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Abstract—This article presents a benchmark problem that researchers can use to evaluate the performance of energy management 

algorithms for multi-energy source and multi-motor electric vehicles. The model makes use of Modelica, an open source, a-causal, 

object-oriented language for modeling cyber-physical systems in multi-domains (e.g. electrical, mechanical, thermal) of the vehicle 

components. The model also includes the aspect of three-dimensional mechanics, which enables completely new degrees of freedom 

in the controller design in comparison to one-dimensional approaches. To support interoperability among multiple design tools, the 

Modelica vehicle model is provided as a Functional Mockup Unit, an industry standard for exchange of simulation models. A set of 

standardized input-output interfaces and key performance metrics is also provided in the benchmarking problem, enabling the 

systematic ranking of multiple energy management strategies.  

Keywords—energy management, vehicle dynamics control, electro-mobility, trajectory control, battery model, Modelica, Functional 

Mockup Interface, hydrogen fuel cell, multi-physical modelling, drivetrain models 

I. INTRODUCTION 

In order to stimulate advances in vehicular energy and power management, the IEEE Vehicular Technology Society (VTS) 

initiated the VTS Motor Vehicles Challenge in 2016. The competition’s themes have focused on energy management of hybrid 

energy storage systems (fuel cells/batteries/supercapacitors [1] [2] [3] [4]) and their applications to cars ( [5] [6]), trucks [7] 

and trains [8]. These competitions provide benchmark problems where researchers can evaluate and compare the performance 

of their energy management algorithms against other research groups. 

In this year’s competition we bring a new dimension to the challenge: torque allocation in multi-motor electric vehicles. In 

addition to managing a hybrid energy storage system, the competitors are asked to develop torque allocation for a four-wheeled 

vehicle with three traction motors: two (rear) in-wheel motors and one front motor. This multi-motor configuration offers 

various advantages. It can enhance energy efficiency of the vehicle by enabling energy recuperation in both front and rear axle 

[9] and also decreasing tire slip losses [10]. It improves motion control of the vehicle by extending the maximum lateral 

acceleration [11] and decreases response of inner (yaw-rate) control loops. This last feature is particularly attractive to improve 

tracking performance and vehicle dynamics stability of path/trajectory following algorithms of autonomous vehicles [12]. It 

also offers redundant traction actuators that can be exploited by fault tolerant controllers to improve vehicle reliability [13].  

As reference vehicle for this year’s competition we employed an adapted version of the DLR ROboMObil ( [14] [15] [16] 

[17]), which is extended here with a hydrogen fuel cell. To model this vehicle, we make use of Modelica [18], an open source, 

a-causal, object-oriented language that allows the modeling of cyber-physical systems in multi-domains, e.g. electrical, thermal 

and mechanical. It also offers powerful model inversion capabilities, which facilitate the design of non-linear motion control 

algorithms [19]. 

Since there is a manifold of simulators on the market, we decided to export the vehicle model through the functional mockup 

interface (FMI) [18] technology. This allows the competitors to develop a control strategy using their tool of choice. Our 

simulation model gives the benefit of a very high computational efficiency, with an average real-time factor larger than twenty 

on a standard PC, which can be particularly useful to accelerate the development of learning-based control algorithms (e.g. 

[20]).  

The paper is arranged as follows: Section II gives a general overview of the challenge; Section III introduces the Modelica 

model of the ROboMObil; Section IV describes the evaluation process and ranking of energy management algorithms. 

Section V summarizes all development steps and provides a look into future research. 
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II. OVERVIEW OF THE CHALLENGE 

As depicted in Figure 1, the challenge considers the ROboMObil vehicle with a hybrid energy storage system (fuel cell & 

hydrogen tank and battery), two in-wheel electric motors installed in the rear axle (𝜏𝑅𝐿 , 𝜏𝑅𝑅), one central front motor (𝜏𝐹), and 

a front steer-by-wire actuation (𝛿). These actuators are manipulated by the vehicle’s motion controller in order to track a pre-

defined reference velocity (𝑣∗) and track curvature (𝜌∗). 

 

Figure 1: Block diagram of the benchmark problem.  

The competitors are invited to develop the energy management algorithm (EMA) for the vehicle (Figure 1 – top red block). 

The EMA determines the operating conditions for the two energy storage devices and the three electric motors; minimization 

of the energy consumption and battery degradation are some of the main goals of the EMA.  

A. Energy Storage and Vehicle Actuators 

The hybrid energy storage is composed of a 20 kW fuel cell and 20 kWh Li-ion battery. A DC/DC converter is connected to 

the fuel cell in order to regulate its current (𝐼𝐹𝐶) and power flow between the hybrid storage elements. The hybridization with 

a hydrogen range extender (REX), being composed of the fuel cell and a hydrogen tank, enables the reduction of usage of rare 

elements like Lithium while enhancing the vehicle’s range. Both the fuel cell & H2 tank and the battery provide energy to the 

two in-wheel motors and the central front motor. Because of their decoupled architecture, the in-wheel motors can generate 

non-symmetric torques in the left and right rear wheels and, thus induce additional yaw-moment to the vehicle’s chassis. This 

yaw-moment can be exploited to enhance vehicle handling and safety [21]; it can also decrease the amount of front steering, 

thus reducing tire slip losses [10]. Additionally, a steer-by-wire actuator is installed in the front axle to modify the steering 

angle 𝛿.  

B. Mission Planning and Vehicle Control 

We assume that the planning of the vehicle’s mission is defined in advance, e.g. using trajectory planning methods such as 

[16]. The mission is characterized by a reference vehicle velocity 𝑣∗(𝑡) and the track curvature 𝜌∗(𝑡) over a given time horizon 

𝑡 ∈ [0, 𝑡𝑒𝑛𝑑]. 
The motion controller tracks 𝑣∗ through manipulation of the reference traction force 𝐹∗. This reference force is converted 

into a reference torque 𝜏∗ = 𝐹∗𝑟𝑤, with 𝑟𝑤 being the wheel radius, which is then divided between the front and rear axle  

 𝜏𝐹
∗ = 𝜏∗𝛼𝐴𝐷 ,          𝜏𝑅

∗ = 𝜏∗(1 − 𝛼𝐴𝐷), (1) 

where 𝛼𝐴𝐷 indicates the variable front/rear axle distribution. Afterwards, the rear axle torque is allocated into left and right 

motor torques using a normalized torque vector ratio 𝛼𝑇𝑉 ∈ [0, 1]: 

 𝜏𝑅𝑅
∗ = 𝜏𝑅

∗𝛼𝑇𝑉 ,          𝜏𝑅𝐿
∗ = 𝜏𝑅

∗ (1 − 𝛼𝑇𝑉). (2) 

When 𝛼𝑇𝑉 = 0.5, both motors receive the same torque; 𝛼𝑇𝑉 = 1 allocates all the torque solely to the right motor and 𝛼𝑇𝑉 =
0 solely to the left motor. Additionally, all electric motors are subject to torque constraints: 

 𝜏𝑚𝑖𝑛.𝑖 ≤ 𝜏𝑖
∗ ≤ 𝜏𝑚𝑎𝑥,𝑖, (3) 



 

 

 

where 𝑖 ∈ {𝐹, 𝑅𝑅, 𝑅𝐿} is the motor index, 𝜏𝑚𝑖𝑛.𝑖 the minimum allowed torque and 𝜏𝑚𝑎𝑥,𝑖 the maximum allowed torque. 

The reference curvature 𝜌∗ is tracked through the manipulation of the steering angle 𝛿∗, while considering the additional 

yaw-moment generated by the torque vectoring. Note that, throughout this document, the superscript 𝑥∗ is used to denote the 

desired value for the variable 𝑥.  

C. Energy Management Algorithm (EMA) 

The EMA is responsible for computing four control variables, cf. the red variables in Figure 1 top: 

1. the normalized fuel cell current, 𝛼𝐹𝐶 ∈ [0,1], which affects the power split between the battery and the fuel cell (note 

𝐼𝐹𝐶
∗ = 𝛼𝐹𝐶𝐼𝐹𝐶,𝑚𝑎𝑥 , where 𝐼𝐹𝐶,𝑚𝑎𝑥  is the maximum allowed fuel cell current); 

2. the axle torque distribution ratio, 𝛼𝐴𝐷 ∈ [0,1], to determine the front and rear distribution of the desired torque 𝜏∗, see eq. 

(1). 

3. the torque vectoring ratio, 𝛼𝑇𝑉 ∈ [0,1], to determine the torque allocation between right and left motors, see eq. (2). 

4.  the velocity derating factor, 𝛼𝑣 ∈ [0,1], which decreases the reference velocity 𝑣∗ to 𝛼𝑣𝑣
∗ (see Figure 1); it offers an 

additional degree of freedom to prevent violation of safety constraints in the system (e.g. over-discharge of the battery). 

The EMA provided by the competitors will be evaluated using a wide range of performance metrics, including energy 

consumption, violation of safety constraints, battery degradation and fulfillment of the vehicle’s mission (also referred as 

velocity derating in the sequel). These metrics will be defined in more detail in Section IV. 

The EMA will have access to several states of the vehicle and energy storage, such as battery state of charge, temperature, 

etc. Additionally, it will also receive a short preview of future values of the velocity and curvature references:  

 �̂�(𝑡 + Δ𝑡), �̂�(𝑡 + Δ𝑡), (4) 

where Δ𝑡 ∈ [0, Δ𝑡𝑚𝑎𝑥] and Δ𝑡𝑚𝑎𝑥 is the preview window which is available in map data systems with a virtual horizon. This 

preview information can be generated by the trajectory planning module of the vehicle.  

III. COMPONENTS MODELING 

In this section we briefly describe the Modelica model of the ROboMObil ( [16], [17]) vehicle with a slightly modified 

architecture for this challenge, depicted in Figure 1. The aim is to describe the most relevant physical laws and effects with the 

focus on a numerical efficient simulation, which is necessary for a quick assessment of the EMAs or a machine learning process 

to synthesize the controller. 

A. ROboMObil’s Chassis Model 

To capture the fundamental dynamics of the ROboMObil, we use a double track model implemented with the Modelica 

planar mechanics library [22]. It offers three degrees of freedom: the vehicle can move in longitudinal and lateral direction and 

rotate about the vertical axis. The chassis model, depicted in Figure 2, consists of a front and rear axle, both with wheels, a car 

body and air resistance. 

In addition, the model contains three types of interfaces: mechanical (gray and white circles), thermal (red squares) and control 

(yellow connectors). The mechanical interfaces are used to exchange position and torque/force of mechanical elements. The 

heat interface captures the heat flow between components, and allows to quantify the energy losses that are eventually dissipated 

to the environment. The control interfaces contain signals that are generated by sensors (e.g. acceleration signal recorded by an 

inertial measurement unit) and control modules (e.g., steering actuator demand). 
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Figure 2: Structure of the Modelica planar vehicle model  

The rigid front axle is assembled from an open differential that distributes the torque of the central front motor – provided by 

“flangeDriveFront” connector in Figure 2 – to the left and right wheel, which utilizes a slip-based tire model, see Section III.B. 

Moreover, a steering mechanism that equally transmits the steering input onto both left and right front wheels is implemented. 



 

 

 

The rigid rear axle is, in contrast, composed only of two slip-based tire models. They can be directly driven by torque sources 

connected from outside to connectors “flangeWheelRL” and “flangeWheelRR” for left and right wheel, respectively. In this 

way, an in-wheel drive can be realized. 

B. Slip-based Tire Model with Losses 

ROboMObil’s four wheels are modelled with a slip-based tire model [23] which is extended with energy loss effects. To 

simplify the model, tire load fluctuation during cornering or braking/accelerating are neglected and the wheel is bounded to the 

track-plane (holonomic-constraint). While operating at constant load 𝑓𝑁, the slip velocity 𝑣𝑠𝑙𝑖𝑝 at the contact patch determines 

the slip forces according to Coulombs’s law for dry-friction characteristics, 

 𝑓𝑖 = −𝑓𝑁 µ(𝑣𝑠𝑙𝑖𝑝) 
𝑣𝑠𝑙𝑖𝑝,𝑖

𝑣𝑠𝑙𝑖𝑝
. (5) 

Eq. (5) can be used for both the longitudinal (𝑖 = 𝑙𝑜𝑛𝑔) and the lateral (𝑖 = 𝑙𝑎𝑡) direction, resolved in the wheel coordinate 

system. The friction coefficient µ depends on the slip velocity 𝑣𝑠𝑙𝑖𝑝. To construct this dependency, we follow the approach 

developed in [23] and utilize two pairs of parameters: (𝑣𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛, µ𝐴) and (𝑣𝑠𝑙𝑖𝑑𝑒 , µ𝑆). The former pair determines maximum 

friction µ𝐴 at 𝑣𝑠𝑙𝑖𝑝 = 𝑣𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 . The latter pair specifies a sliding area by friction µ𝑆 at slip velocities 𝑣𝑠𝑙𝑖𝑝  ≥ 𝑣𝑠𝑙𝑖𝑑𝑒 . 

The rolling motion of the wheel can be actuated by the driving or braking torque input, cf. “flangeWheelXY” in Figure 2, 

with X denoting front (“F”) of rear (“R”) position of the wheel and Y denoting its left (“L”) or right (“R”) side. 

The tire losses comprise losses at tire/road contact area due to the dry-friction contact and are expressed with the power loss  

 
𝑃𝑙𝑜𝑠𝑠 = 𝑣𝑠𝑙𝑖𝑝√𝑓𝑙𝑜𝑛𝑔

2 + 𝑓𝑙𝑎𝑡
2 . (6) 

C. Battery Model with Aging Degradation 

To obtain a good tradeoff between simulation speed and modeling accuracy, we modeled the battery with an equivalent 

electrical circuit model. This circuit consists of an ideal voltage source (𝑈𝑂𝐶𝑉) in series with an internal resistance (𝑅𝑖). The 

terminal voltage of the cell is described as  

 𝑢𝑐𝑒𝑙𝑙 = 𝑈𝑂𝐶𝑉(𝑆𝑜𝐶𝑏) − 𝑅𝑖(𝑆𝑜𝐶𝑏) ⋅ 𝑖𝑐𝑒𝑙𝑙 , (7) 

where 𝑖𝑐𝑒𝑙𝑙  is the current in the battery cell. 

Both the internal voltage and resistance depend on the battery state of charge (𝑆𝑜𝐶𝑏), a normalized indicator for the amount 

of charge stored in the battery. Lookup tables are employed to characterize this variation, but are limited to room temperature 

values. A more complex implementation with temperature dependency is given in [24].  

In Figure 3 the functional model of the battery pack is shown. On the left side we have the electrical connectors (in blue), 

which propagate the electric signals (voltage and current) to the other components in the vehicle, while on the right side we 

have the 𝑆𝑜𝐶𝑏 calculation realized by an integrator (𝑐𝑎𝑙𝑐_𝑆𝑜𝐶𝑏), in dependency of the nominal cell capacity 𝐶𝑐𝑒𝑙𝑙,0. The pack 

is scaled by the number of in serial 𝑛𝑜𝑠 and in parallel 𝑛𝑜𝑝 connected cells. The battery model also contains a simple thermal 

model that captures heat flow between the battery cell and a (constant-temperature) environment using a thermal resistor.  
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Figure 3: The equivalent circuit battery model in Modelica 

The battery model also includes an aging model (agingCalc in Figure 3) for predicting the capacity degradation of the battery 

due to the charge/discharge events. This aging is computed using the average current (𝑖𝑎𝑣𝑔) and temperature (𝑇𝑎𝑣𝑔) of the 



 

 

 

battery over a discharge cycle, as described in [25] p. 1232. The normalized cell capacity loss during the drive cycle Δ𝐶𝑐𝑒𝑙𝑙  is 
calculated as  

 Δ𝐶𝑐𝑒𝑙𝑙(𝑖𝑎𝑣𝑔 , 𝑇𝑎𝑣𝑔 , 𝑁) =

= 𝜃1 exp (−
𝜃4
𝑇𝑎𝑣𝑔

+ (𝜃2 +
𝜃5
𝑇𝑎𝑣𝑔

𝑖𝑎𝑣𝑔))𝑁
𝜃3

⏟                          
start of battery lifetime − slow aging

 

+ 𝜃8 exp(𝑁 − 𝑁𝑘𝑛𝑒𝑒𝜃7)⏟              
"late" battery lifetime − fast aging

,  

(8) 

where 𝜃𝑖 are aging parameters taken from experiments carried out in [25]. The parameter 𝑁 is the number of discharge cycles 

and 𝑁𝑘𝑛𝑒𝑒 = 𝜃6 + 𝜃9 ⋅ 𝑖𝑎𝑣𝑔 + 𝜃10 ⋅ 𝑇𝑎𝑣𝑔 is a parameter point where the battery aging accelerates. The remaining cell capacity, 

in dependency of the initial cell capacity 𝐶𝑐𝑒𝑙𝑙,0 is defined as 

 𝐶𝑎𝑔𝑒𝑑 = (1 − Δ𝐶𝑐𝑒𝑙𝑙)𝐶𝑐𝑒𝑙𝑙,0. (9) 

To facilitate the evaluation of the EMA, we focus on the rate of aging of the battery during the driving cycle. It is determined 

via a linearization of Δ𝐶𝑐𝑒𝑙𝑙  around the current number of cycles 𝑁 as follows 

dΔ𝐶𝑐𝑒𝑙𝑙(𝑖𝑎𝑣𝑔 , 𝑇𝑎𝑣𝑔)

𝑑𝑁
=
dΔ𝐶𝑐𝑒𝑙𝑙(𝑖𝑎𝑣𝑔 , 𝑇𝑎𝑣𝑔, 𝑁)

dN
|
𝑁=𝑁

 

= 𝜃1 exp (−
𝜃4

𝑇𝑎𝑣𝑔
+ (𝜃2 +

𝜃5

𝑇𝑎𝑣𝑔
𝑖𝑎𝑣𝑔))𝜃3𝑁

𝜃3−1. 

(10) 

D. Quasi-Stationary Electric Motor Model 

The three traction motors installed in the vehicle (cf. Figure 1) rely on permanent magnet synchronous machines (PMSM). 

They are represented using a quasi-stationary model (Figure 4) with the variables listed in Table 1. The fundamental electric 

machine equations 𝑑𝛹𝑑 𝑑𝑡⁄  and d𝛹q d𝑡⁄  of the stator flux are given as: 

 𝑑𝛹𝑑
𝑑𝑡

= 𝑈𝑑 − 𝑅𝑠𝐼𝑑 + 𝛺𝐿  𝐿1𝐼q⏟
𝛹q

 , (11) 

 d𝛹q

d𝑡
= 𝑈𝑞 − 𝑅s𝐼q − 𝛺L  (𝛹PM + 𝐿1 ⋅ 𝐼d)⏟          

𝛹d

. (12) 

These equations are easily implemented in Modelica using the acausal equation environment, i.e. all equation hold for the 

four quadrants of operation of the electric machine and are not dependent on any signal flow direction [26].  
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Figure 4: Quasi-stationary PMSM model 

To prevent a slow simulation, the electric motor model and its controller are designed in the rotating d/q-frame and the 

reverse transformation to the a/b/c phases is not explicitly implemented. The closed-loop response of the motor current (𝐼𝑞) 

controller is approximated by a second-order transfer function with cut-off frequency 100 Hz. 

Table 1: PMSM variables description 

Quantity Unit Description  

𝑈𝑑/𝑞 V Voltage in d-/q-axis 

𝐼𝑑/𝑞 A Current in d-/q-axis 

𝐿1 H Inductance in d- & q-axis 

𝑅𝑠 Ω Warm resistance per phase 

𝑝 - Pole pair number 



 

 

 

𝜓𝑃𝑀 Wb Magnetic flux of permanent magnets 

𝜓𝑑 𝑞⁄  Wb d-/q- component of stator flux 

𝜔𝐿 rad/s (Normed) Electrical angular velocity of rotor 

The model of the electric machine neglects reluctance influences (𝐿𝑑 = 𝐿𝑞 = 𝐿1). Its air-gap torque is calculated as follows: 

 𝜏𝑗𝑘 = 𝑀𝑀𝑖 = 3 2⁄ ⋅ 𝑝 ⋅ 𝛹𝑃𝑀 ⋅ 𝐼𝑞 . (13) 

Besides this quasi-stationary electric machine model, we also consider the energy losses within the PMSM, summed up in 

𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑙𝑜𝑠𝑠,𝑖𝑛𝑣 + 𝑃𝑐𝑜𝑝 + 𝑃𝑖𝑟𝑜𝑛 + 𝑃𝑓𝑟𝑖𝑐 in Figure 4: 

Inverter losses (switching and basic load) 

 𝑃𝑙𝑜𝑠𝑠,𝑖𝑛𝑣 =  𝑃𝑖𝑛𝑣,𝑐𝑜𝑛𝑠𝑡 + 𝑘𝑖𝑛𝑣 ∙ 𝐼𝑞 . (14) 

Copper losses (coil resistance) 

 𝑃𝑐𝑜𝑝 = (√3/2 ∙ 𝐼𝑞)
2
∙ 𝑅𝑠. (15) 

Iron losses (also known as core losses) 

 𝑃𝑖𝑟𝑜𝑛 =  𝑘ℎ𝑦𝑠𝑡 ∙ 𝜔𝑚 +  𝑘𝑒𝑑𝑑𝑦 ∙ 𝜔𝑚
2 . (16) 

Mechanical losses (friction effects, e.g., in bearings) 

 𝑃𝑓𝑟𝑖𝑐 =  𝑘𝑓𝑟𝑖𝑐 ∙ 𝜔𝑚 . (17) 

E. Hydrogen Fuel Cell Model – Update Beta 2 

The fuel cell model relies on a quasi-stationary model as proposed in [27] and depicted in Figure 5.  
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Figure 5: Functional hydrogen range extender model – Beta 2 Update modified part highlighted in red 

Whenever a demanded current 𝐼𝑑𝑒𝑚 exceeds a minimum threshold (1 A in our model), the functional model approximates 

the fuel cell’s output current using first order system dynamics. The fuel consumption relies on two tables. The first table maps 

the necessary hydrogen mass flow that is taken from the tank (Figure 6 – blue line), modelled as an integrator, whereas the 

second table maps the efficiency (Figure 6 – green line) depending on the point of operation. 



 

 

 

 

Figure 6: Revised for Beta 2 - Efficiency and hydrogen consumption map of the fuel cell based on [27] 

F. Vehicle Motion Controller 

The longitudinal velocity control relies on a linear PI controller [28]. The lateral controller uses a model inversion technique 

to follow the reference curvature (𝜌∗) generated by the mission planner. It makes use of a simplified single-track model [29] 

 �̇�𝑆𝑇𝑀 = 𝐴(𝑣
∗)𝑥𝑆𝑇𝑀 + 𝐵(𝑣

∗)𝛿∗ + 𝐸(𝑣∗)𝑀𝑧,𝑇𝑉 

𝛽∗̇ = 𝑣∗𝜌∗ − 𝑟∗, 
(18) 

where 𝑥𝑆𝑇𝑀 = [𝛽
∗, 𝑟∗]𝑇 is vector with the reference side-slip angle and yaw rate; 𝐴(𝑣∗) and 𝐸(𝑣∗) are matrices that depend on 

the vehicle velocity; 𝑀𝑧,𝑇𝑉 is the torque vectoring generated by the in-wheel motors: 

 
𝑀𝑧,𝑇𝑉 ≈

𝑐

2𝑟𝑤
(𝜏𝑅
∗ − 𝜏𝐿

∗) =
𝑐𝜏∗

2𝑟𝑤
(2𝛼𝑇𝑉 − 1), (19) 

where 𝑟𝑤 is the wheel radius and 𝑐 the vehicle’s track width. Assuming slow variations in vehicle curvature we can obtain 

 0 ≈ 𝐴(𝑣∗)𝑥𝑆𝑇𝑀 + 𝐵(𝑣
∗)𝛿∗ + 𝐸(𝑣∗)𝑀𝑧,𝑇𝑉 

0 ≈ 𝑣∗𝜌∗ − [0, 1]𝑥𝑆𝑇𝑀, 
(20) 

which represents a system of three linear equations with three unknowns (𝛿∗, 𝑥𝑆𝑇𝑀) = (𝛿
∗, 𝛽∗, 𝑟∗). The steering angle applied 

to the vehicle is computed from the solution of these equations: 

 𝛿∗ = 𝑓𝛿(𝑣
∗, 𝑀𝑧,𝑇𝑉 , 𝜌

∗). (21) 

This represents a feedforward control law, which allows the vehicle to follow the reference curvature (𝜌∗) when the model 

uncertainty is reduced. 

IV. ENERGY MANAGEMENT ALGORITHM 

This section provides a brief overview of the requirements for the EMA that the competitors will need to develop, as well 

the scoring and ranking assessment of the competition. 

A. Input/Output Interfaces 

The EMA will have access to the following vehicle states 

 𝑥 = [𝑣, 𝑎, 𝑆𝑜𝐶𝑏 , 𝑇𝑏 , 𝑆𝑜𝐶𝐹𝐶 , �̂�] ∈ 𝑋𝐸𝑀𝐴, (22) 

which contain the current velocities 𝑣, accelerations 𝑎, state of charge 𝑆𝑜𝐶𝑏 and temperature of the battery 𝑇𝑏 , and the state of 

charge of the fuel cell 𝑆𝑜𝐶𝐹𝐶. The variable �̂� is a vector with a short preview information about the reference velocity and 

track curvature 

 
�̂� = (𝑣∗(𝑡 + 𝑘Δ𝑡𝑝), 𝜌

∗(𝑡 + 𝑘Δ𝑡𝑝))
𝑘=0

𝑁𝑝𝑟𝑒
, (23) 

where Δ𝑡𝑝 is the sample time and 𝑁𝑝𝑟𝑒 are the samples of the preview window. We denote 𝑋𝐸𝑀𝐴 as the set of all possible 

combinations of states that the EMA might receive.  



 

 

 

The EMA generates four output control signals, see Section II.C,  

 𝑢 = [𝛼𝐹𝐶 , 𝛼𝐴𝐷 , 𝛼𝑇𝑉 , 𝛼𝑣] ∈ 𝑈 = [0,1]
4, (24) 

where 𝑈 represents the set of allowed control actions.  

B. Safety Constraints  

The competitors will provide a control policy 𝜋 for the energy management that maps the states into the control actions 

 𝜋(𝑥): 𝑋𝐸𝑀𝐴 → 𝑈. (25) 

This policy will need to fulfill two type of safety constraints. The first are state of charge constraints of the energy storage 

devices: 

𝑋𝑠𝑎𝑓𝑒,𝑆𝑂𝐶 = {𝑥𝐸𝑀𝐴 ∈ 𝑋𝐸𝑀𝐴  

                      𝑆𝑜𝐶𝑏,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑏 ≤ 𝑆𝑜𝐶𝑏,𝑚𝑎𝑥  

                  𝑆𝑜𝐶𝐹𝐶,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝐹𝐶 ≤ 𝑆𝑜𝐶𝐹𝐶,𝑚𝑎𝑥}, 
(26) 

where 𝑆𝑜𝐶𝑏,𝑚𝑖𝑛 , 𝑆𝑜𝐶𝐹𝐶,𝑚𝑖𝑛 represent the minimum 𝑆𝑜𝐶 levels for the energy storage devices, and 𝑆𝑜𝐶𝑏,𝑚𝑎𝑥 , 𝑆𝑜𝐶𝐹𝐶,𝑚𝑎𝑥 their 

maximum values. The second set of constraints is the battery temperature  

 𝑋𝑠𝑎𝑓𝑒,𝑇 = {𝑥𝐸𝑀𝐴 ∈ 𝑋𝐸𝑀𝐴:   𝑇𝑏 ≤ 𝑇𝑏,𝑚𝑎𝑥}. (27) 

This set of constraints can be temporarily violated; however, these violation increases the risk of failure of this component 

(e.g. thermal runaway [30]) and are penalized in the EMA performance score.  

C. Performance Metrics 

The EMA will be evaluated using the following performance metrics (see also Table 2). 

• 𝐽𝐸,𝑡𝑜𝑡: Total energy: total energy consumption of the vehicle and the total energy losses. It is computed by integrating 

the power delivered by the battery (𝑝𝑏𝑎𝑡), the fuel cell (𝑝𝐹𝐶) and the power losses (𝑝𝑙𝑜𝑠𝑠). 

• 𝐽𝑆𝑜𝐶: timespan that SoC constraints 𝑋𝑠𝑎𝑓𝑒,𝑆𝑂𝐶  are violated. 

• 𝐽𝑇𝐶: maximum temperature violation. 

• 𝐽𝑑𝑒𝑔: battery capacity that is lost during the vehicle mission due to battery cycle aging.  

• 𝐽𝑣 : derating metric that captures ability of the vehicle to track the velocity profile defined by the mission planning.  

• 𝐽𝑡𝑖𝑟𝑒: Tire losses. 

 

Table 2: Summary of performance metrics 

Metric Formula  

𝐽𝐸,𝑡𝑜𝑡 ∫ (𝑝𝑏𝑎𝑡(𝑡) + 𝑝𝐹𝐶(𝑡) + 𝑝𝑙𝑜𝑠𝑠(𝑡))
𝑡𝑒𝑛𝑑

0

𝑑𝑡 

𝐽𝑆𝑜𝐶 ∫𝕝{𝑥(𝑡)∉𝑋𝑠𝑎𝑓𝑒,𝑆𝑂𝐶}𝑑𝑡 

𝐽𝑇𝐶  max
𝑡
 max (0, (𝑇𝑏𝑎𝑡(𝑡) − 𝑇𝑏𝑎𝑡,𝑚𝑎𝑥)) 

𝐽𝑑𝑒𝑔 
dΔ𝐶𝑐𝑒𝑙𝑙(𝑖𝑎𝑣𝑔, 𝑇𝑎𝑣𝑔)

𝑑𝑁
 

𝐽𝑣 ∫(1 − 𝛼𝑣(𝑡))𝑑𝑡 

𝐽𝑡𝑖𝑟𝑒 ∫(∑𝑝𝑡𝑖𝑟𝑒,𝑖(𝑡)

4

𝑖

)𝑑𝑡 

𝕝{𝑐𝑜𝑛𝑑} is an indicator function that returns 1 if 𝑐𝑜𝑛𝑑 = 1, and zero otherwise 

Note that the value of these performance metrics will be dependent on the EMA provided by the algorithm 𝜋(𝑥) and the 

mission profile:  

 𝑊 = (𝑣∗(𝑡𝑘), 𝜌
∗(𝑡𝑘))𝑘=1

𝑁
. (28) 

D. EMA Baseline Policy  

The simulation model provided to the competitors contains a simple example policy, which is called baseline policy. This 

baseline policy is implemented as follows  

 �̃�(𝑥) = [�̃�𝐹𝐶(𝑥), �̃�𝐴𝐷(𝑥) �̃�𝑇𝑉(𝑥), �̃�𝑣(𝑥)] 
(29) 

 
�̃�𝐹𝐶(𝑥) = {

𝑘𝐹𝐶   if   𝑥(𝑡) ∈ 𝑋𝑠𝑎𝑓𝑒,𝑆𝑂𝐶
0 otherwise

 
(30) 



 

 

 

 �̃�𝐴𝐷(𝑥) = 1/2 (31) 

 
�̃�𝑇𝑉(𝑥) =

1

2
+ 𝑘𝑇𝑉𝜌

∗(𝑣∗)2 
(32) 

�̃�𝑣(𝑥)

= {

1  if   𝑥(𝑡) ∈ 𝑋𝑠𝑎𝑓𝑒,𝑆𝑂𝐶
𝑠𝑎𝑡(𝑚0𝑆𝑜𝐶𝑏 + 𝑏0), 𝑖𝑓 𝑆𝑜𝐶𝑏(𝑡) ≤ 𝑆𝑜𝐶𝑏,𝑚𝑖𝑛
𝑠𝑎𝑡(𝑚1𝑆𝑜𝐶𝑏 + 𝑏1), 𝑖𝑓 𝑆𝑜𝐶𝑏(𝑡) ≥ 𝑆𝑜𝐶𝑏,𝑚𝑎𝑥

 

(33) 

This policy enforces 

• constant usage of the fuel cell (with ratio 𝑘𝐹𝐶) if safety constraints are fulfilled (eq. (30)); it disables the fuel cell 

whenever violation of 𝑆𝑜𝐶 constraints occur, eq. (33), 

• constant front-rear torque distribution ratio, eq. (31),  

• a torque allocation policy proportional to the expected lateral acceleration of the vehicle (𝜌∗(𝑣∗)2); where 𝑘𝑇𝑉 is a 

constant, eq. (32), 

• a simple derating strategy that reduces the maximum vehicle velocity whenever the battery 𝑆𝑜𝐶 are violated; see eq. 

(33) for details, where 𝑚0, 𝑏0, 𝑚1, 𝑏1 are parameters and 𝑠𝑎𝑡(. ) a saturation function that enforces the range [0,1]. 

This baseline policy generates baseline metrics, which are denoted as 𝐽𝐸,𝑡𝑜𝑡 , 𝐽𝑆𝑜𝐶 , 𝐽𝑇𝐶 , 𝐽𝐷𝑒𝑔 , 𝐽𝑣 , 𝐽𝑡𝑖𝑟𝑒. 

Figure 7 shows an example of vehicle states and control inputs that were generated by the baseline EMA policy �̃�(𝑥) during 

an urban driving cycle. 

 

Figure 7: Example of a subset of vehicle states and control inputs generated by the vehicle model and EMA baseline policy 

In this example, the battery temperature exceeds the upper limit at 1000 s, which might compromise battery safety. The 

derating strategy becomes active after 1800 s, decreasing 𝛼𝑣 and the maximum velocity (and maximum power) that the vehicle 

can reach.  

Moreover, Figure 8 shows the histogram of the baseline performance metrics against 10 selected driving cycles. Some tracks 

are deliberately selected to be longer than what the car can fulfill to enforce maximum available energy consumption, velocity 

derating, and generating a baseline which could be improved upon smart design of EMAs’ proposed by competitors. 



 

 

 

 

Figure 8: Performance metrics of the baseline policy against ten driving cycles. 

The competitors are invited to develop better EMAs that can significantly avoid violation of the safety constraints, extend 

vehicle operation without loss of performance and reduced energy consumption. 

E. Evaluation and Ranking 

The score of the EMA over a given mission profile is computed as a weighted summation of the performance metrics, 

normalized with respect to the EMA baseline policy (�̃�). Mathematically, this means:  

 
𝐽 = 𝑘𝐸,𝑡𝑜𝑡

𝐽𝐸,𝑡𝑜𝑡

𝐽𝐸,𝑡𝑜𝑡
+ 𝑘𝑆𝑜𝐶

𝐽𝑆𝑜𝐶

𝐽𝑆𝑜𝐶
 

+𝑘𝑇𝐶
𝐽𝑇𝐶

𝐽𝑇𝐶
+ 𝑘𝐷𝑒𝑔

𝐽𝐷𝑒𝑔

𝐽𝐷𝑒𝑔
+ 𝑘𝑣

𝐽𝑣

𝐽𝑣
+ 𝑘𝑡𝑖𝑟𝑒

𝐽𝑡𝑖𝑟𝑒

𝐽𝑡𝑖𝑟𝑒
, 

(34) 

where 𝑘𝐸,𝑡𝑜𝑡 , 𝑘𝑇𝐶 , 𝑘𝐷𝑒𝑔, 𝑘𝑣 , 𝑘𝑡𝑖𝑟𝑒  are known weights (defined by the organizers) and 𝐽𝐸,𝑡𝑜𝑡 , 𝐽𝑆𝑜𝐶 , 𝐽𝑇𝐶 , 𝐽𝐷𝑒𝑔, 𝐽𝑣 , 𝐽𝑡𝑖𝑟𝑒 are the 

performance metrics obtained with the EMA provided by the competitor, 𝜋(𝑥). Please consider that if the baseline EMA 

performs well enough as any of the metrics 𝐽𝑥 is resulted zero (e.g., it does not violate SoC constraints, or does not violate the 

maximum temperature limit), but the EMA designed by the competitor results in 𝐽𝑥 ≠ 0, then the overall performance metric 

will be penalized by a large number.  

Moreover, note that the overall score of the EMA depends not only on the policy 𝜋(𝑥), but also on the mission profile 𝑊, i.e.,  

 𝐽(𝜋,𝑊). (35) 

The evaluation will consider a bank of mission profiles 𝑊1,𝑊2, … ,𝑊𝑀, which contain typical operating conditions for the 

vehicle. Each profile can be selected with probability  

 𝑝(𝑊𝑗) = 𝑝𝑗,   𝑗 = 1,… ,𝑀. (36) 

Some driving cycles (but not all) will be provided to the competitors; the driving cycle probability (𝑝𝑗) is also unknown to 

the competitors. The performance of an EMA will be performed based on the average cost over all mission profiles: 

 

𝔼{𝐽(𝜋,𝑊)} =∑𝑝(𝑊𝑗)𝐽(𝜋,𝑊𝑗)

𝑀

𝑗=1

, (37) 

where 𝔼{. } is the expected value operator (over 𝑊). The final EMA ranking will be performed as follows. We will collect all 

the energy management algorithms provided by the competitors, 𝜋1, … , 𝜋𝐿 , where 𝐿 is the number of received submissions. 

The competitor that provides the lowest average cost will be the winner, i.e.: 

 𝐿𝑤𝑖𝑛𝑛𝑒𝑟 = arg min
l∈{1,…,L}        

𝔼{𝐽(𝜋𝑙 ,𝑊)}. (38) 

V. SUMMARY AND OUTLOOK 

This article presents the conceptualization, modeling and setup for the IEEE Motor Vehicle Challenge 2023. It relies on a 

multi-domain modeling approach based on Modelica, FMI technology for a seamless model exchange between different 



 

 

 

simulation tools, as well as an integrated vehicle control with trajectory following. Prospective competitors are invited to submit 

algorithms that can efficiently perform the energy management of the multiple electric motors and energy storage devices 

available in the reference vehicle. A wide range of performance metrics will be used to rank the submitted strategies, including 

energy consumption, fulfillment of safety constraints, battery degradation and loss of vehicle performance (derating). 

The simulation framework will be available in the GitHub repository https://github.com/DLR-VSDC/IEEE-MVC-2023 by 

November 2022. The repository will contain the vehicle model (FMU), the baseline energy management algorithm 

(MATLAB/Simulink) for an easy point-of-entry, and scripts to generate performance reports. The value of all vehicle and 

component parameters will be included in the repository to support the competitor’s controller synthesis process. 

Future points of interest in research are the development of more complex vehicle components and architectures which will 

be tuned and validated with real world experiments. 
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