
©The author, under exclusive license to Springer Nature Switzerland AG 2023. This is the
author’s version of the work. Personal use of this material is permitted. Permission from
Springer must be obtained for all other uses. The definitive version of record was published
in Sustained Simulation Performance 2021, https://doi.org/10.1007/978-3-031-18046-0_7

Scalability Evaluation of the CFD Solver CODA
on the AMD Naples Architecture

Michael Wagner

Abstract Computational fluid dynamics (CFD) simulations are an increasingly
important part of aircraft design. They allow in-depth insight into the aerodynamic
behavior of components and help reducing cost and time in development. CODA is a
next-generation CFD solver for aerodynamic simulations of fully equipped aircraft.
It is developed by the German Aerospace Center (DLR), the French Aerospace Lab
(ONERA), andAirbus, and is one of the key applications represented in the European
Centre of Excellence for Engineering Applications (Excellerat). This work evaluates
the CODA CFD solver on the CARA HPC system based on the AMD Naples
architecture. The evaluation includes an assessment of the scalability on the largest
available partition of the production system with the NASA common research model
in a strong scaling scenario, a comparison of different hybrid-parallel setups suitable
for the specific memory and NUMA layout and a comparison of the results with the
Intel Cascade Lake architecture. Furthermore, it demonstrates the impact of node
placement and unfavorable network loads on large scale runs.

1 Introduction

One of the key challenges in aviation is the aim for climate-neutral, low-noise air
transport by the middle of the century. The European Commission, for instance,
defines in its vision for Europe’s aviation several goals to, among others, increase
affordable and reliable connectivity within the European Union and at the same time
mitigate the adverse impact of aviation on society and environment. These goals
include a reduction of 75% of CO2 emissions, 90% of NOx emissions, and 65% of
perceived aircraft noise by 2050; in comparison to a typical new aircraft in 2000 [1].

Michael Wagner
German Aerospace Center (DLR), Institute of Software Methods for Product Virtualization
e-mail: m.wagner@dlr.de

1

2 Michael Wagner

To attain these goals, new aircraft have to become significantly lighter and more
aerodynamically efficient, in combination with the introduction of innovative flight
control and an intelligent mix of alternative propulsion system concepts. This will
require a disruptive approach including step-changing aircraft technology and new
design principles. Thus, future aircraft designs may be driven by unconventional
layouts such as the low noise aircraft model (LNA), the blended wing body aircraft,
or the flying wing configuration.
For these unconventional layouts flight characteristics will be dominated by non-

linear effects. In this case, high-fidelity numerical simulations become inevitable for
the design and assessment of new aircraft designs to provide reliable insight into new
aircraft technologies and reach best overall aircraft performance through integrating
aerodynamics, structural mechanics and systems design.
Another challenge on the road to climate-neutral aviation is the reduction of

development time for new aviation technology. The development, testing and pro-
duction of new aircraft involve significant time and financial investments and risks.
The huge time and financial investment in aircraft development and the resulting
long aircraft operation spans slow down the introduction of progressive technology
and dynamic improvements. For this reason, the German Aerospace Center (DLR)
is putting the virtual product at the heart of its scientific work in its guiding concepts
for aeronautics research. The virtual product, i.e., high-precision mathematical and
numerical representation of a new aircraft and all its characteristics and components,
allows faster development cycles; starting from product development up to approval,
production, maintenance and decommissioning [2].
Computational fluid dynamics (CFD) simulations for aircraft aerodynamics are

already today imperative in the aircraft design process. Not only do they allow to
reduce cost and time of aircraft development by omitting unnecessary prototyping,
wind tunnel experiments and real flight tests, but allow a more in-depth insight
into components and systems. Especially for future aircraft design driven by step-
changing technology, new design principles and, consequently, non-linear effects in
flight characteristics, highly accurate and efficient CFD simulations are essential.
CODA is a CFD solver for the solution of the Reynolds-Averaged Navier-Stokes

equations on unstructured grids based on second-order finite-volume and higher-
order Discontinuous-Galerkin (DG) discretization. The implementation addresses
the efficient usage of current and upcoming high performance computing (HPC)
systems and emerging technologies such as GPUs. CODA is developed in a joint
effort of the German Aerospace Center (DLR), the French Aerospace Lab (ONERA)
and Airbus and is one of the key next-generation engineering applications in the
European Centre of Excellence for Engineering Applications (Excellerat) [3].
In this work, the CODA CFD solver is evaluated on the German Aerospace

Center’s CARA HPC system based on the Naples architecture from AMD. The con-
tribution of this work is, first, an assessment of the scalability on the largest available
partition of the production system with the NASA common research model in a
strong scaling scenario. Second, a comparison of different hybrid-parallel setups
suitable for the memory and NUMA layout of the AMD Naples architecture and a
comparison of the results with the Intel Cascade Lake architecture. Third, a demon-

Scalability Evaluation of the CFD Solver CODA on the AMD Naples Architecture 3

stration of the impact of node placement and network interference on large scale
runs. This contribution serves, on the one hand, as best practice recommendation
for the CFD solver CODA on the CARA HPC system and, on the other hand, it
may provide guidance for researchers and developers in their efforts to execute their
applications on the AMD Naples architecture.
The following sections provide background on the CFD solver CODA (Sect. 2),

the used test case (Sect. 3) and the CARA HPC system (Sect. 4). Sect. 5 presents the
results of the scalability assessment and the comparison of different hybrid-parallel
setups. Finally, Sect. 6 summarizes the presented work and draws conclusions.

2 The CFD Solver CODA

At the German Aerospace Center (DLR), CFD codes have been developed for
decades, many of them in regular industrial use. One of them is the DLR TAU
code [4], which is in production in the European aircraft industry, research organiza-
tions and academia since more than 15 years. It was, for instance, used for the Airbus
A380 and A350 wing design. TAU implements a classical MPI parallelization to
simulate steady as well as unsteady external aerodynamic flows using a second order
finite-volumes discretization.
In 2012DLR initiated the development of a new, flexible, unstructuredCFD solver

called Flucs [5], which held the opportunity to design a modern, comprehensive con-
cept for HPC from scratch. Next to HPC, the focus was set on algorithmic efficiency
using strong implicit solvers, higher-order spatial discretization via the Discon-
tinuous Galerkin method featuring hp-adaptation in addition to finite volumes with
maximum code share, and seamless integration into Python-basedmulti-disciplinary
process chains via FlowSimulator [6].
Though the Flucs development had been started at DLR, it has become part of a

larger cooperation that is driven by Airbus, the French aerospace lab ONERA, and
DLR. After Airbus expressed its interest for a new generation CFD solver that is
co-developed by ONERA and DLR in 2015, in May 2017 all three parties reached an
agreement pursuing the joint effort. The joint development of the CFD solver based
on Flucs was named CODA (CFD for ONERA, DLR and Airbus) to honor the new
collaboration and the involvement of all three partners.
Similar to TAU, CODA implements classical domain decomposition to make use

of distributed-memory parallelism via MPI and, additionally, the GASPI [7] imple-
mentation GPI-2 as an alternative to MPI. This Partitioned Global Address Space
(PGAS) library features efficient one-sided communication to reduce network traf-
fic and latency. Furthermore, CODA features overlapping halo-data communication
with computation to hide network latency and, thus, improve scalability. In addition
to classical domain decomposition, CODA uses a hybrid two-level parallelization.
CODA implements sub-domain decomposition, where each domain is further par-
titioned into sub-domains, each of which being processed by a dedicated software
thread that is mapped one-to-one to a hardware thread to maximize data locality.

4 Michael Wagner

This allows utilizing shared-memory parallelism and provide a flexible adaption to
different hardware architectures (as can be seen in Sect. 5) [8].
An integral part of CODA is the Sparse Linear Systems Solver (Spliss) [9] that is

used for solving linear equation systems for implicit time integration methods, e.g.
for the test case used in this work. Spliss is a linear solver library that, on the one
hand, is tailored to the requirements of CFD applications but, on the other hand,
independent of the particular CFD solver. Focusing on the specific task of solving
linear equation systems allows for integratingmore advanced, but alsomore complex,
hardware-specific optimizations, while at the same time hiding this complexity from
a CFD solver such as CODA.

3 The Test Case for External Aerodynamics

The test case for the scalability evaluation is based on the NASA Common Research
Model from the fifth AIAA CFD Drag Prediction Workshop [10]. This test case
simulates steady airflow at subsonic speed and computes typical characteristics like
air velocity and direction, pressure and turbulence. Fig. 1 visualizes the output of
the test case with the aircraft configuration and mesh on the left and the airflow
around the wing and fuselage with air pressure on the aircraft on the right. It is well
studied and provides experimental data as well as numerical solutions by other CFD
applications for comparison.

Fig. 1 Visualization of the test case simulation: aircraft configuration with mesh (left) and airflow
around wing and fuselage (right); both with air pressure as color gradient.

For the CRM test case, CODA solves the Reynolds-averaged Navier-Stokes equa-
tions (RANS) with a Spalart-Allmaras one-equation turbulence model in its negative
form (SAneg). It uses a second-order finite-volume spatial discretization with an im-
plicit Euler time integration. For the linear problem, a Block-Jacobi solver with LU
decomposition is applied. The flow conditions are outlined by the following param-
eters: the Mach number is set to 0.2, the Reynolds number to 5e6, and a fixed 2.5°
angle of attack is set.

Scalability Evaluation of the CFD Solver CODA on the AMD Naples Architecture 5

The input of the test case is a rather small unstructured mesh with 5.2 million
points and 10.2 million prisms that is obtained by splitting each hexahedron in
the original mesh into two prisms such that the geometry’s surface mesh is purely
triangular. Please note that this rather small mesh (one order of magnitude smaller
than industrial cases) was chosen to allow a strong scalability analysis at relatively
small core counts, i.e., neither the purely prismatic volumes nor the small number
of cells allow high CFD accuracy in the boundary layer.

4 The CARA HPC System

The Computer for Advanced Research in Aerospace (CARA) is the German
Aerospace Center’s current main HPC system installed by NEC. It was ranked at
221 in the Top500 list of 11/2019 providing 1.7 TFlop/s out of 2.6 Tflop/s theoretical
peak performance [11]. The system is primarily used for production simulations and
research in the fields of aerospace and mobility.
The CARA HPC system offers 2280 compute nodes, which are connected by an

Infiniband HDR network. Each compute node consists of two AMD EPYC 7601
(32 cores at 2.2 GHz) with four dies of eight cores each. The system has two-way
simultaneous multi-threading (SMT) enabled, i.e. there are two hardware threads
running on each core. In total, the system offers 145,920 compute cores.
With respect tomemory access, theAMDNaples architecture presents rather com-

plex characteristics. The architecture includes eight NUMA (non-uniform memory
access) domains and three NUMA distances: first, to the memory of the seven other
cores on the same die, second, to the memory on the three other dies on the same
chiplet (socket) and, third, to the memory located on the other chiplet. In addition,
only four of eight cores on each die share a last level cache (L3 cache) leading to
an additional difference in memory access latency depending on the locality of the
data; weather it is in the shared L3 cache of the according core or in the adjoining
L3 cache on the same die. The complex NUMAness and the split L3 cache per die
should be put in consideration when it comes to data locality and memory access, in
particular, for shared-memory parallelization and thread synchronization.

5 Evaluation

This section first outlines the measurement setup and then presents scalability results
for different hybrid-parallel setups, different mesh sizes, analyzes the impact of node
placement and unfavorable network loads, and concludes with a comparison of the
AMD Naples and Intel Cascade Lake architectures with respect to their impact on
threading performance.

6 Michael Wagner

5.1 Measurement Setup

Prior to the launch of the CARA system, it was already established for CODA that, in
general, a hybrid-parallel execution of the code using MPI and threads provides best
performance. In particular for higher core counts, a suitable utilization of shared-
memory parallelization via threads reduces the total number of MPI ranks, the
number of MPI operations and cost for MPI global communication (e.g. collectives)
since less MPI ranks are involved. However, it was also established for CODA that
threading performance is impacted by the memory hierarchy, in particular, data
locality and the size of NUMA domains.
Therefore, for the scalability evaluation, first, all software threads are bound to

a hardware thread to ensure thread affinity. Second, three different hybrid-parallel
setups are evaluated to identify the impact of the memory hierarchy:

• 16MPI processes per node with 4 OpenMP threads each. This way all four threads
are in the same NUMA domain and share the same L3 cache.

• 8MPI processes per node with 8 OpenMP threads each. This way all eight threads
are in the same NUMA domain but are split across two L3 caches.

• 4MPI processes per node with 16 OpenMP threads each. This way the 16 threads
are split across two NUMA domains.

Please note that other combinations such as 1 MPI process with 64 threads each,
i.e. threads split across two sockets, were tested but not included in the full evaluation
since they did perform inferior to the above setups, which was already established
before, and did not provide any further inside into the Naples architecture itself.
As stated before, on the AMD Epyc architecture each core can be over-subscribed

to use two hardware threads on each core, i.e. two-way simultaneous multi-threading
(SMT). This allows running two software threads on each core, scheduled by the
operating system, and may help increasing performance by increasing the number
of independent instructions in the execution pipeline. In addition to the above setups
using one hardware thread per core, the according setups with simultaneous multi-
threading are recorded, too. For these setups the number of OpenMP threads per
MPI process is doubled, e.g. the version with 16MPI process and 4 OpenMP threads
each is also measured with 16 MPI processes and 8 OpenMP threads each, whereas
the 8 OpenMP threads run on the same 4 cores as the 4 OpenMP threads.
All measurements were executed only one time due to the large core counts,

according costs and wait times in the queue. This must be kept in mind when dis-
cussing the significance of individual data points. In general, the recorded runtimes
are consistent in themselves; nonetheless, the data points should not be taken as exact
values but rather as basis for general trends. Parallel runtimes are affected, amongst
others, by the applied scheduling to nodes and the overall load on the system. In that
sense, the recorded runtimes reflect typical behavior that users would see in normal
production mode; not isolated benchmark runs in a near-perfect environment.

Scalability Evaluation of the CFD Solver CODA on the AMD Naples Architecture 7

5.2 Evaluation of Different Hybrid-parallel Setups

Fig. 2 shows the parallel speedup for the different setups of MPI processes to
OpenMP threads without and with enabled hyper-threading for 1 to 512 nodes,
i.e. 64 to 32.768 cores; whereas 512 nodes was the largest partition that could be
reasonably used during normal production of the system. The figure highlights the
general scaling behavior of the various setups.

 0

 128

 256

 384

 512

 0 128 256 384 512

S
p
e
e
d
u
p

#nodes (x64 cores)

ideal
setup 4:16
setup 8:8
setup 16:4

 0

 128

 256

 384

 512

 0 128 256 384 512

S
p
e
e
d
u
p

#nodes (x64 cores)

ideal
setup 4:32
setup 8:16
setup 16:8

Fig. 2 Speedup for 1 to 512 nodes (64 to 32.768 cores) for different MPI rank to OpenMP thread
ratios: without (left) and with simultaneous multi-threading (right).

Without simultaneous multi-threading (Fig. 2, left) CODA achieves about 90%
parallel efficiency at 4096 cores and 59% parallel efficiency at 32,768 cores. This
represents very good strong scaling behavior for such a small mesh, where at 32,768
cores on average only 312 elements are assigned to each software thread; an extreme
case that is usually not approached in production simulations. As expected, based on
the architecture, the best setup is with four threads per MPI process, so that all four
threads are executed on the four cores that share a last level cache. The second-best
setup is with eight threads per MPI process, so that all eight threads are executed
within a single NUMA domain. The execution of threads across NUMA domains
leads to further reduced performance.
With enabled simultaneous multi-threading (Fig. 2, right) CODA achieves about

88% parallel efficiency at 4096 cores and 47% parallel efficiency at 32,768 cores.
This again represents very good strong scaling behavior for such a small mesh,
where on average only 150 elements are assigned to each software thread at 32,768
cores. Consequently, the scalability is slightly reduced since each thread has only
half the computational load. In that sense, computing a test case with 10.2 million
prisms across 65,536 threads sets an extreme case and highlights the excellent scaling
behavior of CODA even on very little computation load per thread. In comparison,
typical workloads used in production simulation have one or two orders of magnitude
more elements per thread.

8 Michael Wagner

Although the setups with enabled simultaneous multi-threading show slightly
lower parallel efficiency at scale, they provide significantly better compute perfor-
mance. Comparing the individual simultaneous multi-threading setups with their
non-simultaneous multi-threading counterparts, the setups with enabled simultane-
ous multi-threading have a 15 - 20% reduced runtime, which might also be a factor
in the slightly reduced scalability.

5.3 Evaluation of Different Mesh Sizes and Node Placement

To evaluate the scalability relative to the number of mesh elements, the strong
scalability of CODA is measured for three different mesh sizes: tiny with 1.2 million
prisms, medium with 10.2 million prisms (same mesh as above) and fine with 34.5
million prisms. All use the setup with 16 MPI processes per node and 4 OpenMP
threads each (disabled simultaneous multi-threading).

 0

 128

 256

 384

 512

 0 128 256 384 512

S
p
e
e
d
u
p

#nodes (x64 cores)

ideal
tiny (1.2M)
medium (10.2M)
fine (34.5M)

 0

 128

 256

 384

 512

 0 128 256 384 512

S
p
e
e
d
u
p

#nodes (x64 cores)

ideal
interference
random placement
good placement

Fig. 3 Speedup for 1 to 512 nodes (64 to 32.768 cores) for different mesh sizes (left) and for
different node placements and unfavorable network loads leading to interference (right).

The left side of Fig. 3 shows the parallel speedup for the different mesh sizes. It
highlights the general scaling behavior relative to the number of mesh elements. As
expected, the larger the mesh size, the better the scaling behavior. However, scala-
bility relative to the number of elements per thread does not increase proportionally.
Hence, additional factors, except the decreasing workload per thread, impact over-
all scalability, especially, for large core counts, were MPI communication becomes
an increasingly limiting factor, for instance, the non-linear scaling of global MPI
collectives and network interference.
Indeed, on a production system such as CARA, the fluctuating network load can

significantly impact application performance for large core counts. The right side of
Fig. 3 compares the scalability of CODA with three levels of network interference

Scalability Evaluation of the CFD Solver CODA on the AMD Naples Architecture 9

for the medium mesh: First, the typical network interference for a typical CODA run
as seen in the previous results. In this case, the job scheduler places the application
on the first available set of nodes (random placement in Fig. 3). Second, reduced
network interference that is achieved by using a set of nodes that is connected by
a minimal number of network switches (good placement). This can be realized, for
instance, with the according use of the switches option in the Slurm job scheduler.
Third, increased network interference that can be reproduced by using the random
node placement and running another large-scale network-heavy application at the
same time, e.g. another large CODA simulation.
With the improved node placement CODA achieves about 93% (vs. 90%) parallel

efficiency at 4096 cores and 71% (vs. 59%) parallel efficiency at 32,768 cores.
However, with default node placement and unfavorable network loads CODA only
achieves about 88% parallel efficiency at 4096 cores and 20% parallel efficiency
at 32,768 cores. The huge span from 20% (heavy network interference) to 59%
(typical network interference) to 71% (reduced network interference) underlines the
significant impact on application performance for large core counts that can occur
unwillingly and possibly unnoticed on a production system. As a consequence,
today, Slurm’s switches option with a moderate wait time is set by default for all jobs
submitted on CARA.

5.4 Comparison of AMD Naples and Intel Cascade Lake Architectures

To better understand the threading performance on the AMDNaples architecture, the
results are compared to results achieved on the Intel Cascade Lake architecture. The
AMD Naples nodes consist of two AMD Epyc 7601 with 32 cores and 64 hardware
threads each and has a total power consumption of 360W. The Intel Cascade Lake
architecture consists of two Intel Xeon Platinum 9242 with 48 cores and 96 hardware
threads each and has a total power consumption of 700W. To fairly compare the two
architectures, two AMD Naples nodes are set against one Intel Cascade Lake node
to match power consumption, which is often a limiting factor in computing centers
and mainly influences operational costs. While this comparison based on power
gives the AMD a slight benefit of 20W, it can still be considered fair since the Intel
architecture was released almost two years later.
Fig. 4 shows the runtime for the test case with the tiny mesh of 1.2 million ele-

ments for different hybrid-parallel setups with enabled two-way simultaneous multi-
threading or hyper-threading, respectively. In general, both architectures achieve very
similar performance. However, as seen before, CODA performs less efficiently on
the AMD Naples architecture the more threads per MPI process are used; with the
optimum being four threads per process and a significant increase towards using
one MPI process and 64 threads per socket. For the Intel Cascade Lake architecture,
the test case shows much less variance between the different setups; reaching its
optimum at 16 threads per MPI rank but comparable performance up to one MPI
process and 48 threads per socket.

10 Michael Wagner

 0

 10

 20

 30

2 4 8 16 24 32 48 64

ru
n
ti
m

e
 (

in
 m

in
u
te

s
)

#threads per MPI rank

AMD Naples
Intel Cascade Lake

Fig. 4 Threading performance on two AMD Naples nodes vs. one Intel Cascade Lake node.

These results put the AMD Naples architecture at a disadvantage for large scale
runs, where good threading parallelism is a crucial factor, since it allows reducing
the number of MPI processes and, thus, the impact of MPI communications.

6 Conclusion

This work presents an evaluation of the scalability of CODA, a CFD solver for air-
craft aerodynamics. This evaluation includes an assessment of the scalability on the
largest available partition of DLR’s CARA HPC system. The test case based on the
NASA common research model achieves 93% parallel efficiency at 4096 cores and
71% parallel efficiency at 32,768 cores in a strong scaling scenario despite running
on a very small mesh with very little computational load per thread; an extreme case
that is usually not approached in production simulations. Furthermore, the evalua-
tion compares different hybrid-parallel setups suitable for the specific memory and
NUMA layout of the AMDNaples architecture. It highlights that best hybrid-parallel
performance is reached when using only four threads per MPI process, so that these
threads share the same last level cache. This stands in contrast to the Intel Cascade
Lake architecture, where comparable performance for all hybrid setups was obtained.
Lastly, an assessment of node placement and network interference underlines the sig-
nificant impact of unfavorable network loads on application performance resulting
in up to a factor of 3.5 divergence in parallel efficiency.

Acknowledgements This work has been supported by the EXCELLERAT project, which has
received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 823691.

Scalability Evaluation of the CFD Solver CODA on the AMD Naples Architecture 11

References

1. Directorate-General for Mobility and Transport (European Commission), Directorate-General
for Research and Innovation (European Commission): Flightpath 2050: Europe’s vi-
sion for aviation: maintaining global leadership and serving society’s needs (2012)
DOI: https://doi.org/10.2777/15458

2. Guiding concepts for DLR aeronautics research.
https://www.dlr.de/EN/research/aeronautics/guiding-concepts.html [Online; acc. 2022-02-08]

3. The European Centre of Excellence for Engineering Applications (EXCELLERAT).
http://www.excellerat.eu [Online; accessed 2022-02-08]

4. Dieter Schwamborn, Thomas Gerhold, Ralf Heinrich: The DLR TAU Code: Recent Applica-
tions in Research and Industry. In Proc. of the European Conference on Computational Fluid
Dynamics, ECCOMAS CFD (2006)

5. Tobias Leicht, DanielVollmer, Jens Jägersküpper, Axel Schwöppe, RalfHartmann, Jens Fiedler
and Tobias Schlauch: DLR-Project Digital-X –Next Generation CFDSolver ’Flucs’. Deutscher
Luft- und Raumfahrtkongress 2016

6. Michael Meinel and Gunnar Einarsson: The FlowSimulator Framework for Massively Parallel
CFD Applications. In PARA 2010

7. ThomasAlrutz, JanBackhaus, ThomasBrandes,VanessaEnd, ThomasGerhold,AlfredGeiger,
Daniel Grünewald, Vincent Heuveline, Jens Jägersküpper, Andreas Knüpfer, Olaf Krzikalla,
Edmund Kügeler, Carsten Lojewski, Guy Lonsdale, Ralph Müller-Pfefferkorn, Wolfgang E.
Nagel, Lena Oden, Franz-Josef Pfreundt, Mirko Rahn, Michael Sattler, Mareike Schmidto-
breick, Annika Schiller, Christian Simmendinger, Thomas Soddemann, Godehard Sutmann,
Henning Weber and Jan-Philipp Weiss: GASPI – A Partitioned Global Address Space Pro-
gramming Interface. In Facing the Multicore-Challenge III, LNCS 7686, pp. 135–136 (2013)
DOI: https://doi.org/10.1007/978-3-642-35893-7_18

8. MichaelWagner, Jens Jägersküpper,DanielMolka andThomasGerhold: PerformanceAnalysis
of Complex Engineering Frameworks In: Tools for High Performance Computing, pp. 123–138
(2021) DOI: https://doi.org/10.1007/978-3-030-66057-4_6

9. Olaf Krzikalla, Arne Rempke, Alexander Bleh, Michael Wagner and Thomas Gerhold: Spliss:
A Sparse Linear System Solver for Transparent Integration of Emerging HPC Technologies
into CFD Solvers and Applications. In New Results in Numerical and Experimental Fluid
Mechanics XIII, pp. 635–645 (2021) DOI: https://doi.org/10.1007/978-3-030-79561-0_60

10. John Vassberg: A Unified Baseline Grid about the Common Research Model Wing/Body for
the Fifth AIAACFDDrag PredictionWorkshop. 29th AIAA Applied Aerodynamics Conference
(2011) DOI: https://doi.org/10.2514/6.2011-3509

11. Erich Strohmaier, Jack Dongarra, Horst Simon andMartin Meuer: The 54th Top500 list (2019)
https://www.top500.org/lists/top500/2019/11/ [Online; accessed 2022-02-08]

