
Ulm University | 89069 Ulm |Germany Faculty of Engineering, Computer Science and
Psychology
Neural Information Processing

Reinforcement learning with variational quantum
algorithms for trajectory planning

Master thesis at Ulm University and the German Aerospace Center (DLR)

Submitted by:

M. Lautaro Hickmann

lautaro.hickmann@uni-ulm.de

953591

Reviewer:

Prof. Dr. Friedhelm Schwenker

Prof. Dr. Frank Köster

Advisers:

Dr. Hans-Martin Rieser

Dr. Bogusz Bujnowski

2022

Version from May 30, 2022

© 2022 Manuel Lautaro Hickmann

Satz: PDF-LATEX 2ε

Abstract

English version

The goal of this thesis is to explore Reinforcement Learning (RL) with Variational Quantum Circuits (VQCs) with
a focus on its applicability to different standard RL problems and lane change manoeuvres. The main aspects
investigated covered feasibility, limitations, and possible advantages when comparing quantum enhanced systems
with classical systems in RL. We could show that VQCs can solve multiple simple RL environments, achieving
results similar to or even better than those of a classical agent. For the more complex lane change manoeuvre
we achieved suboptimal results for the current setup with limited hyperparameter search. We further showed that
environments with an observation vector size twice as large as previously published can be solved. We also found
indications of possible quantum advantages in convergence rate and stability for discrete state-space environments.
Furthermore, we also showed that the Q-learning algorithm implemented with a VQC is heavily prone to noise which
leads to problems when using Noisy Intermediate-Scale Quantum (NISQ) hardware.

Deutsche Version

Das Ziel dieser Arbeit ist es, Reinforcement Learning (RL) mit Variational Quantum Circuits (VQCs) mit Fokus
auf seine Anwendbarkeit auf verschiedene Standard-RL-Probleme und Spurwechselmanöver zu untersuchen.
Die untersuchten Hauptaspekte umfassten Machbarkeit, Einschränkungen und mögliche Vorteile beim Vergle-
ich quantenerweiterter Systeme mit klassischen Systemen in RL. Wir konnten zeigen, dass VQCs mehrere ein-
fache RL-Umgebungen lösen können und ähnliche oder sogar bessere Ergebnisse erzielen als ein klassischer
Agent. Für das komplexere Spurwechselmanöver erzielten wir suboptimale Ergebnisse für das aktuelle Setup
mit eingeschränkter Hyperparametersuche. Wir haben ferner gezeigt, dass Umgebungen mit einer doppelt so
großen Beobachtungsvektorgröße wie zuvor veröffentlicht gelöst werden können. Wir fanden auch Hinweise auf
mögliche Quantenvorteile in der Konvergenzrate und Stabilität für diskrete Zustandsraumumgebungen. Darüber
hinaus haben wir auch gezeigt, dass der mit einem VQC implementierte Q-Learning-Algorithmus stark rauschan-
fällig ist, was zu Problemen bei der Verwendung von Noisy Intermediate-Scale Quantum (NISQ)-Hardware führt.

i

Acknowledgement

I wish to express my sincere thanks to Prof. Dr. Friedhelm Schwenker and Prof. Dr. Frank Köster, for sharing exper-
tise, guidance, and encouragement which helped me accomplish this thesis. Additionally, I am extremely grateful
to Dr. Hans-Martin Rieser and Dr. Bogusz Bujnowski for their guidance, assistance, and dedicated involvement in
every step throughout the process of making this thesis. Thanks should also go to Matthias Nichting for his support
with the ADORe framework.

I also thank my parents for their constant encouragement, support, and attention.

ii

Contents

1 Introduction 1
1.1 On Quantum Machine Learning . 1
1.2 Quantum Hype . 1
1.3 Problem statement and Contributions . 2
1.4 Structure of the thesis . 3

2 Theory Fundamentals 4
2.1 Machine Learning . 4

2.1.1 Principles of Machine Learning . 4
2.1.2 Deep Feedforward neural networks . 5
2.1.3 Training . 5
2.1.4 Optimizers . 8
2.1.5 Batch and mini-batch training . 8

2.2 Reinforcement Learning . 8
2.2.1 Learning from interactions . 8
2.2.2 The environment . 9
2.2.3 Reward . 10
2.2.4 Value-Based and Policy-Based learning . 10
2.2.5 Q-learning . 11

2.3 Connection to Quantum Computing . 12
2.3.1 Postulates of Quantum Mechanic . 12
2.3.2 Quantum Computing . 14

2.4 Quantum Machine Learning (QML) . 20
2.4.1 Ideas of Quantum Machine Learning . 20
2.4.2 Input Encoding . 21
2.4.3 Variational Quantum Circuits (VQCs) . 23

3 A simulation study of Quantum Reinforcement Learning 28
3.1 Outline . 28

3.1.1 Motivation . 28
3.1.2 Related work . 28

3.2 Proposed Implementation and Frameworks . 29
3.2.1 Proposed Reinforcement Learning (RL) algorithm . 29
3.2.2 Proposed VQC implementation . 31
3.2.3 Hypotheses . 33
3.2.4 Selected scenarios . 34
3.2.5 Quantum vs Classic on Cart Pole . 36

iii

Contents

3.2.6 Quantum vs Classic on FrozenLake . 37
3.2.7 Quantum scalability . 38
3.2.8 Effects of noise . 39
3.2.9 Lane change . 40

4 Simulation Results 41
4.1 Results . 41

4.1.1 Quantum vs Classic on CartPole . 41
4.1.2 Quantum vs Classical on Frozen Lake . 46
4.1.3 Quantum scalability . 49
4.1.4 Effects of noise . 51
4.1.5 Lane change . 53

4.2 Discussion . 54
4.2.1 Quantum vs Classic on Cart Pole . 54
4.2.2 Quantum vs Classic on FrozenLake . 57
4.2.3 Quantum Scalability . 58
4.2.4 Effects of noise . 59
4.2.5 Lane change . 61

5 Conclusion 63

Bibliography 66

A Supplementary material for the experiments 72
A.1 Grid World like environments . 72
A.2 Hyperparameter searches . 72

A.2.1 Setup and objectives . 72
A.2.2 Search spaces and selected hyperparameters . 74

B Supplementary material for the results 77
B.1 Quantum vs Classic on CartPole . 77
B.2 Quantum vs Classic on Frozen Lake . 77
B.3 Quantum scalability . 78
B.4 Effects of noise . 78

iv

1 Introduction

1.1 On Quantum Machine Learning

In recent years, the field of Machine Learning (ML) has achieved many successes and has grown exponentially in
popularity. More recently, with the advent of the first publicly available quantum computers, quantum computing has
emerged and gained rapidly in popularity. By synergistically combining ML and quantum computing approaches,
the new field of Quantum Machine Learning (QML) has emerged. This field promises to improve ML and open new
learning possibilities.

In this work, we investigate the advantages and challenges of combining ML, the discipline of making computers
solve problems by learning from data rather than explicitly coding the solution of the problem [1], with quantum
computing. Quantum computing describes how to process information with devices based on the laws of quantum
theory. We focus on the subfield of Reinforcement Learning (RL) that aims to solve an agent’s task how to behave
in an environment without a fixed training dataset. This combination is called Quantum Reinforcement Learning
(QRL), a subfield of QML, and is expected to produce quantum advantages in the form of faster convergence or
improved learning capabilities. We focus on a feasibility study and a constrained comparison with selected classical
methods.

RL with Variational Quantum Circuits (VQCs) is in an early stage of development. Deep Q-learning algorithms have
been shown to run on VQCs and have been tested on simple environments [2, 3, 4]. We investigated empirically the
feasibility of QRL solving complex problems, expanding the understanding of what VQCs can solve. Furthermore,
most related work only investigates the perfect case of noise-free quantum circuits. But, most current quantum
computers are so-called Noisy Intermediate-Scale Quantum (NISQ) devices, with low number of qubits that do not
necessarily interact with each other, have no error correction, and therefore produce only approximate results of
the computations. We investigate how VQCs behave with respect to noise, to investigate if QRL can also be carried
out on current real quantum hardware.

1.2 Quantum Hype

One reason for the current hype of QML is that optimisation problems, one of the mathematical core problems
of ML, are seen as promising candidates where quantum computing could show significant improvements [5].
Furthermore, one big factor pushing the hype are promises of quantum speed-ups. A quantum speed-up is when
a quantum computer can theoretically solve a computational problem faster, in the asymptotic runtime, than a
classical computer. Another promise, especially for QML is quantum advantages in the amount of training data
needed to solve a given task and faster algorithm convergence.

One problem of the hype is stated by Schuld and Petruccione: “[. . .] the sheer expense involved in the development
of quantum hardware creates a strong incentive for research to motivate their studies with arguments along the lines

1

1 Introduction

of superior quantum algorithms which led to the controversial term quantum supremacy for experiments which
demonstrate a provable classical-quantum separation in computational complexity—however artificial the problem
may be." [6]. This means that many investigations are portrayed in a manner in which a quantum advantage can
be shown, but they have limited practical applications since the problems have been artificially constructed exactly
in a way to produce quantum advantages.

Furthermore, current QML algorithms are subject to strict design limitations in order to perform even the smallest
empirical benchmarks on simulators and NISQ hardware. Larger circuits cannot be simulated on classical hard-
ware, and quickly become drowned in noise on real quantum devices. Thus, the algorithms must be small and use
only a few qubits and gates. Additionally, quantum speed-ups are not as beneficial for QML as to quantum comput-
ing in general, since the important problem is the question what can be learnt. If something has been proven to be
learnable, quantum speed-ups come into play to achieve faster runtimes.

To achieve a QML approach that is useful in practise, the following challenges must be overcome:

• The hype leads to trying to find fast improvements, by taking classical algorithms and porting some part of the
computations to a quantum machine. However, this severely limits the potential of quantum computations.
Instead, a slower approach of designing a quantum-classical hybrid algorithm bottom up could deliver better
results.

• Most proposed algorithms are built on noise-free simulations, but real hardware is noisy. Thus, noise robust
algorithms must be developed.

• Further hardware and software developments are needed to be able to run circuits large enough to solve
most praxis relevant problems.

• A theoretical framework of QML is needed, to better achieve classical-quantum interfaces and especially how
to encode classical data into quantum circuits efficiently. Such a framework would also be helpful to improve
the explainability of QML algorithms.

However, the quantum hype enables the development of the quantum computing field and the QML field, opening
the possibility of achieving significant breakthroughs on these challenges.

1.3 Problem statement and Contributions

The purpose of the thesis is to explore RL with VQCs with a focus on its applicability to different standard problems
and lane change manoeuvres. The main results have been acheived on assessing feasibility, limitations, and
possible advantages when comparing quantum enhanced systems with classical systems in RL. Furthermore, the
effect of noisy circuits on RL tasks will be investigated.

We showed that a VQC can solve RL environments with continuous or discrete state spaces, discrete action spaces,
and immediate or delayed reward. Furthermore, the behavior with respect to the observation vector size was
investigated, showing that environments more than two times larger than previously tried are solvable. Achieving
results similar to or even better than those of a classical agent. The results for discrete state-space environments
hint at possible quantum advantages in the form of faster convergence. Additionally, we showed that the Q-learning
algorithm implemented with a VQC is noise prone, and this could lead to problems when using NISQ hardware.
We also show that we can solve the lane change environment, but achieve sub-optimal results compared to the
classical agent. This should improve with a larger hyperparameter search.

2

1 Introduction

1.4 Structure of the thesis

In Chapter 2, the theoretical fundaments needed to understand this thesis are presented, starting by introducing the
concepts of ML in Section 2.1 and RL in Section 2.2. Followed by a excerpt into quantum computing in Section 2.3
and its applicability to QML in Section 2.4. The methods implemented and the experiments performed in this
thesis are then described in Chapter 3, after which the results are presented and discussed in Chapter 4. Finally,
Chapter 5 covers the main conclusions and identifies both limitations of the experiments and recommendations for
future research.

3

2 Theory Fundamentals

2.1 Machine Learning

2.1.1 Principles of Machine Learning

In this thesis, we focus on sub-symbolic Artificial Intelligence (AI) approaches, such as Machine Learning (ML)
and Quantum Machine Learning (QML). This kind of approaches provide associative results by learning from
large datasets, i.e. these methods establish correlations between input and output variables through learning
of data without human intervention [7]. In contrast, symbolic AI methods refer to human-readable and explainable
processes [7]. These methods are usually used for knowledge deduction, and are defined by the usage of symbolic
techniques as are formal methods and programming languages.

Among the most common uses of sub-symbolic methods are prediction, clustering, pattern classification, object
recognition, and natural language processing (NLP) tasks. Additionally, speech and text recognition, classification
and categorization are also applications of sub-symbolic methods. A disadvantage of sub-symbolic methods is
their lack of explainability.

ML is the data driven intersection of computer science, statistics, and mathematics. ML algorithms can be divided
into three main categories: unsupervised, supervised and Reinforcement Learning (RL). Each category is charac-
terized by the kind of input data it uses and how the data is generated.

• Supervised learning: The training data consist of input and target pairs. The targets are also called labels.
The goal of the algorithm is to reproduce the targets from the inputs. Usually the targets are the results of
applying a function to the inputs, and learning said unknown function is the task at hand.

• Unsupervised learning: The training data consist only of inputs without targets. The goal of the algorithm
is to extract some information about the dataset, as in clustering [8] or dimensionality reduction [9].

• RL: There is no predefined dataset, but an agent generates a dataset from interactions with an environment.
An interaction consists of the agent taking an action and receiving a response/observation from the environ-
ment. The agent has to learn an optimal interaction strategy by trial and error. The agent gets rewarded for
its actions according to predefined environment rules. This work uses the RL machine learning paradigm
which will be explained in more detail in Section 2.2.

A major source of difficulty in many real-world AI applications, is that many variable factors influence observable
data [10]. For example, the colour of objects changes depending on lighting, dust on a camera produces a non-
standard image or sensors produce noisy readouts. Therefore, most AI applications require the separation and
filtering of variation factors. This is done so that only factors beneficial to achieving a given task are used. Often,
discriminating these high-level, abstract features from raw data is very complicated, and a nearly human-level
understanding of the data is required. In the case when obtaining a representation is as difficult as solving the
original problem, learning a representation of the data does not appear helpful.

4

2 Theory Fundamentals

Deep learning solves this central problem in representation learning by introducing representations that are ex-
pressed in terms of other, simpler representations [10]. Deep learning enables the systems to build complex
concepts out of simpler concepts. It can be regarded as the study of models that involve a higher amount of
composition of either learned functions or learned concepts than traditional machine learning does. Deep learning
methods are therefore formed by the composition of multiple non-linear transformations, with the goal of yielding
more abstract – and ultimately more useful – representations [11]. Nevertheless, deep learning is somewhat like a
“black-box” and so far, there is no strict theoretical system to support it. As mentioned by Wang, Yao, and Zhao:
“we have impressive performance using deep learning but we do not know why theoretically” [12].

Deep learning algorithms achieve state-of-the-art results and received much attention in the machine learning and
applied statistics literature in recent years. Such algorithms consist of multiple layers of representation, where the
greatest advantage over ML is that the features of each layer are not designed manually but are learned from the
input data automatically [13].

Training of multi-layered networks was unsuccessful until 2006, when breakthroughs were made by [14, 15, 16]
among others. Previously, only convolutional neural networks (CNN) were trained successfully. To achieve said
breakthrough in multi-layered network training, a greedy layer-wise pre-training was proposed to initialize the
weights of an entire network, in an unsupervised manner. After finalizing pre-training, the entire network is trained
in a supervised fashion using back propagation.

2.1.2 Deep Feedforward neural networks

Deep Feedforward Neural Networks (DNNs), also called feed forward networks, or Multilayer Perceptrons (MLPs),
are the quintessential deep learning models [10]. The goal is to approximate a function f∗ by defining a mapping
y = f(x, θ) for an input x and learning a set of parameters θ. This structure is called feed forward neural networks,
since the information derived from the input is propagated forwards.

Feedforward neural networks are called networks because they are typically represented by composing together
multiple different functions. The model is associated with a directed acyclic graph describing how the functions are
composed together [10].

Most DNNs are organized as chained layers, with each layer h(i) being a function of the precedent layer,

h(1) = g(1)
(
W (1)⊤x+ b(1)

)
, (2.1)

h(i) = g(i)
(
W (i)⊤h(i−1) + b(i)

)
. (2.2)

Here h(1) is the initial layer, x the input data point, g(i) is the activation function of the i-th layer (see Section 2.1.3)
and W (i)⊤ and b(i) are the weights and bias of the layer i, respectively. The activation function of the last layer is
often called the output function and denoted as y = f(x, θ) = h(n) for a n-layer network. Here θ represents the set
of the weights and biases for all layers.

2.1.3 Training

The central challenge in machine learning is that an algorithm must perform well on new, previously unseen inputs,
not just on the ones the model was trained on. This ability is called generalisation.

5

2 Theory Fundamentals

(a) tanh (b) Exponential Linear Unit (ELU)

Figure 2.1: Activation functions

Typically, a machine learning model is trained on a training set of n input-target pairs {(x(1), y(1)), · · · , (x(n), y(n))}.
From this set an error measurement, the so called training error, can be computed. Minimizing this error improves
the models ability to match the desired input-output relationship. Up to this point this minimization process is only
an optimisation task. The difference between machine learning and optimisation is the goal of also minimizing the
generalisation error, that is defined as the expected value of the error on input that the model was not trained on.
The expectation is taken across different possible inputs, drawn from the distribution of the expected inputs the
system could encounter in practice. The generalization error is not used for training but only as an indication of how
good the training is [10].

In almost all instances of deep learning, the objective function is a highly non-convex function of the parameters
with potentially many distinct local minima in the model parameter space. The principal difficulty is that not all of
these minima provide equivalent generalisation errors.

DNN are usually trained by optimizing the training error by stochastic gradient descent and backpropagation. The
backpropagation algorithm [17] calculates the gradients of the network output with respect to its trainable parame-
ters and propagates the partial derivatives in the opposite direction of the information propagation. This process is
used to update the parameters of the network.

The two central challenges in machine learning are underfitting and overfitting [10].

• Underfitting occurs when the model is not able to obtain a sufficiently low error value on the training set.

• Overfitting occurs when the gap between the training error and test error is too large.

Whether a model is more likely to overfit or underfit can be controlled by altering its ability to fit a wide variety of
functions [10]. Models with low capacity may struggle to fit the training set. Models with high capacity can overfit
by memorizing properties specific to the training set that do not serve well on the test set.

Activation functions

Activation functions introduce non-linear properties to the network and thus influence the expression capacity of a
network [10]. In the following we list two common activation functions that are used in this work.

Hyperbolic Tangent (tanh) is a nonlinear activation function that maps a real-valued number to the range [−1, 1]
as shown in Figure 2.1a. It offers the advantage that negative inputs will be mapped strongly negative, and the zero

6

2 Theory Fundamentals

Figure 2.2: Loss functions as Loss(x) with x representing the difference between target and prediction. In blue the
Medium Squared Error (MSE) and in orange the Huber loss with δ = 1

inputs will be mapped to zero. The Hyperbolic Tangent can be expressed in terms of the exponential function,

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
. (2.3)

It is often used as an output layer activation function, also known as output function.

The Exponential Linear Unit (ELU) function speeds up learning in deep neural networks and leads to higher
classification accuracies [18]. It is defined as

f(x) =

{
x if x > 0

α(e(x)− 1) if x ≤ 0
. (2.4)

with α > 0. The form of the activation function is shown in Figure 2.1b. Since the Exponential Linear Unit (ELU)
acts as identity for positive values it alleviates the vanishing gradient problem. The parameter α controls the value to
which an ELU saturates for negative net inputs. The negativity of the function, and the fact that that the derivatives
of ELU are small at negative inputs decreases the variation and the information that is propagated to the next
layer [18].Therefore, the representation is both noise-robust and low-complex.

Loss Functions

Most machine learning algorithms involve optimisation of some sort, i.e. the task of minimizing or maximizing an
objective function. When the objective function is minimized it is referred to as a cost function or loss function as
it measures the discrepancy between the output of the network and some target. For supervised learning, these
targets are the labels. For unsupervised learning, the target can be represented by a condition, or property of the
dataset, among many other possibilities.

One way of measuring the performance of the model is to compute the Mean squared error (MSE) of the model
on a data set, given by:

MSE(y, ŷ) =
1

m

m∑
i

(yi − ŷi)2 (2.5)

where ŷ denotes the predictions of the model and y the targets of the dataset.

The Huber loss interpolates between the MSE and the Mean Absolute Error (MAE) for different error regimes and

7

2 Theory Fundamentals

is given by

Huber(y, ŷ) =
1

m

m∑
i=1

{
1
2 (yi − ŷi)

2 , if |yi − ŷi| ≤ δ
δ · (|yi − ŷi| − 1

2δ) , otherwise
(2.6)

When the error is smaller than a threshold δ, the Huber loss equals the MSE whereas it equals the MAE for errors
larger than δ. It inherits the advantages of both loss functions as it is less sensitive to outlier error in the linear
regime and leads to faster convergence in the quadratic regime [1].

2.1.4 Optimizers

The Adaptive Movement Estimation (Adam) optimizer is a method for efficient stochastic optimisation that only
requires first-order gradients with little memory requirement [19]. The method computes individual adaptive learn-
ing rates for different parameters from estimates of first and second moments of the gradients. It combines the
advantages of AdaGrad [20], which works well with sparse gradients, and RMSProp [21], which works well in
on-line and non-stationary settings.

An extension to the Adam optimizer is AMSGrad. AMSGrad is a stochastic optimization method that seeks to fix
a convergence issue with Adam based optimizers by using the maximum of past squared gradients rather than the
exponential average to update the parameters [22].

For a detailed algorithm and further explanation, the reader is advised to [19] for Adam and [22] for AMSgrad.

2.1.5 Batch and mini-batch training

There are two main settings to divide the available data for training. When all the data is used to compute the loss
and its gradient with respect to the trainable parameters, it is called batch gradient descent. The other setting is
using only a random subset of the data to compute the loss and its gradient with respect to the trainable param-
eters, which is called mini-batch gradient descent. An epoch of training is defined as the time when the training
algorithm iterated over all available training data. How many data points are used is defined by the so called batch
size B, usually being greater than one but less than the total dataset size. The impact of choosing B is mostly
computational, i.e. larger B yield faster computation but requires visiting more examples in order to reach the same
error, since there are fewer updates per epoch. For batch gradient descent only one update is realized per epoch,
in contrast for mini-batch gradient descent multiple updates are done (as many as necessary to iterate over all
mini-batches).

In theory the batch size should impact training time and not so much test performance. Therefore, it can be
optimized separately after the other hyperparameters (except learning rate) have been selected, by comparing
training curves (training and validation error vs amount of training time) [23].

2.2 Reinforcement Learning

2.2.1 Learning from interactions

Reinforcement Learning (RL) has been around since the 1950s, producing many interesting applications receiving
moderate attention. In 2013 it exploded in popularity when it was demonstrated that a RL system could learn to play

8

2 Theory Fundamentals

Atari games from scratch [24], eventually outperforming humans in most games [25]. The agents used only raw
pixels as input without any prior knowledge of the game rules. After further developments, in 2016 AlphaGo [26]
was able to beat the best human players in the complex game of Go. These breakthroughs were achieved by
combining the fields of deep learning and RL.

Figure 2.3: Agent-environment interaction scheme. Image reproduced from [27].

Learning from interaction is a fundamental idea underlying most theories of learning and intelligence [27]. RL is
a goal oriented trial and error learning method. Where an agent, makes observations and takes actions in an
environment, receiving a reward from the environment, this is called the RL loop and is shown in Figure 2.3. The
agent’s objective is to learn how to behave in a way that will maximize its expected reward over time.

In contrast to other learning methods in RL there is no fixed training dataset, but the agent generates one by
interacting with the environment. The data samples are not labelled, but have an associated reward given by the
environment. The agent changes it behaviour while training, and continually interacts with the environment, this
leads to a constantly changing data set.

2.2.2 The environment

Environments are defined by a state space S, describing the current state of the environment, and an action space
A, describing which actions an agent can take to alter the state of the environment. State and action spaces can
be arbitrarily complex, and can be either discrete or continuous. In a discrete state or action space only a finite
set of elements exist, and each variable of the space can only take a number of discrete values. In contrast, in
continuous states or action spaces, each variable of the space can take arbitrary many values, normally in a fixed
value range. Furthermore, environments can be deterministic by always reacting the same to a given action, or
stochastic by behaving probabilistically with respect to the action carried out, i.e. the actions do not always have
the same effect.

An agent interacts with an environment at time step t by taking an action at in state st, and receives a reward rt+1.
A tuple of these elements together form a so-called transition (st, at, rt+1, st+1). The transition function P at

stst+1

gives the probabilities of transitioning from state st to st+1 when performing at in an environment and is given by

P at
stst+1

= P (st+1|st, at). (2.7)

When a state transition happens the agent gets a reward from the environment, if only very few state transitions
return a non-zero reward then the environment is said to have sparse reward. On the other hand, if most of the
transitions return a non-zero reward, it is denominated immediate reward.

Environments often break down into so-called episodes, these are sequences of interactions that reach a terminal
state that reinitiates the environment. The horizon H represents the maximal number of steps that can be taken

9

2 Theory Fundamentals

until the episode terminates. Environments based on games are prominent examples of episodic environments,
with an episode comprising one game played. The agent learns by playing several games one after the other.

2.2.3 Reward

The reward function is used to evaluate the quality of the actions taken by the agent in the environment based on
the learning task at hand. The goal of the agent is to maximize the total expected reward over a sequence of times
steps, this is called the return and is given by

Gt =

H∑
k=0

γkrt+k+1, (2.8)

with horizon H and discount factor γ ∈ [0, 1]. γ determines the present value of the future reward, i.e. a reward re-
ceived k time steps in the future is only worth γk−1 times what it would be worth if it were received immediately [27].

A modified version of the expected reward is often used as an evaluation metric, namely the cumulative reward.
The cumulative reward of an episode is defined as the sum over all step rewards in an episode, it is also often
called the episode score, and is given by

CH =

H∑
t=0

rt (2.9)

with horizon H , i.e. there are maximally H steps in the episode [27].

2.2.4 Value-Based and Policy-Based learning

RL approaches can be divided into value-based and policy-based learning methods [27]. Both approaches follow
the same goal of maximizing the return, but use different methods for this. In all cases, the function that models
what action at the agent takes given the environment in state st is called the policy π(at|st).

In general, the performance of a policy is given by a state value function

Vπ(s) = Eπ [Gt | st = s] (2.10)

which is the expected return starting from state s at an initial time step t and following policy π. The goal of RL
algorithms is to learn the policy that maximises the expected return for each starting state, this policy is called the
optimal policy π∗.

The main difference between Value-Based and Policy-Based learning methods is how the policy is realized. Value-
based algorithms learn a value function which is used to create a policy, by selecting the action which yields the
highest Vπ(s). In contrast, policy-based algorithms try to directly optimized a parametrized probability distribution
that represents the policy [3]. Both methods can be combined to leverage the strengths of both approaches in the
so called actor-critic setting [28].

In this work we will only focus on value-based algorithms. Especially on the Q-learning algorithm, presented in the
next section.

10

2 Theory Fundamentals

2.2.5 Q-learning

In Q-learning the quality of a policy is given by a modified version of the value function (Equation 2.10), the
action-value function

Qπ(s, a) = Eπ [Gt | st = s, at = a] , (2.11)

which also describes the expected return when following a policy π, but additionally conditioned on an action a [1].
The optimal Q-function is given by Q∗(s, a) = maxπ Qπ(s, a), and the optimal policy is constructed by always
executing the action with the highest Q-value:

π∗(a | s) = argmax
a

Q∗(s, a). (2.12)

The goal in Q-learning is to learn an approximation Q(s, a) of the optimal Q-function. Q-learning was originally
proposed as a tabular learning algorithm, with a so called Q-table which stores the Q-values for each possible
state-action pair [29]. A higher Q-value means a higher expected reward when taking action a in state st, thus the
agent chooses its next action as follows:

at = argmax
a

Q (st, a) . (2.13)

For learning, it is important that the agent experiences a variety of transitions to explore the state and action spaces.
Using always the argmax policy this would not happen, therefore to ensure enough exploration is carried out a so-
called ϵ-greedy policy is used while training in Q-learning. For evaluation the argmax policy is used again. The
ϵ-greedy policy choses with probability ϵ a random action and with probability 1− ϵ the action corresponding to the
highest Q-value. To balance exploration and exploitation ϵ is usually decreased during training.

For learning the Q-values are updated with observations made in the environment by the following update rule

Q (st, at)← Q (st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
leaning rate

[rt+1︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

· max
a

Q (st+1, a)︸ ︷︷ ︸
expected optimal future return

−Q (st, at)︸ ︷︷ ︸
old value

] (2.14)

with learning rate α. The update rule incorporates the direct environment feedback in the form of the reward, and
the agent’s expected optimal future return. Depending on γ the optimal Q-values for the same environment can
take highly varying values. Therefore, they can be viewed as different learning environments [3]. For the tabular
case, this update rule is proven to converge to the optimal Q-values in the limit of visiting all state-action pairs [30].

In praxis, it suffices to learn the order of Q-values to solve an environment, since the actions are selected following
a maximum criterion (Equation 2.13). Thus, the learning task can be reformulated to learning the correct order of
Q-values by observing rewards through interactions with the environment.

For moderate sized state and action spaces the tabular approach quickly becomes intractable. Therefore, the Q-
tables are replaced by Q-function approximators, which return the Q-values for each state-action pair but do not
store them individually. One such approximators are called deep Q-networks which use Artificial Neural Network
(ANN) as the Q-function approximator [25].

In this thesis, we will use DNN and quantum algorithms as Q-value approximators. To this end in the next section
quantum computing will be explained.

11

2 Theory Fundamentals

2.3 Connection to Quantum Computing

This section is a brief summary of the fundamental concepts of quantum mechanics. The focus of this thesis will
be on quantum computing and therefore many distracting details will be omitted.

2.3.1 Postulates of Quantum Mechanic

Quantum mechanics describes the behaviour of systems at the scale of molecules, atoms and below. Although
it has been experimentally verified to high accuracy, the principles and consequences of quantum mechanics are
highly unintuitive. In contrast to classical mechanics, some properties of particles that we experience as continuous
in our macroscopic world, can only take discrete values in the quantum world. They appear “quantized” which
explains the name of the theory. Quantum mechanics is a probabilistic theory, which means that a possible outcome
of a measurement of an observable quantity will not happen with certainty but will appear with some probability.
In quantum mechanics all particles have wavelike properties and the equation that governs the evolution of these
particle waves is the Schrödinger equation. Thus, it is not surprising that particles on the quantum scale exhibit
interference behaviour which was one of the many unexplained phenomena that quantum mechanics was able
to successfully describe theoretically [31]. A consequence of the wave-like nature of particles is that in quantum
mechanics there exists a fundamental upper limit to measure certain observables simultaneously, which is known
as the uncertainty principle. A prominent example of such conjugate variables are the position and the momentum
of a particle.

Although many aspects of quantum mechanics might seem confusing to our classically trained eye, the basic rules
of the quantum world can be stated in a few postulates. As we are often forced to leave behind our intuition, we can
learn about quantum systems by applying the rules and then compare how quantum systems differ from classical
systems. We now list the basic postulates and definitions that are necessary to explore the elements of quantum
information processing and quantum computation in this thesis.

State space

The state space of a quantum mechanical system is a complex separable vector space, called the Hilbert space. In
this work we are only concerned with systems where the dimension of the corresponding Hilbert space is finite, thus
H is isomorphic to Ck. The elements of H can be represented as complex-valued vectors |ψ⟩ in the convenient
Dirac notation and the corresponding covectors are written as ⟨ψ|. The inner product on H between two vectors
|ϕ⟩, |ψ⟩ of the Hilbert space is given by ⟨ϕ|ψ⟩ with ⟨ϕ|ψ⟩∗ = ⟨ψ|ϕ⟩, which implies that the norm of a vector is given
by ||ψ|| =

√
⟨ψ|ψ⟩.

For every state |ψ⟩ ∈ H there exists a complete orthonormal basis, {|ek⟩} , k ∈ N with ⟨ei|ej⟩ = δij such that:

|ψ⟩ =
∑
k

|ek⟩ ⟨ek|ψ⟩ =
∑
k

⟨ek|ψ⟩ |ek⟩ , with
∑
k

|ek⟩ ⟨ek| = 1. (2.15)

Note that |ek⟩ ⟨ek| denotes a projector on the state |ek⟩. Every state |ψ⟩ can be expanded in the basis states,

|ψ⟩ =
∑
k

αk |ek⟩ , (2.16)

12

2 Theory Fundamentals

with αk = ⟨ek|ψ⟩ ∈ C and
∑

k |αk|2 = 1. The weights αk are called probability amplitudes. The probabilistic nature
of quantum mechanics appears in the interpretation of the wave function. The modulus squared of the probability
amplitudes represent the probability that the quantum object described by state |ψ⟩ is in basis state k. To guarantee
the interpretation as probability we need that

∑
|αk|2 = 1.

Observables

Observables of a quantum mechanical system are represented by Hermitian operators M on H. Hermitian op-
erators have the property that they are equal to its complex-conjugate transpose, M = (M∗)T . Thus, their
eigenvalues must be real quantities and can represent real physical quantities.

Measurement

The possible outcomes of a measurement in quantum mechanics are the eigenvalues of hermitian operators. The
eigenstates of a Hermitian operator form an orthonormal basis of the Hilbert space. In its eigenbasis

M =
∑
k

µk |µk⟩ ⟨µk| =
∑
k

µkPk, (2.17)

and is obviously diagonal. Here we introduced Pk as the projector to the eigenspace spanned by the eigenvector
|µk⟩. Without going into further details, after measuring the eigenvalue µk of the observable M, the state of the
system collapses to the corresponding eigenvector |µk⟩. This can be described by the action of the projector onto
the system state:

|ψ⟩ → Pk |ψ⟩√
⟨ψ|Pk|ψ⟩

. (2.18)

Consequently the expectation value of an observableM in the state |ψ⟩ is defined as

⟨M⟩ = ⟨ψ|M|ψ⟩ . (2.19)

Time Evolution

The time evolution of a quantum mechanical system is described by the Schrödinger equation,

iℏ
d

dt
|ψ⟩ = H |ψ⟩ , (2.20)

whereH is a special observable known as the Hamiltonian that represents the energy of a system and ℏ is Planck’s
constant. Solving the Schrödinger equation for time-independent Hamiltonians gives rise to the time-evolution
described by the unitary operator:

U(t) = e−i t
ℏH . (2.21)

A unitary operator has the property that its inverse is its complex conjugated, i.e. U−1 = U† and represent norm
preserving rotations in the Hilbert space.

13

2 Theory Fundamentals

Composite Systems

A quantum system Σ made up of multiple subsystems Σi, for simplicity here only Σ1 and Σ2, is called a composite
System. The states space of each subsystem is a Hilbert spaceHi with dim(Hi) = Ki, spanned by an orthonormal
basis {eij}, j ∈ N. The Hilbert space H of the total system Σ is given by the tensor product of the subsystems, i.e.,
H = H1 ⊗H2. The states in the composite system have dim(H) = K1K2.

Using the Schmidt decomposition theorem, a generic state |ψ⟩ in the composite system Σ is given by

|ψ⟩ =
∑
j,k

cj,k |f1j ⟩ ⊗ |f2k ⟩ (2.22)

with complex scalars cj,k that fulfil
∑

jk |cj,k|2 = 1 and orthonormal bases {|f1j ⟩} and {|f2j ⟩} of H1 and H2

respectively.

A state |ψ⟩ is called separable if it can be expressed as

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ (2.23)

with |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2. If a state cannot be expressed as above, the state is called entangled. Entangled
states, where the state of one particle can not be described independently of the state of the other are a unique
feature of quantum systems and have no classical analogous.

Open Quantum System

In reality, any finite physical system is always interacting with its environment. In the context of quantum computing
this means that quantum computers are constantly subject to external perturbations. To study the effect of noise
on the computation process the quantum system and the environment can be described as a composite system
where Σ1 represents the open quantum system of the quantum computer and Σ2 represents the environment. The
coupling with the environment introduces noise into the system Most of the time it is not possible to treat the coupling
between the two systems exactly as the exact state of the environment is unknown and hugely complicated. In this
work, we will simulate the effect of noise from the interaction with the environment by using effective operators, that
randomly change the state during quantum computation and thus disturb the outcome.

This represents the big challenge of using Noisy Intermediate-Scale Quantum (NISQ) devices. NISQ devices
are the current, and first, prototypes of quantum computers. They consist of around 10 − 100 qubits that do not
necessarily all interact with each other, have no error correction, and therefore produce only approximate results
of computations [6]. Nevertheless, in principle they have the ability to test quantum computing advantages, but the
need to limit algorithms to only a few qubits and gates has a profound impact on the design of quantum algorithms.

2.3.2 Quantum Computing

In this section, we link the introduced framework from the previous section to the field of quantum computation.
According to Nielsen and Chuang: “Quantum computation and quantum information is the study of the informa-
tion processing tasks that can be accomplished using quantum mechanical systems” [33]. We start by comparing
the architecture differences between classical computers and quantum computers that are an unavoidable conse-
quence when using quantum systems as processing unit.

14

2 Theory Fundamentals

Figure 2.4: Diagram for processing tasks based on classical data. The encoding and readout steps can be highly
non-trivial and take considerable runtime. Adapted from [32].

To process classical data, quantum computers require two additional steps, input encoding and the read out, as
shown in Figure 2.4. For quantum computing it is crucial how the classic input is encoded into the device, since this
strongly affects the computational power of the applicable quantum algorithms. The process of setting a quantum
computer to an initial state is usually called state preparation. To be able to utilize classical data in quantum
algorithms, the dataset must be represented by quantum states. Input encoding is often the bottleneck in quantum
algorithms as efficient encoding strategies require a significant amount of quantum computing power [32].

In contrast to classical systems, quantum systems do not have a permanent storage and the data has to be encoded
and read out of the quantum computer every time it goes through the processing stage. This is a consequence
of the no-cloning theorem of quantum mechanics which states that it is impossible to create an independent and
identical copy of an arbitrary unknown quantum state. Its time-reversed dual the no-deleting theorem of quantum
information theory which states that given two arbitrary copies of some arbitrary quantum state, it is impossible to
delete one of the copies [34].

To use classical data in a quantum algorithm, first a quantum state has to be prepared to then encode the classical
data into the circuit. Thereafter, the quantum calculation can be carried out. In the last step a quantum measure-
ment has to be performed to extract the classical result, i.e. to translate back the quantum information into the
classical world. Due to the probabilistic nature of quantum mechanics, usually this process has to be carried out
multiple times to get a useful result.

Qubits

In classical computation and information, the bit is the smallest unit of information. Quantum computation and
information uses the quantum bit, or qubit as an alternative concept [33].

A quantum system that can exist in any quantum superposition of two independent (physically distinguishable)
quantum states is called a two state quantum-system (also known as two-level system). Any two state quantum-

15

2 Theory Fundamentals

Figure 2.5: The Bloch sphere representation of a qubit state. Adapted from [41].

system can represent a qubit. Physical realisations of a qubit are for example the spin of an electron,1 which can
be either in the state up, |↑⟩, or down, |↓⟩. Another realisation is to use the polarizations of a single photon,2

where two orthogonal polarizations (horizontal and vertical) encode a qubit. Most current NISQ computers use
superconducting qubits [37].3 In quantum information the two orthonormal basis states of a qubit are usually
denoted by

|0⟩ =

(
1

0

)
and |1⟩ =

(
0

1

)
,

and are referred to as the computational basis states [6] . In contrast to the binary classical bit, the state of a qubit
can be any superposition of the basis states:

|ψ⟩ = α0 |0⟩+ α1 |1⟩ (2.24)

with αi,∈ C. According to Equation 2.16 the outcome of measuring the state of the qubit in the computational basis
gives |0⟩ with probability |α0|2, or |1⟩, with probability |α1|2, and |α0|2 + |α1|2 = 1.

Equivalent in vector notation:

|ψ⟩ =

(
α0

α1

)
; ⟨ψ| =

(
α∗
0 α∗

1.
)

(2.25)

To get a geometric representation Equation 2.24 can be rewritten as:

|ψ⟩ = eiγ
(
cos

θ

2
|0⟩+ eiφ sin

θ

2
|1⟩
)

(2.26)

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, γ are real numbers [33] and the factor eiγ is a global phase.

Equation 2.26 implies a geometrical interpretation of a qubit as a unit vector in a three-dimensional vector space
that points from the origin to the surface of the unit sphere as shown in Figure 2.5. This is usually referred to as the
Bloch sphere representation of a qubit.

Using the computational basis states, the inner product of two single qubit states,|ψ⟩ = α0 |0⟩ + α1 |1⟩ and |ϕ⟩ =
β0 |0⟩+ β1 |1⟩, reduces to :

1Used by Intel [35]
2Used by Xanadu [36].
3Used by Google, IBM, and Rigetti among others [38, 39, 40].

16

2 Theory Fundamentals

Gate Circuit representation Matrix representation

Pauli-X = σx X

(
0 1
1 0

)
Pauli-Y = σy Y

(
0 −i
i 0

)
Pauli-Z = σz Z

(
1 0
0 −1

)
Hadamard H H

1√
2

(
1 1
1 −1

)
Pauli rotation Rx(θ) = e−i θ

2σx
Rx(θ)

(
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

))
Pauli rotation Ry(θ) = e−i θ

2σy Ry(θ)

(
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

))
Pauli rotation Rz(θ) = e−i θ

2σz
Rz(θ)

(
e−i θ

2 0

0 ei
θ
2

)

Table 2.1: Examples of useful single-qubit logic gates, modified from [6, 33]

⟨ψ|ϕ⟩ = α∗
0β0 + α∗

1β1 (2.27)

and the outer product is described as:

|ψ⟩ ⟨ϕ| =

(
α0β

∗
0 α0β

∗
1

α1β
∗
0 α1β

∗
1

)
. (2.28)

An arbitrary computational basis state of a n-qubit system is the direct product of the single qubit states |q1⟩ , . . . , |qn⟩.
Any multi qubit state can be represented in this basis,

|ψ⟩ = α0 |0 . . . 00⟩+ α1 |0 . . . 01⟩+ · · ·+ α2n−1 |1 . . . 11⟩ =
2n−1∑
i=0

αi |i⟩ (2.29)

with αi ∈ C, and
∑2n−1

i=0 |αi|2 = 1. The rightmost part of the equation represents an abbreviated representation
of the computational basis states as the binary string of the integer i [6]. For example, |5⟩ ≡ |0101⟩ for a 4-qubit
system. For simplicity also the following notation is used:

|ϕ⟩ = |q1⟩ ⊗ · · · ⊗ |q2⟩ , or in shorthand |ϕ⟩ = |q1 · · · q2⟩ , i.e. |ab⟩ ≡ |a⟩ ⊗ |b⟩ . (2.30)

Gates

Quantum algorithms are commonly expressed as circuit models, where qubits take the place of classical bits, and
quantum gates replace classical gates and perform computations on qubits [33]. The basic operations central to
quantum computing are quantum logic gates and computation basis measurements (see Section 2.3.2). Quantum
logic gates are realizations of unitary transformations and thus rotate the qubit state in the underlying Hilbert
space [6]. Note that since all quantum gates are unitary all quantum computations are reversible in contrast to
classical computing.

17

2 Theory Fundamentals

Gate Circuit representation Matrix representation

CNOT

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

SWAP

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

controlled-Z =

Z

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Table 2.2: Examples of useful multi-qubit logic gates, modified from [6, 33]

The simplest gates possible are single qubit gates described by 2 × 2 unitary transformations. Table 2.1 shows
commonly used single qubit gates. Two useful gates are the Pauli-X gate and the Hadamard gate. Pauli-X swaps
the amplitudes of the |0⟩ and |1⟩ components and therefore is equivalent to the classical NOT gate, i.e. X |0⟩ = |1⟩
and X |1⟩ = |0⟩. The role of the single qubit Hadamard gate H is to create a superposition state:

H |0⟩ = 1√
2
(|0⟩+ |1⟩), and H |1⟩ = 1√

2
(|0⟩ − |1⟩), (2.31)

these states are the so called one-qubit Bell states. (Parametrised)-Rotation gates can also create superpositions
depending on the angles.

In Table 2.1 more examples of useful gates can be found. One of the most important gates are the Pauli gates,
represented by the Pauli matrices, σx, σy, σz.

Quantum gates can also be parametrized which means that a classical parameter determines the properties of the
gate. The most important ones are the three Pauli rotations Rx(θ), Ry(θ) and Rz(θ) where the classical parameter
θ determines the rotation angle, in radians.

Gates can also operate on multiple qubits. A simple way to create a multiqubit gate is to combine single qubit gates
through tensor products as described in Section 2.3.1. Frequently used multi qubit gates are controlled gates, that
alter the state of a set of target qubits depending on the state of a set of control qubits. Often used multiqubit gates
are two-qubit controlled gates (see Table 2.2). Such gates are often used to introduce or reduce the entanglement
of the qubits in the system. A prototypical controlled gate is the CNOT gate, where the X gate is applied to the
target qubit if the control qubit is in state |1⟩:

|00⟩ 7→ |00⟩ , |01⟩ 7→ |01⟩ , |10⟩ 7→ |11⟩ , |11⟩ 7→ |10⟩ . (2.32)

More generally with U an arbitrary single qubit gate, a controlled-U operation is a two-qubit operation where U is
applied to the target qubit |t⟩ if the control qubit |c⟩ is set, otherwise the target qubit is left unchanged, |c⟩ |t⟩ →
|c⟩U c |t⟩ [33], i.e.

cU = |0⟩ ⟨0| ⊗ 1+ |1⟩ ⟨1| ⊗ U. (2.33)

Controlled gates with the control qubit in a superposition state are used to create entangled calculation branches,
one side of the branch assuming the control qubit is set and the other assuming it isn’t. The interference between

18

2 Theory Fundamentals

different branches can be used to calculate values based on both branches at the same time. This phenomenon is
often used in quantum algorithms, for example in the swap, Hadamard, and inversion tests [6].

As an example of the introduced notation and gates, and to introduce quantum circuit diagrams we observe the
evolution of a two qubit state when passing through a Hadamard and CNOT gate. We start with two qubits in the
state |0⟩2 ⊗ |0⟩1 ≡ |00⟩21, where the qubits and gates have been labelled indicating on what qubit each gate is
applied for clarity.

CNOT ((H2 ⊗ 11)(|0⟩2 ⊗ |0⟩1)) (2.34)

=CNOT (
1√
2
(|0⟩2 ⊗ |0⟩1)) + CNOT (

1√
2
(|1⟩2 ⊗ |0⟩1)) (2.35)

=
1√
2
(|0⟩2 ⊗ |0⟩1 + |1⟩2 ⊗ |1⟩1) =

1√
2
(|00⟩21 + |11⟩21) (2.36)

In the first line we apply the Hadamard gate to the second qubit, which is followed be the CNOT gate in the second
line. The created state is one of the famous Bell states [6], which are the maximally entangled quantum states of
two qubits. The above calculation can be represented in the following circuit representation:

|0⟩2 H

|0⟩1

The • symbol denotes the control and the ⊕ symbol denotes the target qubit.

Measurement (Read out)

Most of the current quantum computing platforms only implement basis measurements, which measure whether
the individual qubits are in the |0⟩ or |1⟩ state. More complicated observables can be implemented by applying a
circuit before measuring.

The computational basis measurement of a generic qubit state |ψ⟩ = α0 |0⟩+α1 |1⟩, is determined by the projectors
on the possible eigenspaces P0 = |0⟩ ⟨0| and P1 = |1⟩ ⟨1| (see Section 2.3.1). The probability of obtaining each
measurement is:

p(0) = ⟨ψ|P0|ψ⟩ = |α0|2 and p(1) = ⟨ψ|P1|ψ⟩ = |α1|2 . (2.37)

The observable corresponding to a computational basis measurement is the Pauli Z observable (see Table 2.1).
The eigenvalues of the observable correspond to the possible measurements, where +1 corresponds to the |0⟩ ob-
servation and −1 to the |1⟩ observation. The expectation value of a single-qubit measurement in the computational
basis is ⟨σz⟩ ∈ [−1, 1]. On multiple qubits, computational basis measurements can be interpreted as drawing a
sample of a binary string of length n, with n the number of qubits, from a distribution defined by the quantum state.

Measuring a single qubit can be seen as equivalent to estimating the probability p when sampling from a Bernoulli
distribution, therefore the number of samples S needed to estimate ⟨M⟩ with error ϵ can be determined with
conventional statistics. Using different methods it can be estimated that ≈ 15000 samples are needed to reach a
99% confidence and ϵ = 0.01 [6].

19

2 Theory Fundamentals

2.4 Quantum Machine Learning (QML)

2.4.1 Ideas of Quantum Machine Learning

Quantum Machine Learning (QML) is the combination between quantum computing and Machine Learning (ML).
Proposals to combine both fields exist since around the 1980s. In 1995, after Shor proved the potential power
of quantum computers by introducing his famous prime factorisation algorithm [42], the first contributions looking
at quantum models of neural networks were published [43]. In the early 2000s the question of statistical learning
theory in a quantum setting was discussed, but received limited attention. In 2009, the QBoost algorithm was
published and implemented on the first commercial quantum annealer, the D-Wave device [44]. Starting in the mid-
2010s, the term “quantum machine learning” was coined and the interest in the topic started to grow significantly.
Nowadays, QML is an active and established sub-discipline of quantum computing research [5]. QML changed the
aim of quantum algorithm investigation from trying to provide speed-ups, to empirical research about what these
algorithms can achieve.

Figure 2.6: The four possibilities to combine quantum or classical data and quantum or classical processing de-
vices. This work falls into the highlighted sector CQ. Image and description modified from [5].

The combination of classic (C) or quantum (Q) data, with classic (C) or quantum (Q) processing devices, is possible
in four distinct ways as shown in Figure 2.6. The four modes of operation in the context of ML/QML can be explained
as follows:

• CC refers to classical machine learning, i.e. classical data being processed classically.

• QC explores how classical ML can help the field of quantum computing. For example ML has been used to
improve quantum state representation or the hardware setup of NISQ devices, and to discriminate quantum
data [5].

• CQ is the case when classical data is fed into a quantum computer. In this work QML is used as a synonym
for this configuration. Note that this operational mode requires a quantum-classical interface that introduces
strict lower bounds to the total runtime of QML algorithms. Loading classical data points into a quantum
computer takes linear time.

• QQ this last mode uses data generated by a quantum system and processes it with a quantum system.

20

2 Theory Fundamentals

Encoding Pattern Encoding Required Qubits

Computational Basis
Encoding

xi ≈
∑m

i=−k bi2
i 7→ |bm . . . b−k⟩

l = k +m per
data-point

Amplitude Encoding X 7→
∑n−1

i=0 xi|i⟩ ⌈log n⌉ per data-point

Time evolution encoding
(Rotational Encoding)

xi 7→ cosxi |0⟩+ sinxi |1⟩ 1 per data-point

Table 2.3: Adapted from [45, 46]. xi represents a scalar, X a vector and bi ∈ {0, 1}. The graphics can be found in
https://quantumcomputingpatterns.org/

2.4.2 Input Encoding

The encoding of classical inputs plays a critical role for QML. A central aspect for runtime evaluations are the
interface components, such as software, hardware, and theoretical frameworks between classical memory and
quantum devices. Since most quantum machine learning algorithms return probabilistic results, the whole routine,
including state preparation and measurement, may have to be repeated several times [32].

Table 2.3 shows the most common input strategies that are explained in the following subsections.

As a starting point for the encoding strategies it can be assumed, that each algorithm starts with a n-qubit system
in the ground state |0 . . . 0⟩, and accessible classical data.

Computational Basis Encoding

Basis encoding is the most straightforward encoding method where a n-bit classical string is associated with a
corresponding n-qubit computational basis state. To encode a real number x ∈ R into a quantum state |x⟩, x is first
expressed in binary representation, e.g. floating point representation, and then encoded into an appropriately sized
qubit register. This is easily understood by observing the conversion of the integer 4 into a qubit representation,
4 ≡ 01002 7→ |4⟩ ≡ |0100⟩.

For a binary dataset D, where each pattern is represented as a binary string of length n, xm → (bm1 , . . . , b
m
n) ∈ D,

with bmi ∈ {0, 1} andm = 1, . . . ,M as the label for the elements in the dataset, the state that encodes the complete
dataset has the form,

|D⟩ = 1√
M

M∑
m=1

|xm⟩ . (2.38)

Note that n is also the size of the qubits register. A detailed explanation and complexity analysis of the state
preparation scheme for |D⟩ is given in References [6, 32].

If the result of an algorithm is also in computational basis encoding format, the value of the amplitude of each basis

21

https://quantumcomputingpatterns.org/

2 Theory Fundamentals

state is associated to the probability of being measured. “The goal of a quantum algorithm is therefore to increase
the probability or absolute square of the amplitude that corresponds to the basis state encoding of the solution.” [6]

A disadvantage of this encoding strategy is the high amount of qubits needed, and therefore it is seldom used in
NISQ algorithms.

Amplitude Encoding

Amplitude encoding associates classical information with quantum amplitudes and is less common in quantum
computing. A normalised vector x ∈ C2n can be represented by the amplitudes of a quantum state |ψ⟩ ∈ H:

x =

x1
...
x2n

↔ |ψx⟩ =
2n−1∑
j=0

xj |j⟩ (2.39)

A complete dataset D of elements xm (m = 1, . . . ,M) encoded in superposition has the form:

|ψD⟩ =
1√
M

M−1∑
m=0

2n−1∑
i=0

xmi |i⟩|m⟩ =
1√
M

M−1∑
m=0

|ψxm⟩ |m⟩. (2.40)

This encoding has the restriction that only normalized classical vectors can be encoded, so that the quantum state
representing the data has one less degree of freedom. In comparison to computational basis encoding, amplitude
encoding uses less qubits to store the same amount of classical information at the expense of increasing the
complexity of the encoding process [6].

Time evolution encoding

Time evolution encoding, also called rotation encoding, associates a scalar x ∈ R with the angle of a parametrised
Pauli rotation. Formally, this is described as associating x with the time t in the unitary evolution of a Hamiltonian:

U(x) = e−ixH (2.41)

where the state after evolution,|ψ(x)⟩ = U(x) |ψ0⟩, encodes x depending on H . Any 2 × 2 matrix H can be
decomposed into H = a01+

∑
i akσk for k ∈ {x, y, z} and α ∈ R. The most common realization of time evolution

encoding is by parametrized Pauli rotations [32], hence the name rotation encoding.

Successive gates or evolutions of the form U(x) can be used to encode a real-valued vector x ∈ RN , i.e. U(x) =

Ri(x0)⊗· · ·⊗Rm(xn) with i, . . . ,m ∈ x, y, z. Rotation encoding produces sine/cosine structures in the amplitudes
and leads to a relation with Fourier series (Section 2.4.3).

An advantage of this encoding method compared to the previous ones is that a small amount of qubits is needed,
and the encoding circuits are simpler thus making it a common encoding strategy for NISQ devices.

22

2 Theory Fundamentals

Figure 2.7: Principle of a VQC, the circuit depends on parameters and a cost function that evaluates the expected
measurement for a given set of parameters. The computational problem is encoded as a cost minimi-
sation. Normally, training is carried out iteratively and in each step the cost function is consulted to find
better parameters θ. Usually, the optimisation is done on a classical computer. Image and description
modified from [6]

Data Encoding as a Feature Map

From a mathematical perspective, encoding x ∈ X into a quantum system is a feature map, assuming that the map
has an inner product, from input space X to the state space of a quantum system [32]. A data encoding feature
map can be interpreted as Dirac vectors representing feature vectors with the map:

ϕ : x→ |ϕ(x)⟩ (2.42)

with ⟨ϕ(x)|ϕ(x′)⟩ the inner product in the standard Dirac bra-ket notation.

This process can also be seen as embedding classical data in a quantum state space, as in natural language
processing. A crucial aspect is that most data encoding strategies introduce a non-linear operation in the data.
Nonlinearities can change the distance between data points and thus “change the intrinsic hardness of a machine
learning problem for better or for worse” [32]. Once the data is encoded into quantum states, quantum algorithms
can only apply unitary operations which do not change the distances between states. This highlights the importance
of the embedding provided by the encoding strategy.

2.4.3 Variational Quantum Circuits (VQCs)

ML is a mostly empirical field. This presents a problem for QML, since current simulators and NISQ hardware limit
algorithms strictly to a few qubits and gates. Large routines are at least very costly, or cannot be simulated even on
state of the art classical hardware, and quickly become unfeasible on real quantum hardware due to high levels of
noise. VQCs present a possibility to implement larger QML algorithms under these constraints by creating a hybrid
quantum-classical algorithm. Figure 2.7 shows such an algorithm, where the model is realized with a quantum
circuit and learning is carried out on a classical processor.

Variational Quantum Algorithms (VQAs) are designed to work on NISQ devices, and instead of having a fixed
sequence of static gates, they are defined by an ansatz W , a pattern or “template” that describes which types
of gates are applied to which qubits. Starting with all qubits in the basis state, the ansatz is repeated in layers
and adapted to the number of qubits used. Usually, most of the gates used are parametrised, such as the Pauli
rotations of Table 2.1, and these parameters are trained using a classical optimisation routine. Optimisation is
implemented as a feedback scheme, comparable to neural network training. VQCs are therefore more precisely

23

2 Theory Fundamentals

a family of algorithms defined by W (θ), with ansatz W and parameters θ, from which the optimisation selects an
optimal candidate [6].

VQCs were initially designed to find the ground states of quantum systems, i.e. the eigenstate with the lowest
eigenvalue; such algorithms are called Variational Quantum Eigensolvers (VQE) [47]. Another early example
of VQC algorithms is the so-called Quantum Approximate Optimisation Algorithm (QAOA) which was designed
to solve combinatorial optimisation problems [48].

In a machine learning context, the terms Variational Quantum Algorithms (VQAs), Variational Quantum Circuits
(VQCs), Parametrised Quantum Circuits (PQCs), or Quantum Neural Networks (QNNs) are used interchangeably
depending on the literature consulted. In this thesis Variational Quantum Circuits (VQCs) will be used.

Model Interpretation

VQCs can be interpreted as deterministic machine learning models for classification tasks, as used in this work,
but they have also been applied as probabilistic models for generative tasks.

A VQC can be interpreted as a discrete ML model with the function f : X → Y that returns an output by measuring
an observable O for some classical input x. The VQC is represented by a quantum circuit U(x, θ) that depends
on both, input data x ∈ X and trainable parameters θ ∈ Rk. Applying the circuit to the ground state, U(x, θ) |0⟩
prepares the state |ψ(x, θ)⟩. The function

f(x; θ) = ⟨ψ(x, θ)|O|ψ(x, θ)⟩ , (2.43)

therefore defines a deterministic VQC model [49]. To shorten the notation we will drop the state label ψ and only
keep track of the parameters it depends on s.t. f(x; θ) = ⟨O⟩x,θ. The circuit can, in principle, have any internal
structure, usually consisting of alternating trainable parametrised variational blocksW (θ) and data encoding blocks
S(x), as shown in Figure 2.8. Each block consists of gates that depend on either inputs or parameters.

Expressivity

The model function of a VQC with alternating variational and time-evolution encoding (Section 2.4.2) blocks, can be
expressed as a partial Fourier series, as shown in Figure 2.8. The nomenclature partial indicates that only a subset
of the Fourier coefficients is nonzero. For input features x = (x1, . . . , xN) ∈ RN and parameters θ = (θ1, . . . , θM)

the quantum model function is thus given by

f(x;θ) =
∑
ω∈Ω

cω(θ)e
iωx, (2.44)

where ωx is the inner product [50].

The eigenvalues of the data encoding gates used in the encoding blocks determine the integer frequency spectrum
Ω ⊂ ZN of the Fourier series. The coefficients cω that a quantum model can realize depend on the remaining
architecture, i.e. the variational blocks and the observable that defines the readout operation.

Representing quantum models as partial Fourier series determines the function families that a given class of quan-
tum models can learn via two interrelated properties [50]. First, the frequency spectrum determines which functions
eiωx the model can use. Second the expressivity of the coefficients {cω} determines how the usable functions can
be combined.

24

2 Theory Fundamentals

Figure 2.8: Illustration of the relation between the VQC structure and its expressivity based on partial Fourier
series [50].

Using time-evolution data encoding with one parameterised Pauli rotation repeated r times sequentially or in parallel
per input, only allows the model to access a frequency spectrum Ω consisting of r frequencies [50]. To increase
expressivity, the encoding gates can be repeated in parallel by increasing the number of qubits used and repeatedly
encoding the same data. Or in sequence by alternating variational and encoding blocks, increasing the depth of
the circuit, this method is called data re-uploading [51].

In Reference [50] it was proved that for sufficiently flexible trainable variational blocks, there exist quantum models
that can realise any possible set of Fourier coefficients. Thus, making such models universal function approxima-
tors, if the asymptotically accessible frequency spectrum is rich enough.

Fourier series are linear combinations of trigonometric functions. Thus, quantum models based on time-evolution
encodings are periodic functions. This means that the scale of the input data must match the periodicity of the
frequencies of the modelled function, since inputs differing by one period are indistinguishable. Otherwise, the
model cannot fit the target function [49]. To map the data to a single period, making the input data scaling trainable
has been proposed in References [4, 51].

Training of Variational Quantum Circuits (VQCs)

Training a VQC means finding parameters θ that minimise a data-dependent cost function C(θ), analogous to
training a classical ANN. The difference to classical training is in the calculation of the partial derivatives with
respect to the parameters of the circuit. The derivative of a parameter µ ∈ θ for a quantum model f(x; θ) is given
by the chain rule:

∂µC(θ) =
∂C

∂f(x; θ)

∂f(x; θ)

∂µ
. (2.45)

The first derivative ∂f(x;θ)C is still a classical computation and can be computed using traditional auto differentiation
methods. The second term depends on the quantum computation f(x; θ).

25

2 Theory Fundamentals

Using the finite difference method to calculate the partial derivative of the quantum expectation fµ = ⟨O⟩µ with
respect to a classical parameter µ leads to problems, since the results of a quantum circuit are sampled and
therefore have a certain error (see Section 2.3.2). Therefore, the smaller the gradient, the more precise the estimate
of the cost function must be, and more sampling shots are required, making numerical finite-difference methods
unfeasible on NISQ devices [49].

Instead, quantum circuits offer an exact method of calculating derivatives, the parameter shift rule [52] given by

∂µf(x;µ) =
∑
i

aif(x;µ+ si) (2.46)

with real scalar values {ai} and {si}. The shifts si are not necessarily small, usually si = π
2 . On real quantum

computers, the expectation value can only be approximated, thus the parameter-shift rule computes the estima-
tion of the analytical gradient, whereas the finite-difference method only allows to compute the estimation of the
approximate gradient.

For a VQC using parameterized Pauli gates, the gradient of the quantum circuit function, Equation 2.43, is given
by [52]:

∇θf(x; θ) =
1

2

[
f
(
x; θ +

π

2

)
− f

(
x; θ − π

2

)]
. (2.47)

A drawback of using the parameter-shift rule to compute the gradient is that for each trainable parameter the circuit
has to be run twice, increasing the computation time. If a parameter occurs in multiple gates of the circuit, the usual
product rule applies and the parameter-shift rule is applied to each gate independently.

Barren plateaus

A problem when training VQC that is somewhat similar to the vanishing gradient problem of classical ANN is the
existence of so called barren plateaus. In contrast to classical ANN where the gradient can vanish exponentially
with the number of layers, in a quantum circuit it can vanish exponentially in the number of qubits [53]. Barren
plateaus are large regions in the parameter space of the cost function where its landscape is flat, i.e. the variance
of the gradient is almost 0. A VQC initialised in such an area is not trainable using any gradient-based learning
algorithm [53]. Vanishing gradients slow down the optimisation and are expensive in the sense that, to avoid random
walks, the small gradient values must be measured with high precision. This is a problem when using NISQ devices
where noise levels limit the achievable precision.

Barren plateaus can be caused by highly expressive VQC architectures with high dimensional Hilbert spaces [49].
For large architectures and vector spaces the average effect of single parameters on the measurement of expec-
tation values are negligible, making it more probable to get a low variance. This makes the training of larger VQC
more complicated, and highlights the importance of parameter initialisation to avoid barren plateaus.

Potential quantum advantages

A quantum speed-up is achieved when a quantum algorithm can theoretically solve a computational problem faster
than all known classical algorithms in the asymptotic runtime [6]. This is investigated in the field of quantum
complexity theory, developed as an extension of classical complexity theory. And is usually brought forward as the
reason why quantum computing has potential.

26

2 Theory Fundamentals

For QML speed-ups are not so interesting, since what is important is what can be learnt. If something can be
learnt, then quantum speed-ups can lead to faster computations. More interesting are other quantum advantages
compared to classical methods. For example, generalisation performance, smaller number of data needed to train
a model, faster convergence, using less trainable parameters, or solving problems that cannot be solved with
classical ML methods.

Quantum advantages arise from the properties of quantum systems, especially entanglement and superposition,
due to its enhanced access to the state space during computations.

Reinforcement Learning with VQC

Quantum Machine Learning (QML) has emerged as a research field suitable for applications of VQCs on NISQ
devices [3]. From the three paradigms of ML, RL has received the least attention in the QML community [54]. Only
recently, deep Q-learning algorithms with VQCs have been shown to solve simple environments [2, 3, 4].

Q-learning can be implemented as a supervised task, restating the problem as a loss minimisation between the
predicted and target Q-values. Thus, using the deterministic interpretation of a VQC model f(x; θ) can be used
to approximate Q-values, fulfilling the same function as a classical ANN. The VQC can be trained using gradient
descent with the parameter-shift-rule analogous to backpropagation for classical models. Thus VQCs represent a
tool for solving learning tasks in an analogous form to a classical ANN.

Using the theory described in this chapter, we combine classical and quantum paradigms to construct an exper-
imental study of Quantum Reinforcement Learning (QRL) in the next chapter. Specifically, using the classical
paradigms of Q-learning, the tanh output function, and loss functions to build the learning algorithm. Combining
them with quantum computing ingredients such as qubits, gates, and measurements to build a VQC that uses
rotation encoding and basis measurements to connect classical data with quantum computations to return the ap-
proximated Q-values. Furthermore, using the parameter-shift rule combined with classical optimisers, the complete
model is trained with gradient descent. How the learning algorithm and the VQC are implemented will be explained
in next Section (3.2).

27

3 A simulation study of Quantum Reinforcement
Learning

3.1 Outline

3.1.1 Motivation

The aim of this thesis is to investigate the feasibility of Quantum Reinforcement Learning (QRL) to solve complex
learning tasks in realistic environments like the problem of changing between lanes on a highway in an automated
driving context. As QRL is in its early stage of development and the available simulated quantum resources are
low, one of the goals was to investigate whether the QRL algorithm is able to solve several simple environments,
such as Cart Pole, Frozen Lake, and Grid World, and finally to adapt what was learnt from this initial test to the
more advanced environment of interest.

Since NISQ devices suffer from noise, we also investigate the impact of noise on the training of a QRL agent within
a simplified noise model. Detailed noise studies are computationally costly and time-intensive and for this first study
we aim to get a qualitative understanding rather than exact quantitative results.

The lane change task presents a larger and more complex scenario to test the initial learning capacity of QRL with
a standard VQC. With the information learnt from this initial feasibility study, new methods and algorithms can be
proposed that could potentially improve the learning capacity of QRL.

Besides a proof-of-concept, another goal of this work is to understand if there are any clear advantages using
a quantum algorithm and if these are relevant for future use cases. To date, there are no clear comparisons to
classical methods or they are compared in environments specifically designed to achieve a quantum advantage [3].
An interesting point is to see how the system’s convergence changes when changing its size. Furthermore, the
stability of the system with respect to its hyperparameters is also of importance.

3.1.2 Related work

A first study on the influence of architectural choices of VQCs for policy-based QRL algorithms was conducted
in [55]. The authors highlight the crucial role of data encoding and readout strategies for policy-based QRL algo-
rithms. For value-based QRL in discrete state spaces, a VQC has been shown to be able to solve two discrete
state space environments with Q-learning [2]. This was the first time where a VQCs was used to approximate a
Q-value function.

The original Q-learning algorithm can be extended to continuous state space environments [56]. For this, the
potentially infinite range of input values in continuous environments was simplified by encoding the input into the
angles of an initial layer of rotation gates. Qubit measurement statistics were used to represent the Q-values. Still,

28

3 A simulation study of Quantum Reinforcement Learning

Figure 3.1: RL training architecture with classic environment, and either classic or hybrid (classic data input and
quantum computation) Network, extracted from [1] and modified.

the algorithms with these modifications were not able to solve even simple problems with a continuous state space
according to their specifications, as for example the cart pole environment.

Recently, a VQC structure was proposed that could solve both, discrete and continuous state space environments
with a discrete action space, without restricting the state space values [3]. The authors proposed a VQC that can
encode states of discrete and continuous RL environments and explained the intricate relationship between the
environment specification and the requirements of the read-out operators of the quantum model [3]. To make the
output scalable they added trainable output weights that enable the model to match the environment’s requirements.
With these improvements, both Frozen Lake and Cart Pole problems could be solved. This approach will be used
for the experiments of this thesis with minimal changes.

For completeness, it is important to mention another branch of research that investigates potential quantum speed-
ups for QRL. So far, the environments were always classical, and the observations had to be encoded into a
quantum state. In contrast, this research branch focusses on creating a quantum-classical hybrid environment
where the agent and the environment have both quantum and classical communication channels [57, 58, 59].
Quantum speed-ups have been demonstrated for simple environments. Since the environment is encoded in a
quantum operator, the agent can explore the environment using an effective quantum search algorithm [60] which
yields a proven advantage over classical search algorithms. This theoretical advantage has also been proven
experimentally on real quantum hardware [61, 62, 63].

3.2 Proposed Implementation and Frameworks

3.2.1 Proposed RL algorithm

The Reinforcement Learning (RL) algorithm used for this work closely follows the previous work of [3, 25]. We use
the same training algorithm for both quantum and classical agents and for all environments. We use a value-based,
off-policy deep Q-learning approach with experience replay and fixed Q-value targets [25]:

• experience replay: Past transitions and their outcomes are stored in a memory, from which batches are
sampled randomly to train the agent. Uniform memory sampling reduces the correlation between elements

29

3 A simulation study of Quantum Reinforcement Learning

of the dataset which improves the training, since two elements of a batch can be taken from different collection
episodes.

• fixed Q-value targets: Adds a second network, the target network of the same structure as the agent’s main
network. The target network is used to calculate the expected Q-values for the update rule. Only the main
network is trained, but sporadically, at fixed intervals, the parameters of the target network are updated with
a copy of the parameters of the main network. This improves stability during training [25].

Figure 3.1 shows all components of the training algorithm, which can be separated into collection and training. In
summary, the collection part explores the environment and collects training data, and the training side learns how
to achieve a higher cumulative reward and updates the collect policy [1]. The complete loop is then repeated until
the training is completed.

In detail, starting with the collection block, the agent uses the collect policy to collect training data. This is a
ϵ-greedy policy with a cosine ϵ decay over the training steps. The driver manages the communication between the
collect policy and multiple environments. Converting successive time steps (of the same environment) consisting
of (rt, st, donet) and the action taken to trajectories consisting of (st, at, rt+1, donet+1). Where for time t, st is
the environment state, at the action taken, rt+1 the reward returned after taking action at in state st, and donet+1

describes whether the environment is in a terminal state. Multiple environments are used in parallel to better utilise
hardware resources and to obtain less correlated training data. The observer manages the communication be-
tween the driver and the replay buffer. The replay buffer is an efficient FIFO queue used to store past trajectories.
This is usually implemented as a server for distributed data collection. Since we use experience replay, the dataset
is built from the replay buffer by uniformly sampling the replay buffer to build a batch of training data [25]. Each
sample consists of two consecutive trajectories that are merged into (st, at, rt+1, st+1, donet+1). The difference
between a trajectory and an element in the training dataset is that the latter also includes the state after taking the
action. The size of the replay buffer is orders of magnitude larger than the batch size [1].

After data collection and dataset building, the agent is trained. The agent consists of two networks (since we use
fixed Q-value targets) used to approximate Q-values, a collect policy, an evaluation policy, and an update rule for
training the main network. Then, for data collection, the action with the highest Q-value is selected with probability
1 − ϵ, this is the collection policy. To evaluate the training progress, an evaluation policy is used where ϵ = 0,
that is, the action with the highest Q-value is always selected. The deep Q-learning agent used for this work is a
custom implementation modifying the standard deep Q-learning agent provided by TF Agents [64].

The Q-value update rule given a dataset vector (Equation 2.14) is modified to use fixed Q-value targets as follows,
for main network Qθ and target network Q̂target,

Qθ (st, at)← Qθ (st, at) + α
[
rt+1 + γ ·max

a
Q̂target (st+1, a)−Qθ (st, at)

]
. (3.1)

The learning task, updating the parameters θ of Qθ, is then implemented as a supervised learning task by minimis-
ing the loss between Qpredicted and Qtarget, with

Qpredicted = Qθ (st, at) ,

Qtarget = rt+1 +
(
γ ·max

a
Q̂target (st+1, a)

)
.

(3.2)

The loss functions used were MSE and Huber loss (see Section 2.1.3) and the appropriate loss function was
selected by a hyperparameter search. Finally, the parameters θ of Qθ are copied to Qtarget in fixed intervals, since
we are using fixed Q-value targets.

30

3 A simulation study of Quantum Reinforcement Learning

Figure 3.2: ansatz used in this work, also called layer, adapted from [3, 4, 65, 66].

3.2.2 Proposed VQC implementation

In this work, we use a Variational Quantum Circuit (VQC) for Q-function value approximation, based on [3, 4, 65,
66] shown in Figure 3.2.

Since we repeat the ansatz similar to layers in a neural network, we will refer to it as a layer, too. Each layer
is divided into a variational part and an encoding part. The variational part consists of parametrised rotations
with Pauli-X, Pauli-Y and Pauli-Z gates, where the rotation parameters correspond to the trainable weights of a
conventional neural network. This structure is followed by a cyclical entangling using controlled Pauli-Z gates. In
the encoding part the preprocessed input is fed into the VQC by rotation encoding through parametrised Pauli-X
gates (see Section 2.4.2). Following the rotation encoding strategy, the number of qubits used is equal to the input
vector size, i.e. the length of the observation vector defines how many qubits are used.

This ansatz is known to be highly expressive, but for a large number of qubits and layers it is susceptible to the
barren plateau phenomenon. For the configurations used in this work with relatively small qubits and layers, this
should not be an issue [3].

Figure 3.3: Variational Quantum Circuit (VQC) structure used for Q-value predictions. Adapted from [65]

Figure 3.3 shows the complete VQC used for the approximation of Q-values. We use a trainable classical scaling
of the input data and data reuploading to improve the VQC expressivity [4, 50, 51]. The classical input state vector
s is preprocessed by scaling with trainable classical weights λ and applying a tanh nonlinearity. Therefore, the
processed input is confined to [−1, 1] and is then fed into the quantum circuit using parametrized VQC rotations.
Note that each layer has a set of trainable classical rotation and scaling parameters (see Section 3.2.2). After r
layers, a last variational block is applied before measurement.

31

3 A simulation study of Quantum Reinforcement Learning

The Q-values predicted by the VQC are expressed as the expectation values of observables, with one observable
per action. The selection of observables is treated as a hyperparameter. A key difference between a classical
neural network and VQCs, is that VQCs have a fixed output range defined by their measurement, while a classical
network can adapt its output range during training depending on its weights and activation function [3]. To solve
this issue and since Q values are generally positive, we rescale the expectation value from [−1, 1] to [0, 1] and
then scale it by a trainable classical value [3]. For this work, we are using either single PauliZ observables or a
multiplicative combination of them, so that for all observables the expectation value is in [−1, 1].

For an input vector s = (s1, s2, . . . , sn) and a n-qubit system initialised in the ground state |0⊗n⟩, the Q-value for
the action i is given by:

Q(s, i) =

(
⟨0⊗n|Uθ(s)

†OiUθ(s)|0⊗n⟩
)
+ 1

2
· woi , (3.3)

with Uθ(s) the parametrised quantum circuit, Oi the observable for action i and woi the scaling weight for action i.

The scaling trainable parameters are initialised to 1 so that they have no effect at the start, and depending on
training, they are adapted to correctly scale the input or output. This was also the main point of the VQC proposed
in [3]. The variational parameters are randomly and uniformly initialised between 0 and π, due to their connection
with rotation angles

We use the following libraries: Cirq [67] to specify the quantum circuit, TensorFlow Quantum (TFQ) [68] takes
the quantum circuits and provides all the necessary tools for training them. It also provides the classical neural
networks. TensorFlow Agents [64] and DeepMind’s Reverb [69] libraries were used for the RL training loop and the
Replay buffer, respectively. The Sacred [70] tool was used to record the experiments. The code is available upon
request.

Trainable parameters

In our ansatz, one VQC is created for the main network and one for the target network. The main VQC is then
optimised end-to-end with input s and the loss between Qpredicted and Qtarget. The VQC uses three different opti-
misers, one for updating the input weights, one for the variational parameters of the VQC and one for the output
weights. The experiments in this thesis were carried out using analytical simulations with TFQ [68], thus the state
of the system is available at all times. Therefore, no sampling is needed to obtain an approximation of the states.
TFQ automatically combines the parameter-shift rule and backpropagation to update the trainable parameters. 4

Each layer has Wθj = 3 ∗ n variational parameters and λj = n input encoding parameters. Additionally, the last
variational block also has parameters Wθr+1

= 3 ∗ n. And finally, for each action, we have a scaling parameter wi.

A VQC with input s = (s1, s2, . . . , sn), r layers (i.e. data reuploads) and an output Q-value vectorQ = (Q1, Q2, . . . , Qa)

has the following number of trainable parameters:

Variational: = 3 · n · (r + 1). (3.4)

Encoding: = n · r. (3.5)

Output: = a. (3.6)

In total: = n · (4 · r + 3) + a. (3.7)

4A downside of TFQ is that it cannot yet use GPU acceleration.

32

3 A simulation study of Quantum Reinforcement Learning

Variational parameters are initialised with uniform random values in [0, π]. The encoding and output parameters
are all initialised with the value 1.

3.2.3 Hypotheses

The experiments studied in this thesis were designed to evaluate the capabilities of the implemented VQC to solve
tasks using Q-learning. With the main focus on the feasibility of solving the lane change problem [71] using QRL.
To achieve this, we set up the following three main hypotheses:

1. The lane change problem presented in [71] can be solved using a QRL algorithm, specifically with the VQC
quantum agent from [3]. The lane change environment is classified as solved when the performance is at
least of the same order of magnitude as the classical agent.

The lane change problem is an environment far more complex than the standard problems that have been
used. Therefore, this hypothesis generates three subordinate hypotheses that have to be answered before-
hand:

a) The VQC is capable of solving RL tasks with a continuous state space.

b) The VQC is capable of solving RL tasks with sparse reward.

c) The VQC is robust to a scaling of the observation space to higher qubit numbers.

2. The implemented QRL algorithm is prone to noise. This indicates whether the proposed QRL implementation
can feasibly work on current NISQ devices.

3. If a QRL algorithm solves an environment, it does so with quantum advantages, e.g. faster convergence or
less training data. This would corroborate the claim of [3] that a quantum agent needs less training data, and
converges faster than a comparable classical agent.

To solve the hypotheses experimentally, small environments that could be simulated were needed. We chose to use
different environments with OpenAI Gym interfaces [72]. The environments are either provided directly by OpenAI
Gym, or they provide a Gym-like interface; as is the case for the lane change environment proposed in [71].

For each hypothesis, a suitable environment was used, each containing partial properties of the target lane change
environment. Starting with hypothesis 1a the Cart pole environment was used, since it has a continuous state
space and a discrete action space, similarly to the lane change environment, but with a three-times smaller state
space vector. Contrary to the lane change environment, it has immediate reward therefore, for hypothesis 1b the
Frozen lake environment was chosen since this one has sparse reward. Since the previous environments have a
small state space vector compared to the lane change environment, for hypothesis 1c, grid world like environments
with different state space sizes were used to scale up to the target environment. Lastly, for the overall hypothesis 1
the lane change environment was used to test the current QRL capabilities. Hypothesis 2 was tested in all smaller
environments and hypothesis 3 was investigated in all environments, corroborating the claims of Reference [3] was
another reason to use the Cart Pole environment.

Having described the hypotheses, the environments are described in detail in the next section.

33

3 A simulation study of Quantum Reinforcement Learning

(a) Cart Pole [27]. (b) FrozenLake [72]. (c) Grid world like [72].

Figure 3.4: Standard environments used.

3.2.4 Selected scenarios

Cart Pole

The Cart Pole environment has a multidimensional continuous state space, a discrete action space, and immediate
reward [27]. In this environment, the agent must learn to balance a pole upright on a cart that moves on a frictionless
track, as shown in Figure 3.4a. The action space consists of two actions: pushing the cart to the left (action 0) or to
the right (action 1). The state space is a vector of 4 elements described by Table 3.1. Exceeding the allowed values
leads to the termination of the episode.5 At the beginning of each episode, the four variables in the environment
state are assigned a uniformly random value in (−0.05, 0.05) [73].

Num Observation Min Max Min allowed Max allowed
0 Cart Position -4.8 4.8 -2.4 2.4
1 Cart Velocity -Inf Inf -Inf Inf
2 Pole Angle (in radians) -0.418 0.418 -0.2095 0.2095
3 Pole Angular Velocity -Inf Inf -Inf Inf

Table 3.1: The state space of the Cart Pole environment [27] is described by a 4-dimensional vector.

There are two versions of the Cart Pole environment, depending on the maximal episode length: v0, 200 steps and
v1, 500 steps. The agent receives an immediate reward of +1 for each step taken before the end of the episode.
The episode score is calculated as the cumulative reward of all steps taken in the episode. An episode is solved if
the score is ≥ 195 for v0 and ≥ 475 for v1. The environment is solved when the agent can solve 100 consecutive
evaluation episodes [73].

Frozen Lake

In contrast to the Cart Pole environment, the Frozen Lake environment has a discrete state space, a discrete action
space, and sparse reward [74]. In this environment, the agent must learn to cross a frozen lake from start to finish
without falling into any holes. The start, goal, and holes are always in the same position. Figure 3.4b shows the
standard frozen lake map, with the agent in the starting position and the gift representing the goal. The action

5Exceeding the allowed values of the cart position means that a part of the cart is outside the visible display. For the Pole angle, it usually
means that the state is physically unrecoverable.

34

3 A simulation study of Quantum Reinforcement Learning

space consists of 4-discrete actions: go left, go down, go right, and go up. If taking an action means going outside
the 4× 4 map, the agent remains in the same position, i.e. the agent bounces on the map walls.

The observation is a value of the current position of the agent as current_row · nrows + current_col (where
both the rows and the columns start at 0). For the frozen lake 4 × 4 map configuration used, the observations
range from 0 to 15. This observation is then encoded as the 4-bit binary value vector of the integer, for example,
13 7→ (1, 1, 0, 1)2. The agent always starts in the top left position 0 ≡ (0, 0, 0, 0)2, and the goal is in the bottom right
position 15 ≡ (1, 1, 1, 1)2.

The agent gets a reward of +1 when the goal is reached. Otherwise, it receives a reward of 0 per step. There are
three episode termination conditions:

• The agent falls into a hole.

• The agent reaches the goal and gets a +1 reward.

• Maximum allowed steps are reached. This value is set to 100.

For the deterministic frozen lake environment, a solve condition can be defined as crossing the lake once. Repeat-
ing the crossing with the same agent will always return the same path.

Grid World

The Grid World-like environments in this work have been derived from Frozen Lake by reducing the holes to 0

(Figure 3.4c) and increasing the maximum number of steps to 300. The goal is still to cross the lake from start to
finish, but in this case there is no danger of falling into the holes. The challenge of these environments comes from
larger sizes of the maps. Examples of larger maps are shown in the Appendix A.1.

For maps of side length l, each square is enumerated from 0 to (l2−1) (in row-major order). These states are then
encoded into a log2(l

2)-bit binary representation as input to the networks. The actions remain the same as in the
Frozen Lake case.

Lane change

Lastly, combining properties of the previous environments, the simulation environment for lane change was pro-
posed in [71] and is based on the open source framework ADORe [75]. In this scenario, a vehicle has to merge
into moving traffic from a slip road. The moving traffic is randomly generated. The task of the agent is to choose
a suitable gap for the ego vehicle ,to change lanes. This gap is communicated to a classical algorithmic trajectory
planner [76] that performs the manoeuvre, the trajectory planner is fixed and not learnable. Figure 3.5a shows an
example of the manoeuvre. At the time of writing this work, not all modules needed to reproduce this environment
have been made publicly available yet.

A distinct characteristic of the lane change environment is that the environment changes independently of the
actions taken by the agent, i.e. the surrounding traffic adds randomness to the observations.

Identifiers are assigned to the surrounding traffic and the available gaps based on their longitudinal position with
respect to the ego vehicle (Figure 3.5b). The longitudinal position is taken in the middle of each vehicle. Vehicle
v2 is always the closest vehicle longitudinally ahead (in the driving direction) of the ego car, on the target lane. If
there is a vehicle in front of v2, it is labelled v1. If cars behind v2 exist, they are labelled v3 and v4, from closest

35

3 A simulation study of Quantum Reinforcement Learning

(a) Exemplary snapshot of a lane change manoeuvre [71].

(b) Overview of the identifiers for vehicles from the surrounding traffic and the gaps on the target lane [71].

Figure 3.5: ADORe lane change environment. The yellow car represents the agent and the black cars the sur-
rounding traffic. The ego vehicle is marked in yellow [71].

to farthest away. The state space is continuous and is described in Table 3.2. If some vehicles do not exist, their
corresponding state values are set to 1 for v1 and v2 or to 0 for v3 and v4 [71].

s0 position dego of the ego vehicle
s1 velocity vego of ego vehicle
s2 position d1 , front of vehicle 1
s3 velocity v1 of vehicle 1
s4 position d1,rear of vehicle 1
s5, s6, s7 d2, front , v2 and d2, rear of vehicle 2
s8, s9, s10 d3, front , v3 and d3, rear of vehicle 3
s11, s12, s13 d4 , front , v4 and d4, rear of vehicle 4

Table 3.2: Elements of the state vector, the values are normalised and bounded to [0, 1] see [71].

The action space is discreet and consists of a0 lane following and a1, a2, a3 meaning to merge into gap g1, g2, g3,
respectively. When a merging action is selected, the velocity of the ego vehicle is algorithmically adapted (not by
the agent) between 7km

h and 50km
h to achieve the merge [71].

The ego vehicle always starts on the slip road and accelerates to the maximum speed allowed before reaching the
merge situation [71]. The environment returns a sparse reward, for non-terminal states 0 and either +50 or −15
for terminal states, depending on whether the lane change is successful or not. Episodes terminate immediately
when a lane change is successful. There are two failure settings, the first is when the ego vehicle reaches the end
of the slipway without having changed lanes. The second situation occurs when no successful lane change has
taken place within 7 steps after the first time that the agent returns an action other than line following [71].

Using these environments selected for having properties that synergise with our hypotheses, we describe the
experimental structure.

3.2.5 Quantum vs Classic on Cart Pole

Starting with the Cart Pole environment, we analyse whether the proposed VQC can solve an environment with
continuous state space, discrete action space, and immediate reward. Furthermore, we compare the empirical
performance of this quantum agent against two classical agents, especially whether quantum agents need fewer
training episodes as claimed in the initial commit of [3]. While working on this thesis, an update was published in
which the authors retracted said claim.

36

3 A simulation study of Quantum Reinforcement Learning

Quantum
Classic

1-hidden layer 2-hidden layer

Layer
Output
Shape

Layer
Output
Shape

Layer
Output
Shape

#

InputLayer [(None, 4)] 0 InputLayer [(None, 4)] 0 InputLayer [(None, 4)] 0

VQC (None, 2) 92 Dense (None, 13) 65
Dense (None, 9) 45
Dense (None, 4) 40

Rescaling (None, 2) 2 Dense (None, 2) 28 Dense (None, 2) 10

Total trainable params (#): 94 Total trainable params (#): 93 Total trainable params (#): 95

Table 3.3: Model structures of the agents used in the Cart Pole environment.

The classical agents are simple dense Feedforward Neural Networks with either one or two hidden layers to inves-
tigate whether the number of hidden layers influences the results. They are constrained to use the same input as
the quantum agent. We fixed the number of trainable parameters for the quantum agents using the same number
of layers as in [65], where an implementation of Reference [3] was proposed. For the classical agents, we chose
the width of the layers such that the resulting number of trainable parameters are comparable to the trainable
parameters of the quantum model, as shown in Table 3.3.

The cart pole environment has a four-dimensional state space vector. For the quantum agent, this means that 4
-qubits will be used and for the classical agents, the input layer has dimension 4. Furthermore, all networks output
a vector of dimension 2 with the Q-values for each possible action.

To also test the generalisation power of the agents, evaluations were carried out on two versions of the Cart-Pole
environment:

• Cart pole v0: also used for training, with a maximum of 200 steps per epoch.

• Cart-Pole v1: used only for the generalisation test. Identical to v0, except for a maximum of 500 steps per
epoch.

The idea is to test the agent on episodes that are longer than the ones it was trained on, and to see if it can balance
the pole for longer, i.e. if the agent can generalise to longer episodes.

We conducted a hyperparameter search on all three models and then compared the best models. The hyperpa-
rameter search space and the selected hyperparameters are listed in the Appendix A.2.

The models were compared on their evaluation results (for v0 and v1), their convergence epoch, and how many
trajectories each model needed until convergence. In this context, convergence means the epoch in which v0

is perfectly solved for the last 100 consecutive evaluation episodes, i.e. the average of the cumulative reward is
200. 10 evaluation episodes are carried out every 10 training epochs. Repeating the evaluations per epoch makes
sense, since the initial conditions of each episode are randomly sampled. To evaluate the initialisation stability of
each model, we compare the rewards and convergence epoch for each of the best models as an average over 5, 10
and 20 trained models.

3.2.6 Quantum vs Classic on FrozenLake

Similarly to the previous scenario, we analysed whether the proposed VQC can solve an environment with discrete
state space, discrete action space and sparse reward, like the Frozen Lake environment. Unlike the experiment

37

3 A simulation study of Quantum Reinforcement Learning

proposed in [3], we did not use a special input encoding for each environment, but used the same proposed VQC
structure for all environments. This was done to make it comparable to the Cart Pole experiment and to investigate
whether this “standard” VQC structure can be used for environments with different characteristics, specifically
continuous or discrete state spaces and immediate or sparse reward. All environments used in this work have a
discrete action space (otherwise, using Q-learning would be unsuitable).

For this environment, we used only one classical agent with one hidden layer for comparison, since we observed
that multiple hidden layers did not significantly affect performance in the previous experiment, Section 3.2.5. Again,
for the quantum agents we used the number of layers proposed in [65]. For the classical agent, we used the same
dense layer width as in the Cart Pole scenario, where the trainable parameters were almost equal. But because
the Frozen Lake environment has 4 actions, instead of 2, the difference in trainable parameters for the classic
agent increased by 28 and for the quantum agent only by 2. For the classic agent with a hidden layer of 13 neurons,
increasing the output layer by two neurons adds: 2 bias weights and 13×2 = 26 new connection weights. However,
for the quantum agent, only two output scaling values are added (this is due to having the same input dimension
as before and only changing the number of outputs). Resulting in 96 trainable parameters for the quantum agent
and 121 trainable parameters for the classical model with one hidden layer, i.e. a difference of 25 trainable weights
or in other words the classic agent has 26% more trainable parameters than the quantum agent. Still, the number
of free parameters of the classical model is of the same order of magnitude as in the quantum model.

Following the proposed 4-bit binary encoding of the state values for Frozen Lake, the quantum agent used 4 qubits
and the input layer of the classical agent has dimension 4. Both networks output a vector of dimension 4 with the
Q-values for each possible action.

We conducted a hyperparameter search on both models and then compared the best models. The hyperparameter
search space and the selected hyperparameters can be found in the Appendix A.2.

Similar to the Cart Pole experiment, the models were compared in terms of their evaluation results, their conver-
gence epochs, how many trajectories each model needed until convergence, and additionally the path length of
the solution policy. Here, convergence means the training epoch in which the goal is reached for 10 consecutive
evaluation episodes. One evaluation episode is carried out every 10 training epochs. One episode suffices, since
environment and model are deterministic with identical initial conditions for each rerun. As before, we compare
the rewards and convergence epoch for each of the best models as an average over 5, 10 and 20 trained models.
We also compared the different paths created by the trained policies to observe the variation between training
repetitions.

3.2.7 Quantum scalability

For investigating the complexity limits of current quantum (simulated) hardware, we tested the ability of the pro-
posed VQC to handle environments with larger state space, meaning more input qubits. In both previous experi-
ments, the environment tested used at most 4 qubits. Building upon the previous experiment where it was shown
that our agents could solve the frozen lake, we used a simplified version of the environment to test scalability by
experimenting on Grid World-like environments. In this way, we make sure that the results depend mostly on the
state vector size and not on the environment complexity, since Grid World environments do not have holes, and
the only difference between them is the map size. Nevertheless, it is important to mention that we expect that with
higher map size and thereby longer optimal paths, the environments become more complicated to solve.

We used the same agent structure as in the previous experiment. Table 3.4 shows the different map sizes used,
their respective observation vector size, the length of the shortest possible path from start to goal, and the number

38

3 A simulation study of Quantum Reinforcement Learning

Map size (l) 4× 4 5× 5 8× 8 11× 11 16× 16
Observation vector size n = ⌈log2(l2)⌉ 4 5 6 7 8
Optimal path length 6 8 14 20 30
n.t.p. classical model 121 134 147 160 173
n.t.p. quantum model 96 119 142 165 188

Table 3.4: Description of Grid world-like environment used. With n.t.p.: number of trainable parameters.

of trainable parameters used by each type of model. Due to time and computation constraints, we did not test larger
map sizes.

For all map sizes, the agent can perform four actions. The number of trainable parameters can be calculated based
on the size of the observation vector n. n also represents the number of qubits used in the quantum agent and the
input layer size for the classical agent. Due to their geometry, the number of trainable parameters scales different
for classical and quantum models. For the quantum agent with 5 layers, and 4 output Q-values, the number of
trainable parameters is, tpquantum(n) = n · 23 + 4, and for the classical network with a hidden layer of 13 neurons, it
is tpclassic(n) = n · 13 + 69. For environments with n > 6 the quantum agent has more trainable parameters than
the classical agent.

We conducted hyperparameter searches for both model types on all map sizes. We then chose the best hyperpa-
rameters over all models such that both the quantum and the classical agents had the same training requirements,
in the sense of how many data points are used per training iteration. In this way, we ensure that the performance
differences came from the larger environments and not the model hyperparameters. All models used the same
batch size, number of interactions with the environment before the main model is trained and that the same number
of updates of the main model are done before updating the target mode. The hyperparameter search space and
the selected hyperparameters can be found in the Appendix A.2.

The comparison of the models was done the same way as for the Frozen Lake environment.

3.2.8 Effects of noise

Current NISQ devices suffer from noise, see Section 2.3.1. To evaluate how the proposed VQC would work on real
quantum hardware, we investigate the effects of noise on different environments. We used simulated noise since
the computation time needed to train a model on real quantum hardware is not realistically available.

To simplify the noise experiments, we added after each gate the same noise gate with the same noise probability
(see Figure 4.14). In real quantum devices, there is a difference in the noisiness of one- and two-qubit gates, with
the two-qubit gate error being significantly higher. Gates of three or more qubits are not realized on real hardware
and are composed of a combination of one and two qubit gates [77]. Furthermore, we neglected that depending
on the placement of the qubits in hardware, some connections are more prone to noise than others. For simplicity,
we use the same noise probability on all gates, and it should be interpreted as an upper bound when only using
the two-qubit gate error.

For simulated noise, we follow the implementation proposed in TFQ, using depolarization gates [78]. The depo-
larization probability of these gates can be varied to simulate different levels of noise. TFQ uses Monte Carlo
trajectory simulations with analytical calculations performed on each trajectory to estimate the noisy expectation
values of observables [79]. These trajectory simulations are very computationally and time intensive, and therefore
we only used 10 repetitions. Due to restrictions by the hardware used for the simulation, more repetitions lead to

39

3 A simulation study of Quantum Reinforcement Learning

highly degraded performance. This fits the requirements of the TFQ documentation, where 10 repetitions are used
in QML contexts, as circuits will be called repeatedly during evaluations.6

Due to the extremely costly nature of noisy training we did not do a new hyperparameter search for each noise
level. Instead, we used the best hyperparameters found in the noise-free experiments and retrained the models
using noisy versions of their circuits.

We first investigated the Frozen Lake environment for noise levels increasing in 0.05% steps until the agent was
unable to solve the environment. Due to the expensive nature of noisy simulation, we restricted Grid-World-like
environments to the map sizes 4 × 4, 5 × 5 and 8 × 8 with noise levels ranging from 0% to 5% in 1% steps.
Finally, we compared the behaviour in the Frozen Lake environment and the Grid World-like environments since
they present a similar environment but with very different termination conditions. Specifically, we wanted to see
how an environment with termination conditions for bad actions, i.e. falling into a hole, compares to an environment
where the only termination condition is running out of possible steps. The continuous state space problem of Cart
Pole has been unsolvable with noisy circuits.

The models were compared under the same conditions as used for each environment without noise. However, 10
evaluation epochs were carried out every 10 training epochs because noisy models are no longer deterministic.
Noise can cause two calculations with the same input to achieve different results.

3.2.9 Lane change

In order to investigate whether the quantum agent can also solve a more complex environment, the lane change
environment proposed in [71] was used. Specifically, the environment has a continuous state space with more
degrees of freedom, discrete actions, and sparse reward. Furthermore, this environment changes independently
of the actions taken by the agent, i.e. the traffic changes independently of the agent’s actions.

We trained only a quantum agent as we used the results from [71] as reference, and only a minimal hyperparameter
search could be performed because the lane change environment is time- and computationally intensive for training.
Nevertheless, we conducted a first proof-of-concept for solving the environment with a quantum agent.

Compared to the classical agent with 1334 trainable parameters from Ref. [71] our quantum agent has only 326

trainable parameters. We used the same number of layers as in all previous experiments, since we inferred from
the Grid World experiments that this agent can be trained for comparable observation vector sizes and possible
actions. Larger models could be susceptible to the barren plateau phenomenon [3].

Combining the described VQC and RL algorithm to solve the proposed hypotheses using the mentioned environ-
ments, we set up the experiments to be carried out. In the next chapter, the results of theses will be presented and
discussed.

6See the Noise tutorial https://www.tensorflow.org/quantum/tutorials/noise

40

https://www.tensorflow.org/quantum/tutorials/noise

4 Simulation Results

4.1 Results

4.1.1 Quantum vs Classic on CartPole

This section covers the results for the Quantum vs Classic experiment on the Cart Pole environment. After perform-
ing a hyperparameter search for each architecture, the model with the best results per architecture was selected
and retrained 15 additional times (see Appendix A.2). After the training, the weights of the epoch with the highest
cumulative reward for both Cart Pole v0 and v1 were restored for each model, and 100 evaluation episodes were
carried out.

Following the definition of the Cart Pole environment, each episode score (see Section 3.2.4) is calculated as the
cumulative reward of all steps taken in the episode (Equation 2.9). An episode is solved if the score is ≥ sc; with
sc0 = 195 for v0 and sc1 = 475 for v1. We define the solution of an environment as the consecutive solution of 100
episodes. Since the agent gets a reward +1 for each step in the episode, the cumulative reward of an episode is
given by its length. The solving criteria for the Cart Pole environments can then be reformulated in terms of the
minimal cumulative reward and Tr as the length of each episode:

min. cumulative reward = min{CT0
, . . . , CT100

} = min

{
T0∑
t=0

rt, . . . ,

T100∑
t=0

rt

}
= min{T0, . . . , T100}

?
≥ sci (4.1)

The length of each episode is determined by the environment and the quality of the policy of the evaluated model.

(a) Cart Pole v0 environment. (b) Cart Pole v1 environment.

Figure 4.1: Model evaluations for the Cart Pole vi environment after training. Showing the minimal cumulative
reward over 100 evaluation episodes, see Equation 4.1. 20 training repetitions have been conducted
per model type. The red dashed line represents the lower threshold for solving each environment
according to its specification.

41

4 Simulation Results

(a) Convergence epoch (b) Trajectories trained on until convergence

Figure 4.2: Training metrics over 20 models, per model type. a) epoch when the model first fulfilled the solving
criteria for the training environment, i.e. when the average cumulative reward over the last 100 evaluation
episodes is ≥ 195. Every 10 training epochs 10 evaluation episode are carried out. b) how many
trajectories each model use until convergence, in other words how many training examples each model
saw until convergence.

There are two possible termination conditions. Either the agent fails, or it reaches the maximal number of allowed
steps.

Figure 4.1 shows the minimal evaluation reward for Cart Pole v0 and v1. As shown in Figure 4.1a the classical
agent with one hidden layer and the quantum agent can solve the Cart Pole environment v0 for all repetitions, and
the classical agent with two hidden layers can solve the environment in 90% of the repetitions. Figure 4.1b shows
the agents generalization ability. The classical agent with one hidden layer achieves the worst results with only
a 35% success rate in the Cart Pole v1 environment. Both the quantum agent and the classical agent with two
hidden layers achieve significantly better results solving the environment in 65% and 75% percent of the cases,
respectively. Overall, the classical agent with two hidden layers achieves the best generalization results, although
it has the worst results in the training environment.

Model type Perfect Noisy Forgetting Not converging
Quantum 60% 35% 5% -
Classical 1 hidden layer 35% 50% 15% -
Classical 2 hidden layer 40% 25% 15% 20%

Table 4.1: For each model, the evaluation history for the training environment (v0) can be grouped according to their
behaviour. The classification was done based on visual inspection of the learning curves. Prototypical
examples are shown in Figure 4.3. Per model 20 training repetitions were carried out.

The training convergence epoch is the training epoch where the minimum cumulative reward for the training envi-
ronment over the last 100 evaluation episodes is 200. The convergence epochs are shown in Figure 4.2a. It can
be observed that for all cases not all repetitions converged. This is due to the fact that the convergence criteria
is stricter than the solution criteria, as it requires that all episodes are perfect. The best repetitions, i.e. with the
lowest convergence epoch, for all three models are very similar with about 400 epochs. But the medians differ
significantly, with the classical agent with one hidden layer performing the best. Both the quantum and the classical
agent with two hidden layers behave slightly worse, but quite similar to each other. However, the interquartile range
of the quantum agent is superior to the classical model with two hidden layers (see Figure 4.2b). Logically, the
same behaviour can be observed in the number of trajectories needed until convergence, since more epochs equal

42

4 Simulation Results

(a) Prototypical perfect run, here shown on an example of a quantum agent.

(b) Prototypical noisy run, here shown on an example of a quantum agent.

(c) Prototypical catastrophic forgetting run, here shown on an example of a quantum agent.

(d) Prototypical not converging run, here shown on an example of a classical agent with two hidden layers.

Figure 4.3: Prototypical examples of the evaluation history in the training environment (v0) are shown grouped
according to its behaviour. The classification was done based on visual inspection of the learning
curves. Per model 20 training repetitions were carried out. Every 10 training epochs, 10 evaluation
episodes were carried out. The lines represent the mean and the whiskers the maximal and minimal
value over the 10 episodes.

more data. One notable difference is that in the worst case, the shallow classical agent needs half as many training
trajectories compared to the other two model architectures. The exaggeration of the behaviour can be explained
through hyperparameters, where the small model uses a batch size of 32 and the other two architectures a batch
size of 64 (all three models use the same amount of collection steps between training epochs).

43

4 Simulation Results

(a) Prototypical converging run, here shown on an example of a quantum agent.

(b) Prototypical noisy run, here shown on an example of a quantum agent.

Figure 4.4: Prototypical examples of the evaluation history in the generalisation environment (v1) are shown
grouped according to its behaviour. The classification was done based on visual inspection of the
learning curves. Per model 20 training repetitions were carried out. Every 10 training epochs, 10 eval-
uation episodes were carried out. The lines represent the mean and the error bars the maximal and
minimal value over the 10 episodes.

For the evaluation history during training, we used the average cumulative reward:

avg. cumulative reward =
1

10

10∑
r=0

CTr =
1

10

10∑
r=0

Tr∑
t=0

rt =
1

10

10∑
r=0

Tr (4.2)

with Tr being the length of each episode. During training, every 10 training epochs 10 evaluation episodes were
carried out (over which the average was calculated). The histories averaged over all repetitions are shown in
Appendix B.1, with Figure B.1 showing the history for the training environment and Figure B.2 for the generalisation
environment.

Model type Converging Noisy
Classical 1 hidden layer 30% 70%
Quantum 45% 55%
Classical 2 hidden layer 65% 35%

Table 4.2: For each model, the evaluation history for the generalisation environment (v1) can be grouped according
to their behaviour. Classification was done based on visual inspection of the learning curves. Prototypical
examples are shown in Figure 4.4. Per model 20 training repetitions were carried out.

We (subjectively) classified all evaluation histories according to their behaviour into the following groups: perfect
runs, noisy runs, or catastrophic forgetting runs. Catastrophic forgetting occurs when while exploring the environ-
ment, the agent updates its policy, but what it learns in one part of the environment may break what it learnt earlier
in other parts of the environment [1]. In Figure 4.3 prototypical histories are shown for each class. For all archi-
tectures, similar behaviours could be observed. Table 4.1 shows the results of classifying 20 repeated trainings for
each architecture. The table shows that the quantum model has the most perfect trials, and catastrophic forgetting

44

4 Simulation Results

(a) Classical agent with one hidden layer.

(b) Quantum agent

(c) Classical agent with two hidden layer.

Figure 4.5: Initial condition study with 5, 10 and 20 models trained with the same hyperparameters. The average
cumulative reward for training and generalisation environment and the convergence epoch are shown
for different subsets of trained models.

occurs only rarely compared to the classical agents. On the contrary, this happens three times as often in the
classical agents. For the classical agent with one hidden layer, half of its runs are noisy. The classical agent with
two hidden layers is the only one with not converging runs.

Analogously, we conducted the same classification for the generalisation environment, shown in Figure 4.4. Ta-
ble 4.2 shows the classification into converging runs and noisy runs. About half of the quantum agent runs are
stable converging and the rest is noisy. For the classical agents with one hidden layer most runs are noisy and for
the one with two hidden layers about two thirds are stable.

The results on the stability of training with respect to the parameters initialisation are shown in Figure 4.5. It can be
seen that general trends depend highly on how many repetitions are performed for training which reflects the very
unstable nature of RL and especially of Q-learning [1]. This presents the conundrum of finding the optimal balance
between how many times to train each hyperparameter configuration and how many configurations can be tested
given limited computation and time resources. For the hyperparameter search we used 5 repetitions, and for the
results we re-trained the best results up to 20 repetitions to achieve a balance.

45

4 Simulation Results

(a) Frozen Lake cumulative reward (b) Frozen Lake solution path length

Figure 4.6: Model evaluations for the Frozen lake environment after training. 20 training repetitions per model type
are shown. a) Showing the cumulative reward of each repetition, see Equation 2.9. Reward 1 means
the environment was solved. b) Path length of the solution, with 6 being the optimal length and shown
by the red dashed line.

4.1.2 Quantum vs Classical on Frozen Lake

For the Quantum vs Classical experiment on the Frozen Lake environment a hyperparameter search was done for
each architecture. The model with the best results was selected and retrained to have 20 trials;7 see Appendix A.2
for details on the hyperparameter search. After training was complete, the weights of the epoch with the highest
cumulative reward and the shortest solution paths were restored for each model, and an evaluation episode was
carried out. Only one evaluation was necessary since repeated evaluations with identical starting conditions always
lead to the same result as the environment and the model are both deterministic.

The Frozen Lake environment is solved if the agent reaches the goal. The cumulative reward of an episode is 1

iff the goal is reached, otherwise it is 0. The environment is solved independent of the chosen path as long as
the goal is reached, but the path length can also be used as a metric to see if the agent achieves an optimal or
suboptimal solution. Figure 4.6a shows the cumulative reward of the quantum and classical agents. From the
cumulative reward it can be observed that both agents can solve the environment in all trials. Figure 4.6b further
shows that all agents solved the environment with an optimal length solution (there are multiple different paths from
start to finish with optimal length).

Model type Perfect Noisy late converging
Quantum 60% 40% -
Classical 20% 60% 20%

Table 4.3: For each model, the evaluation history for the training environment can be grouped according to their
behaviour. The classification was done based on visual inspection of the learning curves. Prototypical
examples are shown in Figure 4.8. Per model 20 training repetitions were carried out.

We define the training epoch where the minimal cumulative reward over 10 evaluation episodes is 1 as the con-
vergence epoch. The convergence epochs are shown in Figure 4.7a, where it can be observed that the quantum
agent converged approximately twice as fast as the classical agent. In the worst case, the quantum agent took
around 1500 epochs of the 5000 epochs it was trained on. The classical agent took significantly longer with four
repetitions converging very late during training, taking over 2800 training epochs. However, for both agents all 20

7the classical agent has one repetition less since one run had crashed due to hardware reasons and was not noticed until writing the results.

46

4 Simulation Results

(a) Convergence epoch (b) Trajectories trained on until convergence

Figure 4.7: Training metrics over 20 models, per type. a) epoch when the model first fulfilled the solving criteria for
the training environment, i.e. when the cumulative reward over the last 10 evaluation episodes is = 1.
Every 10 training epochs 1 evaluation episode was carried out. This means that convergence is fulfilled
when for the last 100 training episodes the corresponding evaluation episode b) how many trajectories
each model use until convergence, in other words how many training examples each model saw until
convergence. This is influenced by hyperparameters, such as batch size.

repetitions converged before the training ended. In the best case, both architectures converged after around 400

training epochs. Logically, the number of trajectories needed until convergence follows the same behaviour as the
convergence epochs, as is shown in Figure 4.7b. The behaviour is exaggerated due to the classical agent using
a batch size of 32 and the quantum agent of 16, as this automatically leads to processing more data per training
epoch.

Model type Converging Noisy
Quantum 55% 45%
Classical 20% 80%

Table 4.4: Path convergence history for the training environment v0, grouped according to their behaviour. Classi-
fication was done based on visual inspection of the learning curves. Prototypical examples are shown
in Figure 4.9.

Following the same procedure as in the previous experiment we (subjectively) classified all evaluation histories
into groups according to their behaviour, as shown in Figure 4.8. For all architectures, similar behaviours could
be observed. Table 4.3 shows how the training repetitions are classified for each architecture. We see that the
quantum model has the most perfect trials, and no late converging runs. The classical agent on the other hand
presents a very noisy nature, additionally a 20% of the trials only start to learn after almost half of the maximal
training epochs, at this point most quantum agents have already converged. Analogously, the same classification
was carried out for the evaluation path length, shown in Figure 4.9. Paths shorter than 6 steps, represented by
the dips under the stable line in the figure, are runs where the agent failed and fell into a hole, thereby terminating
the episode in failure. Table 4.4 shows the classification percentages, again with the quantum agent showing more
stable results than the classical agent, with half of the runs converging almost perfect. In contrast, for the classical
agent most runs are very noisy. In Appendix B.2 the histories averaged over all repetitions are shown in Figure B.3
for the cumulative reward and for the path length in Figure B.4.

Similar to the preceding experiment, we conducted a study on the influence of initial conditions, the results are
shown in Figure B.5 in Appendix B.2. For the Frozen Lake environment, the agents are not as susceptible to

47

4 Simulation Results

(a) Prototypical perfect run, here shown on an example of a quantum agent.

(b) Prototypical noisy run, here shown on an example of a quantum agent.

(c) Prototypical late converging run, here shown on an example of a classical agent.

Figure 4.8: Prototypical examples of the cumulative reward evaluation history in the training environment are shown
grouped according to their behaviour. The classification was done based on visual inspection of the
learning curves. Per model 20 training repetitions were carried out. Every 10 training epochs, 1 evalua-
tion episodes was carried out.

weights initializations, and especially the quantum agents varies only minimally between repetitions.

Figure 4.10 shows the different solution paths produced by trained agents, all paths are of optimal length. Both
agents produced the same paths but with different frequencies, as shown in Table 4.5. The table shows that the
quantum agent produced in 85% of the cases the same path, while the classical agent produced all three paths
with almost equal probability.

Model type Ideal path 1 Ideal path 2 Ideal path 3
Quantum 5% 85% 10%
Classical 40% 30% 30%

Table 4.5: The solution paths produced by the agents are grouped according to the path followed. The labelling is
carried over from Figure 4.10

48

4 Simulation Results

(a) Prototypical almost perfectly converging run, here shown on an example of a quantum agent.

(b) Prototypical noisy converging run, here shown on an example of a quantum agent.

Figure 4.9: Prototypical examples of the path length evaluation history in the training environment. The classifica-
tion was done based on visual inspection of the learning curves. Per model 20 training repetitions were
carried out. Every 10 training epochs, 1 evaluation episode was carried out.

4.1.3 Quantum scalability

This section presents the results for the Quantum scalability experiment (Section 3.2.7) on grid world-like environ-
ments. After performing a hyperparameter search for each architecture and map sizes 4 × 4, 8 × 8, and 16 × 16,
we chose the hyperparameters that worked the best on all environments while making sure that both quantum and
classical agents had the same training requirements (in the sense of how many data points are used per training
iteration). We then expanded the list of map sizes and added 5 × 5 and 11 × 11 so that we could test the models
with observation vector size ranging from 4 to 8 in 1 steps, see Table 3.4. For the quantum agent and the map size
11 × 11 we had to redo the hyperparameter search because the agent failed to converge for no obvious reason.
We only re-searched over output learning rate and ϵ decay steps (leaving the rest of the hyperparameters identical
to the one used for the other map sizes). The final hyperparameter list can be found in Appendix B.3 in Table B.1.
Once the hyperparameters were fixed, we retrained all models to have 20 trials The details of the hyperparameter
search can be found in Appendix A.2. After training was completed, the weights of the epoch with the highest
cumulative reward and the shortest solution paths were restored for each model and map size. Then an evaluation
episode was carried out.

The Grid world-like environments have the same solution and convergence criteria as the Frozen Lake environ-
ments discussed previously. Additionally, we added path convergence as criterion, given by the training epoch
where the agent achieves solutions with optimal paths lengths over 10 consecutive evaluation epochs. Figure 4.11a
shows the cumulative reward for varying map size. Both agents solve the environment perfectly until the map size
11× 11, where the classical agent solves all the cases, but the quantum agent does not solve the environment in 2

out of 20 cases. For the map size 16× 16 both the quantum and the classical agents fail to solve the environment
in 3 out of 20 cases. The same behaviour is observed in Figure 4.11b for the path lengths of the solutions.

In Figure 4.12 the training and path convergences are shown. Comparing both, it can be observed that the path
convergences are always higher than the training convergence. Both agents converge later for larger map sizes,

49

4 Simulation Results

Figure 4.10: Different path produced by the policies of each architecture. Grouped according to the path taken.

(a) Cumulative reward for Grid World environments of different
map sizes.

(b) Path length of solutions over Grid World environments of
different map sizes.

Figure 4.11: In red the quantum agent is shown and in blue the classical agent. Model evaluations for Grid World
environments after training was completed, shown are 20 training repetitions per model type. a) shows
the cumulative reward of each repetition, see Equation 2.9. b) Path length of the solution.

with the quantum agent converging faster until map size 8× 8. For larger map sizes it needs slightly more epochs,
this behaviour coincides with the quantum agent having more trainable parameters than the classical agent for map
sizes greater than 8× 8.

Figure 4.13 shows the behaviour of the number of trajectories needed until convergence, due to their direct con-
nection to the convergence results the behaviour present is similar. Table 4.6 shows the trajectories used while
training as a table to better observe the variation over map sizes. From the figure and the table it can be observed
that both models behave similarly. For the two smallest maps the number of trajectories needed until convergence
stays almost constant, and then for map size 8× 8 this amount is duplicated. Between map size 8× 8 and 11× 11

the number of trajectories needed increases sevenfold for the quantum agent, while the classic agent only needs
two and a half times more trajectories. Then, between map sizes 11× 11 and 16× 16 both need around 1.5 times
more trajectories.

50

4 Simulation Results

(a) Training convergence epoch for Grid World environments
of different map sizes.

(b) Path convergence epoch for Grid World environments of
different map sizes.

Figure 4.12: In red the quantum agent and in blue the classical agent. Lines represent the median, dark shaded
region represents the interquartile range, light shaded regions the min-max range, and points the
outliers. Model evaluations for Grid World environments after training was completed. Over 20 training
repetitions per model type. Every 10 training epochs 1 evaluation episode was carried out. This
means that convergence is fulfilled when for the last 100 training episodes the corresponding evaluation
episode fulfil the following criteria: a) epoch when the model first fulfilled the solving criteria for the
training environment, i.e. when the cumulative reward over the last 10 evaluation episodes is = 1. b)
epoch when the model first achieved a solution with optimal length over the last 10 evaluation episodes.

Map size 4× 4 5× 5 8× 8 11× 11 16× 16
classical model 26 · 103 26 · 103 63 · 103 160 · 103 194 · 103
quantum model 12 · 103 15 · 103 32 · 103 242 · 103 411 · 103

Table 4.6: Median of the number of trajectories processed until training convergence for different map sizes.

4.1.4 Effects of noise

For the investigation of the effects of noise on the VQC (Section 3.2.8) we added a depolarization gate after each
gate, following the noise strategy proposed in [78]. Figure 4.14 shows part of the circuit with and without noise. The
depolarization gate adds with the given probability, one random Pauli rotation to the circuit. Monte Carlo simulations
are then used to calculate the expectation value of each observable.

Both environments with discrete state spaces could be solved under different noise levels, but the continuous
state-space problem of Cart Pole was unsolvable with noisy circuits. Due to the long training times, instead of
doing a hyperparameter search again, the best noise-free hyperparameters were retrained with different noise
levels. Figure 4.15 and Figure 4.16 show the evaluation and training metrics for the quantum agent with the same
hyperparameters trained on different noise levels, 10 times per noise level. After training, 100 evaluation episodes
were carried out per model, as one evaluation episode is no longer enough because the agents are not deterministic
any more. The convergence and environment solved criteria are the same as for Grid World-like environments.
In Figure 4.15a it can be clearly observed that for noise levels ≤ 0.2% the agent could solve the environment in
the majority of the training repetitions. For higher noise levels, the agent could solve the environment only for a
minority of the cases. And for noise levels ≥ 0.4% the environment could not be solved at all. The same behaviour
is reflected in the training epochs, shown in Figure 4.16a. It should be noted that small noise levels improved the
training convergence.

In contrast to the cumulative reward, the results of the path length evaluation were not grouped over the 100 evalu-

51

4 Simulation Results

(a) Trajectories trained on until convergence for Grid World en-
vironments of different map sizes.

(b) Trajectories trained on until path convergence for Grid
World environments of different map sizes.

Figure 4.13: In red the quantum agent and in blue the classical agent. Lines represent the median, dark shaded
region represents the interquartile range, light shaded regions the min-max range, and points the
outliers. Trajectories evaluations for Grid World environments after training was completed, in other
words how many training examples each model saw until convergence. Over 20 training repetitions
per model type. a) training convergence. b) path convergence.

Figure 4.14: Example of the VQC ansatz with a 1% depolarization noise.

ation episodes. Instead, each individual path is shown, this was done to observe how the paths’ behaviour change
over noise, i.e. what happens more often: falling into holes, finding the goal, or getting stuck in a loop. Figure 4.15b
shows the path length of each evaluation episode for each repetition, in total 1000 data points. Path length lower
than the optimal length of 6 steps, means that the agent fell into a hole. The optimal path length is not marked since
the median for all noise levels is near the optimal path length. Lastly, Figure 4.16b shows the path convergence, for
all noisy levels no path convergence was achieved, only for the noise-free level 0%. Due to the non-deterministic
nature of the noisy agent it was never possible to reach the goal perfectly in 100 consecutive training episodes. This
indicates that the agent reached its goal, but took a suboptimal path. In Appendix B.4 Figure B.6 some examples
of noisy policies are shown.

We also observed the effect of noise on grid world-like environments with map size 4 × 4, 5 × 5 and 8 × 8. All
three environments could be perfectly solved with all noise levels we tested, as shown in Figure 4.17a. Although
agents achieved a perfect cumulative reward, the path length of each solution suffered due to noise, as shown

52

4 Simulation Results

(a) noisy evaluation reward minimum over 100 episodes (b) (evaluation) Path length from individual episodes

Figure 4.15: Model evaluations for the Frozen lake environment, using noisy agents after training was completed.
Over 10 training repetitions per model type. The line represents the median, the dark shaded region
the interquartile range, the lightly shaded region the min-max range, and outliers are represented as
points. a) Showing the minimum cumulative reward over the episodes of each repetition (minimized
since now the agents are not deterministic due to noise). Reward 1 means the environment was
solved. b) Path length of the solution, with 6 being the optimal length. The dashed line show how
many steps a random policy would need to solve the environment.

in Figure 4.17b. Since there are no holes in the grid world environments, longer solution paths are possible. The
figure shows that for the 4 × 4 map size, the median of the path length over all evaluation episodes increases
linearly with noise levels. For both larger map sizes, the path length rises fast by about 50% for noisy agents, and
then remain mostly stable. For the largest environment, both the maximum values and outliers are very high.

Figure 4.18a shows that noise improves the training convergence, in contrast Figure 4.18b shows that path con-
vergence is not achieved for runs with noise.

In Appendix B.4 some examples of noisy policies are shown for grid world-like environments of size 4 × 4, 5 × 5

and 8× 8 in Figures B.7, B.8 and B.9 respectively.

4.1.5 Lane change

For the lane change environment, only a small hyperparameter search could be performed due to time and com-
putation constraints. Figure 4.19 shows the evaluation history during the training of the best model (only the best
repetition). After training, the weights of the training epoch with the best average cumulative reward were restored.
Following the evaluation strategy of Reference [71], 3 evaluation episodes were performed every 10 training epochs,
and the cumulative reward was averaged over these 3 evaluation episodes. The agent was then tested in 100 trials
and was able to successfully do a lane change manoeuvre in 52% of the cases.

53

4 Simulation Results

(a) Training convergence epoch (b) path convergence epoch

Figure 4.16: Convergence evaluations for the Frozen lake environment, using noisy agents after training was com-
pleted. Over 10 training repetitions per model type. The line represents the median, the dark shaded
region the interquartile range, the lightly shaded region the min-max range, and outliers are repre-
sented as points. a) epoch when the model first fulfilled the solving criteria for the training environment,
i.e. when the min. cumulative reward over the last 100 evaluation episodes is = 1. Every 10 training
epochs 10 evaluation episode was carried out. This means that convergence is fulfilled when for the
last 100 training episodes the corresponding evaluation episode are all solved. b) epoch when the
model first achieved a solution with optimal length over the last 100 evaluation episodes.

4.2 Discussion

4.2.1 Quantum vs Classic on Cart Pole

The results of Section 4.1.1 show that the quantum agent can solve the Cart Pole environment. We consider an
environment as solvable by a certain architecture if the median of all models trained with the best hyperparameter
choice solves this environment. It also generalises to episodes that are more than twice as long as the ones it was
trained on. This confirms our hypothesis 1a that the VQC can solve environments with continuous state spaces.
That a quantum agent could solve the Cart Pole environment v1 was already shown in references [3, 65], but no
previous work analysed if agents could generalise to episodes longer than they were trained on. The generalisation
behaviour hints that the agent learnt the balancing task of the environment, and not just to maintain a precarious
balance for the length of a training episode steps.

Due to Q-learning, even the classical results are quite unstable. Combining the instability of VQCs, especially
on NISQ devices, with Q-learning leads to still more unstable results. Most notably, the results are very dependent
on the hyperparameters selected, with only very few configurations achieving good results. Furthermore, they also
depend heavily on the trainable parameter initialisation (as shown by the initial condition study). The instability
of RL in general and particularly of ϵ-greedy policies presents a challenge. The decrease of the ϵ-greedy policy
with a cosine decay improved the exploration versus exploitation balance and therefore improved long term stability.
Due to the initial ϵ plateau it leads to an improved initial environment exploration, then quickly changes to stable
exploitation.

Compared to the classical agents, the quantum agent behaves very similarly. All three agents solve the training
environment perfectly, but as one of the classical agents solves the generalisation task and one does not, the
performance difference hints at the importance of the architecture, i.e. number of hidden layers in this case. The

54

4 Simulation Results

(a) noisy evaluation reward minimum over 100 episodes (b) (evaluation) Path length from individual episodes

Figure 4.17: Model evaluations for grid world environments of different map sizes after training was completed.
Over 10 training repetitions per model type. The line represents the median, the dark shaded region
the interquartile range, the lightly shaded region the min-max range, and outliers are represented as
points. a) Showing the minimum cumulative reward over the episodes of each repetition (minimized
since now the agents are not deterministic due to noise). Reward 1 means the environment was
solved. b) Path length of the solution, with the dashed lines marking the optimal path length for each
environment size.

quantum agent can solve the generalisation environment, but a considerable number of trials still fail. In contrast
to the classical agents, where the minimal cumulative reward is distributed mostly uniformly between around 200

and 500, the quantum agent’s minimal cumulative reward is clustered in three groups. The clusters are narrowly
distributed either at 500 for solved cases or around 375 and 325 for cases where it was not solved. This hints that
the quantum agent converged to similar specific policies, but further investigation into the Q-values returned by
each policy is needed to verify this, since comparing some sample output Q-values is not enough to determine the
full Q-value function nor the underlying policy. No clear quantum advantage could be observed with regard to the
training noisiness as the results in Table 4.1 and Table 4.2 are in a similar range with quantum models performing
better in one case and classical ones in another. This contradicts our hypothesis 3.

We did not stop training when convergence was achieved to see if catastrophic forgetting occurred. For quantum
agents, this happened very rarely, compared to the classical agents tested. When the quantum agents converged,
they showed more stability to further training than the classical agents. The effects of catastrophic forgetting
were not carried over into the evaluation since the best weights were restored. The environments tested were
small enough that catastrophic forgetting did not play a role in solving them, but for more complex and longer
environments this could become a significant difference and hints at a potential quantum advantage.

Of course, the comparison with the classical agent is somewhat artificial since the classical agents were constrained
to the same number of trainable parameters, to use the same input and to a similar basic architecture. This was
done to be able to compare both architectures, and was based on the comparisons proposed in [3]. Therefore, the
comparison can not be extrapolated to quantum algorithms vs classical algorithms in general, but only applies to
the selected architectures under the chosen constraints.

It can also be argued that using a classical RL learning algorithm and only changing how the Q-value approximation
function is calculated from a classical Artificial Neural Network (ANN) to a VQC is also not suitable. Using an al-
gorithm tailored to the quantum nature of VQCs would probably improve performance, but this is an open research
question. However, Q-learning is a standard algorithm worth investigating due to its simplicity and it is known to
work well, although it has stability caveats. To perform an initial investigation of QRL algorithms and for environ-

55

4 Simulation Results

(a) Training convergence epoch (b) path convergence epoch

Figure 4.18: Convergence for grid world environments of different map sizes after training was completed. Over 10
training repetitions per model type. The line represents the median, the dark shaded region the in-
terquartile range, the lightly shaded region the min-max range, and outliers are represented as points.
a) epoch when the model first fulfilled the solving criteria for the training environment, i.e. when the
min. cumulative reward over the last 100 evaluation episodes is = 1. Every 10 training epochs 10
evaluation episode was carried out. This means that convergence is fulfilled when for the last 100
training episodes the corresponding evaluation episode are all solved. b) epoch when the model first
achieved a solution with optimal length over the last 100 evaluation episodes.

Figure 4.19: Cumulative reward per episode, averaged over the last 30 evaluations, following the reporting in [71].
Every 10 training epochs 3 evaluation episode were done, so averaging over 30 evaluation episodes
means averaging over the last 100 training epochs.

ments with a discrete action space, Q-learning is still a viable option as it is able to solve these environments
using only simple quantum Q-value approximators. Consistently, most of the related work uses the Q-learning
algorithm [2, 3], including the lane change problem we want to solve [71].

In summary, the quantum agent could successfully solve the Cart Pole environment in both versions, with its
continuous state space, discrete action space, and immediate reward, thus successfully achieving the goal of
the experiment. Furthermore, the quantum agent achieved similar results to the tested classical algorithms, this
corroborates our hypothesis 1a. Furthermore, it shows that Q-learning with VQCs works as expected. On the
other hand, the results contradict the quantum advantage proposed in [3], and our hypothesis 3. Nevertheless, the
results achieved allowed us to continue with the next subordinate hypothesis, hinting at the feasibility of solving the
lane change problem.

56

4 Simulation Results

4.2.2 Quantum vs Classic on FrozenLake

The results of Section 4.1.2 show that the quantum agent can solve the Frozen Lake environment, i.e. an environ-
ment with sparse reward which is in accordance with results of previous works and confirms hypothesis 1b.

Similar to the Cart Pole experiment, the agent is very susceptible to the choice of hyperparameters. Especially
for environments with sparse reward, only very few hyperparameter combinations worked. But in contrast to the
classical agents, where multiple configurations achieve results of medium quality, the quantum agent either worked
excellent or not at all. This behaviour complicates the hyperparameter search since the Hyperband algorithm
Ref. [80] tended to produce good results only in the last hyperparameter configurations tested. The Bayesian guided
hyperparameter search failed because most configurations failed, and therefore no probability landscape could be
built. On the other hand, this behaviour allows using fairly strict early stopping, since the models either converge
fast or do not converge at all. If this behaviour carries on to other VQC algorithms, new types of hyperparameter
searches have to be developed to account for it.

One important hyperparameter for sparse reward problems is the discount factor γ that changes how future reward
is weighted, effectively setting how many steps into the future each action affects the outcome [1]. Since the optimal
path length is 6 a relatively low γ = 0.8 produced the best results, i.e. the immediate rewards are preferred. This
means that the agent does not search for long paths which correspond to the quite small optimal path length.
Longer paths would mean to either bounce at a wall or to fall into a hole.

The quantum models converged faster and used four times fewer training examples. This can be seen as a hit
towards a quantum advantage, as described in Ref. [3], since the quantum agent needs fewer data points to solve
the environment. This confirms our hypothesis 3 for this environment, but not in general as for the Cart Pole
environment no such advantage was found. The behaviour in the Frozen Lake environment hints at the quantum
agent “remembering” better when an optimal path was found and not forgetting it. The improved "remembering"
could be specific to types of environment with discrete states. However, this corresponds to the observations of
reduced catastrophic forgetting events in the Cart Pole experiments.

How many trajectories are processed depends directly on how good the agent is and how fast it becomes good,
since the episode length depends on the policy. If the policy is bad and the agent falls into holes quickly, the
episodes are very short and few training iterations are done per epoch, this leads to the late converging classical
runs. On the other hand, if the agent keeps bouncing against a wall, the episodes are long, and multiple training
iterations are done, but without learning meaningful information. This leads to runs processing many trajectories
and still converging late. In contrast, if the agent quickly finds the optimal path, few training iterations and trajectories
are needed for convergence. The quantum agent mostly showed the latter behaviour.

As already mentioned in Section 4.2.1, the classical vs quantum comparison is only viable for the constraints
imposed on the classical agent, and the learning algorithm being designed for classical agents. Additionally, the
binary encoding of the state values presents the challenge that each element of the state vector is 0 or 1 for multiple
different states. Thus, the agents must learn to rely on a combination of inputs and not to focus too much on single
elements of the input vector. In the quantum agent, the only way in which information is shared between the
elements of the input, i.e. the different quantum channels, is through entanglement as opposed to the classical
agent, where each element of the hidden layer receives a weighted combination of all inputs. An adapted encoding
scheme might improve the performance of the quantum agent.

In summary, the results show that the quantum agent could successfully solve the Frozen Lake environment,
with its discrete state space, discrete action space, and sparse reward. Thus, successfully achieving the goal of
the experiment. A potential quantum advantage of faster convergence and needing less training data was also

57

4 Simulation Results

observed, but might depend on the specific characteristics of the architectures and hyperparameter choices. The
results also hint at the importance of parameter initialisation and its instability for different environments. Lastly,
the results proved our subordinate hypothesis 1b, bringing us one step closer to proving that the lane change is
solvable. Furthermore, the potential quantum advantage indicates that for specific environments QRL can work
better than classical RL, as was expected in our hypothesis 3.

4.2.3 Quantum Scalability

The results of Section 4.1.3 show that the quantum agent is able to solve grid world-like environments of different
sizes. Thus, we confirm our hypothesis 1c. Most of the proposed VQCs architectures were tested on 4 qubits and
wider circuits have not been analysed yet. In most works only the depth of the networks was analysed, i.e. layer
repetition. We investigate for a fixed number of layers repetitions how the models behave when changing their
width, i.e. the number of qubits used.

We use rotation input encoding (see Section 2.4.2), and therefore the number of qubit channels depends on the
state vector size. Most of the environments tested in related work had state vectors of size ≤ 4 corresponding
to the 4 qubit circuit width. Our results in Section 4.1.3 show that we could successfully train networks of up to
8-qubits. For bigger environments, the libraries used for simulation, especially TensorFlow Quantum (TFQ), are
not yet optimised to run on acceleration devices. This leads to an exponentially growing need for computation time
and resources when increasing the number of qubits. Combined with the difficult and extensive hyperparameter
search, this lead to experiments using 10 and 12 qubits not converging in a reasonable time, which correspond to
map sizes 32 × 32 and 64 × 64 respectively. Neither the classic nor the quantum agent could solve the 64 × 64

environment after a brief hyperparameter search. The reason for this convergence behaviour might be that the
grid is so large that the initial random walk never finds the goal within the maximal allowed steps per episode.
Nevertheless, we could successfully train an agent with an observation space twice as big as for the environments
used in the previous experiments (Cart Pole and Frozen Lake).

We fixed the maximal allowed steps to be 10-times more than the optimal path length for the biggest map size
tested. Since there are no holes, the optimal path is the stepped diagonal path from start to goal, this is equivalent
to going along the outer walls, i.e. one example of an optimal path from top left to bottom right is always going right
and then down repeatedly and this can be rearranged to going down until the bottom and then right until the goal.
Therefore, the optimal path length can be calculated as 2(l− 1) with l the map size. We assumed that a maximum
of 300 steps offers enough leeway so that the goal is still reached in exploration. While briefly experimenting with
larger maps, we increased the limit 10-fold again, but this did not improve the performance.

The difference between the Frozen Lake and grid world-like environments is that the latter lack holes. This elimi-
nates the termination condition for falling into holes, allowing the agent to reach the goal through suboptimal paths.
The only two remaining terminal states are either reaching the goal or running out of steps. When comparing the
training and path convergence epochs, the path convergences occurs always later than the training convergence.
This means that the agent first finds a suboptimal path, but still reaches the goal, and then the solution is optimised
to achieve an optimal solution path. Thus, if the agent solves the environment, it also finds the optimal path. We
observed that for maps sizes larger than 8× 8 the difference between path and training convergence doubles with
respect to smaller maps. This behaviour could be caused by the fact that the quantum agent has more trainable
parameters than the classical agent for map sizes greater than 8× 8.

Overall, both the quantum and classical agents show similar scaling behaviour. In contrast to the Frozen lake en-
vironment there is no apparent quantum advantage regarding convergence epochs. This contradicts hypothesis 3.

58

4 Simulation Results

However, both agents can solve all environments while also finding the optimal path. For the largest two map sizes,
some repetitions start to fail, hinting that the architectures used are reaching their limit. The results show that the
quantum agent could successfully solve grid world-like environments with a scaling discrete state space, discrete
action space, and sparse reward. Thus, successfully achieving the goal of the experiment and corroborated the
last subordinate hypothesis 1c. It indicates that the agent can also process larger state space vectors.

4.2.4 Effects of noise

Before investigating the lane change problem, we first investigated the effect of noise on the VQC. We used the best
hyperparameters found in the noise-free experiments and retrained the models using noisy versions of their circuits,
as mentioned in Section 3.2.8. This leaves the possibility that hyperparameters that were not ideal for noise-free
training could improve the results of noisy training. Furthermore, training with noise can induce barren plateaus,
complicating training even more [81, 82]. The training hyperparameters might help to avoid barren plateaus [83].
Using the same hyperparameters and architecture for noise-free and noisy training depicts a possible scenario
where due to the scarce access to quantum hardware: The development of an algorithm occurs in simulations and
the algorithm is then tested on a NISQ quantum computer without an explicit noise examination.

The results of Section 4.1.4 show that the quantum agent can solve discrete state space environments under small
noise levels, but for environments with continuous state space and higher noise levels it fails. Thus, we confirm our
hypothesis 2, the QRL implementation is prone to noise.

In the Cart Pole environment, using noisy circuits led to greatly deteriorated results and to an extremely long
execution time. We infer that a problem with continuous states cannot be solved with this setup on a NISQ device.
For a fixed number of training epochs, the duration of training is mostly based on how many steps per episode
are carried out for each environment. For the Cart Pole environment in the ideal case 200 steps per episode
are taken, compared to between 6 for frozen lake and 14 for the biggest grid world used for noisy tests. In the
noise experiments, the cart pole took in the median 74 steps for the noise level 0.1% and 17 steps for 1% noise.
This represents both bad results and long execution times, since per step 10 Monte Carlo noise simulations were
conducted.

In the Frozen Lake environment, noise can lead to falling into a hole by selecting an incorrect action and thus failing
the episode. In contrast, in grid world environments the agent can do random actions until the maximal number of
steps per episode is reached. In other words the agent can do some random steps at some point and still arrive
at the goal, thus solving the environment, including paths with loops (see B.4). This is the main difference from
the Frozen Lake environment and also the reason why grid world-like environments are still solvable under much
higher noise levels. Furthermore, the lack of holes leads to improved training convergence with noise, since the
random selection of actions can be seen as an exploration strategy. This is only possible because of the solving
criteria only stating that the goal must be reached but not in how many steps, i.e., two paths with different length
are rewarded equally if both reach the goal.

Reinforcement Learning (RL) and especially the combination of experience replay and fixed Q-values targets
present additional challenges to learning with noisy circuits. Noise in a real quantum computer depends in part
on the environment conditions, which leads to fluctuations over time. Therefore, for the same input, the Q-values
produced by the same VQC at two times far apart can vary more than two predictions made in a short time.
This leads to a possible difference between the Q-values predicted to select actions while collecting data and the
Q-values produced at training time, even if the network weight did not change. This can induce problems when

59

4 Simulation Results

experience replay is used, since in one training batch data from different episodes and therefore at different times
is used. The time fluctuation behaviour is not present in the simulated noise used.

For fixed Q-value targets, the Q-values of two networks with different weights are compared. Different parameters
values between both networks can cause noise to affect each computation in different ways, making it harder to
learn how to correct it. For Q-learning in general, not having fixed targets leads to both the predicted value and the
target value being affected by noise, making learning more difficult.

Furthermore, we did not simulate measurement noise, that is present in real hardware and usually even greater
than the two-qubit gate error but only occurs once in the end. Overall, these additional error sources would lead to
an even more unstable behaviour on real devices.

Hardware study The computing capabilities of NISQ devices are mainly described by their decoherence time, Quan-
tum Volume (QV) and noise level. The decoherence time describes the time it takes for a qubit to decay from the
excited state to the ground state. It relates to the time limit within which a meaningful program can be run on
a NISQ device. The QV is a single-number metric that can be measured using a concrete protocol on NISQ com-
puters [84]. The QV method quantifies the largest random circuit of equal width and depth that a quantum computer
can successfully implement, and is defined as

log2 VQ = argmax
n

min(n, d(n)), (4.3)

with n the number of qubits used, and d(n) the achievable model circuit depth for a given model circuit width n, i.e.
the maximal depth where the results are still useful [85]. For our analysis this can be simplified to that we need
VQ ≥ 2l to even be able of encoding a state vector of size l.

The depth of a quantum circuit is defined by the qubit channel with the highest number of gates. For the imple-
mented VQC (see Figure 3.3) with 5-layers (the number of layers used for all experiments), the circuit depth can be
calculated based on the state space vector size l as follows:

depth(l) =

((3 + 1) · 1-qubit gates︸ ︷︷ ︸
variational + encoding block

+ l · 2-qubit gates︸ ︷︷ ︸
entangling structure

 · 5− layers + 3 · 1-qubit gates︸ ︷︷ ︸
last variational block

(4.4)

dept(l) = 23 · 1-qubit gates + 5l · 2-qubit gates. (4.5)

A single qubit gate takes much less time to run than two qubit gates. Nevertheless, we use the average gate
time since before running a circuit on real hardware, it has to be decomposed into gates that can be imple-
mented in hardware. For example, the “ibmq_montreal” quantum computer implements only the following gates:
CNOT, ID,RZ, SX,X [86]. The average gate time is taken over the time taken by all implementable gates, in-
cluding single and two qubit gates. Therefore, it gives us a rough upper estimate of how long the circuit would take
without having to exactly calculate how many single- and two-qubit gates the decomposed circuit has.

For the decoherence calculation we used the information of the IBM quantum computers with the highest QV
for which the decoherence time and average gate time are available VQ = 128.8 Thus, we can make a rough
estimate of whether the decoherence time suffices to run a VQC with input vector size l = log2 128 = 7. We
chose to use the data for the “ibmq_montreal” with VQ = 128. The decoherence and gate time values for different

8See https://cloud.ibm.com/quantum/resources/systems/ for a dashboard of available quantum computers

60

https://cloud.ibm.com/quantum/resources/systems/

4 Simulation Results

quantum computers fluctuate constantly. At the time of consulting the data the decoherence time was 101.12µs

and the average gate time was 426.159ns [86]. If dept(l) · average gate time ≤ decoherence time the circuit
can be implemented from the decoherence time, but it still depends on how noisy the implemented gates are
and how noise-prone the circuit is. For our rough estimate: dept(l) · average gate time = dept(7) · 426.159ns =

58 · 426.159ns = 24.72µs ≤ 101.12µs = decoherence time. This means that it could theoretically be implemented,
but it depends on the gate and readout noise.

The newest IBM quantum computer has a VQ = 28 = 256 [87], which means that an environment of l = 8 can
potentially be encoded and, depending on the noise of the gates, a VQC can be implemented. The 16 × 16 grid
world environment, the biggest we tested, is such an environment. But for encoding the lane change environment,
a VQ = 214 = 16384 is needed to even encode the state space. It is not clear when this will be achievable since in
the development maps only qubit numbers are disclosed and not the expected QV [88].

Overall, we could observe that the circuit is very prone to noise, which confirms our hypothesis 2. We also noted
that the environment tested plays a significant role, especially the termination conditions for suboptimal actions.
Particularly, we noted that for discrete state environments the agent is more robust to noise. Furthermore, the
combination of Q-learning and noisy VQC is not ideal, since both systems on their own are already quite unstable.
Lastly, for smaller VQC it is theoretically possible to run them in NISQ hardware, depending on the noisiness of
the quantum computer. But, to encode larger vector sizes, as the lane change problem, the NISQ hardware has to
improve a lot.

4.2.5 Lane change

After investigating the three subordinate hypotheses (1a, 1b and 1c), finally the first main hypothesis 1 was tackled.
We tested whether the implemented VQC could solve the lane change problem using a Q-learning algorithm.

Only a small hyperparameter search could be performed due to time and computation constraints. The lane change
environment has a 14 dimensional continuous state space, making the VQC the widest we trained and the one with
the most trainable parameters. Having 326 trainable parameters is almost twice as much as the largest model
trained in the quantum scalability experiments. The size of the VQC can lead to barren plateaus that hinder the
training [3]. Due to the larger circuit it could be that more layer repetitions, i.e. data-reuploads, are needed. We only
investigate how a discrete state space scales, and how a continuous state space scales should be investigated as
future work.

Figure 4.20: Figure 3 of Reference [71]. Cumulative reward per episode, averaged over the last 30 evaluations [71]

61

4 Simulation Results

The results presented in Reference [71] are shown in Figure 4.20. Their proposed classical agent achieved a
success rate of 93%. Our results in Section 4.1.5 show that although we did not achieve a comparable success
rate, the peaks in the average cumulative reward are comparable to the median in the training curves from Refer-
ence [71]. Furthermore, the quantum agent could successfully merge in 52% of the episodes tested. The behaviour
demonstrated by the quantum agent on this environment is similar to the behaviour presented for other environ-
ments when using suboptimal hyperparameters. We think that the quantum agent could solve the problem after a
longer hyperparameter search is carried out. Furthermore, the hyperparameter search was performed using only
half of the epochs used in Reference [71] to speed up training, and the best model found was then retrained for all
4000 epochs.

A distinct characteristic of the lane change environment is that the environment changes independently of the
actions taken by the agent, i.e. the surrounding traffic adds randomness to the observations. This could also be a
reason for the poor and unstable performance of the quantum agent.

Overall, we could observe a promising behaviour, and with a more profound hyperparameter search a quality com-
parable to the classical agent should be achievable. With the continuous development of hardware and software,
the computational challenge of training and running the circuit necessary to solve this environment should decay.

62

5 Conclusion

The main aim of this thesis was to investigate the feasibility of solving complex learning tasks using a Quantum
Reinforcement Learning (QRL) algorithm, specifically using Q-learning with a quantum deep Q-Network. We imple-
mented a VQC suggested by related work and a Q-learning training loop with fixed Q-value targets and experience
replay. Using the VQC as the Q-value approximation, we could solve different environments. Thus, building a
“standard” quantum agent and training loop that can be used to solve different RL environments or tasks.

We showed that this quantum agent can solve environments with continuous or discrete state spaces, discrete
action spaces, and immediate or delayed reward, and achieves similar or even better results than a classical agent
on simple problems. The results for discrete state-space environments hint at the possible quantum advantage of
faster convergence. We found that already moderate noise within our simplified noise model contributes signifi-
cantly to the instability of the training process. This leads to problems when using NISQ hardware.

In particular, we first showed empirically that the quantum agent could successfully solve the Cart Pole training
environment and also can generalise to episodes longer than it was trained on. In this way, we showed that
environments with continuous state spaces and immediate reward can be solved by the quantum agent. We
achieved results equal to those of comparable classical agents. However, no clear quantum advantage could be
observed.

As the next step we showed that the quantum agent could successfully solve the Frozen Lake environment, with
its discrete state space, discrete action space, and sparse reward. The agent achieved results better than a
comparable classical agent, hinting at a potential quantum advantage of faster convergence and needing less
training data. Furthermore, the potential quantum advantage indicates that for specific environments QRL can
work better than classical RL.

We then showed that both the quantum and classical agents show similar scaling behaviour by investigating grid
world environments with different state space sizes. Both the quantum and the classical agents solved and found
the optimal path for all environment map sizes. We could train the VQCs successfully for state vector sizes up to 8,
twice the maximal size used in previous works. For the largest maps, we observed a rapid increase in the number
of runs that did not solve the environment, hinting that the architectures used were reaching their limit.

We then analysed how the quantum agent acted under noise, to simulate real NISQ hardware. We found that
the characteristics of each environment play an important role in how stable the agent is with respect to noise.
Especially if there are termination conditions for suboptimal actions, it makes training more difficult. We noted that
the agent is more robust to noise for environments with discrete state. Furthermore, the combination of Q-learning
and noisy VQCs is not ideal, since both systems on their own are already quite unstable. Lastly, for smaller VQC it is
theoretically possible to run them on NISQ hardware, based on the needed QV and decoherence times. However,
it ultimately depends on the gate and measurement noises of the quantum computer. However, to encode larger
vector sizes that correspond to realistic environments, such as the lane change problem, the NISQ hardware has
to improve significantly.

Lastly, we tackled the main objective of solving the lane change environment. We could observe a promising

63

5 Conclusion

behaviour, but due to time and computation constraints, no large enough hyperparameter search could be con-
ducted, leading to suboptimal results. With a more profound hyperparameter search, a quality comparable to that
of the classical agent should be achievable. Nevertheless, we showed that a 14 dimensional vector could be en-
coded using 14-qubits for the lane change problem and that we could also train this circuit. Thus, we encoded an
environment three and a half times larger than the standard environments previously used in related work.

It was complicated to make a fair comparison between quantum and classical agents since the two systems are
based on different principles. We decided to constrain the classical agents to the same input data and similar
number of trainable parameters to make both approaches comparable. This has the effect that our conclusions
cannot be easily extrapolated to quantum and classical agents in general.

The discussions of the results of this thesis were based on observations, and not on a fixed theoretical background.
Due to the novelty of the field, there is no established formal mathematical approach that could be used to analyse
the theoretical reasons why QML works. This is a complex and open research question, and most current work
approaches the problem empirically. Furthermore, similarly to classical ML the explainability of QML is also an
open question and an interesting field to investigate. Additionally, RL introduces instability further complicating the
investigation of the reasons why the agent made certain decisions. However, explainable RL is an active research
field that should be expanded to include QRL methods.

One problem in understanding the current QML algorithms is the difficulty of explaining which exact part influenced
a decision made by the agent. The difficulty arises from quantum computations and measurement and their com-
binations with classical pre-and post-processing and classical optimisation. Even the simulation programs used,
and even more constraints imposed by the NISQ hardware used to run the circuits (e.g., which gates can be im-
plemented, number of qubits, QV, among others) have a high influence on the overall results. Especially when
considering noise.

Another problem we encountered was the extremely long calculation time needed, especially for noisy simulation
and sampling, since the circuits are not optimised to run on GPUs. But the field is rapidly advancing and the first
tests to achieve acceleration on GPUs are already being carried out.9

We observed that the training stability of the quantum agents is very dependent on the selection of the correct
hyperparameters. For suboptimal hyperparameters, repeatedly training a quantum agent on the same hyperpa-
rameter configuration leads to highly varying results, i.e. some runs fail and some converge. This hints at the
importance of the initialisation of the trainable parameters. The efficient weight initialisation for VQCs is an open
research question and in contrast to classical ML for VQCs only a few investigations have been carried out.

Based on these observations, we found several interesting open research questions that can be answered with the
following proposed experiments. To better investigate the effect of weight initialisation a future work experiment
would be to retrain a quantum agent with a fix set of initial conditions and observe if repeated training leads to
different results or if they are always similar. It would be interesting to search for special initial conditions, such as
purposely starting in a barren plateau, or to search through random initialisation until an excellent one is found and
see if the good results are repeatable. With the objective of defining a good initialisation technique. Another option
to avoid the vanishing gradient problem would be to use evolutionary learning instead of gradient base learning.
Using evolutionary learning strategies in QRL is also an open research question.

The use of more complex RL algorithms is another open research question. These could improve overall per-
formance and could also help to improve the stability with respect to noise. It would be interesting to investigate
how to adapt the actor-critic paradigm to QRL and also to see if both networks can be implemented as a single

9See https://github.com/tensorflow/quantum/pull/687

64

https://github.com/tensorflow/quantum/pull/687

5 Conclusion

circuit. Furthermore, policy gradient algorithms on VQCs have shown potential, these should also be investigated
with respect to noise and bigger environments. For noisy experiments, the use of training methods proposed for
supervised noisy learning and new hyperparameter searches for noisy models could improve the results.

Another interesting approach would be to combine classical environments with a quantum agent in a model-
based RL approach, especially in a learning by latent imagination way. This would combine the work done on
representing classical environments as quantum environments with classical model-based RL approaches.

Finally, we believe the field of QML has a lot of potential, but it is still in its infancy and more fundamental work must
be done to fully understand where to look for potential advantages. In our opinion, the mere translation of classical
algorithms into quantum algorithms is not going to work. But if the focus changes to developing classical-quantum
hybrid algorithms from the ground up with the idea of combining classical and quantum advantages to solve ML
tasks, potential advantages will emerge. It is important to learn from the enormous hype of early ML that lead to the
so called “AI-winters”, and similarly the research waves observed in quantum computing, and not to repeat those
errors with QML.

65

Bibliography

[1] Aurelien Geron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools,
and Techniques to Build Intelligent Systems. 2nd. O’Reilly Media, Inc., 2019. ISBN: 1492032646.

[2] Samuel Yen-Chi Chen et al. “Variational Quantum Circuits for Deep Reinforcement Learning”. In: IEEE Ac-
cess 8 (2020), pp. 141007–141024. DOI: 10.1109/ACCESS.2020.3010470.

[3] Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko. Quantum agents in the Gym: a variational quantum algo-
rithm for deep Q-learning. 2021. DOI: 10.48550/ARXIV.2103.15084. URL: https://arxiv.org/abs/
2103.15084.

[4] Sofiene Jerbi et al. Variational quantum policies for reinforcement learning. 2021. DOI: 10.48550/ARXIV.
2103.05577. URL: https://arxiv.org/abs/2103.05577v1.

[5] Maria Schuld and Francesco Petruccione. “Introduction”. In: Machine Learning with Quantum Computers.
Cham: Springer International Publishing, 2021, pp. 1–21. ISBN: 978-3-030-83098-4. DOI: 10.1007/978-3-
030-83098-4_1. URL: https://doi.org/10.1007/978-3-030-83098-4_1.

[6] Maria Schuld and Francesco Petruccione. “Quantum Computing”. In: Machine Learning with Quantum Com-
puters. Cham: Springer International Publishing, 2021, pp. 79–146. ISBN: 978-3-030-83098-4. DOI: 10.1007/
978-3-030-83098-4_3. URL: https://doi.org/10.1007/978-3-030-83098-4_3.

[7] Eleni Ilkou and Maria Koutraki. “Symbolic Vs Sub-symbolic AI Methods: Friends or Enemies?” In: Proceed-
ings of the CIKM 2020 Workshops co-located with 29th ACM International Conference on Information and
Knowledge Management (CIKM 2020), Galway, Ireland, October 19-23, 2020. Ed. by Stefan Conrad and
Ilaria Tiddi. Vol. 2699. CEUR Workshop Proceedings. CEUR-WS.org, 2020. URL: http://ceur-ws.org/
Vol-2699/paper06.pdf.

[8] Chunfeng Song et al. “Auto-encoder Based Data Clustering”. en. In: Progress in Pattern Recognition, Image
Analysis, Computer Vision, and Applications. Ed. by David Hutchison et al. Vol. 8258. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 117–124. DOI: 10.1007/978- 3- 642- 41822- 8_15. URL: http:
//link.springer.com/10.1007/978-3-642-41822-8_15 (visited on 5/11/2019).

[9] G. E. Hinton and R. R. Salakhutdinov. “Reducing the Dimensionality of Data with Neural Networks”. In:
Science 313.5786 (2006), pp. 504–507. ISSN: 0036-8075. DOI: 10.1126/science.1127647. eprint: https:
//science.sciencemag.org/content/313/5786/504.full.pdf. URL: https://science.sciencemag.
org/content/313/5786/504.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[11] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation Learning: A Review and New Perspec-
tives”. en. In: arXiv:1206.5538 [cs] (Apr. 2014). arXiv: 1206.5538. URL: http://arxiv.org/abs/1206.5538
(visited on 5/11/2019).

66

https://doi.org/10.1109/ACCESS.2020.3010470
https://doi.org/10.48550/ARXIV.2103.15084
https://arxiv.org/abs/2103.15084
https://arxiv.org/abs/2103.15084
https://doi.org/10.48550/ARXIV.2103.05577
https://doi.org/10.48550/ARXIV.2103.05577
https://arxiv.org/abs/2103.05577v1
https://doi.org/10.1007/978-3-030-83098-4_1
https://doi.org/10.1007/978-3-030-83098-4_1
https://doi.org/10.1007/978-3-030-83098-4_1
https://doi.org/10.1007/978-3-030-83098-4_3
https://doi.org/10.1007/978-3-030-83098-4_3
https://doi.org/10.1007/978-3-030-83098-4_3
http://ceur-ws.org/Vol-2699/paper06.pdf
http://ceur-ws.org/Vol-2699/paper06.pdf
https://doi.org/10.1007/978-3-642-41822-8_15
http://link.springer.com/10.1007/978-3-642-41822-8_15
http://link.springer.com/10.1007/978-3-642-41822-8_15
https://doi.org/10.1126/science.1127647
https://science.sciencemag.org/content/313/5786/504.full.pdf
https://science.sciencemag.org/content/313/5786/504.full.pdf
https://science.sciencemag.org/content/313/5786/504
https://science.sciencemag.org/content/313/5786/504
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1206.5538

Bibliography

[12] Yasi Wang, Hongxun Yao, and Sicheng Zhao. “Auto-encoder based dimensionality reduction”. In: Neurocom-
puting 184 (2016). RoLoD: Robust Local Descriptors for Computer Vision 2014, pp. 232–242. ISSN: 0925-
2312. DOI: https://doi.org/10.1016/j.neucom.2015.08.104. URL: https://www.sciencedirect.
com/science/article/pii/S0925231215017671.

[13] Haidong Shao et al. “A novel deep autoencoder feature learning method for rotating machinery fault diag-
nosis”. en. In: Mechanical Systems and Signal Processing 95 (Oct. 2017), pp. 187–204. ISSN: 08883270.
DOI: 10.1016/j.ymssp.2017.03.034. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0888327017301607 (visited on 5/11/2019).

[14] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast Learning Algorithm for Deep Belief Nets”. In:
Neural Comput. 18.7 (July 2006), pp. 1527–1554. ISSN: 0899-7667. DOI: 10.1162/neco.2006.18.7.1527.
URL: http://dx.doi.org/10.1162/neco.2006.18.7.1527.

[15] Yoshua Bengio et al. “Greedy Layer-wise Training of Deep Networks”. In: Proceedings of the 19th Interna-
tional Conference on Neural Information Processing Systems. NIPS’06. Canada: MIT Press, 2006, pp. 153–
160. URL: http://dl.acm.org/citation.cfm?id=2976456.2976476.

[16] Marc’Aurelio Ranzato et al. “Efficient Learning of Sparse Representations with an Energy-based Model”.
In: Proceedings of the 19th International Conference on Neural Information Processing Systems. NIPS’06.
Canada: MIT Press, 2006, pp. 1137–1144. URL: http://dl.acm.org/citation.cfm?id=2976456.
2976599.

[17] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations by back-propagating
errors”. In: Nature 323 (6088 Oct. 1986), pp. 533–536. ISSN: 0028-0836. DOI: 10.1038/323533a0.

[18] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and Accurate Deep Network Learning
by Exponential Linear Units (ELUs)”. en. In: arXiv:1511.07289 [cs] (Feb. 2016). arXiv: 1511.07289. URL:
http://arxiv.org/abs/1511.07289 (visited on 5/11/2019).

[19] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2014. arXiv: 1412.6980
[cs.LG].

[20] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for Online Learning and Stochas-
tic Optimization”. In: Journal of Machine Learning Research 12.61 (2011), pp. 2121–2159. URL: http :
//jmlr.org/papers/v12/duchi11a.html.

[21] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural Networks for Machine Learning. 2012.

[22] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. “On the Convergence of Adam and Beyond”. In: ArXiv
abs/1904.09237 (2018).

[23] Yoshua Bengio. “Practical Recommendations for Gradient-Based Training of Deep Architectures”. In: Neural
Networks: Tricks of the Trade (2012), pp. 437–478. ISSN: 1611-3349. DOI: 10.1007/978-3-642-35289-
8_26. URL: http://dx.doi.org/10.1007/978-3-642-35289-8_26.

[24] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: ArXiv abs/1312.5602 (2013).

[25] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature 518 (7540 Feb.
2015), pp. 529–533. ISSN: 0028-0836. DOI: 10.1038/nature14236.

[26] David Silver et al. “Mastering the game of Go with deep neural networks and tree search”. In: Nature 529
(7587 Jan. 2016), pp. 484–489. ISSN: 0028-0836. DOI: 10.1038/nature16961.

[27] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

67

https://doi.org/https://doi.org/10.1016/j.neucom.2015.08.104
https://www.sciencedirect.com/science/article/pii/S0925231215017671
https://www.sciencedirect.com/science/article/pii/S0925231215017671
https://doi.org/10.1016/j.ymssp.2017.03.034
https://linkinghub.elsevier.com/retrieve/pii/S0888327017301607
https://linkinghub.elsevier.com/retrieve/pii/S0888327017301607
https://doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dl.acm.org/citation.cfm?id=2976456.2976476
http://dl.acm.org/citation.cfm?id=2976456.2976599
http://dl.acm.org/citation.cfm?id=2976456.2976599
https://doi.org/10.1038/323533a0
http://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1007/978-3-642-35289-8_26
http://dx.doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature16961

Bibliography

[28] Vijay Konda and John Tsitsiklis. “Actor-Critic Algorithms”. In: Advances in Neural Information Processing
Systems. Ed. by S. Solla, T. Leen, and K. Müller. Vol. 12. MIT Press, 1999. URL: https://proceedings.
neurips.cc/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

[29] C.J.C.H. Watkins and King’s College (University of Cambridge). Learning from Delayed Rewards. Cambridge
University, 1989. URL: https://books.google.de/books?id=6MBgNwAACAAJ.

[30] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine Learning 8 (3-4 May 1992), pp. 279–
292. ISSN: 0885-6125. DOI: 10.1007/BF00992698.

[31] Thomas Young. “I. The Bakerian Lecture. Experiments and calculations relative to physical optics”. In: Philo-
sophical Transactions of the Royal Society of London 94 (1804), pp. 1–16. DOI: 10.1098/rstl.1804.0001.
eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1804.0001. URL: https:
//royalsocietypublishing.org/doi/abs/10.1098/rstl.1804.0001.

[32] Maria Schuld and Francesco Petruccione. “Representing Data on a Quantum Computer”. In: Machine Learn-
ing with Quantum Computers. Cham: Springer International Publishing, 2021, pp. 147–176. ISBN: 978-3-030-
83098-4. DOI: 10.1007/978-3-030-83098-4_4. URL: https://doi.org/10.1007/978-3-030-83098-
4_4.

[33] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary
Edition. Cambridge University Press, 2010. DOI: 10.1017/CBO9780511976667.

[34] AK Pati and SL Braunstein. “Impossibility of deleting an unknown quantum state”. English. In: Nature 404.6774
(Mar. 2000), pp. 164–165. ISSN: 0028-0836.

[35] intel. Quantum Computing | Achieving Quantum Practicality. 2020. URL: https : / / www . intel . com /
content/www/us/en/research/quantum-computing.html (visited on 13/05/2022).

[36] Xanadu. Photonic Quantum Hardware. 2021. URL: https : / / www . xanadu . ai / hardware (visited on
13/05/2022).

[37] John Clarke and Frank K. Wilhelm. “Superconducting quantum bits”. In: Nature 453 (7198 June 2008),
pp. 1031–1042. ISSN: 0028-0836. DOI: 10.1038/nature07128.

[38] Google Quantum AI. Quantum Computer Datasheet. 2021. URL: https://quantumai.google/hardware/
datasheet/weber.pdf (visited on 13/05/2022).

[39] IBM Research Blog. Eagle’s Quantum Performance Progress. 2021. URL: https://research.ibm.com/
blog/eagle-quantum-processor-performance (visited on 13/05/2022).

[40] Rigetti Computing. Building Scalable, Innovative Quantum Systems. 2021. URL: https://www.rigetti.
com/what-we-build (visited on 13/05/2022).

[41] Anton Frisk Kockum and Franco Nori. “Quantum Bits with Josephson Junctions”. In: Fundamentals and
Frontiers of the Josephson Effect. Ed. by Francesco Tafuri. Cham: Springer International Publishing, 2019,
pp. 703–741. ISBN: 978-3-030-20726-7. DOI: 10.1007/978-3-030-20726-7_17. URL: https://doi.org/
10.1007/978-3-030-20726-7_17.

[42] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quan-
tum Computer”. In: SIAM J. Comput. 26.5 (Oct. 1997), pp. 1484–1509. ISSN: 0097-5397. DOI: 10.1137/
S0097539795293172. URL: https://doi.org/10.1137/S0097539795293172.

[43] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. “The quest for a Quantum Neural Network”. In:
Quantum Information Processing 13.11 (Aug. 2014), pp. 2567–2586. DOI: 10.1007/s11128-014-0809-8.
URL: https://doi.org/10.1007%2Fs11128-014-0809-8.

68

https://proceedings.neurips.cc/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://books.google.de/books?id=6MBgNwAACAAJ
https://doi.org/10.1007/BF00992698
https://doi.org/10.1098/rstl.1804.0001
https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1804.0001
https://royalsocietypublishing.org/doi/abs/10.1098/rstl.1804.0001
https://royalsocietypublishing.org/doi/abs/10.1098/rstl.1804.0001
https://doi.org/10.1007/978-3-030-83098-4_4
https://doi.org/10.1007/978-3-030-83098-4_4
https://doi.org/10.1007/978-3-030-83098-4_4
https://doi.org/10.1017/CBO9780511976667
https://www.intel.com/content/www/us/en/research/quantum-computing.html
https://www.intel.com/content/www/us/en/research/quantum-computing.html
https://www.xanadu.ai/hardware
https://doi.org/10.1038/nature07128
https://quantumai.google/hardware/datasheet/weber.pdf
https://quantumai.google/hardware/datasheet/weber.pdf
https://research.ibm.com/blog/eagle-quantum-processor-performance
https://research.ibm.com/blog/eagle-quantum-processor-performance
https://www.rigetti.com/what-we-build
https://www.rigetti.com/what-we-build
https://doi.org/10.1007/978-3-030-20726-7_17
https://doi.org/10.1007/978-3-030-20726-7_17
https://doi.org/10.1007/978-3-030-20726-7_17
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1007%2Fs11128-014-0809-8

Bibliography

[44] Hartmut Neven et al. Training a Large Scale Classifier with the Quantum Adiabatic Algorithm. 2009. DOI:
10.48550/ARXIV.0912.0779. URL: https://arxiv.org/abs/0912.0779.

[45] Manuela Weigold et al. “Expanding Data Encoding Patterns For Quantum Algorithms”. In: 2021 IEEE 18th
International Conference on Software Architecture Companion (ICSA-C). 2021, pp. 95–101. DOI: 10.1109/
ICSA-C52384.2021.00025.

[46] Manuela Weigold et al. “Data Encoding Patterns for Quantum Computing”. In: Proceedings of the 27th
Conference on Pattern Languages of Programs. PLoP ’20. Virtual Event: The Hillside Group, 2020. ISBN:
9781941652169.

[47] Alberto Peruzzo et al. “A variational eigenvalue solver on a photonic quantum processor”. In: Nature Com-
munications 5 (1 Sept. 2014), p. 4213. ISSN: 2041-1723. DOI: 10.1038/ncomms5213.

[48] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. “A Quantum Approximate Optimization Algorithm”. In:
(Nov. 2014).

[49] Maria Schuld and Francesco Petruccione. “Variational Circuits as Machine Learning Models”. In: Machine
Learning with Quantum Computers. Cham: Springer International Publishing, 2021, pp. 177–215. ISBN: 978-
3-030-83098-4. DOI: 10.1007/978-3-030-83098-4_5. URL: https://doi.org/10.1007/978-3-030-
83098-4_5.

[50] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. “Effect of data encoding on the expressive power
of variational quantum-machine-learning models”. In: Phys. Rev. A 103 (3 Mar. 2021), p. 032430. DOI: 10.
1103/PhysRevA.103.032430. URL: https://link.aps.org/doi/10.1103/PhysRevA.103.032430.

[51] Adri’an P’erez-Salinas et al. “Data re-uploading for a universal quantum classifier”. In: Quantum 4 (2020),
p. 226.

[52] Kosuke Mitarai et al. “Quantum circuit learning”. In: Physical Review A (2018).

[53] Jarrod R. McClean et al. “Barren plateaus in quantum neural network training landscapes”. In: Nature Com-
munications 9.1 (Sept. 2018), p. 4812. ISSN: 2041-1723. DOI: 10.1038/s41467- 018- 07090- 4. URL:
https://doi.org/10.1038/s41467-018-07090-4.

[54] A. Hamann, V. Dunjko, and S. Wölk. Quantum-accessible reinforcement learning beyond strictly epochal
environments. 2020. DOI: 10.48550/ARXIV.2008.01481. URL: https://arxiv.org/abs/2008.01481.

[55] Sofiène Jerbi et al. “Parametrized Quantum Policies for Reinforcement Learning”. In: NeurIPS. 2021.

[56] Owen Lockwood and Mei Si. “Reinforcement Learning with Quantum Variational Circuit”. In: Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 16.1 (Oct. 2020), pp. 245–
251. URL: https://ojs.aaai.org/index.php/AIIDE/article/view/7437.

[57] Matthias Wolff et al. “Towards a Quantum Mechanical Model of the Inner Stage of Cognitive Agents”. In:
2018 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom). 2018, pp. 000147–
000152. DOI: 10.1109/CogInfoCom.2018.8639892.

[58] Alexey A. Melnikov, Adi Makmal, and Hans J. Briegel. “Projective simulation applied to the grid-world and the
mountain-car problem”. In: (May 2014).

[59] Hans J. Briegel and Gemma De las Cuevas. “Projective simulation for artificial intelligence”. In: Scientific
Reports 2 (1 Dec. 2012), p. 400. ISSN: 2045-2322. DOI: 10.1038/srep00400.

69

https://doi.org/10.48550/ARXIV.0912.0779
https://arxiv.org/abs/0912.0779
https://doi.org/10.1109/ICSA-C52384.2021.00025
https://doi.org/10.1109/ICSA-C52384.2021.00025
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1007/978-3-030-83098-4_5
https://doi.org/10.1007/978-3-030-83098-4_5
https://doi.org/10.1007/978-3-030-83098-4_5
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430
https://link.aps.org/doi/10.1103/PhysRevA.103.032430
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.48550/ARXIV.2008.01481
https://arxiv.org/abs/2008.01481
https://ojs.aaai.org/index.php/AIIDE/article/view/7437
https://doi.org/10.1109/CogInfoCom.2018.8639892
https://doi.org/10.1038/srep00400

Bibliography

[60] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In: Proceedings of the Twenty-
Eighth Annual ACM Symposium on Theory of Computing. STOC ’96. Philadelphia, Pennsylvania, USA: As-
sociation for Computing Machinery, 1996, pp. 212–219. ISBN: 0897917855. DOI: 10.1145/237814.237866.
URL: https://doi.org/10.1145/237814.237866.

[61] Th Sriarunothai et al. “Speeding-up the decision making of a learning agent using an ion trap quantum
processor”. In: Quantum Science and Technology 4.1 (Dec. 2018), p. 015014. DOI: 10.1088/2058-9565/
aaef5e. URL: https://doi.org/10.1088/2058-9565/aaef5e.

[62] A. Hamann, V. Dunjko, and S. Wölk. “Quantum-accessible reinforcement learning beyond strictly epochal
environments”. In: Quantum Machine Intelligence 3 (2 Dec. 2021), p. 22. ISSN: 2524-4906. DOI: 10.1007/
s42484-021-00049-7.

[63] V. Saggio et al. “Experimental quantum speed-up in reinforcement learning agents”. In: Nature 591 (7849
Mar. 2021), pp. 229–233. ISSN: 0028-0836. DOI: 10.1038/s41586-021-03242-7.

[64] Sergio Guadarrama et al. TF-Agents: A library for Reinforcement Learning in TensorFlow. https://github.
com/tensorflow/agents. [Online; accessed 25-June-2019]. 2018. URL: https://github.com/tensorflow/
agents.

[65] Tensorflow Quantum. Parametrized Quantum Circuits for Reinforcement Learning. 2022. URL: https://
www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning#3_deep_q-learning_

with_pqc_q-function_approximators (visited on 18/05/2022).

[66] Abhinav Kandala et al. “Hardware-efficient variational quantum eigensolver for small molecules and quantum
magnets”. In: Nature 549 (7671 Sept. 2017), pp. 242–246. ISSN: 0028-0836. DOI: 10.1038/nature23879.

[67] Cirq Developers. Cirq. Version v0.12.0. See full list of authors on Github: https://github .com/quantumlib/-
Cirq/graphs/contributors. Aug. 2021. DOI: 10.5281/zenodo.5182845. URL: https://doi.org/10.5281/
zenodo.5182845.

[68] Michael Broughton et al. TensorFlow Quantum: A Software Framework for Quantum Machine Learning. 2020.
DOI: 10.48550/ARXIV.2003.02989. URL: https://arxiv.org/abs/2003.02989.

[69] Albin Cassirer et al. Reverb: A Framework For Experience Replay. 2021. arXiv: 2102.04736 [cs.LG].

[70] Klaus Greff et al. “The Sacred Infrastructure for Computational Research”. In: Proceedings of the 16th Python
in Science Conference. Ed. by Katy Huff et al. 2017, pp. 49–56. DOI: 10.25080/shinma-7f4c6e7-008.

[71] Matthias Nichting, Thomas Lobig, and Frank Köster. “Case Study on Gap Selection for Automated Vehi-
cles Based on Deep Q-Learning”. In: 2021 International Conference on Artificial Intelligence and Computer
Science Technology (ICAICST). 2021, pp. 252–257. DOI: 10.1109/ICAICST53116.2021.9497818.

[72] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).

[73] Gym Documentation. Cart Pole. 2022. URL: https://www.gymlibrary.ml/environments/classic_
control/cart_pole/ (visited on 14/05/2022).

[74] Gym Documentation. Frozen Lake. 2022. URL: https://www.gymlibrary.ml/environments/toy_text/
frozen_lake/ (visited on 15/05/2022).

[75] Daniel Heß et al. ADORe: Automated driving open research. 2022. URL: https://github.com/eclipse/
adore (visited on 15/05/2022).

[76] Daniel Heß et al. “Fast Maneuver Planning for Cooperative Automated Vehicles”. In: 2018 21st International
Conference on Intelligent Transportation Systems (ITSC). 2018, pp. 1625–1632. DOI: 10.1109/ITSC.2018.
8569791.

70

https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1088/2058-9565/aaef5e
https://doi.org/10.1088/2058-9565/aaef5e
https://doi.org/10.1088/2058-9565/aaef5e
https://doi.org/10.1007/s42484-021-00049-7
https://doi.org/10.1007/s42484-021-00049-7
https://doi.org/10.1038/s41586-021-03242-7
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning#3_deep_q-learning_with_pqc_q-function_approximators
https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning#3_deep_q-learning_with_pqc_q-function_approximators
https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning#3_deep_q-learning_with_pqc_q-function_approximators
https://doi.org/10.1038/nature23879
https://doi.org/10.5281/zenodo.5182845
https://doi.org/10.5281/zenodo.5182845
https://doi.org/10.5281/zenodo.5182845
https://doi.org/10.48550/ARXIV.2003.02989
https://arxiv.org/abs/2003.02989
https://arxiv.org/abs/2102.04736
https://doi.org/10.25080/shinma-7f4c6e7-008
https://doi.org/10.1109/ICAICST53116.2021.9497818
https://www.gymlibrary.ml/environments/classic_control/cart_pole/
https://www.gymlibrary.ml/environments/classic_control/cart_pole/
https://www.gymlibrary.ml/environments/toy_text/frozen_lake/
https://www.gymlibrary.ml/environments/toy_text/frozen_lake/
https://github.com/eclipse/adore
https://github.com/eclipse/adore
https://doi.org/10.1109/ITSC.2018.8569791
https://doi.org/10.1109/ITSC.2018.8569791

Bibliography

[77] Farrokh Vatan and Colin P. Williams. “Realization of a General Three-Qubit Quantum Gate”. In: arXiv: Quan-
tum Physics (2004).

[78] Tensorflow Quantum. Noise. 2022. URL: https://www.tensorflow.org/quantum/tutorials/noise
(visited on 18/05/2022).

[79] Tensorflow Quantum. Noisy Controlled Parametrized Quantum Circuits. 2022. URL: https://www.tensorflow.
org/quantum/api_docs/python/tfq/layers/NoisyControlledPQC (visited on 18/05/2022).

[80] Lisha Li et al. “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization”. In: (2016).
DOI: 10.48550/ARXIV.1603.06560. URL: https://arxiv.org/abs/1603.06560.

[81] Samson Wang et al. “Noise-induced barren plateaus in variational quantum algorithms”. In: Nature Commu-
nications 12 (1 Dec. 2021), p. 6961. ISSN: 2041-1723. DOI: 10.1038/s41467-021-27045-6.

[82] María Cerezo et al. “Cost-Function-Dependent Barren Plateaus in Shallow Quantum Neural Networks”. In:
ArXiv abs/2001.00550 (2020).

[83] Ankit Kulshrestha and Ilya Safro. “BEINIT: Avoiding Barren Plateaus in Variational Quantum Algorithms”. In:
ArXiv abs/2204.13751 (2022).

[84] Lev Bishop et al. “Quantum Volume”. In: 2017.

[85] Andrew W. Cross et al. “Validating quantum computers using randomized model circuits”. In: Physical Review
A (2019).

[86] IBM quantum. ibmq_montreal. 2022. URL: https://cloud.ibm.com/quantum/resources/systems/
ibmq_montreal (visited on 24/05/2022).

[87] IBM quantum. Pushing quantum performance forward with our highest Quantum Volume yet. 2022. URL:
https://research.ibm.com/blog/quantum-volume-256 (visited on 24/05/2022).

[88] IBM quantum. Expanding the IBM Quantum roadmap to anticipate the future of quantum-centric supercom-
puting. 2022. URL: https : / / research . ibm . com / blog / ibm - quantum - roadmap - 2025 (visited on
24/05/2022).

[89] Tom O’Malley et al. KerasTuner. https://github.com/keras-team/keras-tuner. 2019.

71

https://www.tensorflow.org/quantum/tutorials/noise
https://www.tensorflow.org/quantum/api_docs/python/tfq/layers/NoisyControlledPQC
https://www.tensorflow.org/quantum/api_docs/python/tfq/layers/NoisyControlledPQC
https://doi.org/10.48550/ARXIV.1603.06560
https://arxiv.org/abs/1603.06560
https://doi.org/10.1038/s41467-021-27045-6
https://cloud.ibm.com/quantum/resources/systems/ibmq_montreal
https://cloud.ibm.com/quantum/resources/systems/ibmq_montreal
https://research.ibm.com/blog/quantum-volume-256
https://research.ibm.com/blog/ibm-quantum-roadmap-2025
https://github.com/keras-team/keras-tuner

A Supplementary material for the experiments

A.1 Grid World like environments

Additional Grid World environments used for the scalability and noise experiment. In Figure A.1 a grid world of size
8× 8 is shown, and in Figure A.2 a grid world of size 16× 16.

Figure A.1: Grid world like environment with map size of 8× 8

A.2 Hyperparameter searches

An extensive hyperparameter search was carried out for each scenario, using a Hyperband search algorithm [80]
and the Keras Tuner library [89]. The code is available upon request.

A.2.1 Setup and objectives

For each hyperparameter configuration, the models were trained and evaluated five times using the metrics de-
scribed in each experimental setup. Except for noise experiments, where it was repeated four times, and for the
lane change experiments, where only two repetitions were carried out. The number of trained epochs depends on
the Hyperband search algorithm. Using this search algorithm, the models are trained in a bracket competition fash-
ion for a subset of epochs. The models with the highest objective metric are then selected and further trained [80].
The objective to maximize in the hyperparameter search was defined as follows for each environment with Q1 the
lower quartile.:

72

A Supplementary material for the experiments

Figure A.2: Grid world like environment with map size of 16× 16

Cart Pole environment

objective =
Q1(min. cum. rew.)

200
+
Q1(min. cum. rew.)

500
+
Q1(n-epochs− convergence epoch)

n-epochs
, (A.1)

min. cum. rew. means minium cumulative reward, see Equation 4.1. 200 and 500 represent the maximum
cumulative reward of the cart pole environment v0 and v1 respectively.

Frozen Lake environment

objective =
Q1(cum. rew.)

1
+
Q1(100− path length)

100
+
Q1(n-epochs− convergence epoch)

n-epochs
, (A.2)

cum. rew. means cumulative reward, see Equation 2.9. 100 is the maximal number of steps allowed in the Frozen
lake environment.

Grid world environment

objective =
Q1(cum. rew.)

1
+
Q1(300− path length)

300
+
Q1(n-epochs− convergence epoch)

n-epochs
, (A.3)

cum. rew. means cumulative reward, see Equation 2.9. 300 is the maximal number of steps allowed in the grid
world like environments.

73

A Supplementary material for the experiments

Lane change environment

In this case the objective was the percent of successful lane change manoeuvres, averaged over all training repe-
titions.

A.2.2 Search spaces and selected hyperparameters

Table A.1 shows the meaning of each hyperparameter over which was searchd.

Hyperparameter explanation
steps Maximal number of steps per episode.
batch_size number of samples shown to optimizer at each update.
decay_steps Over how many steps the ϵ-decay happens.
gamma discount factor for Q-learning
layers Classical layer architecture
n_layers Number of quantum layer repetitions
loss loss function

lr_1
For classical agent the learning rate.
For quantum agents learning rate for the input scaling

lr_2 Learning rate for the variational trainable parameters
lr_3 Learning rate for the output scaling
collect_steps_per_iteration time steps after which the main model is updated

updates_per_target_update
main model updates after which the main model parameters
are copied to the target model

observables_fn Observables used for the quantum measurement

Table A.1: Description of hyperparameter considered in this work

Cart Pole environment

Hyperparameter quantum classical 1 hidden layer classical 2 hidden layer
batch_size [16, 32, 64] [16, 32, 64] [16, 32, 64]
decay_steps [150, 500, 1000] [150, 500, 1000] [150, 500, 1000]
gamma 0.99 0.99 0.99
loss [MSE, Huber] [MSE, Huber] [MSE, Huber]
lr_1 [0.01, 0.001, 0.0001] [0.01, 0.001, 0.0001] [0.01, 0.001, 0.0001]
lr_2 [0.01, 0.001, 0.0001] - -
lr_3 [0.1, 0.01, 0.001] - -
collect_steps_per_iteration [10, 30, 90] [10, 30, 90] [10, 30, 90]
updates_per_target_update [3, 10] [3, 10] [3, 10]
observables_fn a0 = Z0Z1,a1 = Z2Z3 - -

Table A.2: Hyperparameter used for the Cart Pole environment. In bold the best found hyperparameters

Frozen Lake environment

Table A.3 shows the hyperparameter search space and selected hyperparameters for the frozen lake environment.

74

A Supplementary material for the experiments

Hyperparameter quantum classical 1 hidden layer
batch_size [16, 32, 64] [16, 32, 64]
decay_steps [150, 500, 1000] [150, 500, 1000]
gamma [0.2, 0.5, 0.8, 0.95, 0.99] [0.2, 0.5, 0.8, 0.95, 0.99]
loss [Huber] [MSE, Huber]
lr_1 [0.01, 0.001, 0.0001] [0.01, 0.001, 0.0001]
lr_2 [0.01, 0.001, 0.0001] -
lr_3 [0.1, 0.01, 0.001] -
collect_steps_per_iteration [10, 30,] [10, 30, 90]
updates_per_target_update [3, 10] [3, 10]
observables_fn a0 = Z0, a1 = Z1,a2 = Z2, a3 = Z3 -

Table A.3: Hyperparameter used for the Frozen Lake environment. In bold the best found hyperparameters

Grid world environment

Table A.3 shows the hyperparameter search space for grid world environments, and Table B.1 shows the best
hyperparameters selected.

Hyperparameter quantum classical 1 hidden layer
batch_size [16, 32] [16, 32, 64]
decay_steps [150, 500, 1000] [150, 500, 1000]
gamma [0.8, 0.95] [0.8, 0.95]
loss [Huber] [Huber]
lr_1 [0.001, 0.0001] [0.01, 0.001, 0.0001]
lr_2 [0.01, 0.001] -
lr_3 [0.1, 0.01, 0.001] -
collect_steps_per_iteration [10, 30,] [10]
updates_per_targpdate [3, 10] [3, 10]
observables_fn a0 = Z0, a1 = Z1,a2 = Z2, a3 = Z3 -

Table A.4: Hyperparameter used for grid world environments. In bold the best found hyperparameters

Lane change environment

Table A.5 shows the hyperparameter search space for the lane change environment.

75

A Supplementary material for the experiments

Hyperparameter quantum
batch_size [16, 32, 64]
decay_steps [150, 500, 1000]
gamma [0.2, 0.5, 0.8, 0.95, 0.99]
loss [MSE, Huber]
lr_1 [0.01, 0.001, 0.0001]
lr_2 [0.01, 0.001, 0.0001]
lr_3 [0.1, 0.01, 0.001]
collect_steps_per_iteration [10, 30,]
updates_per_target_update [3, 10]
observables_fn a0 = Z0Z1, a1 = Z2Z3,a2 = Z4Z5, a3 = Z6Z7

Table A.5: Hyperparameter used for the Lane change environment.

76

B Supplementary material for the results

B.1 Quantum vs Classic on CartPole

Figure B.1: For the 20 models trained per type, the median of the cumulative reward of the evaluations over the
training history is shown, for the v0 Cart Pole environment. Every 10 training epochs 10 evaluation
episodes were carried out. The line represents the median over the 10 evaluation episodes over the 20
repetitions, and the shaded region represents the minimal and maximal values. In green the classical
model with two hidden layers is represented, in blue the classical model with one hidden layers, and in
red the quantum model.

Figure B.1 show the evaluation results during training, using the average cumulative reward, Equation 4.2. The
line represents the median of the average cumulative reward for 20 repetitions. In this figure, it can be seen that
both classical agents start to learn faster. However, the quantum agent remains more stable once it converges.
Figure B.2 shows the same, but for the generalisation environment, cart pole v1. In this case, the quantum agent
and the classical agent with two hidden layers achieve the best results.

B.2 Quantum vs Classic on Frozen Lake

Figure B.3 and Figure B.4 show the cumulative reward and path-length histories during training over all training
repetitions. Figure B.5 shows the stability investigation for the Frozen Lakenvironment. All metrics remain mostly
constant, independent of how many training repetitions are taken.

Figure B.3 show the evaluation results during training, using the cumulative reward, Equation 2.9. The line repre-
sents the median of the cumulative reward for 20 repetitions. In this figure, it can be seen that the quantum agent
learns faster and converges faster than the classical agent. Figure B.4 shows the same but for the path length. In

77

B Supplementary material for the results

Figure B.2: For the 20 models trained per type, the median of the cumulative reward of the evaluations over the
training history is shown, for the v1 Cart Pole environment. Every 10 training epochs 10 evaluation
episodes were carried out. The line represents the median over the 10 evaluation episodes over the
repetitions 20, and the shaded region represents the minimal and maximal values. In green the classical
model with two hidden layers is represented, in blue the classical model with one hidden layers, and in
red the quantum model.

this case the quantum agent and the classical agent achieve a short path at comparable epochs, but the quantum
agent converges to a lower path length faster.

B.3 Quantum scalability

Table B.1 shows hyperparameters used for both agent architectures in the scalability experiment.

B.4 Effects of noise

Here, examples of solutions for different policies are shown. For each noise level, the training repetition with a
median objective value was selected. Two paths per training repetition per noise level are shown. Examples for
the Frozen Lake environment are shown in Figure B.6, and for grid world-like environments of size 4, 5 and 8 in
Figures B.7, B.8 and B.9 respectively.

78

B Supplementary material for the results

type classical quantum (4x4, 5x5, 8x8, 16x16) quantum (11x11)
amsgrad TRUE
steps 300
batch_size 32
collect_steps_per_iteration 10
decay_steps 500 1000
epsilon 1
epsilon_min 0.01
eval_interval 10
gamma 0.95
initial_random_steps 100
is_slippery FALSE
layers [13] -
n_layers - 5
loss huber
lr_1 0.01 0.0001
lr_2 - 0.01
lr_3 - 0.001 0.01
n_actions 4
n_episodes 2000
n_state Obs_vector_size 7
num_eval_episodes 1
parallel_episodes 2
quantum FALSE TRUE
replay_buffer_max_length 10000
updates_per_target_update 10
use_gpu FALSE
entangle_func - entangling_layer_CZ
observables_fn - obs_fn_Z0_a0_Z1_a1_Z2_a2_Z3_a3

Table B.1: Best hyperparameters found for quantum and classical agents. The classical agent used the same
hyperparameters for all map sizes. The quantum agent had to use a special set of hyperparameters for
the map size 11.

79

B Supplementary material for the results

Figure B.3: For the 20 models trained per type, the median of the cumulative reward of the evaluations over the
training history is shown, for the Frozen Lake environment. Every 10 training epochs 1 evaluation
episode was carried out. The line represents the median over the evaluation episode of the 20 repeti-
tions, and the shaded region represents the minimal and maximal values. In red the quantum model is
represented, in blue the classical model.

Figure B.4: For the 20 models trained per type, the median of the cumulative reward of the evaluations over the
training history is shown, for the Frozen Lake environment. Every 10 training epochs an evaluation
episode was performed. The line represents the median over the evaluation episode over the 20 repe-
titions, and the shaded region represents the minimal and maximal values.In red the quantum model is
represented, in blue the classical model.

80

B Supplementary material for the results

(a) Classical agent with one hidden layer.

(b) Quantum agent.

Figure B.5: Initial condition study with 5, 10 and 20 repetition. The final evaluation of cumulative reward, path length
and the convergence epoch are shown for different subsets of trained models. For the Frozen Lake
environment.

Figure B.6: Different path produced by the policies of each noise level. Only two examples are shown for each noise
level. The arrows pointing to a hole means that the agent failed to solve the environment by falling into
a hole.

81

B Supplementary material for the results

Figure B.7: Different path produced by the policies of each noise level, on the Grid World-like environment of map
size 4. Only two examples are shown for each noise level.

Figure B.8: Different path produced by the policies of each noise level, on the Grid World-like environment of map
size 5. Only two examples are shown for each noise level.

82

B Supplementary material for the results

Figure B.9: Different path produced by the policies of each noise level, on the Grid World-like environment of map
size 8. Only two examples are shown for each noise level.

83

List of Figures

2.1 Activation functions . 6
2.2 Loss functions as Loss(x) with x representing the difference between target and prediction. In blue

the MSE and in orange the Huber loss with δ = 1 . 7
2.3 Agent-environment interaction scheme. Image reproduced from [27]. 9
2.4 Diagram for processing tasks based on classical data. The encoding and readout steps can be highly

non-trivial and take considerable runtime. Adapted from [32]. 15
2.5 The Bloch sphere representation of a qubit state. Adapted from [41]. 16
2.6 The four possibilities to combine quantum or classical data and quantum or classical processing

devices. This work falls into the highlighted sector CQ. Image and description modified from [5]. . . 20
2.7 Principle of a VQC, the circuit depends on parameters and a cost function that evaluates the ex-

pected measurement for a given set of parameters. The computational problem is encoded as a cost
minimisation. Normally, training is carried out iteratively and in each step the cost function is con-
sulted to find better parameters θ. Usually, the optimisation is done on a classical computer. Image
and description modified from [6] . 23

2.8 Illustration of the relation between the VQC structure and its expressivity based on partial Fourier
series [50]. 25

3.1 RL training architecture with classic environment, and either classic or hybrid (classic data input and
quantum computation) Network, extracted from [1] and modified. 29

3.2 ansatz used in this work, also called layer, adapted from [3, 4, 65, 66]. 31
3.3 Variational Quantum Circuit (VQC) structure used for Q-value predictions. Adapted from [65] 31
3.4 Standard environments used. 34
3.5 ADORe lane change environment. The yellow car represents the agent and the black cars the

surrounding traffic. The ego vehicle is marked in yellow [71]. 36

4.1 Model evaluations for the Cart Pole vi environment after training. Showing the minimal cumulative
reward over 100 evaluation episodes, see Equation 4.1. 20 training repetitions have been conducted
per model type. The red dashed line represents the lower threshold for solving each environment
according to its specification. 41

4.2 Training metrics over 20 models, per model type. a) epoch when the model first fulfilled the solving
criteria for the training environment, i.e. when the average cumulative reward over the last 100
evaluation episodes is ≥ 195. Every 10 training epochs 10 evaluation episode are carried out. b)
how many trajectories each model use until convergence, in other words how many training examples
each model saw until convergence. 42

84

List of Figures

4.3 Prototypical examples of the evaluation history in the training environment (v0) are shown grouped
according to its behaviour. The classification was done based on visual inspection of the learning
curves. Per model 20 training repetitions were carried out. Every 10 training epochs, 10 evaluation
episodes were carried out. The lines represent the mean and the whiskers the maximal and minimal
value over the 10 episodes. 43

4.4 Prototypical examples of the evaluation history in the generalisation environment (v1) are shown
grouped according to its behaviour. The classification was done based on visual inspection of the
learning curves. Per model 20 training repetitions were carried out. Every 10 training epochs, 10
evaluation episodes were carried out. The lines represent the mean and the error bars the maximal
and minimal value over the 10 episodes. 44

4.5 Initial condition study with 5, 10 and 20 models trained with the same hyperparameters. The average
cumulative reward for training and generalisation environment and the convergence epoch are shown
for different subsets of trained models. 45

4.6 Model evaluations for the Frozen lake environment after training. 20 training repetitions per model
type are shown. a) Showing the cumulative reward of each repetition, see Equation 2.9. Reward 1

means the environment was solved. b) Path length of the solution, with 6 being the optimal length
and shown by the red dashed line. 46

4.7 Training metrics over 20 models, per type. a) epoch when the model first fulfilled the solving criteria
for the training environment, i.e. when the cumulative reward over the last 10 evaluation episodes is
= 1. Every 10 training epochs 1 evaluation episode was carried out. This means that convergence is
fulfilled when for the last 100 training episodes the corresponding evaluation episode b) how many
trajectories each model use until convergence, in other words how many training examples each
model saw until convergence. This is influenced by hyperparameters, such as batch size. 47

4.8 Prototypical examples of the cumulative reward evaluation history in the training environment are
shown grouped according to their behaviour. The classification was done based on visual inspection
of the learning curves. Per model 20 training repetitions were carried out. Every 10 training epochs,
1 evaluation episodes was carried out. 48

4.9 Prototypical examples of the path length evaluation history in the training environment. The classifi-
cation was done based on visual inspection of the learning curves. Per model 20 training repetitions
were carried out. Every 10 training epochs, 1 evaluation episode was carried out. 49

4.10 Different path produced by the policies of each architecture. Grouped according to the path taken. . 50
4.11 In red the quantum agent is shown and in blue the classical agent. Model evaluations for Grid

World environments after training was completed, shown are 20 training repetitions per model type.
a) shows the cumulative reward of each repetition, see Equation 2.9. b) Path length of the solution. 50

4.12 In red the quantum agent and in blue the classical agent. Lines represent the median, dark
shaded region represents the interquartile range, light shaded regions the min-max range, and points
the outliers. Model evaluations for Grid World environments after training was completed. Over 20
training repetitions per model type. Every 10 training epochs 1 evaluation episode was carried out.
This means that convergence is fulfilled when for the last 100 training episodes the corresponding
evaluation episode fulfil the following criteria: a) epoch when the model first fulfilled the solving
criteria for the training environment, i.e. when the cumulative reward over the last 10 evaluation
episodes is = 1. b) epoch when the model first achieved a solution with optimal length over the last
10 evaluation episodes. 51

85

List of Figures

4.13 In red the quantum agent and in blue the classical agent. Lines represent the median, dark shaded
region represents the interquartile range, light shaded regions the min-max range, and points the
outliers. Trajectories evaluations for Grid World environments after training was completed, in other
words how many training examples each model saw until convergence. Over 20 training repetitions
per model type. a) training convergence. b) path convergence. 52

4.14 Example of the VQC ansatz with a 1% depolarization noise. 52
4.15 Model evaluations for the Frozen lake environment, using noisy agents after training was completed.

Over 10 training repetitions per model type. The line represents the median, the dark shaded region
the interquartile range, the lightly shaded region the min-max range, and outliers are represented as
points. a) Showing the minimum cumulative reward over the episodes of each repetition (minimized
since now the agents are not deterministic due to noise). Reward 1 means the environment was
solved. b) Path length of the solution, with 6 being the optimal length. The dashed line show how
many steps a random policy would need to solve the environment. 53

4.16 Convergence evaluations for the Frozen lake environment, using noisy agents after training was
completed. Over 10 training repetitions per model type. The line represents the median, the dark
shaded region the interquartile range, the lightly shaded region the min-max range, and outliers are
represented as points. a) epoch when the model first fulfilled the solving criteria for the training
environment, i.e. when the min. cumulative reward over the last 100 evaluation episodes is = 1.
Every 10 training epochs 10 evaluation episode was carried out. This means that convergence is
fulfilled when for the last 100 training episodes the corresponding evaluation episode are all solved.
b) epoch when the model first achieved a solution with optimal length over the last 100 evaluation
episodes. 54

4.17 Model evaluations for grid world environments of different map sizes after training was completed.
Over 10 training repetitions per model type. The line represents the median, the dark shaded region
the interquartile range, the lightly shaded region the min-max range, and outliers are represented as
points. a) Showing the minimum cumulative reward over the episodes of each repetition (minimized
since now the agents are not deterministic due to noise). Reward 1 means the environment was
solved. b) Path length of the solution, with the dashed lines marking the optimal path length for each
environment size. 55

4.18 Convergence for grid world environments of different map sizes after training was completed. Over
10 training repetitions per model type. The line represents the median, the dark shaded region the
interquartile range, the lightly shaded region the min-max range, and outliers are represented as
points. a) epoch when the model first fulfilled the solving criteria for the training environment, i.e.
when the min. cumulative reward over the last 100 evaluation episodes is = 1. Every 10 training
epochs 10 evaluation episode was carried out. This means that convergence is fulfilled when for the
last 100 training episodes the corresponding evaluation episode are all solved. b) epoch when the
model first achieved a solution with optimal length over the last 100 evaluation episodes. 56

4.19 Cumulative reward per episode, averaged over the last 30 evaluations, following the reporting in [71].
Every 10 training epochs 3 evaluation episode were done, so averaging over 30 evaluation episodes
means averaging over the last 100 training epochs. 56

4.20 Figure 3 of Reference [71]. Cumulative reward per episode, averaged over the last 30 evaluations [71] 61

A.1 Grid world like environment with map size of 8× 8 . 72
A.2 Grid world like environment with map size of 16× 16 . 73

86

List of Figures

B.1 For the 20 models trained per type, the median of the cumulative reward of the evaluations over the
training history is shown, for the v0 Cart Pole environment. Every 10 training epochs 10 evaluation
episodes were carried out. The line represents the median over the 10 evaluation episodes over
the 20 repetitions, and the shaded region represents the minimal and maximal values. In green the
classical model with two hidden layers is represented, in blue the classical model with one hidden
layers, and in red the quantum model. 77

B.2 For the 20 models trained per type, the median of the cumulative reward of the evaluations over the
training history is shown, for the v1 Cart Pole environment. Every 10 training epochs 10 evaluation
episodes were carried out. The line represents the median over the 10 evaluation episodes over
the repetitions 20, and the shaded region represents the minimal and maximal values. In green the
classical model with two hidden layers is represented, in blue the classical model with one hidden
layers, and in red the quantum model. 78

B.3 For the 20 models trained per type, the median of the cumulative reward of the evaluations over the
training history is shown, for the Frozen Lake environment. Every 10 training epochs 1 evaluation
episode was carried out. The line represents the median over the evaluation episode of the 20

repetitions, and the shaded region represents the minimal and maximal values. In red the quantum
model is represented, in blue the classical model. 80

B.4 For the 20 models trained per type, the median of the cumulative reward of the evaluations over the
training history is shown, for the Frozen Lake environment. Every 10 training epochs an evaluation
episode was performed. The line represents the median over the evaluation episode over the 20

repetitions, and the shaded region represents the minimal and maximal values.In red the quantum
model is represented, in blue the classical model. 80

B.5 Initial condition study with 5, 10 and 20 repetition. The final evaluation of cumulative reward, path
length and the convergence epoch are shown for different subsets of trained models. For the Frozen
Lake environment. 81

B.6 Different path produced by the policies of each noise level. Only two examples are shown for each
noise level. The arrows pointing to a hole means that the agent failed to solve the environment by
falling into a hole. 81

B.7 Different path produced by the policies of each noise level, on the Grid World-like environment of
map size 4. Only two examples are shown for each noise level. 82

B.8 Different path produced by the policies of each noise level, on the Grid World-like environment of
map size 5. Only two examples are shown for each noise level. 82

B.9 Different path produced by the policies of each noise level, on the Grid World-like environment of
map size 8. Only two examples are shown for each noise level. 83

87

List of Tables

2.1 Examples of useful single-qubit logic gates, modified from [6, 33] 17
2.2 Examples of useful multi-qubit logic gates, modified from [6, 33] . 18
2.3 Adapted from [45, 46]. xi represents a scalar, X a vector and bi ∈ {0, 1}. The graphics can be

found in https://quantumcomputingpatterns.org/ . 21

3.1 The state space of the Cart Pole environment [27] is described by a 4-dimensional vector. 34
3.2 Elements of the state vector, the values are normalised and bounded to [0, 1] see [71]. 36
3.3 Model structures of the agents used in the Cart Pole environment. 37
3.4 Description of Grid world-like environment used. With n.t.p.: number of trainable parameters. 39

4.1 For each model, the evaluation history for the training environment (v0) can be grouped according
to their behaviour. The classification was done based on visual inspection of the learning curves.
Prototypical examples are shown in Figure 4.3. Per model 20 training repetitions were carried out. . 42

4.2 For each model, the evaluation history for the generalisation environment (v1) can be grouped ac-
cording to their behaviour. Classification was done based on visual inspection of the learning curves.
Prototypical examples are shown in Figure 4.4. Per model 20 training repetitions were carried out. . 44

4.3 For each model, the evaluation history for the training environment can be grouped according to
their behaviour. The classification was done based on visual inspection of the learning curves.
Prototypical examples are shown in Figure 4.8. Per model 20 training repetitions were carried out. . 46

4.4 Path convergence history for the training environment v0, grouped according to their behaviour. Clas-
sification was done based on visual inspection of the learning curves. Prototypical examples are
shown in Figure 4.9. 47

4.5 The solution paths produced by the agents are grouped according to the path followed. The labelling
is carried over from Figure 4.10 . 48

4.6 Median of the number of trajectories processed until training convergence for different map sizes. . . 51

A.1 Description of hyperparameter considered in this work . 74
A.2 Hyperparameter used for the Cart Pole environment. In bold the best found hyperparameters 74
A.3 Hyperparameter used for the Frozen Lake environment. In bold the best found hyperparameters . . 75
A.4 Hyperparameter used for grid world environments. In bold the best found hyperparameters 75
A.5 Hyperparameter used for the Lane change environment. 76

B.1 Best hyperparameters found for quantum and classical agents. The classical agent used the same
hyperparameters for all map sizes. The quantum agent had to use a special set of hyperparameters
for the map size 11. 79

88

https://quantumcomputingpatterns.org/

Name: M. Lautaro Hickmann Matriculation number: 953591

Honesty disclaimer

I hereby affirm that I wrote this thesis independently and that I did not use any other sources or tools than the ones
specified.

Ulm, 30/05/2022

M. Lautaro Hickmann

	Introduction
	On Quantum Machine Learning
	Quantum Hype
	Problem statement and Contributions
	Structure of the thesis

	Theory Fundamentals
	Machine Learning
	Principles of Machine Learning
	Deep Feedforward neural networks
	Training
	Optimizers
	Batch and mini-batch training

	Reinforcement Learning
	Learning from interactions
	The environment
	Reward
	Value-Based and Policy-Based learning
	Q-learning

	Connection to Quantum Computing
	Postulates of Quantum Mechanic
	Quantum Computing

	Quantum Machine Learning (QML)
	Ideas of Quantum Machine Learning
	Input Encoding
	Variational Quantum Circuits (VQCs)

	A simulation study of Quantum Reinforcement Learning
	Outline
	Motivation
	Related work

	Proposed Implementation and Frameworks
	Proposed RL algorithm
	Proposed VQC implementation
	Hypotheses
	Selected scenarios
	Quantum vs Classic on Cart Pole
	Quantum vs Classic on FrozenLake
	Quantum scalability
	Effects of noise
	Lane change

	Simulation Results
	Results
	Quantum vs Classic on CartPole
	Quantum vs Classical on Frozen Lake
	Quantum scalability
	Effects of noise
	Lane change

	Discussion
	Quantum vs Classic on Cart Pole
	Quantum vs Classic on FrozenLake
	Quantum Scalability
	Effects of noise
	Lane change

	Conclusion
	Bibliography
	Supplementary material for the experiments
	Grid World like environments
	Hyperparameter searches
	Setup and objectives
	Search spaces and selected hyperparameters

	Supplementary material for the results
	Quantum vs Classic on CartPole
	Quantum vs Classic on Frozen Lake
	Quantum scalability
	Effects of noise

