## COMPARISON OF ELECTRICITY PRICE FORECASTING METHODS FOR USE IN AGENT-BASED ENERGY SYSTEM MODELS

Felix Nitsch<sup>1,\*</sup>, Christoph Schimeczek<sup>1</sup> IEWT 2023 Vienna, Austria



\* Felix Nitsch <u>felix.nitsch@dlr.de</u> / <sup>1</sup> German Aerospace Center | Institute of Networked Energy Systems | Energy Systems Analysis

2

#### **Motivation**

- Timeseries: Important inputs in energy system models (ESM)
- Challenge: Timeseries forecasting
- Requirements for forecasts in ESM:
  - Reliable
  - Fast
  - Convenient
- Promising advances in machine learning; How are they applicable in ESM?
- Today: Case study on price timeseries forecasting



# **Simulating Electricity Markets with AMIRIS**



#### Input

- RE feed-in
- Load
- Power plant park
- Efficiencies
- Plant availabilities
- Fuel & CO<sub>2</sub> costs

#### Output

- Electricity prices
- Power plant dispatch
- Storage dispatch
- Market values
- Emissions
- System costs

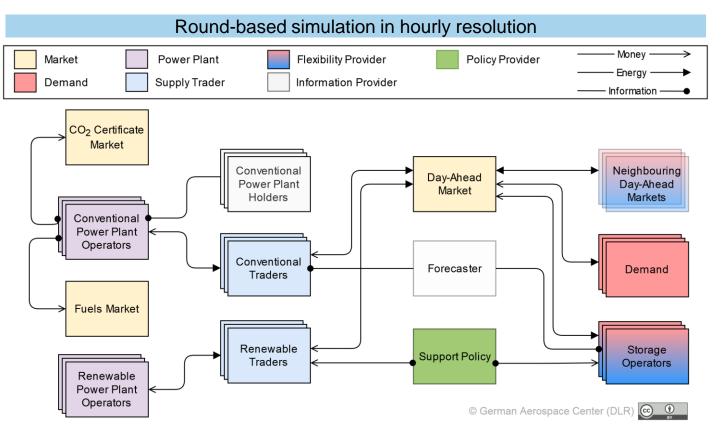


Fig.: AMIRIS model architecture



Published **open source** under Apache 2 license See also <u>https://dlr-ve.gitlab.io/esy/amiris/home/</u>

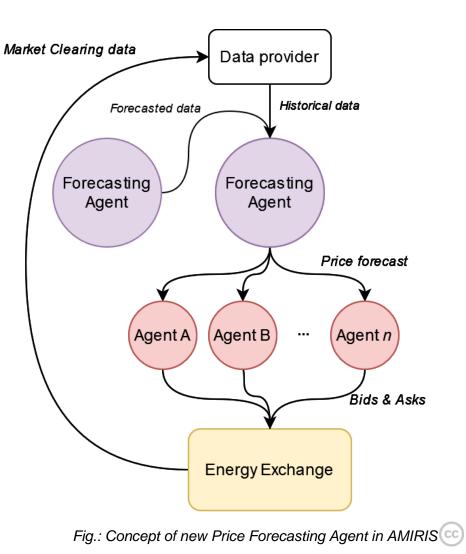
#### **Idea: the Price Forecasting Agent**

#### Aim

- Central forecast agent
- Price forecasts for >=24h
- Feeds schedule optimization of agents

#### **Available Inputs**

- Previous prices
- Previous residual load
- Future forecasted (residual) load
- Future forecasted EE generation





## Methodology

#### **Naïve Methods**

t+1, t+24, naïve drifts

Serving as benchmarks

#### Data

- Timespan 2003 2019
- EEX:
  - Day-ahead auction prices

#### **Regression Methods**

Linear Reg., LightGBM<sup>1</sup>, Exponential Smoothing
 Common statistical approaches

#### **Machine Learning Methods**

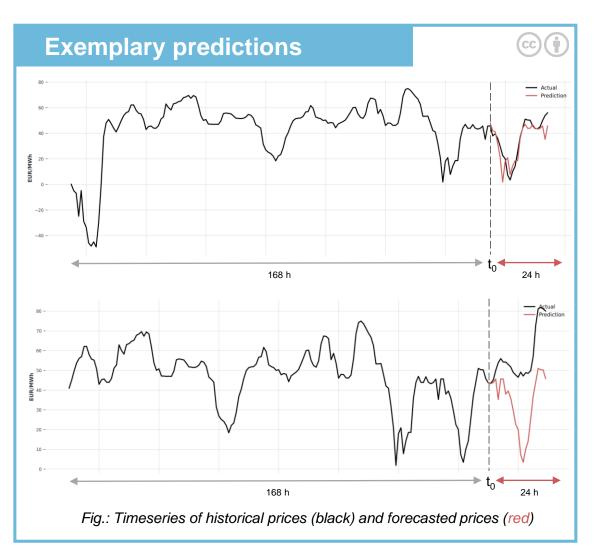
NBeats<sup>2</sup>, TemporalFusionTransformer<sup>3</sup>, DeepAR<sup>4</sup>

State-of-the art machine learning methods

<sup>1</sup> Ke G. et al. (2017): <u>https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree</u>
<sup>2</sup> Oreshkin B. et al. (2019): <u>https://doi.org/10.48550/arXiv.1905.10437</u>
<sup>3</sup> Lim B. et al. (2021): <u>https://doi.org/10.1016/j.ijforecast.2021.03.012</u>
<sup>4</sup> Salinas D. et al. (2020): https://doi.org/10.1016/j.ijforecast.2019.07.001

#### Results Naïve t+24

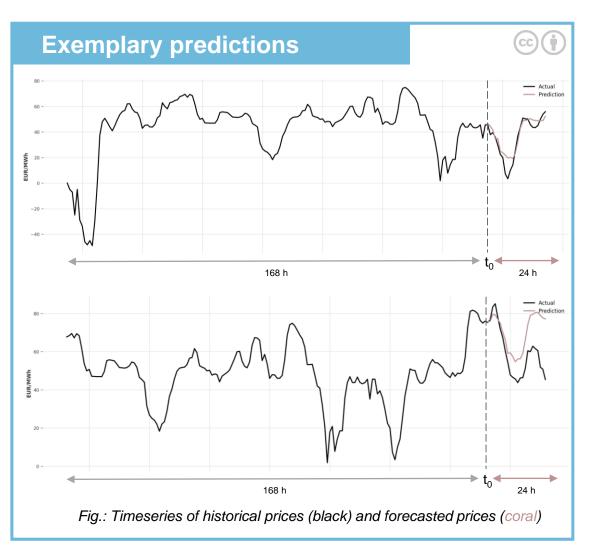


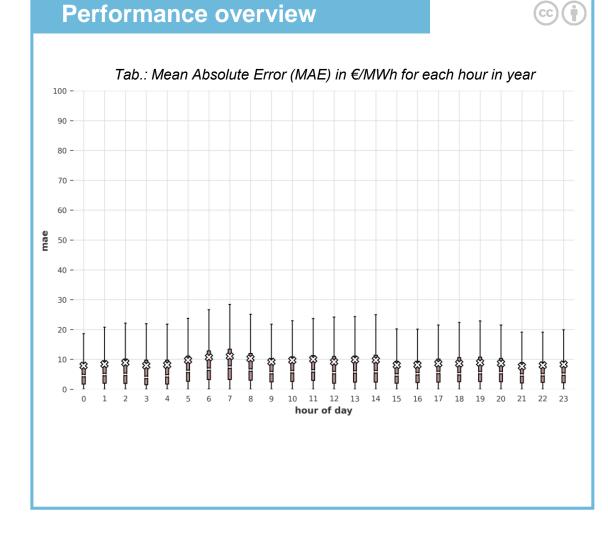


#### **Performance overview** (cc) Tab.: Mean Absolute Error (MAE) in €/MWh for each hour in year 100 -90 -80 -70 -60 **uae** 50 -40 -30 -20 -10 -0 -15 17 18 19 21 22 23 4 8 9 10 11 12 13 14 16 20 hour of day

Felix Nitsch, Institute of Networked Energy Systems, 15.02.2023

## **Results Regression** Exponential Smoothing

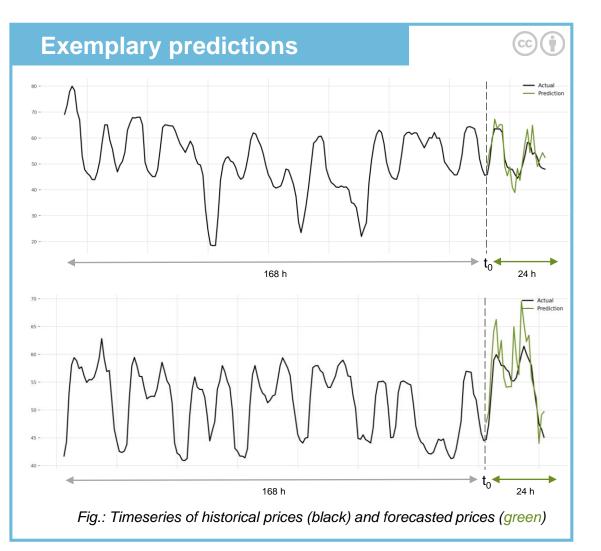




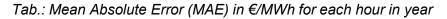
#### **Results Machine Learning** NBeats

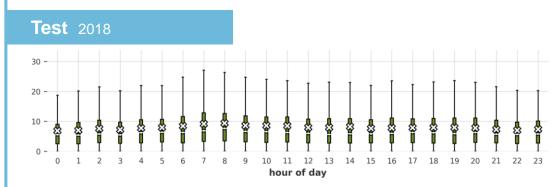


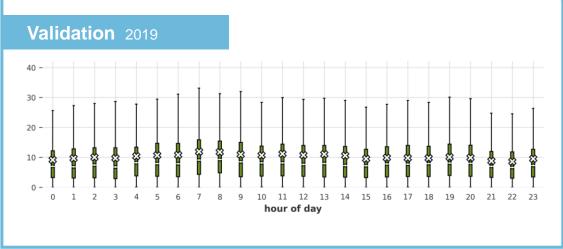
(cc)



#### **Performance overview**







#### **Results** NBeats with Additional Input Data



#### Data

- Open power system data<sup>1</sup>
  - Load (forecasted & actual)
  - Installed RE Capacities
  - Actual RE Generation
- EEX:
  - CO<sub>2</sub> prices

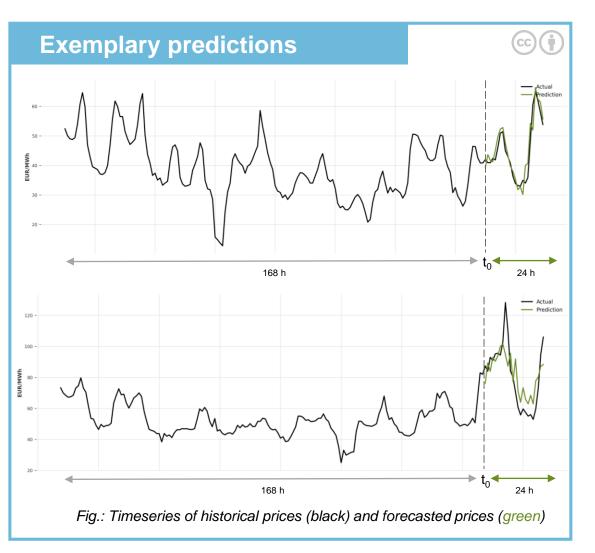
Table: MAE in €/MWh for NBeats model with different input data (best in **bold**)

| Run | Input Data                           | <b>Test</b><br>2018 | Validation<br>2019 |
|-----|--------------------------------------|---------------------|--------------------|
| 1   | Historical Prices (P)                | 7.90                | 10.22              |
| 2   | P + Dummy Hour (H)                   | 9.36                | 10.00              |
| 3   | P + Dummy All* (D)                   | 8.00                | 9.48               |
| 4   | $P + CO_2$                           | 8.21                | 16.00              |
| 5   | P + Load (L)                         | 8.27                | 9.39               |
| 6   | P + Residual Load (RL)               | 4.93                | 8.73               |
| 7   | P + Renewable Energy Generation (RE) | 4.66                | 8.55               |
| 8   | $P + D + L + RL + RE + CO_2$         | 5.05                | 15.62              |
| 9   | P + D + L + RL + RE                  | 4.70                | 13.11              |
| 10  | P + D + RE                           | 7.74                | 9.97               |

<sup>1</sup> <u>https://doi.org/10.25832/time\_series/2020-10-06</u>

\* Dummy Variables are Hour, Day Of Week, Holiday

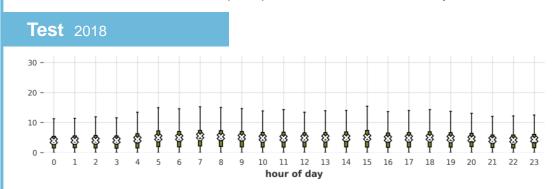
## Results Machine Learning NBeats II (P + RE)

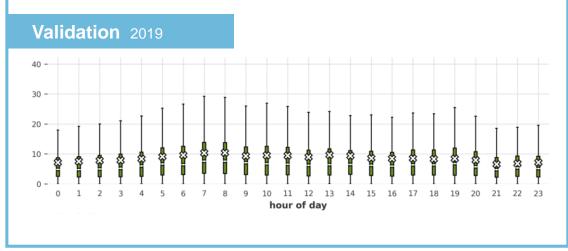


(cc)

#### **Performance overview**

Tab.: Mean Absolute Error (MAE) in €/MWh for each hour in year





#### **Discussion**



- Which errors are good enough?
- How are ESM results impacted by forecast performance? 1
- How to retrieve information of uncertainty?
- How general are these models?
- How to train in future scenarios?

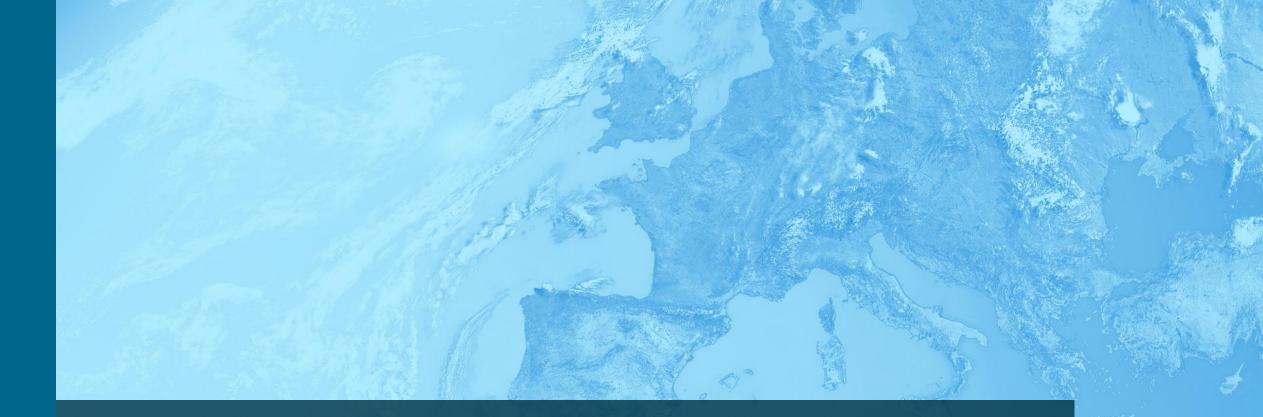


- Motivation: Timeseries forecasting in energy system models
- Method: Comparison of methods (naïve, regression, machine learning)
- Results: ML outperforms other methods depending on input data
- Discussion: Challenging integration in energy system models

## Outlook

- Further analysis in FEAT project, see <u>https://www.mlsustainableenergy.com/</u>
- Apply learnings to AMIRIS to provide electricity price forecasts
- Python package focapy to reproduce presented analysis to be published





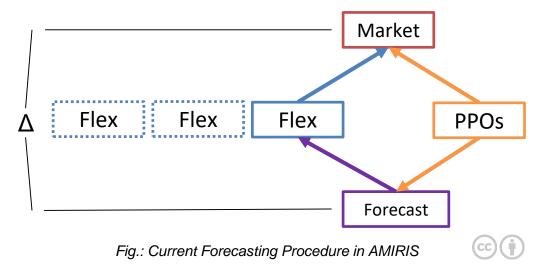
## BACKUP



## **Current price forecasting mechanism in AMIRIS**



- 1. Power plant operators send future bids to forecast agent
- 2. Forecast agent calculates forecasted price
- 3. Forecasts are sent to one Flex-option agent
- 4. Flex-option agent optimizes its operational strategy
- 5. All traders send final bids to Energy Exchange
- 6. Energy Exchange calculates final electricity price



Final and forecasted price difference caused by flex-option agent actions

(i.e. charging  $\rightarrow$  "higher price", discharging  $\rightarrow$  "lower price")

#### **Challenge:**

Multiple flex-option agents mutually distort their forecasts due to their competitive actions

 $\rightarrow$  Significant impacts on the accuracy of the price forecast

## **AMIRIS:** parameterization and validation



#### **Motivation**

- Convenient parameterization
- Highest scientific standards

#### Methodology

- Collecting open data\*
- Parameterization of agents
- Fitting day-ahead prices

#### Outcome

- Two sets for Germany & Austria
- Validation against historical prices
- Published under CC-BY-4.0 license <u>https://gitlab.com/dlr-ve/esy/amiris/examples</u>

\* Sources: <u>SMARD Strommarktdaten</u>, <u>E-CONTROL</u>, <u>APG</u>, <u>EEX</u>, <u>Destatis</u> Nitsch et al. (2021a). <u>https://doi.org/10.1016/j.apenergy.2021.117267</u> Nitsch et al. (2021b). <u>https://doi.org/10.5281/zenodo.5726738</u>

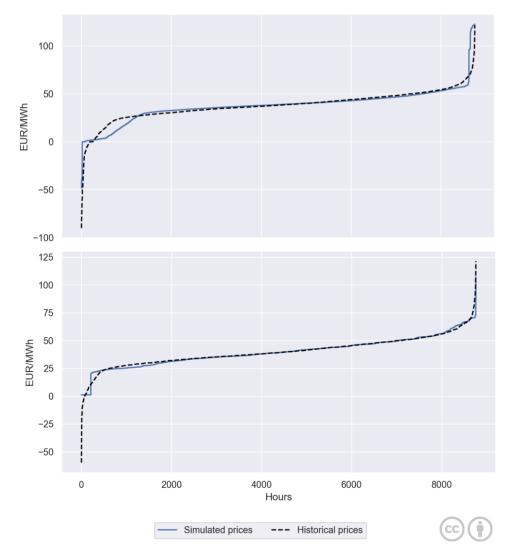
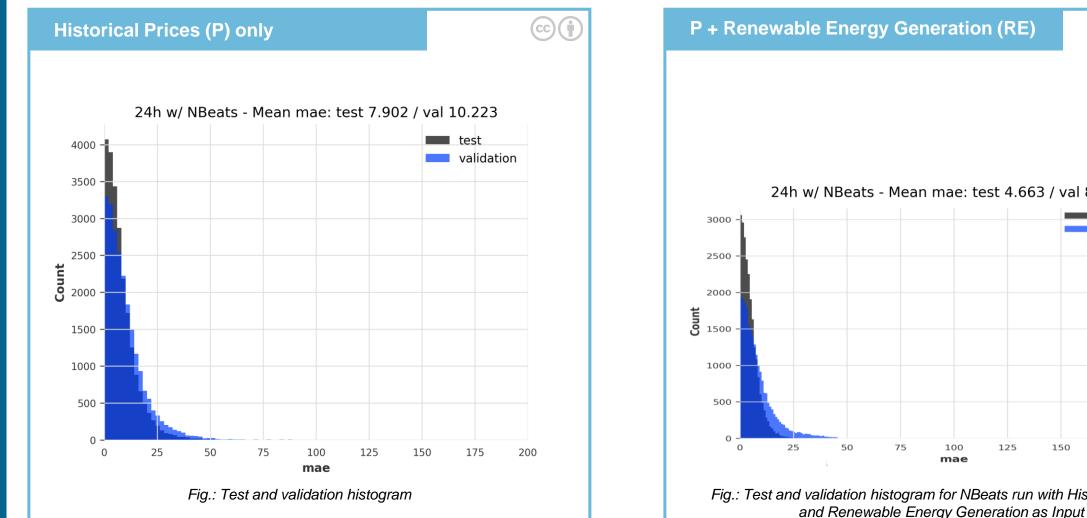
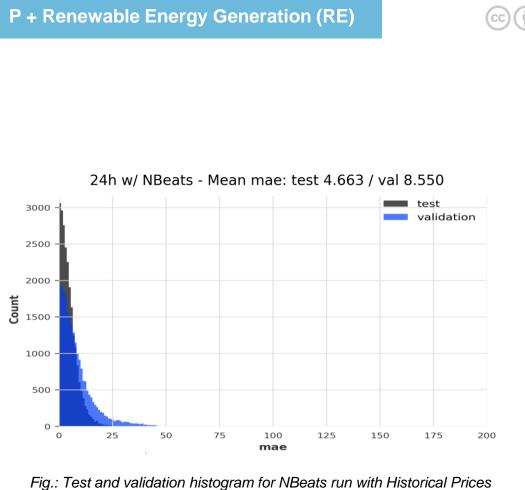


Fig.: Price duration curves for Germany in 2019 (top) and Austria in 2019 (bottom)

#### **Results Machine Learning NBeats**







Imprint



Topic:Comparison of electricity price forecasting methodsfor use in agent-based energy system models

Date: 15.02.2023

Author: Felix Nitsch

Institute: Institute of Networked Energy Systems

Credits: DLR (CC BY-NC-ND 3.0)