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Abstract: We present a modified version of the two-arm, two-color, single second harmonic
generation heterodyne dispersion interferometer, as introduced by Irby et. al. [Rev. Sci.
Instrum. 70, 699 (1999) ]. The amount of optical elements is reduced and digital in-phase
and quadrature demodulation is used to retrieve the phase shift from a single photodetector
signal. The intrinsic system noise and drift for this device are analyzed by measuring the Allan
deviation. We investigate the use of this device for relative atmospheric pressure measurement.
Relative pressure measurements are performed in a pressure chamber and referenced against a
piezoresistive pressure transceiver to demonstrate the concept. It was found that the deviation
was less than 150 Pa and an error estimation has been derived.
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1. Introduction

In aviation, the barometric or density height is used as a reference figure for the altitude of an
aircraft, rather than the height above ground level, since the change of pressure over height within
the troposphere is well-behaved and modeled by the International Standard Atmosphere (ISA)
equations [1].

Modern aircraft determine the ambient pressure via static pressure ports located on the fuselage
or via Pitot tubes mounted at the front of the aircraft [2]. However, while these systems have
been tested and used in practice for decades, they are prone to failure in icing conditions without
sufficient heating and will continue to report pressure measurements, albeit being incorrect [3].
Therefore, a method is of interest which can determine the static pressure optically and is resilient
against mechanical and environmental perturbations, while also featuring self-diagnosis in regards
to measurement degradation and errors. There are optical techniques that allow the contact-less
measurement of the static ambient pressure. These include spectroscopic techniques like tunable
diode laser absorption spectroscopy (TDLAS) [4,5] and filtered Rayleigh spectroscopy (FRS) [6].
In theory, the failure of such a system, e.g., in the case of icing, can be more easily discerned due
to a drop in signal strength or the total loss of signal.

Another approach to measure the static ambient pressure is via the pressure-dependent
refractivity of air. This connection has been extensively researched by Edlen in 1966, Owens in
1967 and Ciddor in 1996 [7–9]. The semi-empirical relations published by Ciddor allow the
calculation of the refractive index of air depending on the wavelength λ, the ambient pressure p
and temperature T , as well as the relative humidity rh and the carbon dioxide (CO2) content ηc,
that is n = n(λ, p, T , rh, ηc), for a wide range of conditions. Vice-versa, given a change in the
refractive index, a change of the atmospheric parameters can be calculated.

The optical dispersion interferometer (DI) uses a single-arm, two-color, homodyne interferom-
eter to detect changes in the dispersive properties of a medium between two second harmonic
generation (SHG) crystals. The main advantage of this interferometer is the collinear single-arm
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design which enables a high resistance against mechanical vibrations [10,11]. An overview of
different implementations of the traditional DI using homodyne or heterodyne detection is given
by Akiyama et al. (2020) [12]. The concept of using such a device for the measurement of the
dispersion of air has been investigated by, e.g., Drachev (1990) and Brandi et al. (2007) [13,14].

A two-arm, two-color, heterodyne interferometer with single SHG for dispersion measurement
has been proposed by Irby et al. (1999) and more recently by Lee et al. (2021) [15,16]. The
second optical frequency doubling via a nonlinear crystal is replaced by an electrical frequency
doubler in both cases. This type of setup avoids the technical challenge of aligning the probe
beam onto the aperture of the second nonlinear crystal [16]. Due to the strong similarity to the
single-arm DI we refer to this type of device as synthetic dispersion interferometer (SDI).

In this work, a SDI setup is presented, which utilizes the integer factor in the Bragg equation to
generate a reference beam from an acousto-optic modulator (AOM) with a single driver frequency
that contains both the modulated fundamental and second harmonic (SH) beam. This allows
for a compact heterodyne interferometer where the radio frequency (RF) beat signals for the
fundamental and SH beam are detected with a single detector one octave apart from each other.
In addition, a beam splitter is placed such that the reflected probe beam is aligned back into
itself and onto the reference beam, further reducing the amount of required optical elements. By
two-tone downmixing the photo detector (PD) signal is down-shifted to a lower signal bandwidth
for easier analog-to-digital conversion and followed by digital in-phase and quadrature (IQ)
demodulation to recover the pressure-dependent phase difference.

The system noise and stability of this device are examined by evaluating the Allan deviation,
as well as the power spectral density (PSD). The setup is then used to measure the static pressure
in an airtight chamber, which is vented at different rates, and compared against a piezoresistive
pressure sensor. The deviation between both systems is shown to be below 1.5 hPa.

2. Materials and methods

2.1. Experimental setup

2.1.1. Optical setup

A continuous wave (cw) diode-pumped solid-state (DPSS) Nd:YAG single longitudinal mode
(SLM) laser with intracavity frequency doubling (CNI Laser MSL-FN-532-10mW) is used
for this system. The wavelengths and output powers are summarized in Table 1. Both the
fundamental laser frequency and the SH beam operate in the TEM00 transversal mode. The
coherence length for both wavelengths is approximately 50 m in comparison to the path length
difference of the SDI, which is less than 2.5 m. A schematic of the experimental setup is displayed
in Fig. 1. The main reason for choosing the specified wavelengths is the applicability of the
Ciddor equation, which holds for λ ∈ [300, 1690] nm [9], and the availability of components
optimized for this wavelength range.

Table 1. Laser parameters

Parameter Value

Fundamental
Wavelength 1064 nm

Power 36.22 mW

Second harmonic
Wavelength 532 nm

Power 10.64 mW

The laser source is not compensated for walk-off between the fundamental and SH beam.
Therefore, a small angle between both beams exists. Whilst being small in practice (α ≈ 0.05◦),
this deviation can introduce non-common path errors into the system. A wedged prism pair
(WPP) is aligned at the exit of the laser module such that the prism dispersion realigns the beams.
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Fig. 1. (a) Schematic of the optical setup. The fundamental (red) and SH (green) beam
are realigned using a WPP and aligned through the AOM via two kinematic mirrors. The
unmodulated portion of the fundamental and second harmonic is used as the probe beam,
whereas the modulated first and second order diffractions generated by the AOM are picked
off by a mirror and used as the reference beam (dotted). The probe beam enters the pressure
chamber and is reflected back into itself, passing the chamber twice. When the probe beam
hits the BS from the opposite side, a part of it is reflected and diverted onto the PD via a
D-shaped mirror (M), together with the reference beam. The chamber pressure is monitored
separately by a pressure (P) sensor and can be raised after evacuation by opening the control
valve (V). The geometric proportions of the optical paths in this schematic are exaggerated
for the purpose of illustration. (b) Image of the laboratory setup. Not shown are the full
pressure chamber and the return mirror. The coaxial amplifier (CA) is placed close to the
AOM to minimize electromagnetic interference. The iris in front of the AOM is used during
initial alignment only.

Since this correction is applied immediately after the laser, both beams are coaxial for the relevant
interferometer arm length.

Two mirrors are used to adjust the beam path through the AOM (ISOMET M1205-T80L),
which is operated at 80 MHz and anti-reflex (AR) coated for both wavelengths. The adjustment of
the diffraction order efficiency is performed qualitatively via the alignment of the beam through
the AOM using the kinematic mirror mounts. For sin θm ≈ θm and under Bragg angle θB, the
angles under which an incident beam is diffracted by an AOM are

θm ≅
m · λ

n · Λ
= 2 · m · θB, (1)
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where m ∈ Z are the diffraction orders, n is the refractive index of the crystal and Λ is the acoustic
wavelength within the crystal [17]. Further, the frequency shift of the diffracted light is

ΩAOM = m · Ωmod, (2)

where Ωmod is the acoustic modulation frequency [17]. Thus, if all material parameters are
considered equal and λω = 2 · λ2ω , then

θm=1(λω) = θm=2(λ2ω), (3)

that is the first diffraction order of the fundamental laser frequency is diffracted at the same
angle as the second diffraction order of the SH beam. Consequently, the reference beam can be
generated from this common diffraction angle and the modulation of the diffracted SH beam is
twice that of the fundamental. Hereby, the dual frequency AOM driver signal used by Irby et al.
can be avoided [15].

The optical paths after the AOM are displayed schematically in Fig. 1(a). A 50:50 plate beam
splitter (BS) (Thorlabs BSW26) is placed in close proximity behind the AOM. The coated BS
side faces away from the AOM and towards the return mirror at the end of the probe beam path.
The fundamental and SH, as well as the modulated reference beam, pass through the BS. The
measured beam separation angle between the probe and reference after the BS is θ ≈ 1.2◦. The
optical powers in the probe and reference beam are Pω ≈ 11.5 mW and P2ω ≈ 2.3 mW and
Pω+Ω ≈ 3.7 mW and P2(ω+Ω) ≈ 0.45 mW, respectively.

The probe beam travels through the pressure chamber and is reflected back into itself using a
plane mirror. A part of the probe beam is then reflected by the BS, which is placed at such an
angle that the reflected probe beam and the reference beam are aligned parallel and with minimal
offset. A D-shaped mirror (M) is used to pick off the reference and probe beam and align them
onto the PD (Thorlabs PDA10A-EC). Since the return beam can propagate back into the laser
resonator if the setup is adjusted ideally, a slight misalignment is tolerated, such that the return
beam misses the laser exit aperture while still having sufficient signal-to-noise ratio (SNR) for
demodulation. The footprint of the interferometer, excluding the pressure chamber and return
mirror, is less than 500 mm by 300 mm as can be seen in Fig. 1(b). Single-arm DIs with two
SHG crystals can reach a similar form factor [18,19].

2.1.2. Electrical setup

The AOM driver is a Rigol DSG815 signal generator (SG) which generates an 80 MHz sine
wave with -20 dBm up to -5 dBm. This signal is amplified by 33 dB in a CA (Mini-Circuits
ZHL-1-2W). As per Eq. (2), the maximum frequency shift is 160 MHz for the second diffraction
order of the SH beam. The PD has a 3 dB bandwidth of 150 MHz and can hence capture the
RF beat signal. However, this much bandwidth is not needed in the context of this work. In
order to reduce the analog-to-digital converter (ADC) sample rate requirements, the DI signal is
downmixed below 1 MHz using a dual comb signal generated by two channels of a Tektronix
AFG3252 SG, which is referenced to a 10 MHz phase-locked loop (PLL) clock signal. The clock
signal is provided by the AOM driver and is amplified and shared by a SRS FS730 distribution
amplifier (DA). The downmixing SG generates two sinusoidal signals with

f1 = f0 − ∆f1 = 79.875 MHz, (4)

f2 = 2 · (f0 − ∆f1) = 159.75 MHz, (5)

where f0 = 80 MHz and ∆f1 = 125 kHz. These are combined in a power splitter and then mixed
with the DI signal. This causes the signal to be downmixed to the new kHz carrier frequencies,
that is ∆f1 and 2∆f1. Higher harmonics resulting from the mixing are suppressed using a low-pass
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filter (LPF). All phase relations are maintained during this procedure. The signal is then sampled
by an 1 MSps ADC with a bit depth of 12 bit, which is also referenced to one of the 10 MHz DA
PLL clocks.

2.1.3. Pressure chamber and reference sensor

The pressure chamber has an internal diameter of 40 mm and a length of 1083 mm. The windows
that allow the probe beam to pass through the chamber are AR coated for 532 nm and 1064 nm
and not wedged. A manual needle valve (Pfeiffer EVN116) can be used to control the inflow of
air into the chamber. The latter is connected to a vacuum pump via a secondary valve, which is
closed off after the chamber has been evacuated to within a few Pa. The reference device is a
piezoresistive pressure transceiver (Keller Series 33X) with a full-scale of 105 Pa and ±50 Pa
accuracy. The total calibrated error is specified to be ≤ 50 Pa for temperatures between 10°C and
40°C. The sensor bandwidth is not specified. The transducer is mounted in vicinity to the needle
valve and also features an integrated temperature sensor with a resolution of ≤ 0.01◦C and an
accuracy of ≤ ±2◦C.

2.2. Methods

2.2.1. Refractivity of air

The accumulated phase for the reference and probe beam at the detector must be modeled for λω
and λ2ω separately, since the modulation frequency is different for each. The phase modulated
onto the carrier frequency ΩAOM between the reference and probe beam for λω is

φ̂ω(t) = (ω +Ω) · t⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
Ref.

−

(︃
ωt −

2π
λω

∫ l

h=0
n(λω) dh

)︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Probe

+ΦNCP,ω , (6)

where ΦNCP denotes the “non-common path” phase difference. Similarly for λ2ω ,

φ̂2ω(t) = 2(ω +Ω) · t −
(︃
2ωt −

2π
λ2ω

∫ l

h=0
n(λ2ω) dh

)︃
+ ΦNCP,2ω . (7)

For simplicity it is assumed that the “non-common path” phase contributions are constant and
can be calibrated to zero. With ∆φ = φ̂2ω − 2 · φ̂ω and λω = 2 · λ2ω it follows that

∆φ =
2π
λ2ω

·

∫ l

h=0
[n(λ2ω , p, T , rh, ηc, h) − n(λω , p, T , rh, ηc, h)] dh, (8)

where the refractive index varies along the length of the probe path h with a total (two-way)
length of l. In practice it is assumed that n is constant along h. The same is also postulated for
the CO2 content ηc, for which 450 ppm is assumed in accordance to the Ciddor equation [9].
Considering this, Eq. (8) simplifies to

∆φ −
2π · l
λ2ω

· [n(λ2ω , p, T , rh) − n(λω , p, T , rh)] = 0 . (9)

For a given ∆φ this equation can be solved numerically for p, if the ambient temperature and
humidity are known.

2.2.2. IQ demodulation

In practice, the phase difference can not be extracted from the measured signal directly since the
phase information is contained in a single two-tone signal at different carrier frequencies. Note
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that due to the downmixing described in Sec. 2.1.2, the carrier frequencies are now Ω = ∆f1 and
2Ω = 2∆f1. The PD signal can be modeled as

Iphoto(t) = R(λ2ω)·[P2ω,R + P2ω,P + 2

A2ω⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟√︁
P2ω,R · P2ω,M · cos(φ̂2ω)]

+R(λω)·[Pω,R + Pω,P + 2
√︁

Pω,R · Pω,M⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Aω

· cos(φ̂ω)],
(10)

where R(λ) is the PD responsivity in [A/W] and P is the optical power. The indices R and P
denote the reference and probe beam, respectively. To obtain the phase, i.e., φω = φ̂ω −Ωt, the
signal Iphoto(t) must be IQ demodulated. This step is applied digitally after the signal has been
sampled by the ADC and is displayed schematically in Fig. 2. The two-tone signal is mixed with
the sine and cosine of Ω and 2Ω, respectively, and filtered using LPFs. The results are the I
and Q components of φ̂ω and φ̂2ω , which are used to determine φω and φ2ω . Exemplary, the
IQ-mixer to determine φω is represented by means of complex multiplication as

I + j · Q = LPF[{cos(Ωt) + j sin(Ωt)} · 2Aω · cos(φ̂ω(t))]
= LPF

[︁
ejΩt · 2Aω · cos(φ̂ω(t))

]︁
= LPF

[︂
ejΩt ·

(︂
ejϕ̂ω (t) + e−jϕ̂ω (t)

)︂
· Aω

]︂
= Aω · ej(Ωt−ϕ̂ω (t)) = Aω · e−jϕω (t)

= Aω · [cos(φω(t)) − j sin(φω(t))] .

(11)

2
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S1: cos( t)
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Fig. 2. Digital IQ demodulation schematic: the digitized PD signal is mixed with sine and
cosine local oscillators (LOs) with Ω = ∆f1 and 2Ω, respectively. This results in the I and Q
components for the fundamental and SH laser beams. After passing through digital LPFs, the
phase shifts are calculated as φ = arctan2(I, Q). The total phase shift is ∆φ = φ2ω − 2 · φω ,
which is analogous to the second optical frequency doubling process in a classic DI.

Aω is the magnitude of the IQ signal. The operator LPF[· · · ] represents an ideal filter that
removes all frequencies larger than Ωt − φ̂(t). The phase can be calculated using the 2-argument
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arctangent for both φω and φ2ω via

φ = arctan2(I, Q) = ℑ{ln(I + jQ⏞⏟⏟⏞
=z

)} . (12)

The second definition of the phase as the imaginary part of the natural logarithm of I and Q
will be useful further on. The main benefit of performing the IQ demodulation digitally is the
ability to not only output ∆φ, but also the individual phases for the fundamental and SH beam, as
well as the length of the respective phasors, that is |z|.

For this work, the demodulation is performed off-line after ADC acquisition on a separate
computer. Five minutes of measured data, i.e., 3 · 108 data points, can be demodulated within
two minutes on a i7-10610U CPU. The demodulation scheme described above is implemented in
the Julia programming language [20].

2.2.3. Phase deviation analysis

In order to characterize the behavior of the interferometer for extended time periods, minutes in
the case of this work, a suitable metric is needed. Commonly, for systems that are assumed to
be dominated by white noise, the standard variance µ = σ2 is used. However, this quantity can
diverge if the signal source drifts over time, or is prone to some form of bias [21, p. 13]. For
this reason, the Allan deviation σy(τ) is utilized. Originally developed to evaluate the frequency
stability of atomic clocks, this metric can be interpreted as the local deviation from the mean
depending on the width of an averaging window τ [22]. This method has been modified from
its original field of oscillator analysis and is now used to determine the stability of various
sensors, i.e., inertial measurement units (IMUs) [23]. Adapted from this, the analogous, modified,
overlapping Allan variance for the DI phase measurements is defined as

σ2
∆ϕ(τ) =

1
2m4 · (M − 3m + 2)

·

M−3m+2∑︂
j=1

(︄j+m−1∑︂
i=j

[︄
i+m−1∑︂

k=i
∆φk+m − ∆φk

]︄)︄2

, (13)

where ∆φi with i = 1, . . . , M are the phase measurements and τ = m · τ0 is the averaging time,
with τ0 being the measurement time interval. This version of the Allan deviation was chosen
since it can better discern between flicker and white noise [21, p. 17]. Additionally, the PSD for
the phase signal is calculated via

S
(︃

k
M · τ0

)︃
=

2τ0
M

·

|︁|︁|︁|︁|︁|︁ M∑︂
g=1
∆φi · exp

[︃
−2πj ·

gk
M

]︃ |︁|︁|︁|︁|︁|︁
2

, (14)

where f = k/(M · τ0) and k = 0, . . . , M/2. This method will also be used to analyze the system
noise.

3. Results

3.1. Phase deviation

In order to characterize the intrinsic system noise and drift prior to the pressure measurements, the
phase difference is measured under static conditions. Several measures were taken to minimize
external influences as much as possible. To minimize the effect of external dispersive influences,
the chamber is evacuated to a residual pressure of approx. 103 Pa before static measurements are
performed. The laser and AOM are operated for 2 hours in advance to achieve a stable thermal
state. In addition, the setup is mounted on an optical table with vibration dampening. The
chamber pressure is monitored using the piezoresistive pressure sensor and for the duration of
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the static measurements the internal pressure did not change more than 5 Pa. Data was collected
over a duration of 5 min for increasing AOM driver power. Using Eq. (13), the Allan deviation
can be calculated and is displayed in Fig. 3. The AOM driver power denoted includes the 33 dB
CA amplification.

AOM power
13 dBm
18 dBm
23 dBm
28 dBm

Fig. 3. Allan deviation of the DI difference phase ∆φ measured over a duration of 5 min at
different AOM driver power settings. Guide lines for white noise (µ = −1) and random walk
noise (µ = 1) have been added.

It can be observed that an increase in AOM driver power has three effects: the noise floor
on the left flank is lowered and the deviation minimum tends towards shorter averaging times.
Conversely, the influence of drift-like effects on the right flank increases as well. In the averaging
time domain, noise sources can be modeled as

σ(τ) ∝ τ
µ
2 , (15)

where µ = −1 corresponds to white noise and µ = 1 to random walk noise [21, p. 9]. Guide
lines with these values have been added to Fig. 3 for the 28 dBm curve. Since the SNR at this
AOM driver power setting was highest, it is used for the pressure measurements. The minimal
deviation for this operating point is on the order of 1 mrad for τ ≈ 4 ms. However, the presence of
random walk noise, which levels off at around 1 s of averaging, increases the minimal achievable
deviation.

The timeseries data for ∆φ is shown in detail for the aforementioned AOM driver power
in Fig. 4(a) and the phasor length |z| for φω and φ2ω is displayed in Fig. 4(b) and Fig. 4(c),
respectively. Notably, |zω | is much greater than |z2ω |. Some temporally correlating events can be
seen, i.e., a sharp drop in |zω | at t ≈ 145 s correlating with a significant change in phase, marked
by a dotted black line.

The PSD of ∆φ, as defined in Eq. (14), is presented in Fig. 4(d). In the frequency domain,
noise sources can be modeled via

S(f ) ∝ f α . (16)

A direct relation between the noise models for τ and f in the form of µ = −α − 1 exists [21,
p. 10]. Thus, guide lines have also been added to the PSD for α = 0 and α = −2. A peak in



Research Article Vol. 31, No. 4 / 13 Feb 2023 / Optics Express 6364

|z 1
|

|z 2
|

Fig. 4. Phase noise measurement for 28 dBm AOM driver power. The data for ∆φ is
displayed in (a), along with the length of the phasors for φω and φ2ω in (b) and (c),
respectively. The normalized probability density functions (PDFs) are shown to the right. A
strong deviation of the distributions from an ideal white noise source can be seen. The PSD
of ∆φ is depicted in (d). Guide lines with α = −2 (random walk noise) and α = 0 (white
noise) have been added. The peak at 25 Hz is caused by an external acoustic disturbance.

the PSD can be observed at 25 Hz in the transition region. The source for this perturbation was
found to be an external acoustic excitation and was detected with a microphone as well. Despite
our best efforts, a coupling of this disturbance into the experimental setup could not be avoided.
However, this does not pose a problem for the pressure measurements presented below since the
disturbance is outside the bandwidth of interest and can be filtered out.

3.2. Pressure measurements

In order to conduct the pressure measurements the chamber is evacuated to a residual pressure
below 102 Pa and sealed off. The piezoresistive pressure sensor is used to measure the internal
pressure and temperature. The relative humidity of the ambient air is maintained at 50% by an air
conditioning system and monitored via a humidity sensor. The valve inflow rate is set such that
the pressure change rate remains within the bandwidth of the piezoresistive transceiver and the
linear inflow regime of the valve. Pressure rates between 60 Pa/s and 600 Pa/s were considered,
which corresponds to an aircraft descent rate of 14.7 m/s and 147 m/s at a height of 10 km.
The measurement is initiated in this static state, such that the starting pressure of the DI can be
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referenced to that of the absolute sensor. The valve is then opened and data is recorded until a
total length of 5 min is reached. The resulting phase data is used to calculate the pressure change
according to Eq. (9). The equation is solved numerically for the pressure p using a Nelder-Mead
optimizer [24]. Since the temperature profile recorded during the measurements never varied
more than 0.25°C, the average value T over the measurement duration is used to calculate the
refractive index via the Ciddor equation. For the relative humidity the value of 50% mentioned
above is used and the pressure chamber length l = 1083 mm is assumed as the one-way probe
path length. The results are shown in Fig. 5(a), with the reference sensor curves being displayed
as colored dashed lines. The calculated values for the DI are overlaid as black lines. The starting
pressure value for the interferometer at t = 0 s is matched to the initial absolute measurement of
the reference sensor.

(dp/dt)lin. [Pa/s]

6.816  101

9.348  101

1.234  102

2.359  102

5.575  102

Fig. 5. Pressure measurements at different valve settings. The reference sensor pressure
data is displayed in (a) as colored dashed lines. The calculated DI pressure data is referenced
to the absolute pressure of the piezoresistive sensor at t = 0 and plotted as black lines. The
DI data rate has been adjusted to that of the reference sensor (10 Hz). The pressure change
rate (dp/dt)lin. is given for the linear range of each measurement. The difference ∆p between
the reference sensor and the DI is shown in (b) for better comparability. The line color refers
to (a).

Since the data output sample rate of the reference sensor is 10 Hz, the DI pressure data is
downsampled and averaged from a rate of 10 kHz after demodulation to a bandwidth of 10 Hz
for the sake of comparability. The difference ∆p = pRef. − pDI between the pressure calculated
from the DI and that measured by the transceiver is displayed in Fig. 5(b). It can be seen that the
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discrepancy between both systems is less than 100 Pa for all measurements, except for an inflow
rate of 557.5 Pa/s. Here, the inflow rate behaves nonlinearly as the pressure difference between
the chamber and the environment decreases and ∆p reaches up to 140 Pa.

4. Discussion

The experimental investigation of the noise behavior has shown that the system exhibits random
walk drift, as can be seen in Fig. 3 or Fig. 4(d). For instance, the sudden changes in the measured
∆φ of up to 200 mrad that can be seen in Fig. 4(a) would correspond to a pressure change of 194
Pa, a behavior which can not be explained by realistic changes in pressure under the experimental
conditions described in Sec. 3.1.

However, this has not been found to lead to major deviations from the reference probe pressure
reading when conducting venting experiments with changing pressure, as can be seen in Fig. 5(b).
While there is some form of oscillation modulated onto the pressure differences, it remains
smaller in value and is of periodic nature, as opposed to the issue described above. Therefore,
the effect of errors on the IQ-phasor in relation to its magnitude is discussed below.

4.1. Phase error estimation

Based on Eq. (12), the error δϕ of the demodulated phase is dependent on the error of the phase
vector δz and thus

δφ = ℑ

(︃
d
dz

ln(z) · δz
)︃
= ℑ

(︃
δz
z

)︃
(17)

=
1
2j

·

(︃
δz
z
−
δz∗

z∗

)︃
(18)

=
1
2j

(︃
(δI + jδQ)(I − jQ) − (δI − jδQ)(I + jQ)

I2 + Q2

)︃
(19)

=
Q · δI + I · δQ

I2 + Q2 . (20)

In general, the uncertainty of each phase scales with |δz |
|z | as per Eq. (17) and, therefore, the

length of the respective phasor, which is |z|, can be used as a measure of uncertainty for φω and
φ2ω , with the uncertainty of the difference phase being

δ∆φ = |δφ2ω | + 2 · |δφω | . (21)

In terms of the phase difference shown in Fig. 4(a), this means the following: for the individual
phases, the uncertainty is determined on the basis of the |z1 | and |z2 |, whereby the definition
of the respective |δz| must be done manually due to the distributions shown in Fig. 4(b) and
Fig. 4(c).

For δφω , the length of the phasor is derived from the peak of the distribution (|z1 | ≈ 1938), and
the magnitude of δz1 is derived from the min(|z1 |) ≈ 1900 and max(|z1 |) ≈ 2300. The resulting
uncertainty is

δφω =
|δz1 |

|z1 |
=

max(|z1 |) − min(|z1 |)

|z1 |
≈ 206.4 mrad . (22)

The same procedure is applied to δφ2ω , where |z2 | is read from the global maximum of the
distribution shown in Fig. 4(c). It follows that δφ2ω ≈ 313.5 mrad and hence δφ ≈ 833.4 mrad.
However, it must be noted that this result reflects the worst-case uncertainty since almost all
outliers are included into this calculation. Depending on the time frame, δφ is significantly
lower on a local scale or after averaging. The results for the experimental characterization of
the uncertainty in Fig. 3 show that for an AOM driver power of 28 dBm an uncertainty of less
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than 3 mrad (≅ 3 Pa) can be achieved on the millisecond timescale. Beyond this, however, the
influence of drift and outlier effects increases, raising the uncertainty to about 30 mrad (≅ 30 Pa)
before converging. The order of this value agrees in good approximation with the deviation of
the pressure change experiment. Nevertheless, the magnitude of the phasors can be used as a tool
for self-diagnosis, enabling pressure measurements with a physically based figure of merit in
future experiments.

It can be argued that the fluctuations in the difference phase are partly explained by fluctuations
in the magnitude of the phasors. The intermittent correlation of the disturbances in the amplitudes
suggests that they are caused by disturbances in the laser source. The targeted misalignment of
the setup, as described in Sec. 2.1.1, might not be fully sufficient to avoid interfering with the
laser in operation.

4.2. Theoretical sensitivity

As to the theoretical limitations of a DI for relative pressure measurement, the achievable accuracy
as a function of the probe path length and under standard conditions can be estimated as

∆φ

p0 · l
=

2π
λ2ω

·
n(λ2ω , p0, T0, rh) − n(λω , p0, T0, rh)

p0
, (23)

based on Eq. (9). For the laser parameters presented above and p0 = 101325 Pa, T0 = 15°C,
rh = 0.5 a sensitivity of 4.934 · 10−4 rad m−1 Pa−1 is calculated. This means that for a pressure
sensitivity of 1 Pa and l = 2 m, a phase sensitivity of roughly 1 mrad is necessary. Therefore, by
scaling the probe path length, the sensitivity can be adjusted to fit variable requirements, but at
the cost of higher susceptibility to non-common path phase errors.

Regarding the phase shift caused by dispersive elements following the AOM, e.g., the BS, it
can be said that the influence should be constant and deductible as long as the dispersion does
not change during the measurement, i.e., due to temperature variations. In addition, it is assumed
that the CO2 content ηc is approximately 450 ppm. This value can vary over height and time
within the atmosphere and for a change of ±100 ppm around the assumed value the change in
refractive index is approximately ±1.5 · 10−8 as per the Ciddor equation. This corresponds to a
change in pressure of approximately ±6 Pa. Hence, the CO2 concentration needs to be considered
to reach single-digit Pa accuracy for the theoretical sensitivity calculated above.

Further, to simplify Eq. (9), it is also assumed that n = const. along of the probe beam path.
This places constraints on the positioning of the probe path, whereby strong local pressure
gradients should be avoided to measure the static pressure. With respect to our experimental
setup, a deformation of the cell or the rubber window gaskets due to the differential pressure
needs to be considered. As per Eq. (9) the difference phase scales linearly with the probe path
length l and hence the relative error with respect to l is

δ∆φ

∆φ
=

1
∆φ

·
∂∆φ

∂l
· δl =

δl
l

. (24)

We estimate that the change in the two-way path length due to deformation is less than δl ≈ 2
mm and l ≈ 2 m, which would result in a relative error of at most 0.1% for the difference phase
and, in good approximation, the calculated pressure change.

5. Conclusion

In this work, the two-color, two-arm SDI design is modified to significantly reduce the size and
required amount of optical components compared to previous implementations [15,16]. This is
primarily achieved by, inter alia, the use of digital two-tone demodulation for an interference
signal measured with a single PD. The interferometer can be operated even with little optical
power around 11.5 mW and 2.3 mW for the fundamental and SH, respectively.
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The system noise and phase stability are investigated experimentally by analyzing the Allan
deviation and power spectral density, which determined that the system exhibits both white noise
and random drift. The experimental evaluation shows an uncertainty of 3 mrad on the millisecond
scale. The long-term drift uncertainty is on the order of 30 mrad. In addition, a worst-case upper
bound of uncertainty based on the phasor magnitude obtained during demodulation is derived.

Pressure change measurements were performed over 5 min under laboratory conditions where
the calculated data agreed with that of a reference sensor to below 1.5 hPa. For this purpose, the
measured phase difference is converted into a relative pressure change via the Ciddor equation.
While this shows that the concept can work in general, the achievable accuracy can be further
improved before the integration of this device should be feasible for an airborne application.

This includes further investigation and possibly active compensation of the observed drift
effects, including an evaluation of the influence of mechanical vibrations on the measured phase
due to the two-arm approach. Future measurements with an extended duration on the order of
hours might be possible by implementing the demodulation scheme on a field-programmable
gate array. This would allow the realistic simulation of the pressure profile of a commercial flight,
if the pressure chamber is modified to allow for dynamic venting and pressurization.
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