the first benchmarks introduced for performance evaluation, and

they are well-known in the scientific communities [11].

Whetstone:

Whetstone is the first benchmark software for numeric programming. The whetstone modules

have statements of integer arithmetic, floating-point arithmetic, ”if” expressions, function/pro-

cedure calls, etc., which are ”Whetstone instructions” of synthetic code [11]. The Whetstone

benchmark produces an output metric of KWIPS or MWIPS (mega Whetstone instructions

per second). Mathematical library functions take a considerable amount of time to execute.

However, it may not apply to most numerical applications nowadays. Since the speed of these

subroutines, or microcode, determines Whetstone’s performance, manufacturers may modify

the run-time library, which would be a manipulation of measuring the performance; that’s why

Whetstone is not representative of modern programs.

9

Chapter 2: Literature Review

Dhrystone:

Dhrystone was created similarly to Whetstone in 1984 [11]. The original language was

Ada. However, it utilizes just the Pascal subset and is easily translated into the Pascal and C

languages. Dhrystone is a non-numeric benchmark that measures system-type programming

language characteristics (e.g., operating systems, compilers, editors, etc.). System-type pro-

gramming includes fewer loops, simpler computations, and more ”if” and function calls. The

Dhrystone benchmark evaluates the integer operations that processing units can perform [17].

The measuring unit of the benchmark is Dhrystones per second. In addition, Dhrystone Million

Instructions Per Second (DMIPS) is still another representation of Dhrystone’s result.

Dhrystone’s measurement uses no floating-point computations; instead, it uses string func-

tions to evaluate the performance, which consumes most of the benchmark’s execution time.

Dhrystone’s primary measurement loops have fewer loops than Whetstone’s. Microprocessors

with short instruction caches below 1,000 bytes always face the well-known problem of cache

misses. Compilers are in continuous development, and that results in an optimization of the

code in release mode, which might recognize numerous statements in Dhryston as unnecessary

since it is a synthetic benchmark and will not execute the instructions.

LINPACK:

LINPACK was not originally a benchmark, according to its inventor. In 1976, it was a bundle

of linear algebra subroutines for Fortran applications. It was meant to give an idea of how long

it would take to solve a set of linear equations. Dongarra [18], who gathers and distributes LIN-

PACK results, has turned it into a benchmark with many versions [19]. The benchmark assesses

the performance by generating a dense matrix problem Ax = B and measuring how much time

it will take to solve this matrix. The measuring unit is float point operations per second (Flops)

or megaflops. The software uses a large matrix (a two-dimensional array), yet Basic Linear

Algebra Subroutines (BLAS) manage it as a one-dimensional array [20]. BLAS serves as the

foundation for the LINPACK software since BLAS handles much of the floating-point work

inside the LINPACK algorithms. The floating-point operation rate can be determined by the

10

Chapter 2: Literature Review

array size (the number of elements in the matrix). Non-floating-point operations are ignored,

or their execution time is added to floating-point operations. However, this might be deceptive

when floating-point operations become quicker than integer operations, but that was in the old

versions. Also, data mapping for the cache line in the LINPACK benchmark is highly affected

by the matrix size (array size), and when dealing with big matrices, it might cause a cache miss

and eventually lead to a low Mflops rate. Currently, single and double floating-point precision

versions are available for LINPACK.

LAPACK:

LAPACK uses Fortran 90 to solve eigenvalue, singular value, eigenvalue systems, and si-

multaneous linear equations. Related computations include rearranging Schur factorizations

and calculating condition numbers (LU, Cholesky, QR, SVD, Schur, generalized Schur). Real

and complex matrices in single and double precision use the same operations [21].

The LAPACK optimizes the LINPACK libraries on shared-memory vectors and parallel

computers. LINPACK is inefficient on these processors because their memory access pat-

terns don’t take advantage of multi-layered memory hierarchies, wasting time transporting data

instead of executing floating-point calculations. LAPACK overcomes this problem by putting

matrix multiplication into algorithm inner loops. However, LAPACK is not much different

from Linpack from a point of view of benchmarking as it only optimizes the algorithm order

itself and it is not giving a clear precise value of processing power for space applications.

2.4.2 General purpose CPU Benchmarks

General-purpose CPU benchmarks are mostly for PCs and general-purpose computing power,

not for specific workloads. However, for the sake of the literature review and history of bench-

marks, it is necessary to include the most famous ones that played a vital role in shaping the

standardization of benchmarks.

11

Chapter 2: Literature Review

TPC:

The Transaction Processing Council (TPC) was created in 1988 to develop transaction pro-

cessing and database benchmarks and publish objective, verifiable transaction-processing per-

formance statistics [14]. Many commercial and computing operations are called ”transactions.”

A ”transaction” is a computer function that involves disk access, operating system calls, or data

transfer across subsystems. TPC defines a transaction as an exchange of products, services,

or money. A typical TPC transaction involves updating a database for inventory management

(goods), airline bookings (services), or banking (money). Customers or service reps enter and

manage transactions on a terminal or desktop computer linked to a database. TPC benchmarks

assess transaction processing (TP) and database (DB) performance by how many transactions a

system and database can do per unit of time, such as per second or minute [22]. As previously

stated, the TPC focuses on benchmarking computers for domains unrelated to space. However,

it illustrates how a benchmark measures performance in a distributed system for data exchange

between processing units by measuring the latency of data transformation and evaluating based

on transmission time. The master node is used as the main node that evaluates other nodes in

the system. But it does not evaluate itself.

SPEC:

In 1988, a small group of workstation providers recognized the industry needed realistic,

standardized performance assessments [22]. SPEC provides the benchmark with a standard-

ized suite of source code from existing programs that its members have adapted to several

platforms. SPEC source code benchmarks are based on actual user applications. These bench-

marks examine processor, memory, and compiler performance. Each program in SPEC has

many input data sets. The reference input set is huge, but test and train inputs are provided to

verify it. However, SPEC is more of general purpose application benchmark which is difficult

to apply on an embedded system.

12

Chapter 2: Literature Review

GeekBench:

GeekBench comes from Primate Labs and works on several platforms [23]. It includes a

suite of tests designed to mimic the typical use of the CPU. GeekBench is equipped with its

exclusive method of gauging performance. One core’s score (in points) is added to the total

score. Better performance is reflected by a higher score. The issue with Geekbench is that

in order to apply their latest version then there are minimum software/hardware requirements.

e.g. at least for Linux distribution: Ubuntu 16.04 LTS (64-bit) or later, 2GB of RAM, and Intel

Core 2 Duo or later for CPU unit. This is not the case for all nodes that we have for our space

application and that makes it more in the general purpose category than utilizing it for space

applications.

2.4.3 Embedded and media benchmarks

Embedded system benchmarks are used to evaluate the embedded software and hardware com-

ponents of a system for specific types of application workloads. For space applications, embed-

ded benchmarks are the fundamental basis for measuring performance. Also, it is the backbone

for developing special kinds of benchmarks for the space domain.

EEMBC benchmarks:

The EDN Embedded Microprocessor Benchmark Consortium (EEMBC) was created in

April 1997 to produce embedded processor benchmarks. EEMBC benchmarks [2] both real-

world and synthetic benchmarks. Automotive, industrial, consumer, networking, office au-

tomation, and telecommunications benchmarks are covered. These benchmarks target engine

control, digital cameras, printers, cellular phones, modems, and other microprocessor-based

devices. The EEMBC team deconstructed applications from these fields and developed 37

benchmark algorithms. EEMBC’s Certification Labs (ECL) in Texas and California provide

certified benchmarking findings. EEMBC is sponsored by most of the processor industry and

is the industry standard embedded processor benchmarking organization.

13

Chapter 2: Literature Review

Figure 2.1: EEMBC-product-timeline [2]

Figure 2.1 shows the timeline of EEMBC product benchmarks and as shown there are a lot

of versions of it. Which makes it a clear powerful candidate for the space domain since it is

supported by most industry standards.

MiBench:

Freely available online [24, 25], MiBench is an embedded benchmark package with many

of the same tools as the EEMBC suite. The EEMBC software bundle is not easily available

to universities. Michigan researchers built the MiBench suite of 35 embedded applications to

address this issue. The EEMBC suite serves as the basis for the categorization of software into

the following groups: transportation, home use, office computing, mobile devices, security, and

privacy. The C source code for all the apps is provided. The issue with MiBench is that it is

not as well known as EEMBC, and that is why the reported results will be difficult to compare

with others.

MediaBench:

The MediaBench is an academic initiative that aims to compile different benchmarks for

media processing. Many image processing, networking, and digital signal processing (DSP)

14

Chapter 2: Literature Review

applications are included in the MediaBench benchmark suite. e.g., voice compression, im-

age compression, Ghostscript (a portable document format), and adaptive differential pulse

code modulation for signal encoding. The outcomes of the 30th International Symposium on

Microarchitecture provides an example of how these benchmarks are utilized [26]. But as men-

tioned with the MiBench, the MediaBench was created for academic purposes, which makes it

unknown for users to report their results for comparison and verification.

BDTI benchmarks:

Formed in 1991, Berkeley Design Technology, Inc. (BDTI) has provided technical services

with an exclusive emphasis on digital signal processing [27]. To evaluate how well various

apps perform, BDTI creates bespoke benchmarks. Some examples of DSP procedures used in

the benchmarks include FIR filters, IIR filters, FFT, dot product, and Viterbi decoder. However,

the BDTI is not open source, and most of the claims that the benchmark assesses the processing

power accurately are from their website.

2.5 Benchmarks for distributed systems

Until now, there has been no distributed benchmark application that is compatible with all of

the system processing units without tweaking the algorithm to make it suitable, specifically if

it is a heterogeneous system. However, there are some attempts to achieve a fully automated

benchmark that works with distributed systems without worrying about the system setup. Their

benchmark workloads are inspired by the common benchmarks that are mentioned in the above

section. This section will provide an overview of the most well-known benchmarks for dis-

tributed systems.

Real-time distributed systems (RTDSs) can be set up in practically countless different ways.

These differences come from the fact that hardware, system software architectures, and ap-

plication needs are all different from one system to another. Because of these differences,

15

Chapter 2: Literature Review

benchmarking RTDS depends more on how the system is configured, the nature of the hard-

ware used, and the type of software running on those systems. In [28] the authors introduce

benchmarking techniques as an application for the RTDS. Also, they introduced one way of

modeling the RTDS as three scheduling domains: the node’s processor scheduling domain, the

node’s communication scheduling domain, and the node’s priority domain. A benchmark can

only combine these three scheduling domains and be independent of hardware and system soft-

ware architecture if it presents itself to the RTDS as an application. From an application’s point

of view, the RTDS can be thought of as a group of tasks (processes) that run on different nodes

and send messages to each other. Both the tasks and the messages are time-constrained, and

if the deadline is passed, then the benchmark fails or gets a low score for that task. However,

the authors didn’t present any rules or constraints for modeling the distributed benchmarks, but

their technique is worth mentioning.

In [29] the authors introduced an approach for modeling the performance behavior of the

distributed system, which depends on the execution state of distributed programs and subpro-

grams. In their approach, the modeling depends on two factors: the available data and the

transmission paths available for it. Capturing the time for this model is their main target. Be-

fore proceeding, it is a good idea to evaluate the available paths and the time taken by the data

to move in this path so that the system can select the shortest time path to run. We can consider

this in distributing benchmarks in general. But the paper did not discuss comparing or bench-

marking their approach with other available approaches. Furthermore, their work is more of a

simulation than an actual run on real hardware.

PEEL is a framework for benchmarking distributed systems and algorithms [30]. The pur-

pose of the PEEL benchmarking framework is to provide a standardized way to develop, run,

evaluate, and share experiments for evaluating the performance of distributed systems and al-

gorithms. Currently, PEEL supports distributed stream processing frameworks of PC clusters

such as Flink, and Spark [31]. Peel’s key principles, such as experiment definitions and its

experimentation procedure, were shown in an example of a supervised machine learning work-

16

Chapter 2: Literature Review

load. However, the authors are more focusing on the group of PC computers and they are not

discussing the low-level implementation of embedded hardware nodes.

The German Federal Ministry of Education, Science, Research and Technology (BMBF) ini-

tiated the IPACS-Project (Integrated Performance Analysis of Computer Systems) to provide a

new standard distributed benchmark-execution framework by which to evaluate the efficiency

of distributed systems [32]. The project targets main memory and disk access patterns for inter-

nal node communication, software design, and workload patterns to evaluate high-performance

PC clusters. This is similar to [30]. The project did not expand the distributed benchmarking

process for embedded systems. However, they provide a modeling approach for applying LIN-

PACK benchmarks in a distributed system by using the framework to select the LINPACK and

selecting the targeted computer then everything will work automatically. First, the source code

is fetched from the NETLIB website, then the framework copied the code for the executable

after that executable is copied to the target and executed, then the results are sent automatically

to the user or the website for comparison. If the results are not logical in comparison to other

CPUs of the same type on the website, the framework notifies the user about something wrong

in the system. This notion is worth noting since it may be beneficial if we want to create a

framework like that for space applications.

2.6 Benchmarks for the space domain

In [33] the authors introduced a framework to analyze processor architectures for onboard space

computing. Their main metric measurements are computational density (CD) and CD per watt

(CD/W) device metrics which are simply the processor’s raw performance in terms of addition

and multiplication operations per second [34]. The authors are looking for performance from

two points of view: the benchmark performance and the device metrics that they use. The

performance model for the work introduced is from the University of California. The model

consists of space-computing taxonomies, which are similar to benchmark workloads for space

applications [35]. They compared the serial and parallel performance of different processor

17

Chapter 2: Literature Review

architectures with multiple cores; however, they did not discuss multiple nodes for their work,

and the paper does not provide guidelines for implementation.

NPB:

NASA developed the NAS Parallel Benchmarks (NPB) to measure the efficiency of mas-

sively parallel supercomputers [36]. The benchmarks are implemented in software for com-

putational fluid dynamics (CFD)-related tasks. The use cases for NPB are rare in onboard

processing applications. However, there is an implementation of the fast Fourier transform

(FFT) workload that might be useful, because FFT is a common workload in space domain

applications [35].

EEMBC for space applications:

Several processors and embedded system benchmarks have been published by the EEMBC

as mentioned in section 2.4.3. The CoreMark, designed to replace the Dhrystone standard, has

gained widespread adoption. It has the same foundation as Dhrystone, mainly synthetic appli-

cations. However, it fixes problems inherent to Dhrystone such as the difficulty of implement-

ing compiler optimizations and the lack of a standardized method for reporting Dhrystone find-

ings. CoreMark has been utilized in the space domain, e.g., the single- and multi-core LEON

processors [37] and [38]. However, comparing CPUs (central processing units) against other

kinds of processing devices like FPGAs (field-programmable gate arrays), GPUs (graphics

processing units), and ML accelerators is not a good use of such benchmarks. Other EEMBC

benchmarks including Multi bench for measuring the performance of multicore processors and

FPMark for measuring the performance of multithreaded floating point operations are available

in the market. Additionally, two heterogeneous system benchmarks, advanced driver assistance

systems (ADASMark) and machine learning (MLMark), have been made public. System-on-

chips that perform (ADAS) activities for autonomous driving are the focus of ADASMark. The

image processing pipeline incorporates standard ADAS features of pre-processing and object

detection [4]. The benchmark is available to download in OpenCL and may be used to run on

18

Chapter 2: Literature Review

CPUs, GPUs, or DSPs. Although the method and image processing, in general, are similar to

those performed aboard spacecraft, they do not completely translate to the image processing

tasks required by space applications. Although it is not an accurate representation of space

systems, it may be used as a good baseline for general image processing.

GPU4S Bench:

The project GPU4S Bench (graphics processing unit for space application) aims to design

and implement an open-source GPU benchmarking suite for space onboard computers. The

project is targeting the GPU specifically because of its high potential for image processing and

filter implementations that are used in space missions [39, 35]. The project has helped in cre-

ating an onboard processing benchmark (OBPMark), a new benchmark suite that is not only

for GPUs but also for other different processing units available in the market, which is a major

step in the benchmarking for the space domain (reviewed in 2.6). The building blocks of this

GPU bench serve as a foundation for the main workloads that the space mission encounters in

action. Table 2.1 contains the relevant workloads.

Table 2.1: GPU Bench workloads

Building Block Domain

Fast Fourier Transform Image processing and signal processing

Finite Impulse Response Filter Vision based navigation and signal processing

Discrete Wavelet Transform Data compression

Matrix Computation Vision-based navigation, image processing and neural network processing

Convolution Neural network processing, vision-based navigation and image processing

Correlation Signal processing, vision based navigation and image processing

Memory Allocation Image processing, vision-based navigation, signal processing and neural network processing

OBPMark:

The European Space Agency (ESA) and the Barcelona Supercomputing Center (BSC) have

begun work on a set of benchmarks called OBPMark (On-Board Processing Benchmarks) that

will encompass software often used on spacecraft [4]. The development of this benchmark, as

19

Chapter 2: Literature Review

mentioned in section 2.6 comes from the GPU4S Bench project. However, it was also inspired

by the industrial benchmarks of the EEMBC suites 2.6 in its implementation, making it more

suitable for performance evaluation in space applications. Currently, the benchmark is in beta

version with standard C, openMP, OpenCL, and CUDA implementations. Table 2.2 describes

the standard workload domains for this suite.

Table 2.2: OBPMark overview [4]

Benchmark Name Workload

Image Processing Image calibration/correction and radar image processing

Standard Compression Data compression, image compression and hyperspectral image compression

Standard Encryption AES Encryption

Processing Building Blocks FIR filter, FFT processing, convolution, matrix multiplication

Machine Learning Inference Object detection and cloud screening

2.7 Benchmark comparisons

There are headlines to follow for building a benchmark from scratch depending on certain

aspects that can also be used to select a specific benchmark. These aspects can be formulated

into questions [7].

• Relevance: Is it related to the work domain of the measured processor or not?

• Verifiability: Does it have data to verify the output results?

• Scientific popularity: Is it famous and has a vivid will known measuring unit for the

public?

• Openness: Does it have an open source code and is available for use without restrictions?

• Access to reported data: Is the reported data available to the public comparison without

restrictions or not?

In response to those questions, we had a comparison between benchmarks that we have

revised to select the most suitable one for our system.

20

Chapter 2: Literature Review

Table 2.3: Benchmark Comparison

Benchmark Relevance Verifiability Scientific
popularity Openness Access to

reported data Type

Whetstone 0 + + + + + + + + Synthetic
BenchmarksDhrystone 0 + + + + + + + +

LINPACK 0 + + + + + + + + Application
BenchmarksLAPACK 0 + + + + + + + +

TPC - - + + - - 0
General purpose

CPU Benchmarks
SPCE - - + + - - 0

GeekBench - - + + + + +
MiBench 0 + + + + 0

Embedded
Benchmarks

MediaBench 0 + + + + 0
BDTI 0 0 0 - - -

EEMBC 0 + + + 0 +
GPU4S + + + + + + + + Space application

BenchmarksOBPMark + + + + + + + +
(+ +): Excellent. (+): Good. (0): Neutral. (-): Bad. (- -): Worse

The aspects that the comparison is built on are very important for selecting a benchmark to

ScOSA. From Table 2.3 The closest ones to reach a level of compatibility with evaluating all

embedded systems would be the EEMBC benchmarks, but they are mostly in the automotive

domain and are not tailored specifically for space applications. On the other hand, when look-

ing at synthetic and application benchmarks, it is better to go on with application types so that

they match the behavior of the system in real-life applications.

The only disadvantage of space application benchmarks is that they are significantly new. For

example, the OBPMark suit is currently a beta version. When it comes to general-purpose CPU

benchmarks, attempting to implement them in the space domain is a bad idea because they are

not designed to evaluate the workloads of space applications.

21

Chapter 3

Methodology

In the methodology section, the workflow will be discussed based on the findings of the litera-

ture review. As seen in the previous table, there are several different benchmark applications.

On our ScOSA system, we are looking to assess the performance of a distributed system with

a relevant workload that is popular for benchmarking in the scientific community for space

applications so that the results can be compared with other distributed onboard computers.

3.1 ScOSA Middleware architecture

In the introduction section, we talked about the ScOSA project in brief detail, but before diving

into benchmark implementation, let’s talk in detail about the ScOSA middleware architecture

and what we need to be concerned about while using it.

The middleware of ScOSA consists of three main components

1. System Management services.

2. Network protocol (SpaceWire or Ethernet).

3. Distributed Tasking Framework.

22

Chapter 3: Methodology

Figure 3.1: The stack software architecture layout of ScOSA. The middleware is made up of
the three components labeled in blue — System Management Services, the Distributed Tasking
Framework, and the SpaceWire-IPC protocol [1].

As explained in the figure 3.1, the stack layers show that the application is at the top and the

rest of the ScOSA is at the bottom with all the protocols, libraries, and hardware. The middle-

ware sorts the nodes into different types, such as observer, worker, or coordinator nodes.

The most important component for integrating and modeling the benchmark into ScOSA will

be the distributed tasking framework, which will be explained in detail later. as a brief expla-

nation of the other two components.

System management service: provides the middleware with fault detection, isolation, and

recovery (FDIR) capabilities. As shown in Figure 1.1 example, the system consists of nodes,

and because of the harsh nature of space, those nodes might face some errors, or for any reason,

some of those nodes might not function normally. ScOSA middleware offers a reconfiguration

23

Chapter 3: Methodology

service that activates FDIR when such problems occur. To facilitate interaction across instances

running on different nodes, the services will be created as threads and linked to the network

stack. This program section is also accountable for archiving the system’s present configura-

tion settings and parameters, as well as the nodes’ current statuses and assigned responsibilities

such as ”observer,” ”worker,” and ”coordinator.”

Network protocol: it is the internal communication protocol between the nodes of the sys-

tem. If you’re familiar with the ISO/OSI reference model, you’ll recognize SpaceWire-IPC as

a component of Layer 4 [1]. Inter-process communication (IPC) between nodes and manage-

ment data to and from the coordinator node is the primary goal of this layer, which supports

Ethernet and SpaceWire data transmission protocols.

Distributed Tasking Framework: The distributed tasking framework is based on the task-

ing framework, which is an event-driven multithreaded execution platform for real-time on-

board software systems [40]. The tasking framework is also developed by DLR internally, and

it is an open-source framework [41]. The idea of a tasking framework is inspired by Petri nets,

which are a discrete event-based modeling approach for the system. The main target is to sep-

arate the functionality of the tasks from the inputs and outputs so that the tasks always have

the same functionality independently. This type of programming is well known as functional

programming.

The framework allows the user to run multiple functions (parallel computing) at the same time

without worrying too much about the complexities going on underneath.

The framework offers:

1. Tasks: the functionality is defined inside them.

2. Events: an object event that can be used to trigger tasks periodically or just once, accord-

ing to the user’s implementation.

24

Chapter 3: Methodology

3. Channels: these are the buffer containers where data is stored inside to separate them

from functionality and to transfer them between tasks when needed by the application.

4. Writer/reader: is used when a node wants to communicate with another node in the

model. The writer/reader is a spatial type of task in a distributed tasking framework that

allows the nodes to send data to each other.

The most important component for integrating and modeling the benchmark into ScOSA will

be the distributed tasking framework, which will be explained in detail later. as a brief expla-

nation of the other two components.

3.2 Benchmarking:

The definition of benchmarking was explained in section 2.1. However, the technical imple-

mentation of any benchmark will follow the flow chart diagram in Figure 3.2.

25

Chapter 3: Methodology

Figure 3.2: Benchmark Flow Chart

The benchmarking flowchart starts with the configuration of the system and then starts the

benchmark workload; after that, check if the benchmark is finished or not. Time recording

should be active while the benchmark is running. After the benchmark is finished, a verifica-

tion step should be executed, but this step is not included in the benchmark time. Then we get

the outputs; typically, the outputs are the time for execution, the rate of execution of operations

used, etc...

3.3 Benchmark selection

From the literature review and the comparison Table 2.3, it was decided to proceed with im-

plementing an application benchmark because it demonstrates the system’s actual behavior in

26

Chapter 3: Methodology

real-life scenarios.

The LINPACK benchmark was chosen to assess the performance of a system with integer op-

erations. Float-point operations are not exclusively used in space applications; they are used in

any application, which is why it made more sense to use this benchmark as a first step toward

evaluating the system since it is famous enough for benchmarking.

However, LINPACK is not enough to evaluate a distributed onboard computer for space avion-

ics, so research work is done to investigate a benchmark suite, which is a collection of bench-

marks for evaluating the system, and from the literature review, it was clear that there is a

dedicated benchmark suite for onboard computers, which is the OBPMark 2.6.

3.4 Hardware

The current hardware that runs our benchmark is shown in Figure 3.3. The hardware used is

the one highlighted in red; it is a Xilinx Zynq-7000 ARM Cortex-A9 [42], which consists of

three CPU units (the three high-performance nodes).

Figure 3.3: ScOSA HPN Software Development Model

27

Chapter 3: Methodology

3.5 Benchmark Implementation

For the distributed tasking framework, the programming sequence can be modeled in diagrams.

In the upcoming sections, you can find the diagrams implementation diagrams of LINPACK

and OBPMark integrated within ScOSA.

3.6 LINPACK Implementation

In the first attempt to evaluate our system, we started as simply as possible. The entire setup is

running on one HPN node. An Event is triggering a task of LINPACK to start the LINPACK

benchmark. The LINPACK Task starts by calculating matrix equations of size N=1000 for a

linear algebra problem. Then a result of Mflops rate is presented at the end of the execution.

3.6.1 LINPACK One Node

Figure 3.4: LINPACK one node setup

3.6.2 LINPACK three Nodes

After running a one-node setup, LINPACK is scaled into multiple nodes to evaluate the dis-

tributed system.

The next setup shows the same process of the LINPACK benchmark but in three different nodes,

28

Chapter 3: Methodology

and one of those nodes is collecting the results of Mflops rate for the system to investigate how

many floating points the three CPU processing units can handle.

Figure 3.5: LINPACK three node setup

Figure 3.5 shows the three tasks of LINPACK in three different High-performance node

(HPN)s , and there are extra three channels to hold the results of Mflops so that the result col-

lector task can calculate the sum of the three nodes.

Also, there are a writer/reader tasks that helps the other two nodes to write into the first HPN

and facilitate communication between them.

3.7 OBPMark in Details

The OBPMark, as explained in section 2.6 was developed through a collaboration between

ESA and the Barcelona Supercomputing Center; currently, it is an open-source beta version.

29

Chapter 3: Methodology

I have been in contact with the ESA team to give more information about the implementation

and to provide documentation if possible. They provided technical notes [3] and gave access to

their internal repository so that I could see the latest version of OBPMark before releasing it to

the public.

The first benchmark in this suite was the image processing benchmark. The technical notes are

clear enough to help with the implementation of the image processing benchmark with ScOSA.

The OBPMark-image processing is based on typical image processing tasks for onboard com-

puters, such as deep-space telescopes with long exposure times.

Figure 3.6: OBPMark Image-processing pipeline [3]

Figure 3.6 is the pipeline implementation of the Image Processing benchmark, where the input

for the pipeline is a set of frames (8 images) and the output is only one frame processed from

all of the inputs. For every input frame, the steps of the pipeline are executed, and they are

governed by the equations from 3.1 to 3.6:

Where,

I : is the current input pixel.

J : is the output pixel.

x, y : are the position of the pixel inside the frame.

Image offset correction

In the image offset correction step, a constant offset value, Cx,y, is set to each input pixel and

subtracted from the input pixel if the input is greater than the offset. These offset values are

30

Chapter 3: Methodology

predefined by the benchmark as auxiliary data.

Jx,y = Ix,y − Cx,y, (3.1)

Bad pixel correction

The bad pixel correction is performed by determining whether the pixel is bad or not using a

configurable look-up table Mx, y. If it is not a bad pixel, then the output is the same as the

input. However, if there is no bad, the output pixel is a function of F .

F function is the average value of the 3x3 mask pixels’ neighboring good pixels. If a bad pixel

is found in the corner, the algorithm takes the average of 2x2. In the case of edges, the mask of

neighboring pixels is 2x3 for the left/right edge and 3x2 for the top/bottom edge.

Mx,y

 1 , Jx,y = F (Ix,y, x, y)

o , Jx,y = Ix,y
(3.2)

Radiation scrubbing

The previous steps were one-to-one operations, meaning that the operation was performed for

every pixel inside every frame based on auxiliary data predefined by the benchmark. However,

for radiation scrubbing, the operation depends on the previous two and the next two frames

regarding the time of capturing the frames. For the 8 frames from t = 0 to t = 7, the benchmark

already provides an additional 4 frames (t = -2, t = -1, t = 8, t = 9) as auxiliary data. Then the

average value of those pixels is calculated by the equation below and used if the current pixel

frame suffers a radiation disturbance.

Jx,y =
I(x,y),t−2 + I(x,y),t−1 + I(x,y),t+1 + I(x,y),t+2

4
(3.3)

Gain correction

Gain correction is simply a multiplication of a constant value G.

Jx,y = Ix,y . Gx,y (3.4)

31

Chapter 3: Methodology

Spatial binning

Every 2x2 pixels within each frame is added together to form only one pixel, meaning that each

frame will shrink in size to a quarter of the original one.

Jx,y = Ix,y + Ix+1,y + Ix,y+1 + Ix+1,y+1 (3.5)

Temporal binning

The output frame in the final step is the sum of every pixel in the 8 frames set (pixel by pixel in

order of their positions).
7∑

t=0

fi,t (3.6)

3.7.1 OBPMark One Node

As with LINPACK, the same strategy of implementing the benchmark within ScOSA was used.

First, we have only one node that contains the event and task; the task runs OBPMark image

processing benchmark function.

The event triggers the benchmark task to start, and after a while, the result output frame is

constructed.

Figure 3.7: OBPMark one node setup

32

Chapter 3: Methodology

3.7.2 Benchmark Distribution

The next step is to benchmark the distributed system and scale the benchmark to different

nodes. However, unlike LINPACK, simply repeating the same task in the other nodes does

not make sense this time. LINPACK just gives an idea of the Mflops that every node can

process, but in image processing, this is not the actual behavior of an application on the onboard

computers.

The idea of splitting the input frames between the different nodes inside the system and keeping

the pipeline as it is without splitting it because there are dependencies between steps was the

first that came to mind.

Splitting is done in such a way that every node takes a sub-frame, as shown in figure 3.8 below,

and performs the same pipeline steps on every sub-frame.

Figure 3.8: Distribution into four quarter sub-frames

33

Chapter 3: Methodology

However, after reviewing the implementation of OBPMark and knowing that the input frames

are all in the form of binary format files (.bin) in one-dimensional data representation (the

pixels are all next to each other and not in the form of a 2-D array), It was prudent to divide

the image only by its width or height so that we reduce the complexity of splitting it into one

dimension.

From equation 3.2 of bad pixel correction if we just split the frames without taking care of

the new edges and corners constructed, the output will not be the same as the original bench-

mark. Because the F function handles the edges and corners in a different way than the rest of

the pixels inside the frame, If there was a bad pixel at the new constructed edge in the original

benchmark, it requires information on the neighboring pixels, which would be in other sub-

frame.

Thus, the solution was splitting the sub-frames considering an overlapping area as shown split-

ting algorithm 1.

Also, the spatial binning in equation 3.5 equation shows that for every 2x2 pixels block, it

will shrink in size into one pixel, which means if we have two straight lines of pixels in a 2-D

representation of the image for width, they will be reduced to only one straight line of pixels.

This also means that when splitting, we must ensure that every two straight-line ordered pixels

are on the same sub-frame so that the spatial binning process works properly as explained in

splitting algorithm 1.

Algorithm 1 Splitting
1: s = height/ndivisions

2: kup = 2# Overlap rows up
3: kdown = 2# Overlap rows down
4: for i in ndivisions do
5: if i == 0 then
6: kup = 0
7: else if i == ndivisions − 1 then
8: kdown = 0
9: end if

10: Fi = I[s ∗ i− kup : (s+ 1) ∗ i+ kdown][width]
11: end for

34

Chapter 3: Methodology

Figure 3.9: Overlapping Distribution

Figure 3.9 shows the distribution of the image frame into three sub-frames. The red lines

represent the fair split between the nodes without overlapping, then the algorithm creates an

overlapping area for every sub-frame, so the top blue rectangle represents the first sub-frame

and the bottom blue rectangle represents the last sub-frame. The yellow rectangle represents the

middle sub-frame. As shown, the middle sub-frame holds an overlap area from the previous and

35

Chapter 3: Methodology

next sub-frames to help in handling the pipeline steps in the correct way. This is a simplified

illustrative example of how only one frame can be split between three nodes; however, the

algorithm can handle more than three nodes with the constraint that the number of nodes is less

than the height size of the frame.

3.7.3 Modeling Approach for Distribution

After splitting the frames into sub-frames, the next step is to design the benchmark with a dis-

tributed tasking framework diagram. Modeling the the benchmark distribution/parallelization

was done using the MapReduce approach. MapReduce is a programming model that is based

on functional programming. It was first introduced for parallelization of big data between a

cluster of computers. However, it adds overhead to sending data through nodes [43]. In our

case, the data would be the sub-frame slices from all input frames.

3.7.4 OBPMark three Node

Distribution strategy,

1. Split: in the split step the data are loaded from the file system and then divided into three

sub-frames.

2. Serialize data: is to convert data complex objects into a structure of data stream of bytes.

3. Push the message: this is to start transmitting this stream of bytes either by the network

or internally in the same node.

4. Receive message: to accept the data transmission.

5. Deserialize data: to return it back to the same complex object form.

6. Continue the benchmark process.

Distributed Diagram of OBPMark within ScOSA

36

Chapter 3: Methodology

Figure 3.10: OBPMark three node setup

Figure 3.10 shows the implementation of distributed OBPMark. The diagram consists of three

nodes of HPN nodes.

The split task sends buffer data to other OBPMark-sub-task which in return performs the image

processing benchmark. Then it sends the outputs via buffers to the result collector task which

in return constructs the output.bin frame. The time capture is executed from the start of the

benchmark until the output frame is constructed.

The messages that had been used are:

Listing 3.1: Structures used for data serialization with a message size of 12185642 bytes ap-

proximately 12 MiB.

1

2 constexpr size_t n_nodes = 3; // Number of nodes

3 #define MSG_SIZE 350 * 1024 // Height*Width

4 #define MSG_SIZE_HALF 175 * 1024 // Height*Width

37

Chapter 3: Methodology

5 #define NUM_FRSME 12 // Fixed

6 // struct for the Serialize data

7 typedef struct

8 {

9 uint16_t frame[MSG_SIZE] = {0};

10 } frame_msg;

11 struct image_data_msg

12 {

13 unsigned int num_frames = {0};

14 frame_msg frames[NUM_FRSME];

15 uint16_t offsets[MSG_SIZE] = {0};

16 uint16_t gains[MSG_SIZE] = {0};

17 uint8_t bad_pixels[MSG_SIZE] = {0};

18 uint8_t scrub_mask[MSG_SIZE] = {0};

19 uint32_t binned_frame[MSG_SIZE_HALF] = {0};

20 uint32_t image_output[MSG_SIZE_HALF] = {0};

21 };

22 /**

23 * \brief struct to send data msg.

24 */

25 struct msg

26 {

27 image_data_msg image_msg;

28 unsigned int w_size = {0};

29 unsigned int h_size = {0};

30 unsigned int h_overlap_array[n_nodes] = {0};

31 unsigned int h_output_array[n_nodes] = {0};

32 std::chrono::time_point<std::chrono::_V2::system_clock,

33 std::chrono::_V2::system_clock::duration>

34 starttime;

35 };

As shown in the message structure, there is a time point that holds the starting time of sending

data so that the data transferring latency is calculated on the receiving node.

38

Chapter 4

Results and Discussion

The results are presented in two categories: the LINPACK results and the OBPMark-Image

Processing benchmark. Each category is investigated in two scenarios: operating the bench-

mark program using one node or three nodes. The output results are the average of three

different runs on the machine used to develop the benchmark (Team server x86 64) and the

Zynq7000. The detailed specifications are in Table 4.1 and the detailed results are available in

the Appendix.

Table 4.1: Hardware Specification

Model name Architecture CPU Frequency RAM size

Team server Intel(R) Core(TM) i9-10980XE CPU x86 64 3 GHz 125 GB

One Node Zynq-7000 ARM Cortex-A9 Based ARMv7 Processor rev 0 (v7l) 886 MHz 1 GB

4.1 LINPACK

Table 4.2 shows the results of the floating-point operation that the nodes perform. In the case

of the machine used to develop and integrate the benchmark with ScOSA (the Team server),

the nodes are treated as the same CPU but with a different internal core. However, in the case

of the Zynq-7000 HPN nodes, it is separated into three CPU units. In addition, the Team server

CPU has more powerful processing cores than the Zynq nodes, as evidenced by the results’

39

Chapter4:Results

Table 4.2: LINPACK Results

Team server x86 64
Mflops

Zynq-7000 Cortex A9
Mflops

Single precision One Node 4206.863 75.022
Three Nodes 11064.266 300.109

Double precision One Node 3225.960 46.638
Three Nodes 8062.116 190.032

Matrix order N = 1000

megaflops rate. However, the Zynq nodes are the ones that are going to fly into space, but the

representation of the Team server results is for making sure that the results make sense and to

help the engineers and developers improve the tools that are used in performance evaluation.

The results of the LINPACK single-precision representation have the highest megaflops so

far when compared to the double-precision representation. This was expected because the

32-bit LINPACK data representation uses less memory than the 64-bit LINPACK data repre-

sentation, and this led to fewer instructions when fetching data from 32-bit. When the results

of one node are compared to those of three nodes, the result is nearly three times as large,

which is also justified in the implementation because it is the same benchmark task that runs

on three different nodes. However, the time consumption did not improve by using three nodes

compared to one node because it performed the same operation on all three nodes. In normal

distributed system operation, if a task takes a long time, the processing nodes shear the same

task to finish it faster. but that was not the case with this LINPACK setup.

LINPACK was only the beginning of getting the distributed system to work and learning

more about how to find the best strategy to benchmark ScOSA. It also worked very well in

giving an idea of how much the Zynq-7000 processors can perform in float-point operations;

however, for space applications and distributed systems, LINPACK is not enough.

40

Chapter4:Results

4.2 OBPMark

4.2.1 OBPMark One Node

In the first scenario, the OBPMark-Image Processing benchmark runs only at one node, and

the event is triggering the benchmark to start loading the 8 frames and all auxiliary data from

the file system. Then the process feeds the image processing pipeline a total of 8 frames with a

size of 1024 x 1024 pixels each.

Table 4.3: OBPMark One Node results

Number of processed pixels (frames*Height*Width) = 8*1024*1024 Time in ms

OBPMark ImageProcessing Team server x86 64 total time 373.639

OBPMark ImageProcessing Zynq-7000 Cortex A9 total time 8659.616

The total processing time for one node in the Team server is 0.373 seconds, which is signifi-

cantly faster in comparison to the 8.659 seconds for one HPN node. However, that result is not

a surprise; it is expected that the Team server machine will be fast. To calculate the megapixels

per second (Mpixels/s) that the CPU units perform, we need simply the number of processed

pixels, which is the total number of frames multiplied by the number of pixels on each frame,

which is 8x1024x1024, and then divided by the total processing/execution time of the bench-

mark.

Team server:
8 ∗ 1024 ∗ 1024 ∗ 10−6

0.373
= 22.489 Mpixels/s (4.1)

One node Zynq-7000:

8 ∗ 1024 ∗ 1024 ∗ 10−6

8.659
= 0.968 Mpixels/s (4.2)

4.2.2 OBPMark Three Nodes

OBPMark-Image Processing Multiple Node Configuration differs from LINPACK; in OBP-

Mark, it is an actual distribution of data for the same task between different nodes to benchmark

41

Chapter4:Results

the distributed system in resemblance to real-life scenarios.

The distribution is done simply by splitting the eight frames and the auxiliary data into sub-

frames based on the number of nodes available on the system. This setup sends big buffers of

data between the nodes. In the OBPMark shown in Figure 3.10 there are three channel buffers

connected to the split task. Those buffers carry messages of size 12 MiB approximately each.

On the other side, there are three other channels (BuffersProcessed) that carry messages of size

0.683 MiB (the output subframes) to be collected with the result collector task. With all of

those buffers, there is an overhead in sending data between tasks and nodes. This overhead is

shown in the latencies of those buffers. Table 4.4 shows the results of the distributed image

processing application benchmark and the latencies of data transmission.

Table 4.4: OBPMark distributed results

Team server x86 64 Time in ms Zynq-7000 Cortex A9 Time in ms

latency of BufferInput 1 2.621 53.683

latency of BufferInput 2 1970.293 1877.117

latency of BufferInput 3 1972 1624.984

BufferInput size = 12185644 bytes

latency of BufferProcessed 1 2099.646 2201.562

latency of BufferProcessed 2 121.462 597.561

latency of BufferProcessed 3 122.294 831.292

BufferProcessed size = 716832 bytes

Split task time 72.447 681.105

Sub-frames 1 processe time 126.089 2794.341

Sub-frames 2 processe time 133.144 2464.051

Sub-frames 3 processe time 126.664 2379.930

ResultCollector task time 4.944 41.175

Number of processed pixels (frames*Height*Width) = 8*1024*1024

Total Execution time 2291 5453.666

The latency of data transmission on the Team server is approximately two seconds for twelve

MiB, which is about 6 MiB/sec of transmission rate between the nodes using the network layer

42

Chapter4:Results

of ScOSA. Also, this value is nearly the same for data transmission between the Zynq-7000

nodes. The BufferInput 1 is on the same node, so the transmission is internal and not using the

communication protocol, and the transmission time is low. By looking at the BufferProcessed

1 time, you might think that it should also be the lowest since it is on the same node as well,

but that is not the case, and there is a good explanation for that: The result collector is waiting

for the other two nodes to send their data so that the result collector task can start.

4.2.3 Team server x86 64 Results Discussion

By analyzing the results of the Team server in Table 4.4, it is clear that the total execution time

in comparison to one node scenario is much bigger. However, in the Zynq-7000 nodes, the

overall execution time is reduced from 8.659 to 5.453 seconds.

Figure 4.1 shows event, time diagram, provides a good explanation for the behavior of the

team-server version. From Table 4.1, Team server is an Intel x86 64 CPU with significantly

more processing power than the application itself needs. The buffers latency in comparison to

the time that every task takes to process those transmitted data buffers is too small which is

why the overall time increases.

Figure 4.1: OBPMark three node Event, Time Diagram Team-server

The latency of processed buffer 1 does not depend on the size of the buffer since it is already

43

Chapter4:Results

an internal transmission, but it depends more on the other two nodes and how they are going to

send the data to the result collector. Also, the setup uses the network software layer for reader

and writer tasks to transmit data. As it is clear, OBPMark subframe 1 is finished earlier than

the other two subframes on the other nodes. The time synchronization of the nodes is accurate

since it is the same CPU unit, which is why latency two and three are almost the same.

Figure 4.2: OBPMark Team server Performance

In Figure 4.4 the theoretical performance is simply the performance of the benchmark on

one node before distribution divided by the new number of nodes the ScOSA will use. This

theoretical performance is not attainable in distributed systems because of the overhead of

data transmission and the configuration of data splitting. However, the closer we move to the

theoretical, the better the overall performance. The total execution time of the Team server is

dominated by the latency rather than the processing time, which increased the overall execution

time. From the Figure 4.4, it is clear that the three nodes line are moving away from the

44

Chapter4:Results

theoretical improvement line even farther than the one-node implementation.

4.2.4 Zynq-7000 Results Discussion

In the case of the three target nodes, Zynq-7000, the latency is not greater than the processing

time, which results in improving the overall performance and reduces the execution time for

the image processing benchmark from approximately 8.6 seconds to 5.4 seconds, including

configuration and data transmission time.

Figure 4.3 shows that the tasks took longer in comparison to the latencies. The latencies at

nodes two and three should have been nearly the same, but I faced the challenge of synchro-

nizing the time at the three target nodes since they are not connected to the internet because

of security issues. Nevertheless, I synchronized all of them manually, which is why there is a

small milliseconds difference in latency three compared to latency two.

Figure 4.3: OBPMark three node Event, Time Diagram HPNs

Figure 4.4 shows the increase in performance from one node to three nodes, which clearly

shows that the performance moved closer to the theoretical line of performance. As previously

stated, this is accomplished by dividing the node time by the total number of nodes in the

system.

When analyzing the results from the calculation of processed pixels per second,

Three nodes Zynq-7000:

8 ∗ 1024 ∗ 1024 ∗ 10−6

5.45
= 1.538 Mpixels/s (4.3)

45

Chapter4:Results

Which improved the performance from 0.968 Mpixels/s.

Figure 4.4: OBPMark HPNs Performance

4.3 Verification

All the results of OBPMark have been verified by comparing the output frame with the verifi-

cation frame provided by the benchmark. I used the Linux utilities diff and cmp to compare

those two files together, and they are identical.

46

Chapter 5

Conclusion

This thesis focused on selecting embedded benchmarks for the performance evaluation of on-

board computers, specifically the ScOSA architecture for space applications, and possible ways

to standardize the benchmarks in the space domain.

The first requirement of the thesis is fulfilled by selecting the LINPACK benchmark and OBP-

Mark, which are suitable benchmarks for evaluating the onboard computer in the space domain.

In response to the scientific question of which benchmarks are suitable for ScOSA, the LIN-

PACK benchmark and OBPMark have been utilized to evaluate the performance of ScOSA in a

one-node CPU implementation for the development machine and target HPN nodes in different

scenarios. The selection of LINPACK is based on its scientific popularity for benchmarking

performance, which makes the results comparable with those of other systems. OBPMark is

based on compatibility with ScOSA and relevance to space applications, especially onboard

processing.

The LINPACK benchmark was not internally distributed between the nodes since the out-

put measuring unit is the float point operation. Instead, the same benchmark is repeated in all

other nodes, and the result collector task is in charge of collecting the Mflops that each node is

47

Chapter 5: Conclusion

capable of performing. The results show an increase in the flop rate almost three times when

using three nodes, either in the development machine or in the target HPN nodes, which was

expected.

In conclusion, LINPACK gives an idea of how many floating point operations that processing

unit can perform, and it is well known in scientific communities. The results of LINPACK can

also be compared easily with those of other processing units, but floating point operations are

not necessarily the case for applications in the space domain, which is why there was a need

for a space-specific benchmark (e.g., OBPMark).

OBPMark-Image Processing Benchmark distribution is done in a way to simulate the be-

havior of actual onboard applications by making the multiple nodes share the same big task

to reduce execution time. The distribution divides the input frames into subframes, with each

node processing one of them.

OBPMark execution time in one node at the Team server machine is the fastest execution time

but when distributing for different nodes in the team server the execution time increased and

the reason for that is the high transmission latency. The time is dominated by high latencies.

For the HPN nodes, OBPMark’s distributed three-node setup reduces execution time and im-

proves performance, resulting in a performance increase from 0.968 megapixels/s using one

node to 1.538 megapixels/s using three nodes. The improvement is due to the small latency

period in comparison to processing tasks. From the results, the scientific question of how much

processing power we have and how many nodes to add to reach the required performance is

answered for the scaling of the distributed system to a three-node implementation.

In general, if the system transmission latency rate is higher than the processing time for the

application, it is not recommended to distribute the application, but if the transmission latency

is lower than the processing time, it is recommended to distribute the application in the most

efficient way the system designer sees fit.

48

Chapter 6

Future Work

For future work, I would recommend investigating scaling the benchmark to more than three

nodes. An attempt to do so in this thesis work was an initial plan, but there was a challenge

in sending big buffers between the nodes, and the thesis is constrained to only six months of

work. The challenges encountered and implementation issues were reported to both engineers

and developers in our team and ESA developers regarding issues with OBPMark, especially

since it’s a beta version.

I would also recommend investigating the rest of the benchmark suite of OBPMark by ap-

plying it to ScOSA. The benchmark suite is not fully completed yet. There are still some

benchmarks inside that the developers are working on standardizing that would be worth im-

plementing for ScOSA once released, especially the machine learning one.

I would recommend investigating other ways of distributing benchmarks. In OBPMark-

Image processing, for example, instead of splitting the processed frames, we can split the

pipeline and keep the frames intact. Theoretically, this will take a long time because the buffers

will transfer all of the frames from one node to another, but it may be worth investigating in the

future for the sake of benchmarking the system’s reliability when sending big buffers.

49

Chapter 7

Appendix

Table 7.1: LINPACK One Node development machine detailed three-run results

LINPACK One Node Run1 Mflops Run2 Mflops Run3 Mflops Average Mflops

TeamServer x86 64 Single precision 4099.73 4482.46 4038.4 4206.863333

TeamServer x86 64 Double precision 3163.95 3376.73 3137.2 3225.96

Matrix order N = 1000

Table 7.2: LINPACK One HPN Node detailed three-run results

LINPACK One Node Run1 Mflops Run2 Mflops Run3 Mflops Average Mflops

Zynq-7000 Cortex A9 Single precision 75.4387 74.3746 75.255 75.02276667

Zynq-7000 Cortex A9 Double precision 46.8493 46.6236 46.4432 46.6387

Matrix order N = 1000

Table 7.3: LINPACK Three Nodes development machine detailed three-run results

LINPACK Three Nodes Run1 Mflops L64 Run2 Mflops L65 Run3 Mflops L66 Average Mflops

TeamServer x86 64 Single precision 11078.6 11064.4 11049.8 11064.26667

TeamServer x86 64 Double precision 8036.29 8056.22 8093.84 8062.116667

Matrix order N = 1000

50

Appendix

Table 7.4: LINPACK Three HPN Nodes detailed three-run results

LINPACK Three Nodes Run1 Mflops L64 Run2 Mflops L65 Run3 Mflops L66 Average Mflops

Zynq-7000 Cortex A9 Single precision 303.075 300.153 297.101 300.1096667

Zynq-7000 Cortex A9 Double precision 192.423 190.01 187.663 190.032

Matrix order N = 1000

Table 7.5: OBPMark one Node results detailed three-run results

Number of processed pixels (frames*Height*Width) = 8*1024*1024 Run1 Time in ms Run2 Time in ms Run3 Time in ms Average Time in ms

OBPMark ImageProcessing Team server x86 64 total time 374.693 365.542 380.684 373.6396667

OBPMark ImageProcessing Zynq-7000 Cortex A9 total time 8711.93 8632.68 8634.24 8659.616667

Table 7.6: OBPMark distributed results for the development machine three runs

Team server x86 64 Run1 Time in ms Run2 Time in ms Run3 Time in ms Average Time in ms

latency of BufferInput 1 2.360106 3.111839 2.393961 2.621968667

latency of BufferInput 2 1973.241091 1974.763155 1962.877035 1970.29376

latency of BufferInput 3 1978.310823 1976.907969 1960.783958 1972.000917

BufferInput size 12185648 bytes

latency of BufferProcessed 1 2116.214037 2096.359968 2086.364031 2099.646012

latency of BufferProcessed 2 128.933907 117.656946 117.797136 121.462663

latency of BufferProcessed 3 117.508888 122.220993 127.15292 122.294267

BufferProcessed size 716832 bytes

Split task time 64.95507 77.853424 74.533882 72.44745867

Sub-frames 1 processe time 116.593575 140.619644 121.05452 126.0892463

Sub-frames 2 processe time 130.692932 142.891983 125.848564 133.144493

Sub-frames 3 processe time 133.384796 131.616089 114.992393 126.664426

ResultCollector task time 4.436714 4.977554 5.420427 4.944898333

Number of processed pixels (frames*Height*Width) 8*1024*1024

Total Execution time 2291 2306 2276 2291

51

Appendix

Table 7.7: OBPMark distributed results for the HPNs three runs

Zynq-7000 Cortex A9 Run1 Time in ms Run2 Time in ms Run3 Time in ms Average Time in ms

latency of BufferInput 1 53.679943 53.457975 53.913832 53.68391667

latency of BufferInput 2 1880.186081 1880.32198 1870.844126 1877.117396

latency of BufferInput 3 1629.528999 1670.710087 1574.714184 1624.984423

BufferInput size 12185644 Bytes

latency of BufferProcessed 1 2198.611975 2301.90897 2104.165077 2201.562007

latency of BufferProcessed 2 574.913025 660.80308 556.968212 597.561439

latency of BufferProcessed 3 821.245193 823.175907 849.457026 831.2927087

BufferProcessed size 716828 Bytes

Split task time 664.123962 729.614929 649.576599 681.1051633

Sub-frames 1 processe time 2777.65332 2759.599365 2845.773193 2794.341959

Sub-frames 2 processe time 2463.584717 2464.05249 2464.516846 2464.051351

Sub-frames 3 processe time 2379.549561 2380.968262 2379.272217 2379.930013

ResultCollector task time 41.151066 41.399277 40.97683 41.17572433

Number of processed pixels (frames*Height*Width) 8*1024*1024

Total Execution time 5433 5521 5407 5453.666667

52

Bibliography

[1] Andreas Lund, Zain Alabedin Haj Hammadeh, Patrick Kenny, Vishav Vishav, Andrii Ko-

valov, Hannes Watolla, Andreas Gerndt, and Daniel Lüdtke. ScOSA system software: the

reliable and scalable middleware for a heterogeneous and distributed on-board computer

architecture. CEAS Space Journal, 14(1):161–171, January 2022.

[2] The edn embedded microprocessor benchmark consortium eembc. https://www.

eembc.org/.

[3] Obpmark (on-board processing benchmarks). Technical Report V0.3-DRAFT, European

Space Agency, OBPMark@esa.int, Augest 2022.

[4] David Steenari, Leonidas Kosmidis, Ivan Rodriguez-Ferrandez, Alvaro Jover-Alvarez,

and Kyra Förster. OBPMark (On-Board Processing Benchmarks) – Open Source Compu-

tational Performance Benchmarks for Space Applications. June 2021. Publisher: Zenodo

Version Number: 1.0.

[5] Daniel Lüdtke, Karsten Westerdorff, Kai Stohlmann, Anko Börner, Olaf Maibaum, Ting

Peng, Benjamin Weps, Görschwin Fey, and Andreas Gerndt. Obc-ng: Towards a re-

configurable on-board computing architecture for spacecraft. In 2014 IEEE Aerospace

Conference, pages 1–13. IEEE, 2014.

[6] Carl Johann Treudler, Heike Benninghoff, Kai Borchers, Bernhard Brunner, Jan Cremer,

Michael Dumke, Thomas Gärtner, Kilian Johann Höflinger, Daniel Lüdtke, Ting Peng,

et al. Scosa-scalable on-board computing for space avionics. In Proceedings of the Inter-

national Astronautical Congress, IAC, 2018.

53

https://www.eembc.org/
https://www.eembc.org/

Appendix

[7] Jóakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange, John L. Hen-

ning, and Paul Cao. How to Build a Benchmark. In Proceedings of the 6th ACM/SPEC

International Conference on Performance Engineering, ICPE ’15, pages 333–336, New

York, NY, USA, January 2015. Association for Computing Machinery.

[8] Marco Vieira, Henrique Madeira, Kai Sachs, and Samuel Kounev. Resilience Benchmark-

ing. In Katinka Wolter, Alberto Avritzer, Marco Vieira, and Aad van Moorsel, editors,

Resilience Assessment and Evaluation of Computing Systems, pages 283–301. Springer,

Berlin, Heidelberg, 2012.

[9] VargheseBlesson, WangNan, BermbachDavid, HongCheol-Ho, LaraEyal De, Shi-

Weisong, and StewartChristopher. A Survey on Edge Performance Benchmarking. ACM

Computing Surveys (CSUR), April 2021. Publisher: ACM PUB27 New York, NY, USA.

[10] Lizy Kurian John and Lieven Eeckhout, editors. Performance Evaluation and Bench-

marking. CRC Press, Boca Raton, January 2017.

[11] R.P. Weicker. An overview of common benchmarks. Computer, 23(12):65–75, December

1990. Conference Name: Computer.

[12] Reinhold P Weicker. An overview of common benchmarks. Computer, 23(12):65–75,

1990.

[13] Standard performance evaluation corporation. https://spec.org/benchmarks.

html.

[14] Transactions processing council,. https://www.tpc.org/.

[15] Christopher Michael Wyant, Christopher Robert Cullinan, and Timothy Richard Frattesi.

Computing performance benchmarks among cpu, gpu, and fpga. Computing, 2012.

[16] Byron C Lewis and Albert E Crews. The evolution of benchmarking as a computer per-

formance evaluation technique. MIS Quarterly, pages 7–16, 1985.

[17] Anup Patel, Mai Daftedar, Mohamed Shalan, and M Watheq El-Kharashi. Embedded

hypervisor xvisor: A comparative analysis. In 2015 23rd Euromicro International Con-

54

https://spec.org/benchmarks.html
https://spec.org/benchmarks.html
https://www.tpc.org/

Appendix

ference on Parallel, Distributed, and Network-Based Processing, pages 682–691. IEEE,

2015.

[18] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK Benchmark: past,

present and future. Concurrency and Computation: Practice and Experience, 15(9):803–

820, August 2003.

[19] The linpack 1000x1000 benchmark program. See http://www.netlib.org/

benchmark/1000d for source code.

[20] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T. Krogh. Basic linear

algebra subprograms for fortran usage. ACM Transactions on Mathematical Software

(TOMS), 5(3):308–323, 1979.

[21] Lapack—linear algebra package. https://netlib.org/lapack/. Accessed:

2022-08-21.

[22] Lizy Kurian John and Lieven Eeckhout, editors. Performance evaluation and benchmark-

ing. CRC Press, Boca Raton, FL, 2006.

[23] Geekbench. https://www.geekbench.com/index.html.

[24] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and

Richard B Brown. Mibench: A free, commercially representative embedded benchmark

suite. In Proceedings of the fourth annual IEEE international workshop on workload

characterization. WWC-4 (Cat. No. 01EX538), pages 3–14. IEEE, 2001.

[25] Mibench. https://vhosts.eecs.umich.edu/mibench/.

[26] Chunho Lee, Miodrag Potkonjak, and William H Mangione-Smith. Mediabench: A tool

for evaluating and synthesizing multimedia and communications systems. In Proceedings

of 30th Annual International Symposium on Microarchitecture, pages 330–335. IEEE,

1997.

[27] Berkeley design technology, inc. https://www.bdti.com/services/

benchmarking.

55

http://www.netlib.org/benchmark/1000d
http://www.netlib.org/benchmark/1000d
https://netlib.org/lapack/
https://www.geekbench.com/index.html
https://vhosts.eecs.umich.edu/mibench/
https://www.bdti.com/services/benchmarking
https://www.bdti.com/services/benchmarking

Appendix

[28] N.I. Kamenoff. One approach for generalization of real-time distributed systems bench-

marking. In Proceedings of the 4th International Workshop on Parallel and Distributed

Real-Time Systems, pages 202–203, April 1996.

[29] Hai Jin, Yunfa Li, Zongfen Han, Hao Wu, and Weizhong Qiang. Aeneas: real-time perfor-

mance evaluation approach for distributed programs with reliability-constrains. Cluster

Computing, 10(2):175–186, 2007.

[30] Christoph Boden, Alexander Alexandrov, Andreas Kunft, Tilmann Rabl, and Volker

Markl. PEEL: A Framework for Benchmarking Distributed Systems and Algorithms.

In Raghunath Nambiar and Meikel Poess, editors, Performance Evaluation and Bench-

marking for the Analytics Era, Lecture Notes in Computer Science, pages 9–24, Cham,

2018. Springer International Publishing.

[31] R. Sharma. Flink vs. spark: Difference between flink and spark. https://www.

upgrad.com/blog/flink-vs-spark/(Accessed: January 11, 2023).

[32] Giovanni Falcone, Heinz Kredel, Sebastien Kreuter, Michael Krietemeyer, Dirk Merten,

Martin Meuer, Matthias Merz, Franz-Josef Pfreundt, David Reinig, and Henry Ris-

tau. IPACS-benchmark : integrated performance analysis of computer systems (IPACS);

benchmarks for distributed computer systems. Logos-Verl., Berlin, 2006.

[33] Tyler M. Lovelly, Donavon Bryan, Kevin Cheng, Rachel Kreynin, Alan D. George, Ann

Gordon-Ross, and Gabriel Mounce. A framework to analyze processor architectures for

next-generation on-board space computing. In 2014 IEEE Aerospace Conference, pages

1–10, March 2014. ISSN: 1095-323X.

[34] Justin Richardson, Steven Fingulin, Diwakar Raghunathan, Chris Massie, Alan George,

and Herman Lam. Comparative analysis of hpc and accelerator devices: Computation,

memory, i/o, and power. In 2010 Fourth International Workshop on High-Performance

Reconfigurable Computing Technology and Applications (HPRCTA), pages 1–10. IEEE,

2010.

56

https://www.upgrad.com/blog/flink-vs-spark/
https://www.upgrad.com/blog/flink-vs-spark/

Appendix

[35] Leonidas Kosmidis, Ivan Rodriguez, Alvaro Jover-Alvarez, Sergi Alcaide, Jerome

Lachaize, Olivier Notebaert, Antoine Certain, and David Steenari. GPU4S: Major Project

Outcomes, Lessons Learnt and Way Forward. In 2021 Design, Automation & Test in

Europe Conference & Exhibition (DATE), pages 1314–1319, Grenoble, France, February

2021. IEEE.

[36] Rob VanderWijngaart and Bryan A Biegel. Nas parallel benchmarks. In Supercomputing

2002, 2002.

[37] Roland Weigand and Luca Fossati. Dsp benchmark results of the gr740 rad-hard quad-

core leon4ft.

[38] AB Cobham Gaisler. Gr740 technical note on benchmarking and validation. Doc. No

GR740-VALT-0010, ESA Contract, 2000113922:15, 2019.

[39] Leonidas Kosmidis, Jerome Lachaize, Jaume Abella, Olivier Notebaert, Francisco J. Ca-

zorla, and David Steenari. GPU4S: Embedded GPUs in Space. In 2019 22nd Euromicro

Conference on Digital System Design (DSD), pages 399–405, Kallithea, Greece, August

2019. IEEE.

[40] Zain A H Hammadeh, Tobias Franz, Olaf Maibaum, Andreas Gerndt, and Daniel Lüdtke.

Event-driven multithreading execution platform for real-time on-board software systems.

In Proceedings of the 15th annual workshop on Operating Systems Platforms for Embed-

ded Real-time Applications, pages 29–34, 2019.

[41] Deutsches Zentrum für Luft-und Raumfahrt-Sc. Tasking-framework. https://

github.com/DLR-SC/tasking-framework/wiki.

[42] Xilinx Inc.: Zynq-7000 SoC. Data sheet overview. https://docs.xilinx.com/

v/u/en-US/ds190-Zynq-7000-Overview.

[43] S Sinha. Fundamentals of mapreduce with mapreduce example. medium.

retrieved january 8, 2023, from. https://medium.com/edureka/

mapreduce-tutorial-3d9535ddbe7c.

57

https://github.com/DLR-SC/tasking-framework/wiki
https://github.com/DLR-SC/tasking-framework/wiki
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
https://medium.com/edureka/mapreduce-tutorial-3d9535ddbe7c
https://medium.com/edureka/mapreduce-tutorial-3d9535ddbe7c

	Acknowledgments
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem statement
	Contribution and scope
	Selection of appropriate benchmarks
	Adaption of benchmarks to ScOSA system

	Structure

	Literature Review
	Benchmark definition
	History of benchmarks
	Benchmark types for performance evaluation
	Common performance Benchmarks
	Stone age Benchmarks
	General purpose CPU Benchmarks
	 Embedded and media benchmarks

	Benchmarks for distributed systems
	Benchmarks for the space domain
	Benchmark comparisons

	Methodology
	ScOSA Middleware architecture
	Benchmarking:
	Benchmark selection
	Hardware
	Benchmark Implementation
	LINPACK Implementation
	LINPACK One Node
	LINPACK three Nodes

	OBPMark in Details
	OBPMark One Node
	Benchmark Distribution
	Modeling Approach for Distribution
	OBPMark three Node

	Results and Discussion
	LINPACK
	OBPMark
	OBPMark One Node
	OBPMark Three Nodes
	Team server x86_64 Results Discussion
	Zynq-7000 Results Discussion

	Verification

	Conclusion
	Future Work
	Appendix
	References

