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Abstract—The use of carrier phase data play an important role
for high-precision Global Navigation Satellite Systems (GNSS)
positioning solutions, such as Real-Time Kinematic (RTK). Simi-
larly, precise orientation information can be obtained with multi-
antenna setups which exploit carrier phase observables. The
availability of high precision navigation solutions is, however,
subject to the Integer Ambiguity Resolution (IAR) performance.
IAR is the process of mapping the real-valued carrier ambiguities
to integer ones, enhancing the attitude solution by virtue of
the cross-correlation with the estimated integer ambiguities.
Unfortunately, IAR is known to suffer from dimensionality course
or, in other words, the chances for finding the correct vector of
integers reduces with the number of ambiguities.

This work focuses on improving the availability of high pre-
cision attitude estimates by means of using a Partial Ambiguity
Resolution (PAR) scheme. PAR relaxes the condition of estimating
the complete vector of ambiguities and, instead and finds a
subset of them to maximize the availability. A new formulation
for attitude determination using quaternion rotation within a
precision-driven PAR scheme is proposed. Numerical simulations
are used to showcase the attitude determination performance
with a conventional Full Ambiguity Resolution (FAR) and a
precision-aided PAR approach.

Keywords - GNSS; PAR; Ambiguity Resolution; Attitude Esti-
mation; PNT; GNSS Attitude Model.

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) play a key
role for robotic and vehicular applications by providing all-
weather, all-time positioning information. The use of carrier
phase observations is a main factor for precise navigation,
since their noise is two orders of magnitude lower than for
code observations. However, carrier phase observations are
ambiguous by an unknown integer number of cycles. The
process of determining the ambiguities is known as Integer
Ambiguity Resolution (IAR), which grants an estimate with
high precision.

Attitude determination is also a practical application that
involves carrier phase measurements to estimate the orientation
of a body with respect to to its environment. In a multi-GNSS
system, the rotation estimation relates the baseline vectors to
each pair of antenna positions across two frames. An overview
of the GNSS-based attitude determination was introduced in
[1, Ch. 27] showing the relationship between IAR and the
corresponding rotation matrix. The rotation operation can be
represented with rotation matrices and quaternions [2]. The
quaternion parametrization is considered in this work since the

attitude model is generally expressed as a Least Square (LS)
adjustment and the quaternion rotation is free of singularities.

With the deployment of new GNSS constellations and
frequencies, the large number of observations available can
reduce the probability of a correct IAR (i.e., the success rate
decreases). This phenomenon becomes more accentuated for
the GNSS-based attitude model, since the volume of measure-
ments is considerably greater than for positioning problems.
Partial Ambiguity Resolution (PAR) is an useful technique in
order to increase such success rate [3]–[6]. Thus, PAR relaxes
the condition of estimating the complete vector of ambiguities
and, instead, finds a subset to maximize the availability of
the solution. In this contribution, a new precision-aided PAR
subset selection criteria based on the projection of the integer
ambiguities into the positioning domain, using quaternion
rotations, is proposed for GNSS-based attitude determination.
Numerical simulations are provided to support the discussion
and showcase the attitude determination performance, for both
conventional Full Ambiguity Resolution (FAR) and precision-
aided PAR approaches.

II. PRELIMINARY ON QUATERNIONS FOR ATTITUDE
ESTIMATION

Attitude determination is the process of finding the relative
orientation between two orthogonal frames. While a plethora
of attitude parametrizations exists, the use of (unit-norm)
quaternions is widely extended. The main reasons behind
the success of quaternions are: a) presenting a minimal state
representation among non-singular attitude parametrizations;
b) unconstrained estimators preserving the geometrical con-
straints can be easily derived by leveraging on Lie Theory.
Unit quaternions are expressed as

q ≜

[
cos(θ/2)
u sin(θ/2)

]
∈ S3 , (1)

with u an unit vector with the rotation axis and θ the rotation
angle. Unit quaternions conform the manifold of 3D unit
spheres S3 and a group under the quaternion multiplication.
The rotation operator based on the use of unit quaternions is
given by

r(Bv) = q ◦ Bv ◦ q∗ = RBv, (2)

with ◦ the quaternion multiplication and q∗ the inverse quater-
nion. Details on quaternion properties and a short introduction
to Lie Theory can be consulted in [7], [8].



III. GNSS-BASED ATTITUDE MODEL

Similarly to RTK processing, the GNSS-based attitude
model uses the double difference (DD) combination of ob-
servations to eliminate atmospheric products and eliminate
carrier biases. In multi-antenna configurations, an antenna is
considered primary with its position being the center of the
body frame, while the remaining N antennas are denoted sec-
ondaries. Their positions are surveyed and accurately known
within the platform frame, with the baseline vectors relating
certain two antennas.

Fig. 1: Diagram for the antennas and satellites involved in the
GNSS-based attitude model and diagram for the vehicle frame.

For instance, the vector that relates the positions of the
primary and jth antennas is expressed as

Bbj,m = Bpj − Bpm, (3)

where the left subscript denote the antenna under consider-
ation, with m for the primary and j = 1, . . . , N for the
secondary antennas, respectively. A total of n + 1 satellites
are assumed to be simultaneously tracked across all antennas.
This notation is illustrated in Fig. 1, along with the GNSS
code and carrier phase observations.

Let us define the code and carrier DD observation for the
ith satellite and jth secondary antenna as follows

DDρij,m = ρij − ρim −
(
ρrj − ρrm

)
= −

(
ui − ur

)⊤
(q ◦ Gbj,m ◦ q∗) + εi,rj,m

(4)

DDΦi
j,m = Φi

j − Φi
m −

(
Φr

j − Φr
m

)
(5)

= −
(
ui − ur

)⊤
(q ◦ Gbj,m ◦ q∗) + λaij + ϵi,rj,m

with q ◦ Gbj,m ◦q∗ the vehicle-to-global rotation operator for
the baseline vector between the primary and jth secondary
antenna, and ui the line-of-sight vector to the ith satellite.

Let us denote the total number of DD observations as M =
n ·N , and the complete vector of observations, y ∈ R2M , as

y ≜ vec (Y) , with Y = [y1,m, . . . ,yN,m] , (6)

where the observations for each j − m pair of antennas is
given by

y⊤
j,m = [ [DDΦ1

j,m, . . . , DDΦn
j,m], [DDρ1j,m, . . . , DDρnj,m]] .

(7)

The GNSS attitude model constitutes a special case for the
mixed estimation problem, in which integer and on-manifold
parameters are unknown. The formal definition for the model
and the associated estimation process is explained next.

A. Estimation for the Attitude Mixed Model

Let the attitude mixed model define the statistical distribu-
tion for code and carrier phase observations across multiple
antennas on a vehicle frame such that

y ∼ N (Aa+ h(q),Σ) , a ∈ ZM ,q ∈ S3 (8)

with Σ the 2M × 2M observations covariance matrix, A and
h(·) the design matrix and observation function as defined in
[9, Ch. 3].

Estimating the unknowns in (8) leads to an optimiza-
tion problem with mixed integer and on-manifold parameter
estimation. From a maximum likelihood estimation (MLE)
perspective, its computation follows a weighted least-squares
(LS) formulation

(ǎ, q̌) = arg min
(a,q)∈ZM×S3

∥y −Aa− h(q)∥2Σ , (9)

where ∥ · ∥2Σ = (·)⊤Σ−1(·) is a weighted norm. While an
explicit solution for (9) is not known, the decomposition of
the quadratic form into the sum of three LS adjustments is
well-known [10] and expressed as follows

min
a∈ZM ,q∈S3

∥y −Aa− h(q)∥2Σ =

∥ê∥2Σ + min
a∈ZM

(
∥â− a∥2Pââ

+ min
q∈S3

∥q̂(a)− q∥2Pq̂(a)

)
(10)

with ∥ê∥2Σ the norm of residuals over the auxiliary float
estimates â, q̂, which can computed via the following min-
imization

(â, q̂) = arg min
â∈RM ,q̂∈S3

∥y −Aâ− h(q̂)∥2Σ , (11)

q̂(a) the float solution for the quaternion q̂ conditioned on
a having Pq̂(a) as variance-covariance matrix; and with the
adjustments being commonly denoted as float, IAR and fixed
solution estimations.

The three consecutive estimation processes begin the with
the float solution estimation, for which maintaining the ge-
ometrical constraints for the rotation (i.e., the unit norm of
the quaternion) improves the overall performance. Then, the
IAR consists on estimating the integer ambiguities based
on the vector of real-valued ones. To do so, the mapping
S (·) : RM → ZM relates each float ambiguity estimate to
an integer value:

S (â) =
∑

a∈ZM

ωa (â)a+

(
1−

∑
a∈ZM

ωa (â)

)
â, (12)

where

ωa (â) =

{
1 if â ∈ Ωa

0 otherwise. (13)



There are various alternatives to define the size or aperture of
the pull-in regions [11]–[13]. This work considers the fixed-
failure rate ratio test (FF-RT) [14], where the failure rate Pf

is used as a tuning parameter.
Finally, the minimization on the right hand side of the

brackets in (10) improves the vector of real-valued parameters
q̂ upon the integer ambiguities ǎ, driving to a high precision
attitude denoted as fixed solution. The mean and covariance
for the fixed solution, q̌, Pq̌q̌ are based on the projection of
the integer ambiguities into the quaternion domain, as

q̌ = q̂⊖Pq̂âP
−1
ââ (â− ǎ) , (14)

Pq̌q̌ = Pq̂q̂ −Pq̂âP
−1
ââPâq̂, (15)

with the fixed solution inheriting its high precision from the
carrier phase observables. Notice that the precision gain occurs
only when estimated integer ambiguities coincide with the
true ones, but this information is unknown in a real system.
Alternatively, a fixed solution is considered only when the
probability of a correct ambiguities fixing is sufficiently high
(i.e., when the validity test is passed) [11], [15].

Otherwise, the complete set of integer estimates is disre-
garded, i.e. ǎ = â, and the fixed solution does not adjust
the original float solution. PAR is a distinct alternative for
finding the integer solution for only a subset of ambiguities.
PAR methods are generally classified in two categories: model-
and data-driven schemes [6], [16]. Model-driven (MD-PAR)
methods base the subset selection I only on co-covariance
matrix Pâ information, while a data-driven (DD-PAR) ap-
proach integrate also the float ambiguities vector â. However,
the effect of projecting the resolved integer ambiguities into
the position domain as criteria for the subset selection called
precision-aided PAR scheme has been addressed in [17], [18]
giving good approaches in finding the integer solution. The
precision-aided PAR (PD-PAR) for attitude determination is
explained in the next Section.

IV. PRECISION-DRIVEN PAR SCHEME FOR ATTITUDE
DETERMINATION

Following the notation of [4] and [16], let I be the index
for the subset of ambiguities to be fixed, such that

I ⊆ {1, . . . ,M}, I ∈ J, (16)
I ∩ Ī = ∅, I ∪ Ī = {1, . . . ,M}

where J denotes the set of possible non-empty index combina-
tions with cardinality |J| = 2M−1 and the complementary set
Ī indicates the ambiguities to remain real-valued. The real-to-
integer mapping function now becomes S : RM → Z|I|, and
it is different among estimators. In general, the use of PAR
leads to a suboptimal solution for the mixed problem in (9),
since one intends at solving the alternative

min
aI∈ZI ,aĪ∈R|Ī|,q∈S3

∥y −AIaI −AĪaĪ − h(q)∥2Σ , (17)

where ǎI , ǎĪ and q̌ are the arguments for (17), and with

AI =

[
λcI|I|
0|I|,|I|

]
, AĪ =

[
λcI|Ī|
0|Ī|,|Ī|

]
, (18)

and only when Ī = ∅, (17) is equivalent to the original mixed
estimation (9). While it appears illogical, aiming at solving a
suboptimal problem, the use of PAR may improve the overall
performance of an estimator for the mixed model by increasing
the success rate for some ambiguities in contrast to all of them.

Although data- and model-driven schemes are widely used,
they only take into account the ambiguities derived from
the real-valued parameters estimation and the information
brought by the covariance matrix of the ambiguities. However,
precision-aided PAR (PD-PAR) fulfills the requirement of a
minimal precision as selection criterion in the subset selection
using the projection of the ambiguities into the fixed position-
ing domain. As the precision of the fix solution is conditioned
on the quality of the float estimates and their associated
co-covariance matrix, PD-PAR identifies the combination of
ambiguities which grants a target precision requirement prior
to the actual integer estimation.

Thus, one aims at finding a reduced number of ambi-
guities which guarantee certain target positioning precision
criteria α for the fixed position solution, while retaining a
sufficiently low failure rate Pf0 . Notice that the precision
requirement α refers to the minimal precision criteria required
by a particular application (e.g., automobile lane detection
may require decimeter-level precision, while vessel mooring
assistance might entail a precision of a few centimeters).

Thus, the PAR problem in (17) can be reformulated to be
subject to a minimal precision criteria accuracy, as

min
aI∈ZI ,aĪ∈R|Ī|,q∈S3

∥y −AIaI −AĪaĪ − h(q)∥2Σ ,

s.t. tr (Pq̌q̌) ≤ α2,
(19)

where tr(·) denotes the trace operator. Unlike (14) and (15),
the fixed solution for a PAR estimator is expressed in terms
of the subset of ambiguities fixed, as

q̌ = q̂⊖Pq̂âIP
−1
âI

(âI − ǎI) , (20)

Pq̌q̌ = Pq̂q̂ −Pq̂âIP
−1
ââI

PâI q̂, (21)

and, since Pq̂q̂ remains invariant with the subset choice, the
selection can be realized so that

tr
(
Pq̂âIP

−1
ââI

PâI q̂

)
≥ tr (Pq̂q̂)− α2, (22)

so that one may omit performing integer estimation if the
associated positioning precision does not match the target
α. The procedure to operate PD-PAR consists on recursively
finding the subset with best associated precision and whether
a reliable integer solution exists (i.e., passing the validity test
assures that the success rate is sufficiently high). If the position
precision criteria α is not fulfilled, a fixed solution cannot be
estimated for the subset I. The subset I searching is based on
(22) that follow from (15). Instead, if the precision is sufficient
but a reliable solution is unavailable, the size of the subset
reduces and the recursion is repeated.

Alg. 1 proposes a top-bottom (the number of ambiguities to
integer-map decreases with the iterations) workflow for PD-
PAR, with

(
M
s

)
= M !/(s!(M − s)!) the binomial coefficient



where n is the length vector of DD carrier phase and code
observables and s is the number of discarded observations.
Notice that the Z-transform is estimated for each subset
size which greatly reduce the degree of decorrelation among
ambiguities at the cost of a slightly superior computational
complexity. Furthermore, whenever the satellite geometry is
poor or the model is weak, one can rapidly disregards any
integer estimation, provided that a potential fixed solution
would not comply with a target positioning precision.

Notice that the computational complexity is dominated by
the subset listing and find best subset operations in Alg. 1
with O(2M +M4) being the asymptotic time complexity of
the algorithm. This can be substantially higher than current
methods, however we would like to highlight that the addi-
tional computational complexity can be dealt with by the ever
growing computational power of today’s GNSS devices [19],
[20], as we observed when running our experiments.

Algorithm 1: Precision-Driven PAR

Input : Float estimate:
[
â
q̂

]
,

[
Pââ Pâq̂

Pq̂â Pq̂q̂

]
, Pf0 , α

Output: PD-PAR fixed solution: q̌, ǎI
1 Initialize s = 0.

while s ≥ M do (iterate over subset size)
2 List subsets:

I ′ ⊆ {1, . . . ,M}, I ′ ∈ J′, |J′| =
(

M
M−s

)
3 Find best subset:

I = argmaxI′ tr
(
Pq̂âI′P

−1
ââI′

PâI′ q̂

)
if tr

(
Pq̂âI′P

−1
ââI′

PâI′ q̂

)
< tr (Pq̂q̂)− α2

(precision test not passed) then
return ǎI = âI (fixed solution unavailable)

else
4 Apply Z-transform and sorting

(σẑn−s|I ≤ · · · ≤ σẑ1|I ):
ẑI = ZâI , PẑẑI = ZPââIZ

⊤.
5 Integer estimation: S(ẑI)

if S(ẑI) ∈ Z|I| (validity test passed) then
6 return ǎI = Z−⊤

I ǔI , ǔI = S(ẑI), (subset
integer solution)

else Shrunk subset
7 s = s+ 1

8 Fixed solution estimation via (20),(21)

V. EVALUATION RESULTS

The analysis and evaluation of the Attitude determination
with two different ambiguity resolutions schemes, i.e., FAR
and the precision-aided PAR, is presented in the sequel.

Two hours of GNSS data were used for the simulation
setup at an IGS MGEX station POTS0 in Potsdam, Germany,
on March 26th 2019 (DOY 085 12:00 - 14:00 UTC) with a
data interval of 30 seconds. An instantaneous combined GPS
(L1 + L2) and Galileo (E1+E5a) dual-frequency system was

evaluated with a cut-off elevation angle of 10◦. The failure
rate was set to Pf = 0.1%. Figure 2 illustrates the number
of GPS and Galileo satellites along the experiment duration.
The analysis of the proposed precision-aided PAR scheme was
made for different baseline lengths, and implemented in a
non-recursive (snapshot) LS-type float solution manner. The
experimental results were accomplished with 104 Monte Carlo
runs.

Fig. 2: Number of GPS (L1 + L2) and Galileo (E1+E5a)
satellites for the simulated scenario.

Since the ionospheric delay is enough correlated in the base
and rover station, it can be modeled as a zero-mean Gaussian
random variable. However, when the baseline length increases
over a few kilometers, the ionospheric delay must be taken
into account. Thus, the ionospheric delay can be modeled as
a noise with a distance dependent standard deviation σL =
0.8mm/km. Differential tropospheric delays are assumed to
be zero.

The zenith-referenced (undifferenced) code and carrier
phase standard deviations are listed in Table I. The ionospheric
delays and the zenith-references code and carrier phase noises
listed in Table I are scaled with the elevation dependent
function 1/ sin (el).

TABLE I: Wavelengths and zenith-referenced code and carrier
standard deviations for GPS and Galileo observations.

GPS Galileo

L1 L2 E1 E5a

λ (cm) 19.03 24.42 19.03 25.48
σc (cm) 37 28 35 28
σϕ (mm) 2 2 2 2

The experimental setup was performed for a different num-
ber of satellites n = {8, 10, 12} with a standard deviation
for code observations σc = 30cm which is considered a
feature of a harsh environment. For every Monte Carlo run,
the satellites were randomly discarded. Figure 3 illustrates



the success ratio when the set of the integer ambiguities
are correct estimated between the classical baseline-Tracking
and quaternion-Tracking in function of the baseline length.
It is noticeable that an attitude model does not depend of
the baseline length since the problem is reduced to a mixed
real-integer values parameter estimation. Hence, when we
have a minimal of observations, the conventional baseline-
Tracking success rate gives a poor performance below of 60%
in comparative with quaternion-Tracking with a conventional
FAR. The advantage in having a successful IAR is reflected
when a PD-PAR method is used and the performance is
improved for both-tracking methods. This accomplishment
achieves 100% when the number of observations decreases
assuring a successful IAR and by consequence an available
attitude solution.

VI. SUMMARY AND OUTLOOK

Attitude determination via GNSS carrier phase observations
has been formulated as an Integer Ambiguity Resolution
problem. This work proposes a novel PAR subset selection
criterion based on the projection of the integer ambiguities
into the positioning domain granting a target positioning
precision requirement. Simulation results under realistic sce-
narios showed that a notorious improvement is reached for
Quaternion-Tracking in comparative with the conventional
Baseline-Tracking method. An assessment with PD-PAR for
attitude attitude determination presents an achievement of
100% even when the number of observations decreases. As
future work, an analysis in Harsh environments with Real-
Time data is proposed.
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